101
|
Golebiewska U, Gambhir A, Hangyás-Mihályné G, Zaitseva I, Rädler J, McLaughlin S. Membrane-bound basic peptides sequester multivalent (PIP2), but not monovalent (PS), acidic lipids. Biophys J 2006; 91:588-99. [PMID: 16648167 PMCID: PMC1483118 DOI: 10.1529/biophysj.106.081562] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Several biologically important peripheral (e.g., myristoylated alanine-rich C kinase substrate) and integral (e.g., the epidermal growth factor receptor) membrane proteins contain clusters of basic residues that interact with acidic lipids in the plasma membrane. Previous measurements demonstrate that the polyvalent acidic lipid phosphatidylinositol 4,5-bisphosphate is bound electrostatically (i.e., sequestered) by membrane-adsorbed basic peptides corresponding to these clusters. We report here three experimental observations that suggest monovalent acidic lipids are not sequestered by membrane-bound basic peptides. 1), Binding of basic peptides to vesicles does not decrease when the temperature is lowered below the fluid-to-gel phase transition. 2), The binding energy of Lys-13 to lipid vesicles increases linearly with the fraction of monovalent acidic lipids. 3), Binding of basic peptides to vesicles produces no self-quenching of fluorescent monovalent acidic lipids. One potential explanation for these results is that membrane-bound basic peptides diffuse too rapidly for the monovalent lipids to be sequestered. Indeed, our fluorescence correlation spectroscopy measurements show basic peptides bound to phosphatidylcholine/phosphatidylserine membranes have a diffusion coefficient approximately twofold higher than that of lipids, and those bound to phosphatidylcholine/phosphatidylinositol 4,5-bisphosphate membranes have a diffusion coefficient comparable to that of lipids.
Collapse
Affiliation(s)
- Urszula Golebiewska
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 11794-8661, USA
| | | | | | | | | | | |
Collapse
|
102
|
Rhoades E, Ramlall TF, Webb WW, Eliezer D. Quantification of alpha-synuclein binding to lipid vesicles using fluorescence correlation spectroscopy. Biophys J 2006; 90:4692-700. [PMID: 16581836 PMCID: PMC1471845 DOI: 10.1529/biophysj.105.079251] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alpha-synuclein (alphaS) is a soluble synaptic protein that is the major proteinaceous component of insoluble fibrillar Lewy body deposits that are the hallmark of Parkinson's disease. The interaction of alphaS with synaptic vesicles is thought to be critical both to its normal function as well as to its pathological role in Parkinson's disease. We demonstrate the use of fluorescence correlation spectroscopy as a tool for rapid and quantitative analysis of the binding of alphaS to large unilamellar vesicles of various lipid compositions. We find that alphaS binds preferentially to vesicles containing acidic lipids, and that this interaction can be blocked by increasing the concentration of NaCl in solution. Negative charge is not the only factor determining binding, as we clearly observe binding to vesicles composed entirely of zwitterionic lipids. Additionally, we find enhanced binding to lipids with less bulky headgroups. Quantification of the protein-to-lipid ratio required for binding to different lipid compositions, combined with other data in the literature, yields an upper bound estimate for the number of lipid molecules required to bind each individual molecule of alphaS. Our results demonstrate that fluorescence correlation spectroscopy provides a powerful tool for the quantitative characterization of alphaS-lipid interactions.
Collapse
Affiliation(s)
- Elizabeth Rhoades
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853-2501, USA
| | | | | | | |
Collapse
|
103
|
Abstract
As potential applications of nanotechnology and nanoparticles increase, so too does the likelihood of human exposure to nanoparticles. Because of their small size, nanoparticles are easily taken up into cells (by receptor-mediated endocytosis), whereupon they have essentially free access to all cellular compartments. Similarly to macroscopic biomaterial surfaces (that is, implants), nanoparticles become coated with a layer of adsorbed proteins immediately upon contact with physiological solutions (unless special efforts are taken to prevent this). The process of adsorption often results in conformational changes of the adsorbed protein, which may be affected by the larger curvature of nanoparticles compared with implant surfaces. Protein adsorption may result in the exposure at the surface of amino acid residues that are normally buried in the core of the native protein, which are recognized by the cells as "cryptic epitopes." These cryptic epitopes may trigger inappropriate cellular signaling events (as opposed to being rejected by the cells as foreign bodies). However, identification of such surface-exposed epitopes is nontrivial, and the molecular nature of the adsorbed proteins should be investigated using biological and physical science methods in parallel with systems biology studies of the induced alterations in cell signaling.
