101
|
Türkcan S, Richly MU, Alexandrou A, Masson JB. Probing membrane protein interactions with their lipid raft environment using single-molecule tracking and Bayesian inference analysis. PLoS One 2013; 8:e53073. [PMID: 23301023 PMCID: PMC3536804 DOI: 10.1371/journal.pone.0053073] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 11/22/2012] [Indexed: 11/18/2022] Open
Abstract
The statistical properties of membrane protein random walks reveal information on the interactions between the proteins and their environments. These interactions can be included in an overdamped Langevin equation framework where they are injected in either or both the friction field and the potential field. Using a Bayesian inference scheme, both the friction and potential fields acting on the ε-toxin receptor in its lipid raft have been measured. Two types of events were used to probe these interactions. First, active events, the removal of cholesterol and sphingolipid molecules, were used to measure the time evolution of confining potentials and diffusion fields. Second, passive rare events, de-confinement of the receptors from one raft and transition to an adjacent one, were used to measure hopping energies. Lipid interactions with the ε-toxin receptor are found to be an essential source of confinement. ε-toxin receptor confinement is due to both the friction and potential field induced by cholesterol and sphingolipids. Finally, the statistics of hopping energies reveal sub-structures of potentials in the rafts, characterized by small hopping energies, and the difference of solubilization energy between the inner and outer raft area, characterized by higher hopping energies.
Collapse
Affiliation(s)
- Silvan Türkcan
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM U696, Palaiseau, France
- Institut Pasteur, Physics of Biological Systems, Paris, France
- CNRS, URA 2171, Paris, France
| | - Maximilian U. Richly
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM U696, Palaiseau, France
| | - Antigoni Alexandrou
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM U696, Palaiseau, France
| | - Jean-Baptiste Masson
- Institut Pasteur, Physics of Biological Systems, Paris, France
- CNRS, URA 2171, Paris, France
| |
Collapse
|
102
|
Suzuki KGN, Kasai RS, Fujiwara TK, Kusumi A. Single-molecule imaging of receptor-receptor interactions. Methods Cell Biol 2013; 117:373-90. [PMID: 24143988 DOI: 10.1016/b978-0-12-408143-7.00020-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Single-molecule imaging is a powerful tool for the study of dynamic molecular interactions in living cell plasma membranes. Herein, we describe a single-molecule imaging microscopy technique that can be used to measure lifetimes and densities of receptor dimers and oligomers. This method can be performed using a total internal reflection fluorescent microscope equipped with one or two high-sensitivity cameras. For dual-color observation, two images obtained synchronously in different colors are spatially corrected and then overlaid. Receptors must be expressed at low density in cell plasma membranes because high-density expression (>2 molecules/μm(2)) creates difficulty for tracking individual fluorescent spots. In addition, the receptors should be labeled with highly photostable fluorophores at high efficiency because short photobleaching lifetimes and low labeling efficiency of receptors reduce the probability of detecting dimers and oligomers. In this chapter, we describe methods for observing and detecting colocalization of the individual fluorescent spots of receptors labeled with fluorophores via small tags and the estimation of true dimer and oligomer lifetimes after correction with photobleaching lifetimes of fluorophores.
Collapse
Affiliation(s)
- Kenichi G N Suzuki
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan; National Centre for Biological Sciences (NCBS)/Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, India
| | | | | | | |
Collapse
|
103
|
Williams JT, Ingram SL, Henderson G, Chavkin C, von Zastrow M, Schulz S, Koch T, Evans CJ, Christie MJ. Regulation of μ-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol Rev 2013; 65:223-54. [PMID: 23321159 PMCID: PMC3565916 DOI: 10.1124/pr.112.005942] [Citation(s) in RCA: 615] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Morphine and related µ-opioid receptor (MOR) agonists remain among the most effective drugs known for acute relief of severe pain. A major problem in treating painful conditions is that tolerance limits the long-term utility of opioid agonists. Considerable effort has been expended on developing an understanding of the molecular and cellular processes that underlie acute MOR signaling, short-term receptor regulation, and the progression of events that lead to tolerance for different MOR agonists. Although great progress has been made in the past decade, many points of contention and controversy cloud the realization of this progress. This review attempts to clarify some confusion by clearly defining terms, such as desensitization and tolerance, and addressing optimal pharmacological analyses for discerning relative importance of these cellular mechanisms. Cellular and molecular mechanisms regulating MOR function by phosphorylation relative to receptor desensitization and endocytosis are comprehensively reviewed, with an emphasis on agonist-biased regulation and areas where knowledge is lacking or controversial. The implications of these mechanisms for understanding the substantial contribution of MOR signaling to opioid tolerance are then considered in detail. While some functional MOR regulatory mechanisms contributing to tolerance are clearly understood, there are large gaps in understanding the molecular processes responsible for loss of MOR function after chronic exposure to opioids. Further elucidation of the cellular mechanisms that are regulated by opioids will be necessary for the successful development of MOR-based approaches to new pain therapeutics that limit the development of tolerance.
Collapse
Affiliation(s)
- John T Williams
- Vollum Institute, Oregon Health Sciences University, Portland, Oregon, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Radhakrishnan K, Halász Á, McCabe MM, Edwards JS, Wilson BS. Mathematical simulation of membrane protein clustering for efficient signal transduction. Ann Biomed Eng 2012; 40:2307-18. [PMID: 22669501 PMCID: PMC3822010 DOI: 10.1007/s10439-012-0599-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/17/2012] [Indexed: 12/13/2022]
Abstract
Initiation and propagation of cell signaling depend on productive interactions among signaling proteins at the plasma membrane. These diffusion-limited interactions can be influenced by features of the membrane that introduce barriers, such as cytoskeletal corrals, or microdomains that transiently confine both transmembrane receptors and membrane-tethered peripheral proteins. Membrane topographical features can lead to clustering of receptors and other membrane components, even under very dynamic conditions. This review considers the experimental and mathematical evidence that protein clustering impacts cell signaling in complex ways. Simulation approaches used to consider these stochastic processes are discussed.
