101
|
Angeli A, Del Prete S, Osman SM, Alasmary FAS, AlOthman Z, Donald WA, Capasso C, Supuran CT. Activation studies of the α- and β-carbonic anhydrases from the pathogenic bacterium Vibrio cholerae with amines and amino acids. J Enzyme Inhib Med Chem 2018; 33:227-233. [PMID: 29231751 PMCID: PMC7012002 DOI: 10.1080/14756366.2017.1412316] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 10/27/2022] Open
Abstract
The α- and β-class carbonic anhydrases (CAs, EC 4.2.1.1) from the pathogenic bacterium Vibrio cholerae, VchCAα, and VchCAβ, were investigated for their activation with natural and non-natural amino acids and amines. The most effective VchCAα activators were L-tyrosine, histamine, serotonin, and 4-aminoethyl-morpholine, which had KAs in the range of 8.21-12.0 µM. The most effective VchCAβ activators were D-tyrosine, dopamine, serotonin, 2-pyridyl-methylamine, 2-aminoethylpyridine, and 2-aminoethylpiperazine, which had KAs in the submicromolar - low micromolar range (0.18-1.37 µM). The two bacterial enzymes had very different activation profiles with these compounds, between each other, and in comparison to the human isoforms hCA I and II. Some amines were selective activators of VchCAβ, including 2-pyridylmethylamine (KA of 180 nm for VchCAβ, and more than 20 µM for VchCAα and hCA I/II). The activation of CAs from bacteria, such as VchCAα/β has not been considered previously for possible biomedical applications. It would be of interest to study in more detail the extent that CA activators are implicated in the virulence and colonisation of the host by such pathogenic bacteria, which for Vibrio cholerae, is highly dependent on the bicarbonate concentration and pH in the surrounding tissue.
Collapse
Affiliation(s)
- Andrea Angeli
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| | - Sonia Del Prete
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
- Istituto di Bioscienze e Biorisorse, CNR, Napoli, Italy
| | - Sameh M. Osman
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fatmah A. S. Alasmary
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zeid AlOthman
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - William A. Donald
- School of Chemistry, University of New South Wales, Sydney, Australia
| | | | - Claudiu T. Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- School of Chemistry, University of New South Wales, Sydney, Australia
| |
Collapse
|
102
|
Stefanucci A, Angeli A, Dimmito MP, Luisi G, Del Prete S, Capasso C, Donald WA, Mollica A, Supuran CT. Activation of β- and γ-carbonic anhydrases from pathogenic bacteria with tripeptides. J Enzyme Inhib Med Chem 2018; 33:945-950. [PMID: 29747543 PMCID: PMC6009936 DOI: 10.1080/14756366.2018.1468530] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Six tripeptides incorporating acidic amino acid residues were prepared for investigation as activators of β- and γ-carbonic anhydrases (CAs, EC 4.2.1.1) from the pathogenic bacteria Vibrio cholerae, Mycobacterium tuberculosis, and Burkholderia pseudomallei. The primary amino acid residues that are involved in the catalytic mechanisms of these CA classes are poorly understood, although glutamic acid residues near the active site appear to be involved. The tripeptides that contain Glu or Asp residues can effectively activate VchCAβ and VchCAγ (enzymes from V. cholerae), Rv3273 CA (mtCA3, a β-CA from M. tuberculosis) and BpsCAγ (γ-CA from B. pseudomallei) at 0.21-18.1 µM levels. The position of the acidic residues in the peptide sequences can significantly affect bioactivity. For three of the enzymes, tripeptides were identified that are more effective activators than both l-Glu and l-Asp. The tripeptides are also relatively selective because they do not activate prototypical α-CAs (human carbonic anhydrases I and II). Because the role of CA activators in the pathogenicity and life cycles of these infectious bacteria are poorly understood, this study provides new molecular probes to explore such processes.
Collapse
Affiliation(s)
- Azzurra Stefanucci
- Department of Pharmacy, “Gabriele d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Andrea Angeli
- Department of Neurofarba, Università degli Studi di Firenze, Sezione di Scienze Farmaceutiche e Nutraceutiche, Sesto Fiorentino, Florence, Italy
| | - Marilisa Pia Dimmito
- Department of Pharmacy, “Gabriele d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Grazia Luisi
- Department of Pharmacy, “Gabriele d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Sonia Del Prete
- Department of Neurofarba, Università degli Studi di Firenze, Sezione di Scienze Farmaceutiche e Nutraceutiche, Sesto Fiorentino, Florence, Italy
- Istituto di Bioscienze e Biorisorse, CNR, Napoli, Italy
| | | | - William A. Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| | - Adriano Mollica
- Department of Pharmacy, “Gabriele d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Claudiu T. Supuran
- Department of Neurofarba, Università degli Studi di Firenze, Sezione di Scienze Farmaceutiche e Nutraceutiche, Sesto Fiorentino, Florence, Italy
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
103
|
Supuran CT. Carbonic anhydrase inhibitors as emerging agents for the treatment and imaging of hypoxic tumors. Expert Opin Investig Drugs 2018; 27:963-970. [PMID: 30426805 DOI: 10.1080/13543784.2018.1548608] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Hypoxic tumors overexpress two carbonic anhydrases (CA, EC 4.2.1.1), CA IX and XII, involved in complex processes connected to tumorigenesis (pH regulation, metabolism, invasion, and dissemination of the tumor). The biochemical rationale behind these processes is orchestrated by the transcription factor hypoxia inducible factor 1 (HIF-1). AREAS COVERED CA IX and XII have been validated as antitumor/antimetastatic drug targets and may be used for imaging hypoxic tumors. Many CA inhibitors (CAIs) belonging to the sulfonamide, coumarin and sulfocoumarin classes selectively inhibit these two isoforms. CA IX/XII inhibitors inhibit the growth of primary tumors and the formation of metastases and deplete the cancer stem cell population, alone or in combination with other agents. These are three beneficial antitumor mechanisms that make them unique among anticancer drugs available. EXPERT OPINION Indisulam entered clinical trials as an antitumor sulfonamide; it progressed to Phase II trials but was terminated in 2016. However, SLC-0111, a sulfonamide CA IX/XII inhibitor 1, recently completed a successful Phase I clinical trial for the treatment of advanced, metastatic solid tumors. This compound is now in Phase Ib/II clinical trials and is being assessed as a monotherapy or in combination with other agents such as gemcitabine. CA IX/XII inhibitors are synergistic with other anticancer agents (cisplatin, proton pump inhibitors, doxorubicin, temozolamide) and are a versatile, emerging class of antitumor drugs.
Collapse
Affiliation(s)
- Claudiu T Supuran
- a NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Sesto Fiorentino (Firenze) , Italy
| |
Collapse
|
104
|
Alyar S, Şen C, Alyar H, Adem Ş, Kalkanci A, Ozdemir UO. Synthesis, characterization, antimicrobial activity, carbonic anhydrase enzyme inhibitor effects, and computational studies on new Schiff bases of Sulfa drugs and their Pd(II), Cu(II) complexes. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
105
|
Supuran CT. Carbonic anhydrase inhibitors and their potential in a range of therapeutic areas. Expert Opin Ther Pat 2018; 28:709-712. [PMID: 30217119 DOI: 10.1080/13543776.2018.1523897] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Claudiu T Supuran
- a NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Sesto Fiorentino (Firenze) , Italy
| |
Collapse
|
106
|
Supuran CT. Applications of carbonic anhydrases inhibitors in renal and central nervous system diseases. Expert Opin Ther Pat 2018; 28:713-721. [PMID: 30175635 DOI: 10.1080/13543776.2018.1519023] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION There are tissues and organs, among which kidneys and the central nervous system (CNS), rich in various isoforms of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). Their role is to regulate pH, to provide bicarbonate or H+ ions for electrolyte secretion and possibly a metabolic one. Considering these two systems, CA inhibitors are clinically used mainly as diuretics and antiepileptics, but novel applications in the management of drug-induced renal injury, sleep apnea, migraine, lowering intracranial pressure, cognitive impairment, neuropathic pain, and cerebral ischemia have emerged. AREAS COVERED The various classes of clinically used/investigational CA inhibitors and their applications in the management of renal and CNS - connected diseases is reviewed. A patent and literature review covering the period 2013-2018 is presented. EXPERT OPINION Both kidneys and CNS are rich in many CA isoforms (CAIs), present also in high amounts. Their inhibition and activation has pharmacological applications, already exploited for diuretic and antiepileptic drugs for decades. New applications were demonstrated in the last years for the CAIs in the management of idiopathic intracranial hypertension, cerebral ischemia, neuropathic pain, avoiding the disruption of blood-brain barrier, and prevention/treatment of migraine, and for the activators for cognition enhancement and the possible treatment of posttraumatic shock and phobias.