Collapse
Affiliation(s)
- Iseult Lynch
- Irish Centre for Colloid Science and Biomaterials, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | |
Collapse
|
104
|
Abstract
Cell biologists strive to characterize molecular interactions directly in the intracellular environment. The intrinsic resolution of optical microscopy, however, allows visualization of only coarse subcellular localization. By extracting information from molecular dynamics, fluorescence cross-correlation spectroscopy (FCCS) grants access to processes on a molecular scale, such as diffusion, binding, enzymatic reactions and codiffusion, and has become a valuable tool for studies in living cells. Here we review basic principles of FCCS and focus on seminal applications, including examples of intracellular signaling and trafficking. We consider FCCS in the context of fluorescence resonance energy transfer and multicolor imaging techniques and discuss application strategies and recent technical advances.
Collapse
Affiliation(s)
- Kirsten Bacia
- Institute of Biophysics, Dresden University of Technology, Tatzberg 47-51, D-01307 Dresden, Germany
| | | | | |
Collapse
|
105
|
Yu L, Tan M, Ho B, Ding JL, Wohland T. Determination of critical micelle concentrations and aggregation numbers by fluorescence correlation spectroscopy: Aggregation of a lipopolysaccharide. Anal Chim Acta 2006; 556:216-25. [PMID: 17723352 DOI: 10.1016/j.aca.2005.09.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 08/25/2005] [Accepted: 09/06/2005] [Indexed: 11/29/2022]
Abstract
Fluorescence correlation spectroscopy (FCS) is often used to determine the mass or radius of a particle by using the dependence of the diffusion coefficient on the mass and shape. In this article we discuss how the particle size of aggregates can be measured by using the concentration dependence of the amplitude of the autocorrelation function (ACF) instead of the temporal decay. We titrate a solution of aggregates or micelles with a fluorescent label that possesses a high affinity for these structures and measure the changes in the amplitude of the ACF. We develop the theory describing the change of the ACF amplitude with increasing concentrations of labels and use it to fit experimental data. It is shown how this method can determine the aggregation number and critical micelle concentration of a standard detergent nonaethylene glycol monododecyl ether (C12E9) and a lipopolysaccharide (LPS: Escherichia coli 0111:B4).
Collapse
Affiliation(s)
- Lanlan Yu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | | | | | | | | |
Collapse
|
106
|
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP2), which comprises only about 1% of the phospholipids in the cytoplasmic leaflet of the plasma membrane, is the source of three second messengers, activates many ion channels and enzymes, is involved in both endocytosis and exocytosis, anchors proteins to the membrane through several structured domains and has other roles. How can a single lipid in a fluid bilayer regulate so many distinct physiological processes? Spatial organization might be the key to this. Recent studies suggest that membrane proteins concentrate PIP2 and, in response to local increases in intracellular calcium concentration, release it to interact with other biologically important molecules.
Collapse
Affiliation(s)
- Stuart McLaughlin
- Department of Physiology and Biophysics, Health Sciences Center, Stony Brook University, Stony Brook, New York 11794, USA.
| | | |
Collapse
|
107
|
Morash SC, Douglas D, McMaster CR, Cook HW, Byers DM. Expression of MARCKS Effector Domain Mutants Alters Phospholipase D Activity and Cytoskeletal Morphology of SK-N-MC Neuroblastoma Cells. Neurochem Res 2005; 30:1353-64. [PMID: 16341931 DOI: 10.1007/s11064-005-8220-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2005] [Indexed: 11/28/2022]
Abstract
Stable overexpression of myristoylated alanine-rich C-kinase substrate (MARCKS) is known to enhance phorbol ester stimulation of phospholipase D (PLD) activity and protein kinase Calpha (PKCalpha) levels in SK-N-MC neuroblastoma cells. In contrast, expression of MARCKS mutants (S152A or S156A) lacking key PKC phosphorylation sites within the central basic effector domain (ED) had no significant effect on PLD activity or PKCalpha levels relative to vector control cells. Like control cells, those expressing wild type MARCKS were elongated and possessed longitudinally oriented stress fibers, although these cells were more prone to detach from the substratum and undergo cell death upon phorbol ester treatment. However, cells expressing MARCKS ED mutants were irregularly shaped and stress fibers were either shorter or less abundant, and cell adhesion and viability were not affected. These results suggest that intact phosphorylation sites within the MARCKS ED are required for PLD activation and influence both membrane-cytoskeletal organization and cell viability.