Collapse
Affiliation(s)
| | - Ádám Halász
- Dept. of Mathematics, West Virginia University, Morgantown, WV
| | - Meghan M. McCabe
- Dept. of Chemical Engineering, University of New Mexico, Albuquerque, N M
| | - Jeremy S. Edwards
- Dept. of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, N M
- Dept. of Chemical Engineering, University of New Mexico, Albuquerque, N M
- Cancer Center, University of New Mexico, Albuquerque, N M
| | - Bridget S. Wilson
- Dept. of Pathology, University of New Mexico, Albuquerque, N M
- Cancer Center, University of New Mexico, Albuquerque, N M
| |
Collapse
|
105
|
Oddershede LB. Force probing of individual molecules inside the living cell is now a reality. Nat Chem Biol 2012; 8:879-86. [DOI: 10.1038/nchembio.1082] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 08/22/2012] [Indexed: 12/25/2022]
|
106
|
Kamar RI, Organ-Darling LE, Raphael RM. Membrane cholesterol strongly influences confined diffusion of prestin. Biophys J 2012; 103:1627-36. [PMID: 23083705 DOI: 10.1016/j.bpj.2012.07.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 07/18/2012] [Accepted: 07/25/2012] [Indexed: 01/04/2023] Open
Abstract
Prestin is the membrane motor protein that drives outer hair cell (OHC) electromotility, a process that is essential for mammalian hearing. Prestin function is sensitive to membrane cholesterol levels, and numerous studies have suggested that prestin localizes in cholesterol-rich membrane microdomains. Previously, fluorescence recovery after photobleaching experiments were performed in HEK cells expressing prestin-GFP after cholesterol manipulations, and revealed evidence of transient confinement. To further characterize this apparent confined diffusion of prestin, we conjugated prestin to a photostable fluorophore (tetramethylrhodamine) and performed single-molecule fluorescence microscopy. Using single-particle tracking, we determined the microscopic diffusion coefficient from the full time course of the mean-squared deviation. Our results indicate that prestin undergoes diffusion in confinement regions, and that depletion of membrane cholesterol increases confinement size and decreases confinement strength. By interpreting the data in terms of a mathematical model of hop-diffusion, we quantified these cholesterol-induced changes in membrane organization. A complementary analysis of the distribution of squared displacements confirmed that cholesterol depletion reduces prestin confinement. These findings support the hypothesis that prestin function is intimately linked to membrane organization, and further promote a regulatory role for cholesterol in OHC and auditory function.
Collapse
Affiliation(s)
- R I Kamar
- Department of Physics and Astronomy, Rice University, Houston, Texas, USA
| | | | | |
Collapse
|
107
|
Jaqaman K, Grinstein S. Regulation from within: the cytoskeleton in transmembrane signaling. Trends Cell Biol 2012; 22:515-26. [PMID: 22917551 DOI: 10.1016/j.tcb.2012.07.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/17/2012] [Accepted: 07/17/2012] [Indexed: 12/16/2022]
Abstract
There is mounting evidence that the plasma membrane is highly dynamic and organized in a complex manner. The cortical cytoskeleton is proving to be a particularly important regulator of plasmalemmal organization, modulating the mobility of proteins and lipids in the membrane, facilitating their segregation, and influencing their clustering. This organization plays a critical role in receptor-mediated signaling, especially in the case of immunoreceptors, which require lateral clustering for their activation. Based on recent developments, we discuss the structures and mechanisms whereby the cortical cytoskeleton regulates membrane dynamics and organization, and how the nonuniform distribution of immunoreceptors and their self-association may affect activation and signaling.
Collapse
Affiliation(s)
- Khuloud Jaqaman
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
108
|
Kusumi A, Fujiwara TK, Chadda R, Xie M, Tsunoyama TA, Kalay Z, Kasai RS, Suzuki KGN. Dynamic organizing principles of the plasma membrane that regulate signal transduction: commemorating the fortieth anniversary of Singer and Nicolson's fluid-mosaic model. Annu Rev Cell Dev Biol 2012; 28:215-50. [PMID: 22905956 DOI: 10.1146/annurev-cellbio-100809-151736] [Citation(s) in RCA: 296] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The recent rapid accumulation of knowledge on the dynamics and structure of the plasma membrane has prompted major modifications of the textbook fluid-mosaic model. However, because the new data have been obtained in a variety of research contexts using various biological paradigms, the impact of the critical conceptual modifications on biomedical research and development has been limited. In this review, we try to synthesize our current biological, chemical, and physical knowledge about the plasma membrane to provide new fundamental organizing principles of this structure that underlie every molecular mechanism that realizes its functions. Special attention is paid to signal transduction function and the dynamic aspect of the organizing principles. We propose that the cooperative action of the hierarchical three-tiered mesoscale (2-300 nm) domains--actin-membrane-skeleton induced compartments (40-300 nm), raft domains (2-20 nm), and dynamic protein complex domains (3-10 nm)--is critical for membrane function and distinguishes the plasma membrane from a classical Singer-Nicolson-type model.
Collapse
Affiliation(s)
- Akihiro Kusumi
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Abstract
Caveolins (Cavs) are integrated plasma membrane proteins that are complex signaling regulators with numerous partners and whose activity is highly dependent on cellular context. Cavs are both positive and negative regulators of cell signaling in and/or out of caveolae, invaginated lipid raft domains whose formation is caveolin expression dependent. Caveolins and rafts have been implicated in membrane compartmentalization; proteins and lipids accumulate in these membrane microdomains where they transmit fast, amplified and specific signaling cascades. The concept of plasma membrane organization within functional rafts is still in exploration and sometimes questioned. In this chapter, we discuss the opposing functions of caveolin in cell signaling regulation focusing on the role of caveolin both as a promoter and inhibitor of different signaling pathways and on the impact of membrane domain localization on caveolin functionality in cell proliferation, survival, apoptosis and migration.
Collapse
|
110
|
Suzuki KGN. Lipid rafts generate digital-like signal transduction in cell plasma membranes. Biotechnol J 2012; 7:753-61. [PMID: 22488962 DOI: 10.1002/biot.201100360] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 02/13/2012] [Accepted: 02/24/2012] [Indexed: 11/10/2022]
Abstract
Lipid rafts are meso-scale (5-200 nm) cell membrane domains where signaling molecules assemble and function. However, due to their dynamic nature, it has been difficult to unravel the mechanism of signal transduction in lipid rafts. Recent advanced imaging techniques have revealed that signaling molecules are frequently, but transiently, recruited to rafts with the aid of protein-protein, protein-lipid, and/or lipid-lipid interactions. Individual signaling molecules within the raft are activated only for a short period of time. Immobilization of signaling molecules by cytoskeletal actin filaments and scaffold proteins may facilitate more efficient signal transmission from rafts. In this review, current opinions of how the transient nature of molecular interactions in rafts generates digital-like signal transduction in cell membranes, and the benefits this phenomenon provides, are discussed.