Collapse
Affiliation(s)
- Claudiu T Supuran
- a NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Sesto Fiorentino (Firenze) , Italy
| |
Collapse
|
107
|
Mishra CB, Kumari S, Angeli A, Bua S, Buonanno M, Monti SM, Tiwari M, Supuran CT. Discovery of potent anti-convulsant carbonic anhydrase inhibitors: Design, synthesis, in vitro and in vivo appraisal. Eur J Med Chem 2018; 156:430-443. [PMID: 30015076 DOI: 10.1016/j.ejmech.2018.07.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/05/2018] [Accepted: 07/07/2018] [Indexed: 12/25/2022]
Abstract
We report the design, synthesis and pharmacological assessment of novel benzenesulfonamide derivatives acting as effective carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. All the synthesized compounds were screened for their CA inhibitory action against four isoforms of human origin (h), i.e. hCA I, hCA II, hCA VII and hCA IX. In-vitro carbonic anhydrase inhibition studies have shown that first series, 4-(2-(4-(4-substitutedpiperazin-1-yl)benzylidene)hydrazinyl)benzenesulfonamides (4a- 4i) bestowed low nanomolar range to medium nanomolar range inhibitors against hCA II and hCA VII, effectively involved in epileptogenesis. Furthermore, compounds belonging to the second series, 4-(2-(4-(4-substitutedpiperazin-yl)benzylidene)hydrazinecarbonyl)benzenesulfonamides (8a-8k) showed effective inhibition against hCA VII, being less effective against other hCA isoforms. Inspiring with obtained CA inhibition results, we have chosen some of the potent hCA II and hCA VII inhibitors (4g, 4i and 8d) to test their anti-convulsant efficacy in MES and sc-PTZ seizure tests in Swiss Albino male mice. In result, these compounds significantly attenuated both electrical (MES) as well as chemical (sc-PTZ) induced seizures. Next, in advance anticonvulsant tests, compound 8d displayed long duration of action in time course study and successfully attenuated MES induced seizure in mice up to 6 h after drug administration without showing neurotoxicity in rotarod test. Moreover, this compound was also found to be orally active and effectively abolished generalized tonic-clonic seizures in male Wistar rats upon oral administration, being non-toxic in sub acute toxicity studies.
Collapse
Affiliation(s)
- Chandra Bhushan Mishra
- Bio-Organic Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, 110007, Delhi, India
| | - Shikha Kumari
- Bio-Organic Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, 110007, Delhi, India
| | - Andrea Angeli
- Dipartimento Neurofarba, Universita` degli Studi di Firenze, Sezione di Scienze Farmaceutiche e Nutraceutiche, 50019, Sesto Fiorentino, Florence, Italy
| | - Silvia Bua
- Dipartimento Neurofarba, Universita` degli Studi di Firenze, Sezione di Scienze Farmaceutiche e Nutraceutiche, 50019, Sesto Fiorentino, Florence, Italy
| | - Martina Buonanno
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone, 16, 80134, Naples, Italy
| | - Simona Maria Monti
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone, 16, 80134, Naples, Italy
| | - Manisha Tiwari
- Bio-Organic Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, 110007, Delhi, India.
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Universita` degli Studi di Firenze, Sezione di Scienze Farmaceutiche e Nutraceutiche, 50019, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
108
|
Sangkaew A, Krungkrai J, Yompakdee C. Development of a high throughput yeast-based screening assay for human carbonic anhydrase isozyme II inhibitors. AMB Express 2018; 8:124. [PMID: 30078153 PMCID: PMC6076874 DOI: 10.1186/s13568-018-0653-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 07/27/2018] [Indexed: 12/27/2022] Open
Abstract
Carbonic anhydrase (CA; EC 4.2.1.1) catalyzes the reversible hydration of carbon dioxide (CO2) to bicarbonate and proton. There are 16 known isozymes of α-CA in humans, which differ widely in their kinetics, subcellular localization and tissue-specific distribution. Several disorders are associated with abnormal levels of CA, and so the inhibition of CA has pharmacological application in the treatment of many diseases. Currently, searching for novel CA inhibitors (CAI) has been performed using in vitro methods, and so their toxicity remains unknown at the time of screening. To obtain potentially safer CAIs, a screening procedure using an in vivo assay seems to have more advantages. Here, we developed a yeast-based in vivo assay for the detection of inhibitors of the human CA isozyme II (hCAII). The yeast Saccharomyces cerevisiae mutant deprived of its own CA (Δnce103 strain) can grow under a high CO2 condition (5% (v/v) CO2) but not at an ambient level. We constructed Δnce103 strains expressing various levels of hCAII from a plasmid harboring the hCAII gene arranged under the control of variously modified GAL1 promoter and relying on the expression of hCAII for growth under low CO2 condition. Using a multidrug-sensitive derivative of the Δnce103 strain expressing a low level of hCAII, we finally established a high throughput in vivo assay for hCAII inhibitors under a low CO2 condition. Cytotoxicity of the candidates obtained could be simultaneously determined under a high CO2 condition. However, their inhibitory activities against other CA isozymes remains to be established by further investigation.
Collapse
|
109
|
Angeli A, Kuuslahti M, Parkkila S, Supuran CT. Activation studies with amines and amino acids of the α-carbonic anhydrase from the pathogenic protozoan Trypanosoma cruzi. Bioorg Med Chem 2018; 26:4187-4190. [DOI: 10.1016/j.bmc.2018.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 01/09/2023]
|
110
|
Abstract
INTRODUCTION The hydration/dehydration of CO2 catalyzed by carbonic anhydrases (CAs, EC 4.2.1.1) is a crucial physiological reaction for the survival of all living organisms because it is connected with numerous biosynthetic and biochemical pathways requiring CO2 or HCO3-, such as respiration, photosynthesis, carboxylation reactions, pH homeostasis, secretion of electrolytes, transport of CO2, bicarbonate, etc. AREAS COVERED The bacterial genome encodes CAs belonging to the α-, β-, and γ-CA classes able to ensure the survival and/or satisfying the metabolic needs of the bacteria, as demonstrated by in vivo and in vitro experiments. The discovery of new anti-infectives that target new bacterial pathways, such as those involving CAs, may lead to effective therapies against diseases subject to the antibiotic resistance. This aspect is important in pharmaceutical and biomedical research but received little attention till recently. EXPERT OPINION An overview of the potential use of CAs in biomedical applications, as drug targets, bioindicators, and within artificial organs is presented. The discovery of thermostable bacterial CAs allowed the use of CAs in biotechnological applications, but patents related to the use of bacterial CAs in the development of pharmacological agents are scarce.
Collapse
Affiliation(s)
- Claudiu T Supuran
- a Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, and Laboratorio di Chimica Bioinorganica, Polo Scientifico , Università degli Studi di Firenze , Florence , Italy
| | | |
Collapse
|
111
|
Arshad J, Hanif M, Zafar A, Movassaghi S, Tong KKH, Reynisson J, Kubanik M, Waseem A, Söhnel T, Jamieson SMF, Hartinger CG. Organoruthenium and Organoosmium Complexes of 2-Pyridinecarbothioamides Functionalized with a Sulfonamide Motif: Synthesis, Cytotoxicity and Biomolecule Interactions. Chempluschem 2018; 83:612-619. [PMID: 31950635 DOI: 10.1002/cplu.201800194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/22/2018] [Indexed: 11/07/2022]
Abstract
Anticancer-active RuII -η6 -p-cymene complexes of bioactive 2-pyridinecarbothioamide ligands have been shown to have high selectivity for plectin and can be administered orally. Reported herein is the functionalization of a 2-pyridinecarbothioamide with a sulfonamide group and its conversion into M-η6 -p-cymene complexes (M = Ru, Os). The presence of a sulfonamide moiety in many organic drugs and metal complexes endows these agents with interesting biological properties and can transform the latter into multi-targeted agents. The compounds were characterized with standard methods and the in vitro anticancer activity data was compared with studies on the hydrolytic stability of the complexes and their reactivity to small biomolecules. A molecular modeling study revealed plausible modes of binding of the complexes in the catalytic pocket of carbonic anhydrase II.
Collapse
Affiliation(s)
- Jahanzaib Arshad
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.,Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Hanif
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Ayesha Zafar
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Sanam Movassaghi
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Kelvin K H Tong
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Jóhannes Reynisson
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Mario Kubanik
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Amir Waseem
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Tilo Söhnel
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| |
Collapse
|
112
|
Angeli A, Del Prete S, Alasmary FAS, Alqahtani LS, AlOthman Z, Donald WA, Capasso C, Supuran CT. The first activation studies of the η-carbonic anhydrase from the malaria parasite Plasmodium falciparum with amines and amino acids. Bioorg Chem 2018; 80:94-98. [PMID: 29894892 DOI: 10.1016/j.bioorg.2018.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 02/06/2023]
Abstract
The first activation study of a η-class carbonic anhydrase (CAs, EC 4.2.1.1) is reported. A panel of 24 natural and non-natural amino acids and amines was used to explore the activation profile of Plasmodium falciparum CA (PfACA). The most effective activators belonged to the amino acid chemotype, with d-Glu, l-Asp, l-/d-Phe and l-/d-DOPA possessing activation constant in the range of 82 nM-0.75 µM, whereas l-/d-His, l-Tyr, 4-amino-l-Phe and l-Gln were slightly less effective (KA in the range of 1.00-2.51 µM. The only amine with submicromolar activating properties was 1-(2-aminoethyl-piperazine) with a KA of 0.71 µM, whereas histamine, dopamine and serotonin showed KA ranging between 7.18 and 9.97 µM. As CA activators have scarcely been investigated for their interaction with protozoan CAs, this study may be relevant for an improved understanding of the role of this enzyme in the life cycle of the malaria producing organisms belonging to the genus Plasmodium.
Collapse
Affiliation(s)
- Andrea Angeli
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Sonia Del Prete
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Fatmah A S Alasmary
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Linah S Alqahtani
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Department of Chemistry, King Faisal University, Alahsa, Saudi Arabia
| | - Zeid AlOthman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy.
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy; Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
113
|
Abdoli M, Bozdag M, Angeli A, Supuran CT. Benzamide-4-Sulfonamides Are Effective Human Carbonic Anhydrase I, II, VII, and IX Inhibitors. Metabolites 2018; 8:metabo8020037. [PMID: 29857578 PMCID: PMC6027465 DOI: 10.3390/metabo8020037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 05/26/2018] [Accepted: 05/30/2018] [Indexed: 12/17/2022] Open
Abstract
A series of benzamides incorporating 4-sulfamoyl moieties were obtained by reacting 4-sulfamoyl benzoic acid with primary and secondary amines and amino acids. These sulfonamides were investigated as inhibitors of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). The human (h) isoforms hCA II, VII, and IX were inhibited in the low nanomolar or subnanomolar ranges, whereas hCA I was slightly less sensitive to inhibition (KIs of 5.3–334 nM). The β- and γ-class CAs from pathogenic bacteria and fungi, such as Vibrio cholerae and Malassezia globosa, were inhibited in the micromolar range by the sulfonamides reported in the paper. The benzamide-4-sulfonamides are a promising class of highly effective CA inhibitors.