Collapse
Affiliation(s)
- Sherry C Morash
- Atlantic Research Centre, Department of Pediatrics, Dalhousie University, Room C-302 CRC, 5849 University Avenue, B3H 4H7, Halifax, NS, Canada
| | | | | | | | | |
Collapse
|
108
|
Yu L, Ding JL, Ho B, Wohland T. Investigation of a novel artificial antimicrobial peptide by fluorescence correlation spectroscopy: An amphipathic cationic pattern is sufficient for selective binding to bacterial type membranes and antimicrobial activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1716:29-39. [PMID: 16168384 DOI: 10.1016/j.bbamem.2005.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 07/22/2005] [Accepted: 08/17/2005] [Indexed: 11/17/2022]
Abstract
Fluorescence Correlation Spectroscopy (FCS) is used to study the interaction of a recently designed antimicrobial peptide, called V4, with LPS and lipids of varying head and tail groups. V4 is designed based on a known amphipathic cationic pattern BHPHB (B: basic; H: hydrophobic; P: polar residue, respectively) and shows a good combination of high antimicrobial activity, low cytotoxic activity and low hemolytic activity. It is shown that V4 has high binding affinity for LPS, which is the major component of the outer membrane of Gram-negative bacteria, and shows selectivity for negatively charged lipids in contrast to zwitterionic lipids at a low peptide/lipid ratio. At high peptide/lipid ratio, V4 can permeabilize vesicles composed of negatively charged lipids and eventually cause vesicle fusion. The identification of the amphipathic cationic pattern as the mediator of selectivity and antimicrobial activity could be a first step in the rational design of better antimicrobial peptides.
Collapse
Affiliation(s)
- Lanlan Yu
- Department of Chemistry, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
109
|
Fivaz M, Meyer T. Reversible intracellular translocation of KRas but not HRas in hippocampal neurons regulated by Ca2+/calmodulin. ACTA ACUST UNITED AC 2005; 170:429-41. [PMID: 16043511 PMCID: PMC2171478 DOI: 10.1083/jcb.200409157] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Ras/MAPK pathway regulates synaptic plasticity and cell survival in neurons of the central nervous system. Here, we show that KRas, but not HRas, acutely translocates from the plasma membrane (PM) to the Golgi complex and early/recycling endosomes in response to neuronal activity. Translocation is reversible and mediated by the polybasic-prenyl membrane targeting motif of KRas. We provide evidence that KRas translocation occurs through sequestration of the polybasic-prenyl motif by Ca2+/calmodulin (Ca2+/CaM) and subsequent release of KRas from the PM, in a process reminiscent of GDP dissociation inhibitor–mediated membrane recycling of Rab and Rho GTPases. KRas translocation was accompanied by partial intracellular redistribution of its activity. We conclude that the polybasic-prenyl motif acts as a Ca2+/CaM-regulated molecular switch that controls PM concentration of KRas and redistributes its activity to internal sites. Our data thus define a novel signaling mechanism that differentially regulates KRas and HRas localization and activity in neurons.
Collapse
Affiliation(s)
- Marc Fivaz
- Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | |
Collapse
|
110
|
McLaughlin S, Smith SO, Hayman MJ, Murray D. An electrostatic engine model for autoinhibition and activation of the epidermal growth factor receptor (EGFR/ErbB) family. ACTA ACUST UNITED AC 2005; 126:41-53. [PMID: 15955874 PMCID: PMC2266615 DOI: 10.1085/jgp.200509274] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We propose a new mechanism to explain autoinhibition of the epidermal growth factor receptor (EGFR/ErbB) family of receptor tyrosine kinases based on a structural model that postulates both their juxtamembrane and protein tyrosine kinase domains bind electrostatically to acidic lipids in the plasma membrane, restricting access of the kinase domain to substrate tyrosines. Ligand-induced dimerization promotes partial trans autophosphorylation of ErbB1, leading to a rapid rise in intracellular [Ca2+] that can activate calmodulin. We postulate the Ca2+/calmodulin complex binds rapidly to residues 645–660 of the juxtamembrane domain, reversing its net charge from +8 to −8 and repelling it from the negatively charged inner leaflet of the membrane. The repulsion has two consequences: it releases electrostatically sequestered phosphatidylinositol 4,5-bisphosphate (PIP2), and it disengages the kinase domain from the membrane, allowing it to become fully active and phosphorylate an adjacent ErbB molecule or other substrate. We tested various aspects of the model by measuring ErbB juxtamembrane peptide binding to phospholipid vesicles using both a centrifugation assay and fluorescence correlation spectroscopy; analyzing the kinetics of interactions between ErbB peptides, membranes, and Ca2+/calmodulin using fluorescence stop flow; assessing ErbB1 activation in Cos1 cells; measuring fluorescence resonance energy transfer between ErbB peptides and PIP2; and making theoretical electrostatic calculations on atomic models of membranes and ErbB juxtamembrane and kinase domains.
Collapse
Affiliation(s)
- Stuart McLaughlin
- Department of Physiology and Biophysics, HSC, Stony Brook University, Stony Brook, NY 11794, USA.
| | | | | | | |
Collapse
|