Collapse
Affiliation(s)
- Kenichi G N Suzuki
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan.
| |
Collapse
|
111
|
Rong G, Reinhard BM. Monitoring the size and lateral dynamics of ErbB1 enriched membrane domains through live cell plasmon coupling microscopy. PLoS One 2012; 7:e34175. [PMID: 22470534 PMCID: PMC3314600 DOI: 10.1371/journal.pone.0034175] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 02/28/2012] [Indexed: 12/12/2022] Open
Abstract
To illuminate the role of the spatial organization of the epidermal growth factor receptor (ErbB1) in signal transduction quantitative information about the receptor topography on the cell surface, ideally on living cells and in real time, are required. We demonstrate that plasmon coupling microscopy (PCM) enables to detect, size, and track individual membrane domains enriched in ErbB1 with high temporal resolution. We used a dendrimer enhanced labeling strategy to label ErbB1 receptors on epidermoid carcinoma cells (A431) with 60 nm Au nanoparticle (NP) immunolabels under physiological conditions at 37°C. The statistical analysis of the spatial NP distribution on the cell surface in the scanning electron microscope (SEM) confirmed a clustering of the NP labels consistent with a heterogeneous distribution of ErbB1 in the plasma membrane. Spectral shifts in the scattering response of clustered NPs facilitated the detection and sizing of individual NP clusters on living cells in solution in an optical microscope. We tracked the lateral diffusion of individual clusters at a frame rate of 200 frames/s while simultaneously monitoring the configurational dynamics of the clusters. Structural information about the NP clusters in their membrane confinements were obtained through analysis of the electromagnetic coupling of the co-confined NP labels through polarization resolved PCM. Our studies show that the ErbB1 receptor is enriched in membrane domains with typical diameters in the range between 60–250 nm. These membrane domains exhibit a slow lateral diffusion with a diffusion coefficient of = |0.0054±0.0064| µm2/s, which is almost an order of magnitude slower than the mean diffusion coefficient of individual NP tagged ErbB1 receptors under identical conditions.
Collapse
Affiliation(s)
| | - Björn M. Reinhard
- Department of Chemistry and The Photonics Center, Boston University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
112
|
Ayling LJ, Briddon SJ, Halls ML, Hammond GRV, Vaca L, Pacheco J, Hill SJ, Cooper DMF. Adenylyl cyclase AC8 directly controls its micro-environment by recruiting the actin cytoskeleton in a cholesterol-rich milieu. J Cell Sci 2012; 125:869-86. [PMID: 22399809 DOI: 10.1242/jcs.091090] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The central and pervasive influence of cAMP on cellular functions underscores the value of stringent control of the organization of adenylyl cyclases (ACs) in the plasma membrane. Biochemical data suggest that ACs reside in membrane rafts and could compartmentalize intermediary scaffolding proteins and associated regulatory elements. However, little is known about the organization or regulation of the dynamic behaviour of ACs in a cellular context. The present study examines these issues, using confocal image analysis of various AC8 constructs, combined with fluorescence recovery after photobleaching and fluorescence correlation spectroscopy. These studies reveal that AC8, through its N-terminus, enhances the cortical actin signal at the plasma membrane; an interaction that was confirmed by GST pull-down and immunoprecipitation experiments. AC8 also associates dynamically with lipid rafts; the direct association of AC8 with sterols was confirmed in Förster resonance energy transfer experiments. Disruption of the actin cytoskeleton and lipid rafts indicates that AC8 tracks along the cytoskeleton in a cholesterol-enriched domain, and the cAMP that it produces contributes to sculpting the actin cytoskeleton. Thus, an adenylyl cyclase is shown not just to act as a scaffold, but also to actively orchestrate its own micro-environment, by associating with the cytoskeleton and controlling the association by producing cAMP, to yield a highly organized signalling hub.
Collapse
Affiliation(s)
- Laura J Ayling
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Kusumi A, Fujiwara TK, Morone N, Yoshida KJ, Chadda R, Xie M, Kasai RS, Suzuki KGN. Membrane mechanisms for signal transduction: the coupling of the meso-scale raft domains to membrane-skeleton-induced compartments and dynamic protein complexes. Semin Cell Dev Biol 2012; 23:126-44. [PMID: 22309841 DOI: 10.1016/j.semcdb.2012.01.018] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 01/24/2012] [Indexed: 01/09/2023]
Abstract
Virtually all biological membranes on earth share the basic structure of a two-dimensional liquid. Such universality and peculiarity are comparable to those of the double helical structure of DNA, strongly suggesting the possibility that the fundamental mechanisms for the various functions of the plasma membrane could essentially be understood by a set of simple organizing principles, developed during the course of evolution. As an initial effort toward the development of such understanding, in this review, we present the concept of the cooperative action of the hierarchical three-tiered meso-scale (2-300 nm) domains in the plasma membrane: (1) actin membrane-skeleton-induced compartments (40-300 nm), (2) raft domains (2-20 nm), and (3) dynamic protein complex domains (3-10nm). Special attention is paid to the concept of meso-scale domains, where both thermal fluctuations and weak cooperativity play critical roles, and the coupling of the raft domains to the membrane-skeleton-induced compartments as well as dynamic protein complexes. The three-tiered meso-domain architecture of the plasma membrane provides an excellent perspective for understanding the membrane mechanisms of signal transduction.
Collapse
Affiliation(s)
- Akihiro Kusumi
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Abstract
Precisely imaging and tracking dynamic biological processes in live cells are crucial for both fundamental research in life sciences and biomedical applications. Nonfluorescent nanoparticles are emerging as important optical probes in live-cell imaging because of their excellent photostability, large optical cross sections, and low cytotoxicity. Here, we provide a review of recent development in optical imaging of nonfluorescent nanoparticle probes and their applications in dynamic tracking and biosensing in live cells. A brief discussion on cytotoxicity of nanoparticle probes is also provided.
Collapse
Affiliation(s)
- Gufeng Wang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
| | | |
Collapse
|
115
|
Kusumi A, Suzuki KGN, Kasai RS, Ritchie K, Fujiwara TK. Hierarchical mesoscale domain organization of the plasma membrane. Trends Biochem Sci 2011; 36:604-15. [PMID: 21917465 DOI: 10.1016/j.tibs.2011.08.001] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 08/06/2011] [Accepted: 08/08/2011] [Indexed: 11/27/2022]
Abstract
Based on recent single-molecule imaging results in the living cell plasma membrane, we propose a hierarchical architecture of three-tiered mesoscale (2-300nm) domains to represent the fundamental functional organization of the plasma membrane: (i) membrane compartments of 40-300nm in diameter due to the partitioning of the entire plasma membrane by the actin-based membrane skeleton 'fence' and transmembrane protein 'pickets' anchored to the fence; (ii) raft domains (2-20nm); and (iii) dimers/oligomers and greater complexes of membrane-associated proteins (3-10nm). The basic molecular interactions required for the signal transduction function of the plasma membrane can be fundamentally understood and conveniently summarized as the cooperative actions of these mesoscale domains, where thermal fluctuations/movements of molecules and weak cooperativity play crucial roles.