Collapse
Affiliation(s)
- Morteza Abdoli
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy.
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad 6813833946, Iran.
| | - Murat Bozdag
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy.
| | - Andrea Angeli
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy.
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy.
| |
Collapse
|
114
|
Pickerodt PA, Kronfeldt S, Russ M, Gonzalez-Lopez A, Lother P, Steiner E, Vorbrodt K, Busch T, Boemke W, Francis RCE, Swenson ER. Carbonic anhydrase is not a relevant nitrite reductase or nitrous anhydrase in the lung. J Physiol 2018; 597:1045-1058. [PMID: 29660141 DOI: 10.1113/jp275894] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/09/2018] [Indexed: 01/12/2023] Open
Abstract
KEY POINTS Carbonic anhydrase (CA) inhibitors such as acetazolamide inhibit hypoxic pulmonary vasoconstriction (HPV) in humans and other mammals, but the mechanism of this action remains unknown. It has been postulated that carbonic anhydrase may act as a nitrous anhydrase in vivo to generate nitric oxide (NO) from nitrite and that this formation is increased in the presence of acetazolamide. Acetazolamide reduces HPV in pigs without evidence of any NO generation, whereas nebulized sodium nitrite reduces HPV by NO formation; however; combined infusion of acetazolamide with sodium nitrite inhalation did not further increase exhaled NO concentration over inhaled nitrite alone in pigs exposed to alveolar hypoxia. We conclude that acetazolamide does not function as either a nitrous anhydrase or a nitrite reductase in the lungs of pigs, and probably other mammals, to explain its vasodilating actions in the pulmonary or systemic circulations. ABSTRACT The carbonic anhydrase (CA) inhibitors acetazolamide and its structurally similar analogue methazolamide prevent or reduce hypoxic pulmonary vasoconstriction (HPV) in dogs and humans in vivo, by a mechanism unrelated to CA inhibition. In rodent blood and isolated blood vessels, it has been reported that inhibition of CA leads to increased generation of nitric oxide (NO) from nitrite and vascular relaxation in vitro. We tested the physiological relevance of augmented NO generation by CA from nitrite with acetazolamide in anaesthetized pigs during alveolar hypoxia in vivo. We found that acetazolamide prevents HPV in anaesthetized pigs, as in other mammalian species. A single nebulization of sodium nitrite reduces HPV, but this action wanes in the succeeding 3 h of hypoxia as nitrite is metabolized and excreted. Pulmonary artery pressure reduction and NO formation as measured by exhaled gas concentration from inhaled sodium nitrite were not increased by acetazolamide during alveolar hypoxia. Thus, our data argue against a physiological role of carbonic anhydrase as a nitrous anhydrase or nitrite reductase as a mechanism for its inhibition of HPV in the lung and blood in vivo.
Collapse
Affiliation(s)
- Philipp A Pickerodt
- Department of Anesthesiology and Operative Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Sebastian Kronfeldt
- Department of Anesthesiology and Operative Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Martin Russ
- Department of Anesthesiology and Operative Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Adrian Gonzalez-Lopez
- Department of Anesthesiology and Operative Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Philipp Lother
- Department of Anesthesiology and Operative Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Elvira Steiner
- Department of Anesthesiology and Operative Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Katja Vorbrodt
- Department of Anesthesiology and Operative Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Thilo Busch
- Department of Anesthesiology and Intensive Care Medicine, University of Leipzig, Leipzig, Germany
| | - Willehad Boemke
- Department of Anesthesiology and Operative Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Roland C E Francis
- Department of Anesthesiology and Operative Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Erik R Swenson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA.,VA Puget Sound Health Care System, Seattle, WA, USA
| |
Collapse
|
115
|
Chiaramonte N, Romanelli MN, Teodori E, Supuran CT. Amino Acids as Building Blocks for Carbonic Anhydrase Inhibitors. Metabolites 2018; 8:E36. [PMID: 29795039 PMCID: PMC6027070 DOI: 10.3390/metabo8020036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023] Open
Abstract
Carbonic anhydrases (CAs) are a superfamily of metalloenzymes widespread in all life, classified into seven genetically different families (α⁻θ). These enzymes catalyse the reversible hydration of carbonic anhydride (CO₂), generating bicarbonate (HCO₃-) and protons (H⁺). Fifteen isoforms of human CA (hCA I⁻XV) have been isolated, their presence being fundamental for the regulation of many physiological processes. In addition, overexpression of some isoforms has been associated with the outbreak or progression of several diseases. For this reason, for a long time CA inhibitors (CAIs) have been used in the control of glaucoma and as diuretics. Furthermore, the search for new potential CAIs for other pharmacological applications is a very active field. Amino acids constitute the smallest fundamental monomers of protein and, due to their useful bivalent chemical properties, are widely used in organic chemistry. Both proteinogenic and non-proteinogenic amino acids have been extensively used to synthesize CAIs. This article provides an overview of the different strategies that have been used to design new CAIs containing amino acids, and how these bivalent molecules influence the properties of the inhibitors.
Collapse
Affiliation(s)
- Niccolò Chiaramonte
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
| | - Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
| | - Elisabetta Teodori
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
| | - Claudiu T Supuran
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
116
|
Angapelly S, Angeli A, Khan AJ, Sri Ramya PV, Supuran CT, Arifuddin M. Synthesis and Biological Evaluation of 4-Sulfamoylphenyl/Sulfocoumarin Carboxamides as Selective Inhibitors of Carbonic Anhydrase Isoforms hCA II, IX, and XII. ChemMedChem 2018; 13:1165-1171. [PMID: 29675887 DOI: 10.1002/cmdc.201800180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/16/2018] [Indexed: 11/08/2022]
Abstract
With the aim to develop potent and selective human carbonic anhydrase inhibitors (hCAIs), we synthesized 4-sulfamoylphenyl/sulfocoumarin benzamides (series 5 a-r and series 7 a-q) and evaluated their inhibition profiles against five isoforms of the zinc-containing human carbonic anhydrase (hCA, EC 4.2.1.1): cytosolic hCA I and II, and the transmembrane isozymes hCA IV, IX, and XII. Compounds 5 a-r were found to selectively inhibit hCA II in the nanomolar range, while being less effective against the other hCA isoforms. As noted from the literature, sulfocoumarin (1,2-benzoxathiine 2,2-dioxide) acts as a "prodrug" inhibitor and is hydrolyzed by the esterase activity of hCA to form 2-hydroxyphenylvinylsulfonic acid, which thereafter binds to the enzyme in a manner similar to that of coumarins and sulfoxocoumarins. All these sulfocoumarins (compounds 7 a-q) were found to be very weak or ineffective as inhibitors of the housekeeping off-target hCA isoforms I and II, and effectively inhibited the transmembrane tumor-associated isoforms IX and XII in the high nanomolar to micromolar ranges. Further structural modifications of these molecules could be useful for the development of effective hCA inhibitors used for the treatment of glaucoma, epilepsy, and cancer.
Collapse
Affiliation(s)
- Srinivas Angapelly
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, 500037, India
| | - Andrea Angeli
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Arbaj Jabbar Khan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, 500037, India
| | - P V Sri Ramya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, 500037, India
| | - Claudiu T Supuran
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, 500037, India
| |
Collapse
|
117
|
Angeli A, Alasmary FAS, Del Prete S, Osman SM, AlOthman Z, Donald WA, Capasso C, Supuran CT. The first activation study of a δ-carbonic anhydrase: TweCAδ from the diatom Thalassiosira weissflogii is effectively activated by amines and amino acids. J Enzyme Inhib Med Chem 2018. [PMID: 29536765 PMCID: PMC6009927 DOI: 10.1080/14756366.2018.1447570] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The activation of the δ-class carbonic anhydrase (CAs, EC 4.2.1.1) from the diatom Thalassiosira weissflogii (TweCAδ) was investigated using a panel of natural and non-natural amino acids and amines. The most effective activator of TweCAδ was d-Tyr (KA of 51 nM), whereas several other amino acids and amines, such as L-His, L-Trp, d-Trp, dopamine and serotonin were submicromolar activators (KAs from 0.51 to 0.93 µM). The most ineffective activator of TweCAδ was 4-amino-l-Phe (18.9 µM), whereas d-His, l-/d-Phe, l-/d-DOPA, l-Tyr, histamine, some pyridyl-alkylamines, l-adrenaline and aminoethyl-piperazine/morpholine were moderately potent activators (KAs from 1.34 to 8.16 µM). For any δ-CA, there are no data on the crystal structure, homology modelling and the amino acid residues that are responsible for proton transfer to the active site are currently unknown making it challenging to provide a detailed rational for these findings. However, these data provide further evidence that this class of underexplored CA deserves more attention.