Collapse
Affiliation(s)
- Akihiro Kusumi
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8507, Japan.
| | | | | | | | | |
Collapse
|
116
|
Kasai RS, Suzuki KGN, Prossnitz ER, Koyama-Honda I, Nakada C, Fujiwara TK, Kusumi A. Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging. ACTA ACUST UNITED AC 2011; 192:463-80. [PMID: 21300851 PMCID: PMC3101103 DOI: 10.1083/jcb.201009128] [Citation(s) in RCA: 256] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Receptor dimerization is important for many signaling pathways. However, the monomer-dimer equilibrium has never been fully characterized for any receptor with a 2D equilibrium constant as well as association/dissociation rate constants (termed super-quantification). Here, we determined the dynamic equilibrium for the N-formyl peptide receptor (FPR), a chemoattractant G protein-coupled receptor (GPCR), in live cells at 37°C by developing a single fluorescent-molecule imaging method. Both before and after liganding, the dimer-monomer 2D equilibrium is unchanged, giving an equilibrium constant of 3.6 copies/µm(2), with a dissociation and 2D association rate constant of 11.0 s(-1) and 3.1 copies/µm(2)s(-1), respectively. At physiological expression levels of ∼2.1 receptor copies/µm(2) (∼6,000 copies/cell), monomers continually convert into dimers every 150 ms, dimers dissociate into monomers in 91 ms, and at any moment, 2,500 and 3,500 receptor molecules participate in transient dimers and monomers, respectively. Not only do FPR dimers fall apart rapidly, but FPR monomers also convert into dimers very quickly.
Collapse
Affiliation(s)
- Rinshi S Kasai
- Membrane Mechanisms Project, International Cooperative Research Project, Kyoto University, Shougoin, Kyoto 606-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
117
|
Valentine CD, Haggie PM. Confinement of β(1)- and β(2)-adrenergic receptors in the plasma membrane of cardiomyocyte-like H9c2 cells is mediated by selective interactions with PDZ domain and A-kinase anchoring proteins but not caveolae. Mol Biol Cell 2011; 22:2970-82. [PMID: 21680711 PMCID: PMC3154891 DOI: 10.1091/mbc.e11-01-0034] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The presence of stable multiprotein complexes containing adrenergic receptors is verified in live H9c2 cardiomyocyte-like cells by single-particle tracking. The immobilization of β-adrenergic receptors presumably contributes to the specificity of cardiac adrenergic responses. The sympathetic nervous system regulates cardiac output by activating adrenergic receptors (ARs) in cardiac myocytes. The predominant cardiac ARs, β1- and β2AR, are structurally similar but mediate distinct signaling responses. Scaffold protein–mediated compartmentalization of ARs into discrete, multiprotein complexes has been proposed to dictate differential signaling responses. To test the hypothesis that βARs integrate into complexes in live cells, we measured receptor diffusion and interactions by single-particle tracking. Unstimulated β1- and β2AR were highly confined in the membrane of H9c2 cardiomyocyte-like cells, indicating that receptors are tethered and presumably integrated into protein complexes. Selective disruption of interactions with postsynaptic density protein 95/disks large/zonula occludens-1 (PDZ)–domain proteins and A-kinase anchoring proteins (AKAPs) increased receptor diffusion, indicating that these scaffold proteins participate in receptor confinement. In contrast, modulation of interactions between the putative scaffold caveolae and β2AR did not alter receptor dynamics, suggesting that these membrane domains are not involved in β2AR confinement. For both β1- and β2AR, the receptor carboxy-terminus was uniquely responsible for scaffold interactions. Our data formally demonstrate that distinct and stable protein complexes containing β1- or β2AR are formed in the plasma membrane of cardiomyocyte-like cells and that selective PDZ and AKAP interactions are responsible for the integration of receptors into complexes.
Collapse
Affiliation(s)
- Cathleen D Valentine
- Division of Nephrology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
118
|
Kaya Aİ, Uğur O, Altuntaş O, Sayar K, Onaran HO. Long and short distance movements of β(2)-adrenoceptor in cell membrane assessed by photoconvertible fluorescent protein dendra2-β(2)-adrenoceptor fusion. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1511-24. [PMID: 21621562 DOI: 10.1016/j.bbamcr.2011.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/04/2011] [Accepted: 05/08/2011] [Indexed: 11/29/2022]
Abstract
Local movements of receptors in the plasma membrane have been extensively studied, as it is generally believed that the dynamics of membrane distribution of receptors regulate their functions. However, the properties of large-scale (>5μm) receptor movements in the membrane are relatively obscure. In the present study, we addressed the question as to whether the large-scale movement of receptor in the plasma membrane at the whole cell level can be explained quantitatively by its local diffusive properties. We used HEK 293 cells transfected with human β2-adrenoceptor fused to photoconvertible fluorescent protein dendra2 as a model system; and found that 1) functional integrity of the dendra2-tagged receptor remains apparently intact; 2) in a mesoscopic scale (~4μm), ~90% of the receptors are mobile on average, and receptor influx to, and out-flux from a membrane area can be symmetrically explained by a diffusion-like process with an effective diffusion coefficient of ~0.1μm(2)/s; 3) these mobility parameters are not affected by the activity state of the receptor (assessed by using constitutively active receptor mutants); 4) in the macroscopic scale (4-40μm), although a slowly diffusing fraction of receptors (with D<0.01μm(2)/s) is identifiable in some cases, the movement of the predominant fraction is perfectly explained by the same effective diffusion process observed in the mesoscopic scale, suggesting that the large scale structure of the cell membrane as felt by the receptor is apparently homogeneous in terms of its mesoscopic properties. We also showed that intracellular compartments and plasma membrane are kinetically connected even at steady-state.
Collapse
Affiliation(s)
- Ali İ Kaya
- Ankara University Faculty of Medicine, Molecular Biology and Technology Development Unit, 06100 Sıhhiye, Ankara, Turkey
| | | | | | | | | |
Collapse
|
119
|
Huber T, Sakmar TP. Escaping the flatlands: new approaches for studying the dynamic assembly and activation of GPCR signaling complexes. Trends Pharmacol Sci 2011; 32:410-9. [PMID: 21497404 DOI: 10.1016/j.tips.2011.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/01/2011] [Accepted: 03/10/2011] [Indexed: 01/17/2023]
Abstract
Despite significant recent advances in molecular and structural studies of G protein-coupled receptors (GPCRs), an understanding of transmembrane signal transduction with chemical precision requires new approaches. Simple binary receptor-ligand or receptor-G protein complex models cannot adequately describe the relevant macromolecular signaling machineries. GPCR signalosomes undergo complex dynamic assembly-disassembly reactions to create allosteric signaling conduits whose properties cannot necessarily be predicted from individual elements alone. The combinatorial possibilities inherent in a system with hundreds of potential components suggest that high-content miniaturized experimental platforms and computational approaches will be required. To study allosteric effects involved in signalosome reaction pathways, a bottom-up approach using multicolor single-molecule detection fluorescence experiments in biochemically defined systems and complemented by molecular dynamics models of macromolecular complexes is proposed. In bridging the gap between molecular and systems biology, this synthetic approach suggests a way forward from the flatlands to multi-dimensional data collection.
Collapse
Affiliation(s)
- Thomas Huber
- Laboratory of Molecular Biology & Biochemistry, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | | |
Collapse
|
120
|
de Keijzer S, Galloway J, Harms GS, Devreotes PN, Iglesias PA. Disrupting microtubule network immobilizes amoeboid chemotactic receptor in the plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1701-8. [PMID: 21334306 DOI: 10.1016/j.bbamem.2011.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 01/08/2011] [Accepted: 02/09/2011] [Indexed: 11/29/2022]
Abstract
Signaling cascades are initiated in the plasma membrane via activation of one molecule by another. The interaction depends on the mutual availability of the molecules to each other and this is determined by their localization and lateral diffusion in the cell membrane. The cytoskeleton plays a very important role in this process by enhancing or restricting the possibility of the signaling partners to meet in the plasma membrane. In this study we explored the mode of diffusion of the cAMP receptor, cAR1, in the plasma membrane of Dictyostelium discoideum cells and how this is regulated by the cytoskeleton. Single-particle tracking of fluorescently labeled cAR1 using Total Internal Reflection Microscopy showed that 70% of the cAR1 molecules were mobile. These receptors showed directed motion and we demonstrate that this is not because of tracking along the actin cytoskeleton. Instead, destabilization of the microtubules abolished cAR1 mobility in the plasma membrane and this was confirmed by Fluorescence Recovery after Photobleaching. As a result of microtubule stabilization, one of the first downstream signaling events, the jump of the PH domain of CRAC, was decreased. These results suggest a role for microtubules in cAR1 dynamics and in the ability of cAR1 molecules to interact with their signaling partners.
Collapse
Affiliation(s)
- S de Keijzer
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA.
| | | | | | | | | |
Collapse
|
121
|
Grecco HE, Martínez OE. Experimental determination of distance and orientation of metallic nanodimers by polarization dependent plasmon coupling. PAPERS IN PHYSICS 2011. [DOI: 10.4279/pip.020010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Live cell imaging using metallic nanoparticles as tags is an emerging technique to visualize long and highly dynamic processes due to the lack of photobleaching and high photon rate. However, the lack of excited states as compared to fluorescent dyes prevents the use of resonance energy transfer and recently developed super resolution methods to measure distances between objects closer that the resolution limit. In this work, we experimentally demonstrate a technique to determine subdiffraction distances based on the near field coupling of metallic nanoparticles. Due to the symmetry breaking in the scattering cross section, not only distances but also relative orientations can be measured. Gold nanoparticles were prepared on glass in such way that a small fraction of dimers was present. The sample was sequentially illuminated with two wavelengths to separate background from nanoparticle scattering based on their spectral properties. A novel total internal reflection illumination scheme in which the polarization can be rotated was used to further minimize background contributions. In this way, radii, distance and orientation were measured for each individual dimer and their statistical distributions were found to be in agreement with the expected ones. We envision that this technique will allow fast and long term tracking of relative distance and orientation in biological processes.Received: 22 April 2010, Accepted: 2 December 2010; Edited by: V. Lakshminarayanan; Reviewed by: S. Roy, Dayalbagh Educational Institute, Agra, India; DOI: 10.4279/PIP.020010
Collapse
|
122
|
Khorshidi MA, Vanherberghen B, Kowalewski JM, Garrod KR, Lindström S, Andersson-Svahn H, Brismar H, Cahalan MD, Önfelt B. Analysis of transient migration behavior of natural killer cells imaged in situ and in vitro. Integr Biol (Camb) 2011; 3:770-8. [DOI: 10.1039/c1ib00007a] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
123
|
Batista FD, Treanor B, Harwood NE. Visualizing a role for the actin cytoskeleton in the regulation of B-cell activation. Immunol Rev 2010; 237:191-204. [PMID: 20727037 DOI: 10.1111/j.1600-065x.2010.00943.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Appropriate activation of B cells is required for mounting protective humoral immune responses. B-cell activation is initiated following specific recognition of antigen by the B-cell receptor (BCR) and results in the generation of antibody-secreting plasma cells and long-lived memory cells. Initial imaging approaches revealed that B cells undergo dramatic molecular and morphological reorganizations following recognition of antigen. A number of these studies pointed to a role for the underlying cytoskeleton in regulating early events of B-cell activation. More recently, groundbreaking advances in imaging technologies have enabled direct visualization of the role for the cytoskeleton in regulating events at the B-cell membrane. Indeed, we have demonstrated that an ezrin-defined actin network shapes BCR diffusion and signaling both in the resting state and following antigen-induced activation. Importantly, alongside these in vitro imaging approaches, it has been demonstrated that mutations in cytoskeleton regulators such as CD19, dedicator of cytokinesis 8 (DOCK8), and Wiskott-Aldrich syndrome protein (WASp) are often associated with antibody deficiency syndromes in humans, establishing the importance of cytoskeleton reorganizations in conferring effective adaptive immunity.
Collapse
Affiliation(s)
- Facundo D Batista
- Lymphocyte Interaction Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, London, UK.
| | | | | |
Collapse
|
124
|
Costa MN, Radhakrishnan K, Edwards JS. Monte Carlo simulations of plasma membrane corral-induced EGFR clustering. J Biotechnol 2010; 151:261-70. [PMID: 21167222 DOI: 10.1016/j.jbiotec.2010.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 11/30/2010] [Accepted: 12/04/2010] [Indexed: 11/26/2022]
Abstract
Experimental evidence suggests that the cell membrane is a highly organized structure that is compartmentalized by the underlying membrane cytoskeleton (MSK). The interaction between the cell membrane and the cytoskeleton led to the "picket-fence" model, which was proposed to explain certain aspects of membrane compartmentalization. This model assumes that the MSK hinders and confines the motion of receptors and lipids to compartments in the membrane. However, the impact of the MSK on receptor clustering, aggregation, and downstream signaling remains unclear. For example, some evidence suggests that the MSK enhances dimerization, while other evidence suggests decreased dimerization and signaling. Herein, we use computational Monte Carlo simulations to examine the effects of MSK density and receptor concentration on receptor dimerization and clustering. Preliminary results suggest that the MSK may have the potential to induce receptor clustering, which is a function of both picket-fence density and receptor concentration.