Collapse
Affiliation(s)
- Andrea Angeli
- a Department of Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Florence , Italy
| | - Fatmah A S Alasmary
- b Department of Chemistry, College of Science , King Saud University , Riyadh , Saudi Arabia
| | - Sonia Del Prete
- a Department of Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Florence , Italy.,c Istituto di Bioscienze e Biorisorse , CNR , Napoli , Italy
| | - Sameh M Osman
- b Department of Chemistry, College of Science , King Saud University , Riyadh , Saudi Arabia
| | - Zeid AlOthman
- b Department of Chemistry, College of Science , King Saud University , Riyadh , Saudi Arabia
| | - William A Donald
- d School of Chemistry , University of New South Wales , Sydney , Australia
| | | | - Claudiu T Supuran
- a Department of Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Florence , Italy.,d School of Chemistry , University of New South Wales , Sydney , Australia
| |
Collapse
|
118
|
Angeli A, Donald WA, Parkkila S, Supuran CT. Activation studies with amines and amino acids of the β-carbonic anhydrase from the pathogenic protozoan Leishmania donovani chagasi. Bioorg Chem 2018; 78:406-410. [PMID: 29689418 DOI: 10.1016/j.bioorg.2018.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/01/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
Abstract
The activation of a β-class carbonic anhydrase (CAs, EC 4.2.1.1) from Leishmania donovani chagasi (LdcCA) was investigated using a panel of natural and non-natural amino acids and amines. The most effective activators belonged to the amine class, with histamine, dopamine, serotonin, 2-pyridyl-methylamine and 4-(2-aminoethyl)-morpholine with activation constants in the range of 0.23-0.94 µM. In addition, 2-(2-aminoethyl)pyridine and 1-(aminoethyl)-piperazine were even more effective activators (KAs of 9-12 nM). Amino acids such as L-/D-His, L-/D-Phe, L-/D-DOPA, L-/D-Trp and L-/D-Tyr were slightly less effective activators compared to the amines, but showed activation constants in the low micromolar range (1.27-9.16 µM). Many of the investigated activators are autacoids that are present in rather high concentrations in different tissues of the host mammals infected by these parasites. As CA activators have not yet been investigated for protozoan CAs, this study may be relevant for an improved understanding of the role of this enzyme in the life cycle of Leishmania.
Collapse
Affiliation(s)
- Andrea Angeli
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Seppo Parkkila
- Faculty of Medicine and Life Sciences, University of Tampere, Fimlab Ltd., Tampere University Hospital, 33520 Tampere, Finland
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy; School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
119
|
Lolak N, Akocak S, Bua S, Koca M, Supuran CT. Design and synthesis of novel 1,3-diaryltriazene-substituted sulfonamides as potent and selective carbonic anhydrase II inhibitors. Bioorg Chem 2018; 77:542-547. [DOI: 10.1016/j.bioorg.2018.02.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/15/2022]
|
120
|
Mishra CB, Kumari S, Angeli A, Bua S, Tiwari M, Supuran CT. Discovery of Benzenesulfonamide Derivatives as Carbonic Anhydrase Inhibitors with Effective Anticonvulsant Action: Design, Synthesis, and Pharmacological Evaluation. J Med Chem 2018; 61:3151-3165. [PMID: 29566486 DOI: 10.1021/acs.jmedchem.8b00208] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Two series of novel benzenesulfonamide derivatives were synthesized and evaluated for their human carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity against four isoforms, hCA I, hCA II, hCA VII, and hCA IX. It was found that compounds of both series showed low to medium nanomolar inhibitory potential against all isoforms. Some of these derivatives displayed selective inhibition against the epileptogenesis related isoforms hCA II and VII, within the nanomolar range. These potent hCA II and VII inhibitors were evaluated as anticonvulsant agents against MES and sc-PTZ induced convulsions. These sulfonamides effectively abolished induced seizures in both models. Furthermore, time dependent seizure protection capability of the most potent compound was also evaluated. A long duration of action was displayed, with efficacy up to 6 h after drug administration. The compound appeared as an orally active anticonvulsant agent without showing neurotoxicity in a rotarod test, a nontoxic chemical profile being observed in subacute toxicity study.
Collapse
Affiliation(s)
- Chandra Bhushan Mishra
- Bio-Organic Chemistry Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research , University of Delhi , 110007 Delhi , India
| | - Shikha Kumari
- Bio-Organic Chemistry Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research , University of Delhi , 110007 Delhi , India
| | - Andrea Angeli
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , 50019 Florence , Italy
| | - Silvia Bua
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , 50019 Florence , Italy
| | - Manisha Tiwari
- Bio-Organic Chemistry Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research , University of Delhi , 110007 Delhi , India
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , 50019 Florence , Italy
| |
Collapse
|
121
|
Supuran CT. Carbonic Anhydrases and Metabolism. Metabolites 2018; 8:metabo8020025. [PMID: 29561812 PMCID: PMC6027401 DOI: 10.3390/metabo8020025] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 01/01/2023] Open
Abstract
Although the role of carbonic anhydrases (CAs, EC 4.2.1.1) in metabolism is well-established, pharmacological applications of this phenomenon started to be considered only recently. In organisms all over the phylogenetic tree, the seven CA genetic families known to date are involved in biosynthetic processes and pH modulation, which may influence metabolism in multiple ways, with both processes being amenable to pharmacologic intervention. CA inhibitors possess antiobesity action directly by inhibiting lipogenesis, whereas the hypoxic tumor metabolism is highly controlled by the transmembrane isoforms CA IX and XII, which contribute to the acidic extracellular environment of tumors and supply bicarbonate for their high proliferation rates. Many of the articles from this special issue deal with the role of cancer CAs in tumor metabolism and how these phenomena can be used for designing innovative antitumor therapies/imaging agents. The metabolic roles of CAs in bacteria and algae are also discussed.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy.
| |
Collapse
|
122
|
Abstract
Mammalian carbonic anhydrases (CAs; EC 4.2.1.1) of which 16 isoforms are known, are involved in important physiological functions. Their inhibition is exploited pharmacologically for the treatment of many diseases (glaucoma, edema, epilepsy, obesity, hypoxic tumors, neuropathic pain, etc.) but the activators were less investigated till recently. A review on the CA activation is presented, with the activation mechanism, drug design approaches of activators and comparison of the various isoforms activation profiles being discussed. Some CAs, which are abundant in the brain, were recently demonstrated to be activatable by drug-like compounds, affording the possibility to design agents that enhance cognition, with potential therapeutic applications in aging and neurodegenerative diseases as well as tissue engineering.
Collapse
|
123
|
Akocak S, Lolak N, Vullo D, Durgun M, Supuran CT. Synthesis and biological evaluation of histamine Schiff bases as carbonic anhydrase I, II, IV, VII, and IX activators. J Enzyme Inhib Med Chem 2018; 32:1305-1312. [PMID: 29072105 PMCID: PMC6010137 DOI: 10.1080/14756366.2017.1386660] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
A series of 20 histamine Schiff base was synthesised by reaction of histamine, a well known carbonic anhydrase (CA, E.C 4.2.2.1.) activator pharmacophore, with substituted aldehydes. The obtained histamine Schiff bases were assayed as activators of five selected human (h) CA isozymes, the cytosolic hCA I, hCA II, and hCA VII, the membrane-anchored hCA IV and transmembrane hCA IX. Some of these compounds showed efficient activity (in the nanomolar range) against the cytosolic isoform hCA VII, which is a key CA enzyme involved in brain metabolism. Moderate activity was observed against hCA I and hCA IV (in the nanomolar to low micromolar range). The structure–activity relationship for activation of these isoforms with the new histamine Schiff bases is discussed in detail based on the nature of the aliphatic, aromatic, or heterocyclic moiety present in the aldehyde fragment of the molecule, which may participate in diverse interactions with amino acid residues at the entrance of the active site, where activators bind, and which is the most variable part among the different CA isoforms.
Collapse
Affiliation(s)
- Suleyman Akocak
- a Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Adiyaman University , Adiyaman , Turkey
| | - Nabih Lolak
- a Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Adiyaman University , Adiyaman , Turkey
| | - Daniela Vullo
- b NEUROFARBA Dept., Sezione di Scienze Farmaceutiche , Università degli Studi di Firenze , Florence , Italy
| | - Mustafa Durgun
- c Department of Chemistry, Faculty of Science and Literature , Harran University , Sanliurfa , Turkey
| | - Claudiu T Supuran
- b NEUROFARBA Dept., Sezione di Scienze Farmaceutiche , Università degli Studi di Firenze , Florence , Italy
| |
Collapse
|
124
|
Peperidou A, Bua S, Bozdag M, Hadjipavlou-Litina D, Supuran CT. Novel 6- and 7-Substituted Coumarins with Inhibitory Action against Lipoxygenase and Tumor-Associated Carbonic Anhydrase IX. Molecules 2018; 23:E153. [PMID: 29329232 PMCID: PMC6017447 DOI: 10.3390/molecules23010153] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/05/2018] [Accepted: 01/11/2018] [Indexed: 11/16/2022] Open
Abstract
A series of carboxamide derivatives of 6- and 7-substituted coumarins have been prepared by an original procedure starting from the corresponding 6- or 7-hydroxycoumarins which were alkylated with ethyl iodoacetate, and the obtained ester was converted to the corresponding carboxylic acids which were thereafter reacted with a series of aromatic/aliphatic/heterocyclic amines leading to the desired amides. The new derivatives were investigated as inhibitors of two enzymes, human carbonic anhydrases (hCAs) and soy bean lipoxygenase (LOX). Compounds 4a and 4b were potent LOX inhibitors, whereas many effective hCA IX inhibitors (KIs in the range of 30.2-30.5 nM) were detected in this study. Two compounds, 4b and 5b, showed the phenomenon of dual inhibition. Furthermore, these coumarins did not significantly inhibit the widespread cytosolic isoforms hCA I and II, whereas they were weak hCA IV inhibitors, making them hCA IX-selective inhibitors. As hCA IX and LOX are validated antitumor targets, these results are promising for the investigation of novel drug targets involved in tumorigenesis.
Collapse
Affiliation(s)
- Aikaterini Peperidou
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Firenze), Italy.
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, 54124 Thessaloniki, Greece.
| | - Silvia Bua
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Firenze), Italy.
| | - Murat Bozdag
- Dipartimento di Chimica, Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Firenze), Italy.
| | - Dimitra Hadjipavlou-Litina
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, 54124 Thessaloniki, Greece.