Collapse
Affiliation(s)
- Michelle N Costa
- Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131, United States
| | | | | |
Collapse
|
125
|
Radhakrishnan K, Halász A, Vlachos D, Edwards JS. Quantitative understanding of cell signaling: the importance of membrane organization. Curr Opin Biotechnol 2010; 21:677-82. [PMID: 20829029 DOI: 10.1016/j.copbio.2010.08.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 08/09/2010] [Indexed: 12/13/2022]
Abstract
Systems biology modeling of signal transduction pathways traditionally employs ordinary differential equations, deterministic models based on the assumptions of spatial homogeneity. However, this can be a poor approximation for certain aspects of signal transduction, especially its initial steps: the cell membrane exhibits significant spatial organization, with diffusion rates approximately two orders of magnitude slower than those in the cytosol. Thus, to unravel the complexities of signaling pathways, quantitative models must consider spatial organization as an important feature of cell signaling. Furthermore, spatial separation limits the number of molecules that can physically interact, requiring stochastic simulation methods that account for individual molecules. Herein, we discuss the need for mathematical models and experiments that appreciate the importance of spatial organization in the membrane.
Collapse
Affiliation(s)
- Krishnan Radhakrishnan
- Department of Pathology and Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | | | | |
Collapse
|
126
|
Ganguly S, Chattopadhyay A. Cholesterol depletion mimics the effect of cytoskeletal destabilization on membrane dynamics of the serotonin1A receptor: A zFCS study. Biophys J 2010; 99:1397-407. [PMID: 20816051 PMCID: PMC2931730 DOI: 10.1016/j.bpj.2010.06.031] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 06/14/2010] [Accepted: 06/15/2010] [Indexed: 01/23/2023] Open
Abstract
Single-point fluorescence correlation spectroscopy (FCS) of membrane-bound molecules suffers from a number of limitations leading to inaccurate estimation of diffusion parameters. To overcome such problems and with the overall goal of addressing membrane heterogeneities, we performed z-scan FCS (zFCS) of the serotonin(1A) receptor. We analyzed the results according to FCS diffusion laws that provide information on the organization of the diffusing species. Analysis of our results shows that the diffusion coefficients of the receptor and a fluorescently labeled phospholipid are similar when probed at length scales approximately 210 nm. We discuss the significance of the spatiotemporal evolution of dynamics of membrane-bound molecules in the overall context of membrane domains and heterogeneity. Importantly, our results show that the serotonin(1A) receptor exhibits confinement in cell membranes, possibly due to interaction with the actin cytoskeleton. Surprisingly, depletion of membrane cholesterol appears to reduce receptor confinement in a manner similar to that observed in the case of cytoskeletal destabilization, implying possible changes in the actin cytoskeleton induced upon cholesterol depletion. These results constitute the first report on G-protein-coupled receptor dynamics utilizing a combination of zFCS and the FCS diffusion laws, and present a convenient approach to explore cell membrane heterogeneity at the submicron level.
Collapse
Affiliation(s)
| | - Amitabha Chattopadhyay
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| |
Collapse
|
127
|
Gerrow K, Triller A. Synaptic stability and plasticity in a floating world. Curr Opin Neurobiol 2010; 20:631-9. [PMID: 20655734 DOI: 10.1016/j.conb.2010.06.010] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/11/2010] [Accepted: 06/28/2010] [Indexed: 11/27/2022]
Abstract
A fundamental feature of membranes is the lateral diffusion of lipids and proteins. Control of lateral diffusion provides a mechanism for regulating the structure and function of synapses. Single-particle tracking (SPT) has emerged as a powerful way to directly visualize these movements. SPT can reveal complex diffusive behaviors, which can be regulated by neuronal activity over time and space. Such is the case for neurotransmitter receptors, which are transiently stabilized at synapses by scaffolding molecules. This regulation provides new insight into mechanisms by which the dynamic equilibrium of receptor-scaffold assembly can be regulated. We will briefly review here recent data on this mechanism, which ultimately tunes the number of receptors at synapses and therefore synaptic strength.
Collapse
Affiliation(s)
- Kimberly Gerrow
- Biologie Cellulaire de la Synapse, Institute de Biologie de l'Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| | | |
Collapse
|
128
|
Sukhorukov VM, Dikov D, Busch K, Strecker V, Wittig I, Bereiter-Hahn J. Determination of protein mobility in mitochondrial membranes of living cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:2022-32. [PMID: 20655870 DOI: 10.1016/j.bbamem.2010.07.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 07/15/2010] [Accepted: 07/16/2010] [Indexed: 12/21/2022]
Abstract
Molecular mobility in membranes of intracellular organelles is poorly understood, due to the lack of experimental tools applicable for a great diversity of shapes and sizes such organelles can acquire. Determinations of diffusion within the plasma membrane or cytosol are based mostly on the assumption of an infinite flat space, not valid for curved membranes of smaller organelles. Here we extend the application of FRAP to mitochondria of living cells by application of numerical analysis to data collected from a small region inside a single organelle. The spatiotemporal pattern of light pulses generated by the laser scanning microscope during the measurement is reconstructed in silico and consequently the values of diffusion parameters best suited to the particular organelle are found. The mobility of the outer membrane proteins hFis and Tom7, as well as oxidative phosphorylation complexes COX and F(1)F(0) ATPase located in the inner membrane is analyzed in detail. Several alternative models of diffusivity applied to these proteins provide insight into the mechanisms determining the rate of motion in each of the membranes. Tom7 and hFis move along the mitochondrial axis in the outer membrane with similar diffusion coefficients (D=0.7μm(2)/s and 0.6μm(2)/s respectively) and equal immobile fraction (7%). The notably slower motion of the inner membrane proteins is best represented by a dual-component model with approximately equal partitioning of the fractions (F(1)F(0) ATPase: 0.4μm(2)/s and 0.0005μm(2)/s; COX: 0.3μm(2)/s and 0.007μm(2)/s). The mobility patterns specific for the membranes of this organelle are unambiguously distinguishable from those of the plasma membrane or artificial lipid environments: The parameters of mitochondrial proteins indicate a distinct set of factors responsible for their diffusion characteristics.
Collapse
Affiliation(s)
- Valerii M Sukhorukov
- Kinematic Cell Research Group, Institute for Cell Biology and Neurosciences, Goethe University, 60438 Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
129
|
Long BR, Vu TQ. Spatial structure and diffusive dynamics from single-particle trajectories using spline analysis. Biophys J 2010; 98:1712-21. [PMID: 20409493 DOI: 10.1016/j.bpj.2009.12.4299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 12/04/2009] [Accepted: 12/14/2009] [Indexed: 11/26/2022] Open
Abstract
Single-particle tracking of biomolecular probes has provided a wealth of information about intracellular trafficking and the dynamics of proteins and lipids in the cell membrane. Conventional mean-square displacement (MSD) analysis of single-particle trajectories often assumes that probes are moving in a uniform environment. However, the observed two-dimensional motion of probe particles is influenced by the local three-dimensional geometry of the cell membrane and intracellular structures, which are rarely flat at the submicron scale. This complex geometry can lead to spatially confined trajectories that are difficult to analyze and interpret using conventional two-dimensional MSD analysis. Here we present two methods to analyze spatially confined trajectories: spline-curve dynamics analysis, which extends conventional MSD analysis to measure diffusive motion in confined trajectories; and spline-curve spatial analysis, which measures spatial structures smaller than the limits of optical resolution. We show, using simulated random walks and experimental trajectories of quantum dot probes, that differences in measured two-dimensional diffusion coefficients do not always reflect differences in underlying diffusive dynamics, but can instead be due to differences in confinement geometries of cellular structures.
Collapse
Affiliation(s)
- Brian R Long
- Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | | |
Collapse
|
130
|
Gambin Y, Reffay M, Sierecki E, Homblé F, Hodges RS, Gov NS, Taulier N, Urbach W. Variation of the lateral mobility of transmembrane peptides with hydrophobic mismatch. J Phys Chem B 2010; 114:3559-66. [PMID: 20170092 DOI: 10.1021/jp911354y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A hydrophobic mismatch between protein length and membrane thickness can lead to a modification of protein conformation, function, and oligomerization. To study the role of hydrophobic mismatch, we have measured the change in mobility of transmembrane peptides possessing a hydrophobic helix of various length d(pi) in lipid membranes of giant vesicles. We also used a model system where the hydrophobic thickness of the bilayers, h, can be tuned at will. We precisely measured the diffusion coefficient of the embedded peptides and gained access to the apparent size of diffusing objects. For bilayers thinner than d(pi), the diffusion coefficient decreases, and the derived characteristic sizes are larger than the peptide radii. Previous studies suggest that peptides accommodate by tilting. This scenario was confirmed by ATR-FTIR spectroscopy. As the membrane thickness increases, the value of the diffusion coefficient increases to reach a maximum at h approximately = d(pi). We show that this variation in diffusion coefficient is consistent with a decrease in peptide tilt. To do so, we have derived a relation between the diffusion coefficient and the tilt angle, and we used this relation to derive the peptide tilt from our diffusion measurements. As the membrane thickness increases, the peptides raise (i.e., their tilt is reduced) and reach an upright position and a maximal mobility for h approximately = d(pi). Using accessibility measurements, we show that when the membrane becomes too thick, the peptide polar heads sink into the interfacial region. Surprisingly, this "pinching" behavior does not hinder the lateral diffusion of the transmembrane peptides. Ultimately, a break in the peptide transmembrane anchorage is observed and is revealed by a "jump" in the D values.
Collapse
Affiliation(s)
- Yann Gambin
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, Université Paris Diderot, CNRS, 24 rue Lhomond, 75005 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Tole S, Durkan AM, Huang YW, Liu GY, Leung A, Jones LL, Taylor JA, Robinson LA. Thromboxane prostanoid receptor stimulation induces shedding of the transmembrane chemokine CX3CL1 yet enhances CX3CL1-dependent leukocyte adhesion. Am J Physiol Cell Physiol 2010; 298:C1469-80. [DOI: 10.1152/ajpcell.00380.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In atherosclerosis, chemokines recruit circulating mononuclear leukocytes to the vascular wall. A key factor is CX3CL1, a chemokine with soluble and transmembrane species that acts as both a chemoattractant and an adhesion molecule. Thromboxane A2 and its receptor, TP, are also critical to atherogenesis by promoting vascular inflammation and consequent leukocyte recruitment. We examined the effects of TP stimulation on processing and function of CX3CL1, using CX3CL1-expressing human ECV-304 cells and primary human vascular endothelial cells. TP agonists promoted rapid shedding of cell surface CX3CL1, which was inhibited by pharmacological inhibitors or specific small interfering RNA targeting tumor necrosis factor-α-converting enzyme (TACE). Because it reduced cell surface CX3CL1, we predicted that TP stimulation would inhibit adhesion of leukocytes expressing the CX3CL1 cognate receptor but, paradoxically, saw enhanced adhesion. We questioned whether the enhanced ability of the remaining membrane-associated CX3CL1 to bind targets was caused by changes in its lateral mobility. Using fluorescence recovery after photobleaching, we found that plasmalemmal CX3CL1 was initially tethered but ultimately mobilized by TP agonists. TP stimulation provoked clustering of transmembrane CX3CL1 at sites of contact with adherent leukocytes. These data demonstrate that TP stimulation induces two distinct effects: a rapid cleavage of surface CX3CL1, thereby releasing the soluble chemoattractant, plus mobilization of the remaining transmembrane CX3CL1 to enhance the avidity of interactions with adherent leukocytes. The dual effect of TP allows CX3CL1 to recruit leukocytes to sites of vascular inflammation while enhancing their adhesion once recruited.
Collapse
Affiliation(s)
- Soumitra Tole
- The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Anne M. Durkan
- The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Yi-Wei Huang
- The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Guang Ying Liu
- The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Alexander Leung
- The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Laura L. Jones
- The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Jasmine A. Taylor
- The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Lisa A. Robinson
- The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
132
|
Dehmelt L, Bastiaens PIH. Spatial organization of intracellular communication: insights from imaging. Nat Rev Mol Cell Biol 2010; 11:440-52. [DOI: 10.1038/nrm2903] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
133
|
Voisinne G, Alexandrou A, Masson JB. Quantifying biomolecule diffusivity using an optimal Bayesian method. Biophys J 2010; 98:596-605. [PMID: 20159156 DOI: 10.1016/j.bpj.2009.10.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 10/06/2009] [Accepted: 10/30/2009] [Indexed: 10/19/2022] Open
Abstract
We propose a Bayesian method to extract the diffusivity of biomolecules evolving freely or inside membrane microdomains. This approach assumes a model of motion for the particle considered, namely free Brownian motion or confined diffusion. In each framework, a systematic Bayesian scheme is provided for estimating the diffusivity. We show that this method reaches the best performances theoretically achievable. Its efficiency overcomes that of widely used methods based on the analysis of the mean-square displacement. The approach presented here also gives direct access to the uncertainty on the estimation of the diffusivity and predicts the number of steps of the trajectory necessary to achieve any desired precision. Its robustness with respect to noise on the position of the biomolecule is also investigated.
Collapse
Affiliation(s)
- Guillaume Voisinne
- Institut Pasteur, Centre National de la Recherche Scientifique URA 2171, Unit In Silico Genetics, Paris, France.
| | | | | |
Collapse
|
134
|
Hierarchical organization of the plasma membrane: investigations by single-molecule tracking vs. fluorescence correlation spectroscopy. FEBS Lett 2010; 584:1814-23. [PMID: 20178787 DOI: 10.1016/j.febslet.2010.02.047] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/15/2010] [Accepted: 02/15/2010] [Indexed: 11/20/2022]
Abstract
Single-molecule tracking and fluorescence correlation spectroscopy (FCS) applied to the plasma membrane in living cells have allowed a number of unprecedented observations, thus fostering a new basic understanding of molecular diffusion, interaction, and signal transduction in the plasma membrane. It is becoming clear that the plasma membrane is a heterogeneous entity, containing diverse structures on nano-meso-scales (2-200 nm) with a variety of lifetimes, where certain membrane molecules stay together for limited durations. Molecular interactions occur in the time-dependent inhomogeneous two-dimensional liquid of the plasma membrane, which might be a key for plasma membrane functions.