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Firenze), Italy.
| |
Collapse
|
125
|
The γ-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae is potently activated by amines and amino acids. Bioorg Chem 2018; 77:1-5. [PMID: 29316507 DOI: 10.1016/j.bioorg.2018.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/01/2017] [Accepted: 01/02/2018] [Indexed: 11/24/2022]
Abstract
The γ-class carbonic anhydrase (CAs, EC 4.2.1.1) from the pathogenic bacterium Vibrio cholerae, VchCAγ, was investigated for its activation with a panel of natural and non-natural amino acids and amines. The enzyme was effectively activated by l-tryptophan, 1-(2-minoethyl)-piperazine and 4-(2-aminoethyl)-morpholine, in the low nanomolar range (KAs 8-71 nM). In contrast, l-/d-Phe, l-/d-DOPA, d-Trp, l-/d-Tyr, 4-amino-l-Phe, histamine, dopamine, serotonin, some pyridyl-alkylamines, as well as l-adrenaline were submicromolar activators (KAs between 0.10 and 0.73 µM). l- and d-His were the least effective VchCAγ activators (KAs of 1.01-14.2 µM). The activation of CAs from bacteria have not been considered to date for possible biomedical applications. It would be of interest to study in more details the role of CA activators in processes connected with the virulence and colonization of the host by pathogenic bacteria, such as Vibrio cholerae, which is highly dependent on the concentration of bicarbonate in tissues.
Collapse
|
126
|
Aday B, Ulus R, Tanç M, Kaya M, Supuran CT. Synthesis of novel 5-amino-1,3,4-thiadiazole-2-sulfonamide containing acridine sulfonamide/carboxamide compounds and investigation of their inhibition effects on human carbonic anhydrase I, II, IV and VII. Bioorg Chem 2018; 77:101-105. [PMID: 29353727 DOI: 10.1016/j.bioorg.2017.12.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/24/2017] [Accepted: 12/30/2017] [Indexed: 10/18/2022]
Abstract
Herein, we report that acridine intermediates 5 were obtained from the reduction of nitro acridine derivatives 4, which were synthesized via condensation of dimedone, p-nitrobenzaldehyde with 4-amino-N-(5-sulfamoyl-1,3,4-thiadiazol-2-yl)benzamide, respectively. Then acridine sulfonamide/carboxamide (7a-i) compounds were synthesized by reaction of amino acridine 5 with sulfonyl chlorides and carbamoyl chlorides. The new compounds were characterized by melting points, FT-IR, 1H NMR, 13C NMR and HRMS analyzes. The evaluation of in vitro test of the synthesized compounds against hCA I, II, IV and VII showed that some of them are potent inhibitors. Among them, compound 7e showed the most potent activity against hCA II with a KI of 7.9 nM.
Collapse
Affiliation(s)
- Burak Aday
- Chemistry Department, Faculty of Arts and Science, Dumlupınar University, 43100 Kütahya, Turkey
| | - Ramazan Ulus
- Chemistry Department, Faculty of Arts and Science, Dumlupınar University, 43100 Kütahya, Turkey
| | - Muhammet Tanç
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, 50019 Sesto Fiorentino, Florence, Italy
| | - Muharrem Kaya
- Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, 43100 Kütahya, Turkey.
| | - Claudiu T Supuran
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
127
|
De Simone G, Angeli A, Bozdag M, Supuran CT, Winum JY, Monti SM, Alterio V. Inhibition of carbonic anhydrases by a substrate analog: benzyl carbamate directly coordinates the catalytic zinc ion mimicking bicarbonate binding. Chem Commun (Camb) 2018; 54:10312-10315. [DOI: 10.1039/c8cc05755a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
N-Unsubstituted carbamates can be used as lead compounds for the development of carbonic anhydrase inhibitors possessing a binding mode similar to bicarbonate.
Collapse
Affiliation(s)
| | - Andrea Angeli
- Neurofarba Department
- Section of Pharmaceutical and Nutriceutical Sciences
- Università degli Studi di Firenze
- Sesto Fiorentino
- Florence
| | - Murat Bozdag
- Neurofarba Department
- Section of Pharmaceutical and Nutriceutical Sciences
- Università degli Studi di Firenze
- Sesto Fiorentino
- Florence
| | - Claudiu T. Supuran
- Neurofarba Department
- Section of Pharmaceutical and Nutriceutical Sciences
- Università degli Studi di Firenze
- Sesto Fiorentino
- Florence
| | - Jean-Yves Winum
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS
- ENSCM
- Université de Montpellier
- 240 avenue du professeur Emile Jeanbrau
- 34296 Montpellier Cedex
| | | | | |
Collapse
|
128
|
Sulfonamide carbonic anhydrase inhibitors: Zinc coordination and tail effects influence inhibitory efficacy and selectivity for different isoforms. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.03.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
129
|
Alterio V, Esposito D, Monti SM, Supuran CT, De Simone G. Crystal structure of the human carbonic anhydrase II adduct with 1-(4-sulfamoylphenyl-ethyl)-2,4,6-triphenylpyridinium perchlorate, a membrane-impermeant, isoform selective inhibitor. J Enzyme Inhib Med Chem 2017; 33:151-157. [PMID: 29199489 PMCID: PMC7011996 DOI: 10.1080/14756366.2017.1405263] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pyridinium containing sulfonamides have been largely investigated as carbonic anhydrase inhibitors (CAIs), showing interesting selectivity features. Nevertheless, only few structural studies are so far available on adducts that these compounds form with diverse CA isoforms. In this paper, we report the structural characterization of the adduct that a triphenylpyridinium derivative forms with hCA II, showing that the substitution of the pyridinium ring plays a key role in determining the conformation of the inhibitor in the active site and consequently the binding affinity to the enzyme. These findings open new perspectives on the basic structural requirements for designing sulfonamide CAIs with a selective inhibition profile.
Collapse
Affiliation(s)
| | - Davide Esposito
- a Istituto di Biostrutture e Bioimagini-CNR , Naples , Italy
| | | | - Claudiu T Supuran
- b Neurofarba Department, Section of Pharmaceutical and Nutraceutical Sciences , Università degli Studi di Firenze , Sesto Fiorentino, Florence , Italy
| | | |
Collapse
|
130
|
Kumar R, Sharma V, Bua S, Supuran CT, Sharma PK. Synthesis and biological evaluation of benzenesulphonamide-bearing 1,4,5-trisubstituted-1,2,3-triazoles possessing human carbonic anhydrase I, II, IV, and IX inhibitory activity. J Enzyme Inhib Med Chem 2017; 32:1187-1194. [PMID: 28891338 PMCID: PMC6009984 DOI: 10.1080/14756366.2017.1367775] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/11/2017] [Indexed: 01/18/2023] Open
Abstract
A library of benzenesulphonamides incorporating 1,2,3-triazole rings functionalised with ester, carboxylic acid, carboxamide, carboxyhydrazide, and hydroxymethyl moieties were synthesised. The carbonic anhydrase (CAs, EC 4.2.1.1) inhibitory activity of the new compounds was assessed against four human (h) isoforms, hCA I, hCA II, hCA IV, and hCA IX. Among them, hCA II and IV are anti-glaucoma drug targets, being involved in aqueous humour secretion within the eye. hCA I was inhibited with Ki's ranging between 8.3 nM and 0.8737 µM. hCA II, the physiologically dominant cytosolic isoform, was excellently inhibited by these compounds, with Ki's in the range of 1.6-9.4 nM, whereas hCA IV was effectively inhibited by most of them, with Ki's in the range of 1.4-55.3 nM. Thirteen of the twenty sulphonamides were found to be excellent inhibitors of tumour associated hCA IX with Ki's ≤ 9.5 nM. Many of the new compounds reported here showed low nM inhibitory action against hCA II, IV, and IX, isoforms involved in glaucoma and some tumours, making them interesting candidates for further medicinal chemistry/pharmacologic studies.
Collapse
Affiliation(s)
- Rajiv Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Vikas Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Silvia Bua
- Neurofarba Department, Laboratorio di Chimica Bioinorganica, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Firenze, Italy
| | - Claudiu T. Supuran
- Neurofarba Department, Laboratorio di Chimica Bioinorganica, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Firenze, Italy
| | - Pawan K. Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
131
|
Angeli A, Vaiano F, Mari F, Bertol E, Supuran CT. Psychoactive substances belonging to the amphetamine class potently activate brain carbonic anhydrase isoforms VA, VB, VII, and XII. J Enzyme Inhib Med Chem 2017; 32:1253-1259. [PMID: 28936885 PMCID: PMC6009978 DOI: 10.1080/14756366.2017.1375485] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 01/22/2023] Open
Abstract
Identifying possible new biological activities of psychoactive substances belonging to various chemical classes may lead to a better understanding of their mode of action and side effects. We report here that amines structurally related to amphetamine, a widely used psychoactive substance, such as amphetamine, methamphetamine, phentermine, mephentermine, and chlorphenteramine, potently activate several carbonic anhydrase (CA, EC 4.2.1.1) isoforms involved in important physiological functions. Of the 11 investigated human (h) isoforms, the widespread hCA I and II, the secreted hCA VI, as well as the cytosolic hCA XIII, and membrane-bound hCA IX and XIV were poorly activated by these amines, whereas the extracellular hCA IV, the mitochondrial enzymes hCA VA/VB, the cytosolic hCA VII, and the transmembrane isoform hCA XII were potently activated. Some of these enzymes are abundant in the brain, raising the possibility that some of the cognitive effects of such psychoactive substances might be related to their activation of these enzymes.
Collapse
Affiliation(s)
- Andrea Angeli
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| | - Fabio Vaiano
- Forensic Toxicology Division, Department of Health Sciences, University of Florence, Florence, Italy
| | - Francesco Mari
- Forensic Toxicology Division, Department of Health Sciences, University of Florence, Florence, Italy
| | - Elisabetta Bertol
- Forensic Toxicology Division, Department of Health Sciences, University of Florence, Florence, Italy
| | - Claudiu T. Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
132
|
Licsandru E, Tanc M, Kocsis I, Barboiu M, Supuran CT. A class of carbonic anhydrase I - selective activators. J Enzyme Inhib Med Chem 2017; 32:37-46. [PMID: 27798977 PMCID: PMC6010081 DOI: 10.1080/14756366.2016.1232254] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 08/31/2016] [Indexed: 12/26/2022] Open
Abstract
A series of ureido and bis-ureido derivatives were prepared by reacting histamine with alkyl/aryl-isocyanates or di-isocyanates. The obtained derivatives were assayed as activators of the enzyme carbonic anhydrase (CA, EC 4.2.1.1), due to the fact that histamine itself has this biological activity. Although inhibition of CAs has pharmacological applications in the field of antiglaucoma, anticonvulsant, anticancer, and anti-infective agents, activation of these enzymes is not yet properly exploited pharmacologically for cognitive enhancement or Alzheimer's disease treatment, conditions in which a diminished CA activity was reported. The ureido/bis-ureido histamine derivatives investigated here showed activating effects only against the cytosolic human (h) isoform hCA I, having no effect on the widespread, physiologically dominant isoform hCA II. This is the first report in which CA I-selective activators were identified. Such compounds may constitute interesting tools for better understanding the physiological/pharmacological effects connected to activation of this widespread CA isoform, whose physiological function is not fully understood.
Collapse
Affiliation(s)
- Erol Licsandru
- Adaptive Supramolecular Nanosystems Group, Institut Europeen des Membranes, University of Montpellier ENSCM-UMR CNRS 5635, Montpellier, France
| | - Muhammet Tanc
- Department of Neurofarba and Laboratorio di Chimica Bioinorganica, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Sesto Fiorentino (Florence), Italy
| | - Istvan Kocsis
- Adaptive Supramolecular Nanosystems Group, Institut Europeen des Membranes, University of Montpellier ENSCM-UMR CNRS 5635, Montpellier, France
| | - Mihail Barboiu
- Adaptive Supramolecular Nanosystems Group, Institut Europeen des Membranes, University of Montpellier ENSCM-UMR CNRS 5635, Montpellier, France
| | - Claudiu T. Supuran
- Department of Neurofarba and Laboratorio di Chimica Bioinorganica, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Sesto Fiorentino (Florence), Italy
| |
Collapse
|
133
|
Entezari Heravi Y, Sereshti H, Saboury AA, Ghasemi J, Amirmostofian M, Supuran CT. 3D QSAR studies, pharmacophore modeling, and virtual screening of diarylpyrazole-benzenesulfonamide derivatives as a template to obtain new inhibitors, using human carbonic anhydrase II as a model protein. J Enzyme Inhib Med Chem 2017; 32:688-700. [PMID: 28317396 PMCID: PMC6009914 DOI: 10.1080/14756366.2016.1241781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 09/20/2016] [Accepted: 09/22/2016] [Indexed: 01/13/2023] Open
Abstract
A 3D-QSAR modeling was performed on a series of diarylpyrazole-benzenesulfonamide derivatives acting as inhibitors of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). The compounds were collected from two datasets with the same scaffold, and utilized as a template for a new pharmacophore model to screen the ZINC database of commercially available derivatives. The datasets were divided into training, test, and validation sets. As the first step, comparative molecular field analysis (CoMFA), CoMFA region focusing and comparative molecular similarity indices analysis (CoMSIA) in parallel with docking studies were applied to a set of 41 human (h) CA II inhibitors. The validity and the prediction capacity of the resulting models were evaluated by leave-one-out (LOO) cross-validation approach. The reliability of the model for the prediction of possibly new CA inhibitors was also tested.
Collapse
Affiliation(s)
| | - Hassan Sereshti
- Department of Chemistry, Faculty of Science, University of Tehran, Tehran, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Jahan Ghasemi
- Department of Chemistry, Faculty of Science, University of Tehran, Tehran, Iran
| | - Marzieh Amirmostofian
- Department of Medicinal Chemistry, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Claudiu T. Supuran
- Dipartimento Neurofarba, Universita degli Studi di Firenze, Sezione di Scienze Farmaceutiche, Florence, Sesto Fiorentino, Italy
| |
Collapse
|
134
|
Vullo D, Kumar RSS, Scozzafava A, Ferry JG, Supuran CT. Sulphonamide inhibition studies of the β-carbonic anhydrase from the bacterial pathogen Clostridium perfringens. J Enzyme Inhib Med Chem 2017; 33:31-36. [PMID: 29098923 PMCID: PMC6009973 DOI: 10.1080/14756366.2017.1388233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The β-carbonic anhydrases (CAs, EC 4.2.1.1) from the pathogenic bacterium Clostridium perfringens (CpeCA) was recently characterised kinetically and for its anion inhibition profile. In the search of effective CpeCA inhibitors, possibly useful to inhibit the growth/pathogenicity of this bacterium, we report here an inhibition study of this enzyme with a panel of aromatic, heterocyclic and sugar sulphonamides/sulphamates. Some sulphonamides, such as acetazolamide, ethoxzolamide, dichlorophenamide, dorzolamide, sulthiame and 4-(2-hydroxymethyl-4-nitrophenyl-sulphonamido)ethylbenzenesulphonamide were effective CpeCA inhibitors, with KIs in the range of 37.4-71.6 nM. Zonisamide and saccharin were the least effective such inhibitors, whereas many other aromatic and heterocyclic sulphonamides were moderate - weak inhibitors with KIs ranging between 113 and 8755 nM. Thus, this study provides the basis for developing better clostridial enzyme inhibitors with potential as antiinfectives with a new mechanism of action.
Collapse
Affiliation(s)
- Daniela Vullo
- a Chemistry Department, Laboratorio di Chimica Bioinorganica , Università degli Studi di Firenze , Florence , Italy
| | - R Siva Sai Kumar
- b Department of Biochemistry and Molecular Biology, Eberly College of Science , The Pennsylvania State University , University Park , PA , USA
| | - Andrea Scozzafava
- a Chemistry Department, Laboratorio di Chimica Bioinorganica , Università degli Studi di Firenze , Florence , Italy
| | - James G Ferry
- b Department of Biochemistry and Molecular Biology, Eberly College of Science , The Pennsylvania State University , University Park , PA , USA
| | - Claudiu T Supuran
- a Chemistry Department, Laboratorio di Chimica Bioinorganica , Università degli Studi di Firenze , Florence , Italy.,c NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Florence , Italy
| |
Collapse
|
135
|
Abstract
Abnormalities of cerebrospinal fluid (CSF) pressure are relatively common and may lead to a variety of symptoms, with headache usually being the most prominent one. The clinical presentation of alterations in CSF pressure may vary significantly and show a striking similitude to several primary headache syndromes. While an increase in CSF pressure may be of primary or secondary origin, a pathologic decrease of CSF pressure is usually the result of a meningeal rupture with a resulting leakage of CSF. The pathophysiologic mechanisms of idiopathic intracranial hypertension (IIH) remain largely unknown. However recent evidence indicates that an abnormality in CSF outflow and absorption is likely to play a significant role. Treatment usually consists of a combination of weight loss and a pharmacologic approach using carbonic anhydrase inhibitors. Recent results of the first randomized, double-blind, placebo-controlled trial (RCT) with acetazolamide proved its efficacy in reducing headache and visual disturbances. Clinical evidence suggests efficacy for topiramate and furosemide but no RCT has been conducted to date to confirm these results. In contrast to IIH, spontaneous intracranial hypotension frequently remits spontaneously without specific treatment. If necessary, treatment options range from conservative methods to epidural blood or fibrin sealant patches and surgical interventions.
Collapse
Affiliation(s)
- Jan Hoffmann
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
136
|
Angeli A, Abdel-Aziz AAM, Nocentini A, El-Azab AS, Gratteri P, Supuran CT. Synthesis and carbonic anhydrase inhibition of polycyclic imides incorporating N-benzenesulfonamide moieties. Bioorg Med Chem 2017; 25:5373-5379. [PMID: 28789908 DOI: 10.1016/j.bmc.2017.07.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 07/19/2017] [Accepted: 07/28/2017] [Indexed: 12/16/2022]
Abstract
A series of polycyclic imides was prepared by reaction of the benzenesulfonamide with an appropriate polycyclic acid anhydride in refluxing glacial acetic acid. The synthesized mono- and bis-sulfonamides were evaluated as a carbonic anhydrase inhibitors (CA, EC 4.2.1.1), more precisely against the human (h) isoforms hCA I, II, IX and XII, some of which are involved in various pathologies, such as glaucoma, epilepsy and cancer. Several low nanomolar and isoform-selective hCA II, IX and XII inhibitors were detected, and the structure-activity relationship for CA inhibition with this class of compounds is discussed in details. Computational studies allowed us to explain the efficacy and isoform-selective behaviour for some of these enzyme inhiibtors.
Collapse
Affiliation(s)
- Andrea Angeli
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Alaa A-M Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt.
| | - Alessio Nocentini
- Università degli Studi di Firenze, NEUROFARBA Dep., Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Adel S El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; Department of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Paola Gratteri
- Università degli Studi di Firenze, NEUROFARBA Dep., Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
137
|
Abdoli M, Angeli A, Bozdag M, Carta F, Kakanejadifard A, Saeidian H, Supuran CT. Synthesis and carbonic anhydrase I, II, VII, and IX inhibition studies with a series of benzo[d]thiazole-5- and 6-sulfonamides. J Enzyme Inhib Med Chem 2017; 32:1071-1078. [PMID: 28753093 PMCID: PMC6010138 DOI: 10.1080/14756366.2017.1356295] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
A series of benzo[d]thiazole-5- and 6-sulfonamides has been synthesized and investigated for the inhibition of several human (h) carbonic anhydrase (CA, EC 4.2.1.1) isoforms, using ethoxzolamide (EZA) as lead molecule. 2-Amino-substituted, 2-acylamino- and halogenated (bromo-and iodo-derivatives at the heterocyclic ring) compounds led to several interesting inhibitors against the cytosolic hCA I, II and VII, as well as the transmembrane, tumor-associated hCA IX isoforms. Several subnanomolar/low nanomolar, isoform-selective sulfonamide inhibitors targeting hCA II, VII and IX were detected. The sharp structure-activity relationship for CA inhibition with this small series of derivatives, with important changes of activity observed even after minor changes in the scaffold or at the 2-amino moiety, make this class of scarcely investigated sulfonamides of particular interest for further investigations.
Collapse
Affiliation(s)
- Morteza Abdoli
- a Department of Chemistry, Faculty of Science , Lorestan University , Khorramabad , Iran.,b Dipartimento di Chimica, Laboratorio di Chimica Bioinorganica , Università degli Studi di Firenze , Sesto Fiorentino, Florence , Italy.,c Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Polo Scientifico , Università degli Studi di Firenze , Sesto Fiorentino, Florence , Italy
| | - Andrea Angeli
- c Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Polo Scientifico , Università degli Studi di Firenze , Sesto Fiorentino, Florence , Italy
| | - Murat Bozdag
- b Dipartimento di Chimica, Laboratorio di Chimica Bioinorganica , Università degli Studi di Firenze , Sesto Fiorentino, Florence , Italy
| | - Fabrizio Carta
- b Dipartimento di Chimica, Laboratorio di Chimica Bioinorganica , Università degli Studi di Firenze , Sesto Fiorentino, Florence , Italy.,c Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Polo Scientifico , Università degli Studi di Firenze , Sesto Fiorentino, Florence , Italy
| | - Ali Kakanejadifard
- a Department of Chemistry, Faculty of Science , Lorestan University , Khorramabad , Iran
| | - Hamid Saeidian
- d Department of Science , Payame Noor University (PNU) , Tehran , Iran
| | - Claudiu T Supuran
- c Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Polo Scientifico , Università degli Studi di Firenze , Sesto Fiorentino, Florence , Italy
| |
Collapse
|
138
|
Development of sulfonamides incorporating phenylacrylamido functionalities as carbonic anhydrase isoforms I, II, IX and XII inhibitors. Bioorg Med Chem 2017; 25:5726-5732. [DOI: 10.1016/j.bmc.2017.08.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 12/15/2022]
|
139
|
Abstract
The sulfonamides and their structurally related derivatives, such as the sulfamates and sulfamides, possess the general formula A-SO2NHR, in which the functional group is either directly bound to an aromatic, heterocyclic, aliphatic, or sugar scaffold (of type A), or appended to such a scaffold via a heteroatom, most frequently oxygen or nitrogen (leading thus to sulfamates and sulfamides, respectively) [...].
Collapse
|
140
|
Bozdag M, Bua S, Osman SM, AlOthman Z, Supuran CT. Carbonic anhydrase I, II, IV and IX inhibition with a series of 7-amino-3,4-dihydroquinolin-2(1H)-one derivatives. J Enzyme Inhib Med Chem 2017. [PMID: 28644059 PMCID: PMC6445181 DOI: 10.1080/14756366.2017.1337759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
A series of new derivatives was prepared by derivatisation of the 7-amino moiety present in 7-amino-3,4-dihydroquinolin-2(1H)-one, a compound investigated earlier as CAI. The derivatisation was achieved by: i) reaction with arylsulfonyl isocyanates/aryl isocyanates; (ii) reaction with fluorescein isothiocyanate; (iii) condensation with substituted benzoic acids in the presence of carbodiimides; (iv) reaction with 2,4,6-trimethyl-pyrylium tetrafluoroborate; (v) reaction with methylsulfonyl chloride and (vi) reaction with maleic anhydride. The new compounds were assayed as inhibitors of four carbonic anhydrases (CA, EC 4.2.1.1) human (h) isoforms of pharmacologic relevance, the cytosolic hCA I and II, the membrane-anchored hCA IV and the transmembrane, tumour-associated hCA IX. hCA IX was the most inhibited isoform (KIs ranging between 243.6 and 2785.6 nm) whereas hCA IV was not inhibited by these compounds. Most derivatives were weak hCA I and II inhibitors, with few of them showing KIs < 10 µm. Considering that the inhibition mechanism with these lactams is not yet elucidated, exploring a range of such derivatives with various substitution patterns may be useful to identify leads showing isoform selectivity or the desired pharmacologic action.
Collapse
Affiliation(s)
- Murat Bozdag
- a Dipartimento di Chimica e Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Florence , Italy
| | - Silvia Bua
- a Dipartimento di Chimica e Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Florence , Italy
| | - Sameh M Osman
- b Department of Chemistry, College of Science , King Saud University , Riyadh , Saudi Arabia
| | - Zeid AlOthman
- b Department of Chemistry, College of Science , King Saud University , Riyadh , Saudi Arabia
| | - Claudiu T Supuran
- a Dipartimento di Chimica e Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Florence , Italy
| |
Collapse
|
141
|
Structure and function of carbonic anhydrases. Biochem J 2017; 473:2023-32. [PMID: 27407171 DOI: 10.1042/bcj20160115] [Citation(s) in RCA: 633] [Impact Index Per Article: 79.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/29/2016] [Indexed: 11/17/2022]
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) catalyse the interconversion between CO2 and bicarbonate as well as other hydrolytic reactions. Among the six genetic families known to date, the α-, β-, γ-, δ-, ζ- and η-CAs, detailed kinetic and X-ray crystallographic studies have allowed a deep understanding of the structure-function relationship in this superfamily of proteins. A metal hydroxide nucleophilic species of the enzyme, and a unique active site architecture, with half of it hydrophilic and the opposing part hydrophobic, allow these enzymes to act as some of the most effective catalysts known in Nature. The CA activation and inhibition mechanisms are also known in detail, with a large number of new inhibitor classes being described in the last years. Apart from the zinc binders, some classes of inhibitors anchor to the metal ion coordinated nucleophile, others occlude the entrance of the active site cavity and more recently, compounds binding outside the active site were described. CA inhibition has therapeutic applications for drugs acting as diuretics, antiepileptics, antiglaucoma, antiobesity and antitumour agents. Targeting such enzymes from pathogens may lead to novel anti-infectives. Successful structure-based drug design campaigns allowed the discovery of highly isoform selective CA inhibitors (CAIs), which may lead to a new generation of drugs targeting these widespread enzymes. The use of CAs in CO2 capture processes for mitigating the global temperature rise has also been investigated more recently.
Collapse
|
142
|
Carta F, Vullo D, Osman SM, AlOthman Z, Supuran CT. Synthesis and carbonic anhydrase inhibition of a series of SLC-0111 analogs. Bioorg Med Chem 2017; 25:2569-2576. [DOI: 10.1016/j.bmc.2017.03.027] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/09/2017] [Accepted: 03/15/2017] [Indexed: 12/11/2022]
|
143
|
Ivanova J, Carta F, Vullo D, Leitans J, Kazaks A, Tars K, Žalubovskis R, Supuran CT. N-Substituted and ring opened saccharin derivatives selectively inhibit transmembrane, tumor-associated carbonic anhydrases IX and XII. Bioorg Med Chem 2017; 25:3583-3589. [PMID: 28416101 DOI: 10.1016/j.bmc.2017.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/05/2017] [Indexed: 02/06/2023]
Abstract
A series of N-substituted saccharins incorporating aryl, alkyl and alkynyl moieties, as well as some ring opened derivatives were prepared and investigated as inhibitors of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). The widespread cytosolic isoforms CA I and II were not inhibited by these sulfonamides whereas transmembrane, tumor-associated ones were effectively inhibited, with KIs in the range of 22.1-481nM for CA IX and of 3.9-245nM for hCA XII. Although the inhibition mechanism of these tertiary/secondary sulfonamides is unknown for the moment, the good efficacy and especially selectivity for the inhibition of the tumor-associated over the cytosolic, widespread isoforms, make these derivatives of considerable interest as enzyme inhibitors with various pharmacologic applications.
Collapse
Affiliation(s)
- Jekaterīna Ivanova
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga LV-1006, Latvia; Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena Str. 3/7, Riga LV-1048, Latvia
| | - Fabrizio Carta
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di ScienzeFarmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Daniela Vullo
- Università degli Studi di Firenze, Dipartimento di Chimica, Laboratorio di Chimica Bioinorganica, Polo Scientifico, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Janis Leitans
- Latvian Biomedical Research and Study Center, Rātsupītes 1, LV-1067 Riga, Latvia
| | - Andris Kazaks
- Latvian Biomedical Research and Study Center, Rātsupītes 1, LV-1067 Riga, Latvia
| | - Kaspars Tars
- Latvian Biomedical Research and Study Center, Rātsupītes 1, LV-1067 Riga, Latvia; Faculty of Biology, Department of Molecular Biology, University of Latvia, Jelgavas 1, LV-1004 Riga, Latvia
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga LV-1006, Latvia; Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena Str. 3/7, Riga LV-1048, Latvia.
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di ScienzeFarmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
144
|
Bragagni M, Carta F, Osman SM, AlOthman Z, Supuran CT. Synthesis of an acridine orange sulfonamide derivative with potent carbonic anhydrase IX inhibitory action. J Enzyme Inhib Med Chem 2017; 32:701-706. [PMID: 28335646 PMCID: PMC6445237 DOI: 10.1080/14756366.2017.1302441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Acridine orange (AO) a fluorescent cationic dye used for the management of human musculoskeletal sarcomas, due to its strong tumoricidal action and accumulation in the acidic environment typical of hypoxic tumors, was used for the preparation of a primary sulfonamide derivative. The rationale behind the drug design is the fact that hypoxic, acidic tumors overexpress carbonic anhydrase (CA, EC 4.2.1.1) isoforms, such as CA IX, which is involved in pH regulation, proliferation, cell migration and invasion, and this enzyme is strongly inhibited by primary sulfonamides. The AO-sulfonamide derivative was indeed a potent, low nanomolar CA IX inhibitor whereas its inhibition of the cytosolic isoforms CA I and II was in the micromolar range. A second transmembrane, tumor-associated isoform, CA XII, was also effectively inhibited by the AO-sulfonamide derivative, making this compound an interesting theranostic agent for the management of hypoxic tumors.
Collapse
Affiliation(s)
- Marco Bragagni
- a Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Sesto Fiorentino , Florence Italy
| | - Fabrizio Carta
- a Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Sesto Fiorentino , Florence Italy
| | - Sameh M Osman
- b Department of Chemistry, College of Science , King Saud University , Riyadh , Saudi Arabia
| | - Zeid AlOthman
- b Department of Chemistry, College of Science , King Saud University , Riyadh , Saudi Arabia
| | - Claudiu T Supuran
- a Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Sesto Fiorentino , Florence Italy.,b Department of Chemistry, College of Science , King Saud University , Riyadh , Saudi Arabia
| |
Collapse
|
145
|
Mohamed MA, Abdel-Aziz AAM, Sakr HM, El-Azab AS, Bua S, Supuran CT. Synthesis and human/bacterial carbonic anhydrase inhibition with a series of sulfonamides incorporating phthalimido moieties. Bioorg Med Chem 2017; 25:2524-2529. [DOI: 10.1016/j.bmc.2017.03.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 12/18/2022]
|
146
|
Nescatelli R, Carradori S, Marini F, Caponigro V, Bucci R, De Monte C, Mollica A, Mannina L, Ceruso M, Supuran CT, Secci D. Geographical characterization by MAE-HPLC and NIR methodologies and carbonic anhydrase inhibition of Saffron components. Food Chem 2017; 221:855-863. [DOI: 10.1016/j.foodchem.2016.11.086] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/06/2016] [Accepted: 11/18/2016] [Indexed: 12/11/2022]
|
147
|
Mishra CB, Kumari S, Angeli A, Monti SM, Buonanno M, Tiwari M, Supuran CT. Discovery of Benzenesulfonamides with Potent Human Carbonic Anhydrase Inhibitory and Effective Anticonvulsant Action: Design, Synthesis, and Pharmacological Assessment. J Med Chem 2017; 60:2456-2469. [PMID: 28253618 DOI: 10.1021/acs.jmedchem.6b01804] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We report two series of novel benzenesulfonamide derivatives acting as effective carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. The synthesized compounds were tested against human (h) isoforms hCA I, hCA II, hCA VII, and hCA XII. The first series of compounds, 4-(3-(2-(4-substitued piperazin-1-yl)ethyl)ureido)benzenesulfonamides, showed low nanomolar inhibitory action against hCA II, being less effective against the other isoforms. The second series, 2-(4-substitued piperazin-1-yl)-N-(4-sulfamoylphenyl)acetamide derivatives, showed low nanomolar inhibitory activity against hCA II and hCA VII, isoforms involved in epileptogenesis. Some of these derivatives were evaluated for their anticonvulsant activity and displayed effective seizure protection against MES and scPTZ induced seizures in Swiss Albino mice. These sulfonamides were also found effective upon oral administration to Wistar rats and inhibited MES induced seizure episodes in this animal model of the disease. Some of the new compounds showed a long duration of action in the performed time course anticonvulsant studies, being nontoxic in subacute toxicity studies.
Collapse
Affiliation(s)
- Chandra Bhushan Mishra
- Bio-Organic Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi , Delhi, India
| | - Shikha Kumari
- Bio-Organic Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi , Delhi, India
| | - Andrea Angeli
- Dipartimento Neurofarba, Università degli Studi di Firenze, Sezione di Scienze Farmaceutiche e Nutraceutiche , Florence, Italy
| | - Simona Maria Monti
- Istituto di Biostrutture e Bioimmagini (IBB) CNR ,via Mezzocannone, Naples, Italy
| | - Martina Buonanno
- Istituto di Biostrutture e Bioimmagini (IBB) CNR ,via Mezzocannone, Naples, Italy
| | - Manisha Tiwari
- Bio-Organic Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi , Delhi, India
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Università degli Studi di Firenze, Sezione di Scienze Farmaceutiche e Nutraceutiche , Florence, Italy
| |
Collapse
|
148
|
Entezari Heravi Y, Bua S, Nocentini A, Del Prete S, Saboury AA, Sereshti H, Capasso C, Gratteri P, Supuran CT. Inhibition of Malassezia globosa carbonic anhydrase with phenols. Bioorg Med Chem 2017; 25:2577-2582. [PMID: 28343756 DOI: 10.1016/j.bmc.2017.03.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/09/2017] [Accepted: 03/15/2017] [Indexed: 12/22/2022]
Abstract
A panel of 22 phenols was investigated as inhibitors of the β-class carbonic anhydrase (CAs, EC 4.2.1.1) from the fungal parasite Malassezia globosa (MgCA), a validated anti-dandruff drug target. The displayed inhibitory activities were compared to the ones previously reported against the off-target widely distributed human (h) isoforms hCA I and II. All tested phenols possessed a better efficacy in inhibiting MgCA than the clinically used sulfonamide acetazolamide, with KIs in the range of 2.5 and 65.0μM. A homology-built model of MgCA was also used for understanding the binding mode of phenols to the fungal enzyme. Indeed, a wide network of hydrogen bonds and hydrophobic interactions between the phenol and active site residues were evidenced. The OH moiety of the inhibitor was observed anchored to the zinc-coordinated water, also making hydrogen bonds with Ser48 and Asp49. The diverse substituents at the phenolic scaffold were observed to interact with different portions of the hydrophobic pocket according to their nature and position. Considering the effective MgCA inhibitory properties of phenols, beside to the rather low inhibition against the off-target hCA I and II, this class of compounds might be of considerable interest in the cosmetics field as potential anti-dandruff drugs.
Collapse
Affiliation(s)
- Yeganeh Entezari Heravi
- Department of Chemistry, Faculty of Science, University of Tehran, Tehran, Iran; Università degli Studi di Firenze, Department NEUROFARBA - Pharmaceutical and Nutraceutical Section, University of Firenze, via Ugo Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Silvia Bua
- Università degli Studi di Firenze, Department NEUROFARBA - Pharmaceutical and Nutraceutical Section, University of Firenze, via Ugo Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Alessio Nocentini
- Università degli Studi di Firenze, Department NEUROFARBA - Pharmaceutical and Nutraceutical Section, University of Firenze, via Ugo Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy; Università degli Studi di Firenze, Department NEUROFARBA - Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, via Ugo Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Sonia Del Prete
- Università degli Studi di Firenze, Department NEUROFARBA - Pharmaceutical and Nutraceutical Section, University of Firenze, via Ugo Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy; Istituto di Bioscienze e Biorisorse (IBBR)-CNR, Via P. Castellino 111, 80131 Napoli, Italy
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hassan Sereshti
- Department of Chemistry, Faculty of Science, University of Tehran, Tehran, Iran
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse (IBBR)-CNR, Via P. Castellino 111, 80131 Napoli, Italy
| | - Paola Gratteri
- Università degli Studi di Firenze, Department NEUROFARBA - Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, via Ugo Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Department NEUROFARBA - Pharmaceutical and Nutraceutical Section, University of Firenze, via Ugo Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
149
|
Carta F, Birkmann A, Pfaff T, Buschmann H, Schwab W, Zimmermann H, Maresca A, Supuran CT. Lead Development of Thiazolylsulfonamides with Carbonic Anhydrase Inhibitory Action. J Med Chem 2017; 60:3154-3164. [DOI: 10.1021/acs.jmedchem.7b00183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Fabrizio Carta
- Sezione
di Scienze Farmaceutiche e Nutraceutiche, NEUROFARBA, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Alexander Birkmann
- AiCuris Anti-Infective Cures GmbH, Friedrich-Ebert-Strasse 475, 42117 Wuppertal, Germany
| | - Tamara Pfaff
- AiCuris Anti-Infective Cures GmbH, Friedrich-Ebert-Strasse 475, 42117 Wuppertal, Germany
| | - Helmut Buschmann
- AiCuris Anti-Infective Cures GmbH, Friedrich-Ebert-Strasse 475, 42117 Wuppertal, Germany
| | - Wilfried Schwab
- AiCuris Anti-Infective Cures GmbH, Friedrich-Ebert-Strasse 475, 42117 Wuppertal, Germany
| | - Holger Zimmermann
- AiCuris Anti-Infective Cures GmbH, Friedrich-Ebert-Strasse 475, 42117 Wuppertal, Germany
| | - Alfonso Maresca
- Sezione
di Scienze Farmaceutiche e Nutraceutiche, NEUROFARBA, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T. Supuran
- Sezione
di Scienze Farmaceutiche e Nutraceutiche, NEUROFARBA, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
150
|
Baranauskiene L, Matulis D. Herbicide oryzalin inhibits human carbonic anhydrasesin vitro. J Biochem Mol Toxicol 2017; 31. [DOI: 10.1002/jbt.21894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Lina Baranauskiene
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology; Vilnius University; Vilnius LT-10257 Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology; Vilnius University; Vilnius LT-10257 Lithuania
| |
Collapse
|