Collapse
|
135
|
Treanor B, Depoil D, Gonzalez-Granja A, Barral P, Weber M, Dushek O, Bruckbauer A, Batista FD. The membrane skeleton controls diffusion dynamics and signaling through the B cell receptor. Immunity 2010; 32:187-99. [PMID: 20171124 PMCID: PMC2984614 DOI: 10.1016/j.immuni.2009.12.005] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 11/17/2009] [Accepted: 12/04/2009] [Indexed: 11/29/2022]
Abstract
Early events of B cell activation after B cell receptor (BCR) triggering have been well characterized. However, little is known about the steady state of the BCR on the cell surface. Here, we simultaneously visualize single BCR particles and components of the membrane skeleton. We show that an ezrin- and actin-defined network influenced steady-state BCR diffusion by creating boundaries that restrict BCR diffusion. We identified the intracellular domain of Igβ as important in mediating this restriction in diffusion. Importantly, alteration of this network was sufficient to induce robust intracellular signaling and concomitant increase in BCR mobility. Moreover, by using B cells deficient in key signaling molecules, we show that this signaling was most probably initiated by the BCR. Thus, our results suggest the membrane skeleton plays a crucial function in controlling BCR dynamics and thereby signaling, in a way that could be important for understanding tonic signaling necessary for B cell development and survival.
Collapse
Affiliation(s)
- Bebhinn Treanor
- Lymphocyte Interaction Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Hern JA, Baig AH, Mashanov GI, Birdsall B, Corrie JET, Lazareno S, Molloy JE, Birdsall NJM. Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc Natl Acad Sci U S A 2010; 107:2693-8. [PMID: 20133736 PMCID: PMC2823895 DOI: 10.1073/pnas.0907915107] [Citation(s) in RCA: 303] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of transmembrane signaling proteins in the human genome. Events in the GPCR signaling cascade have been well characterized, but the receptor composition and its membrane distribution are still generally unknown. Although there is evidence that some members of the GPCR superfamily exist as constitutive dimers or higher oligomers, interpretation of the results has been disputed, and recent studies indicate that monomeric GPCRs may also be functional. Because there is controversy within the field, to address the issue we have used total internal reflection fluorescence microscopy (TIRFM) in living cells to visualize thousands of individual molecules of a model GPCR, the M(1) muscarinic acetylcholine receptor. By tracking the position of individual receptors over time, their mobility, clustering, and dimerization kinetics could be directly determined with a resolution of approximately 30 ms and approximately 20 nm. In isolated CHO cells, receptors are randomly distributed over the plasma membrane. At any given time, approximately 30% of the receptor molecules exist as dimers, and we found no evidence for higher oligomers. Two-color TIRFM established the dynamic nature of dimer formation with M(1) receptors undergoing interconversion between monomers and dimers on the timescale of seconds.
Collapse
Affiliation(s)
- Jonathan A. Hern
- Division of Physical Biochemistry, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom; and
| | - Asma H. Baig
- Division of Physical Biochemistry, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom; and
- Medical Research Council Technology, London NW7 1AD, United Kingdom
| | - Gregory I. Mashanov
- Division of Physical Biochemistry, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom; and
| | - Berry Birdsall
- Division of Physical Biochemistry, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom; and
| | - John E. T. Corrie
- Division of Physical Biochemistry, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom; and
| | | | - Justin E. Molloy
- Division of Physical Biochemistry, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom; and
| | - Nigel J. M. Birdsall
- Division of Physical Biochemistry, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom; and
| |
Collapse
|
137
|
Rong G, Wang H, Reinhard BM. Insights from a nanoparticle minuet: two-dimensional membrane profiling through silver plasmon ruler tracking. NANO LETTERS 2010; 10:230-8. [PMID: 20017502 PMCID: PMC2865136 DOI: 10.1021/nl903350f] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Individual pairs of polymer-tethered silver nanoparticles, so-called silver plasmon rulers, enable distance and orientation measurements on the nanoscale. The reduced linear dichroism and the spectrum of the light scattered from individual plasmon rulers encode information about their orientation and average interparticle separation, respectively. We took advantage of the gain in information silver plasmon rulers offer as probes in optical tracking and analyzed the translational and rotational motions as well as the extension of individual silver plasmon rulers diffusing on the plasma membrane of lysed HeLa cells. Consistent with a compartmentalization of the cell surface on the length scales of the plasmon rulers, most rulers were either immobilized or performed a confined lateral diffusion. Structural details of a plasmon ruler's confinement region became accessible utilizing the orientation and interparticle separation dependent optical response of the plasmon rulers. This approach, which we refer to as polarization-resolved plasmon coupling microscopy, enabled a detailed structural characterization of individual membrane compartments and provided a quantitative metrics to characterize the structural lateral heterogeneity of cell membranes on submicrometer length scales. In combination with adequate tracking methods, the "dance" performed by membrane confined dimers of flexibly linked noble metal nanoparticles revealed deep insight into the underlying membrane morphology.
Collapse
|
138
|
Effect of energy metabolism on protein motility in the bacterial outer membrane. Biophys J 2009; 97:1305-12. [PMID: 19720018 DOI: 10.1016/j.bpj.2009.06.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 06/12/2009] [Accepted: 06/15/2009] [Indexed: 11/21/2022] Open
Abstract
We demonstrate the energy dependence of the motion of a porin, the lambda-receptor, in the outer membrane of living Escherichia coli by single molecule investigations. By poisoning the bacteria with arsenate and azide, the bacterial energy metabolism was stopped. The motility of individual lambda-receptors significantly and rapidly decreased upon energy depletion. We suggest two different causes for the ceased motility upon comprised energy metabolism: One possible cause is that the cell uses energy to actively wiggle its proteins, this energy being one order-of-magnitude larger than thermal energy. Another possible cause is an induced change in the connection between the lambda-receptor and the membrane structure, for instance by a stiffening of part of the membrane structure. Treatment of the cells with ampicillin, which directly targets the bacterial cell wall by inhibiting cross-linking of the peptidoglycan layer, had an effect similar to energy depletion and the motility of the lambda-receptor significantly decreased. Since the lambda-receptor is closely linked to the peptidoglycan layer, we propose that lambda-receptor motility is directly coupled to the constant and dynamic energy-consuming reconstruction of the peptidoglycan layer. The result of this motion could be to facilitate transport of maltose-dextrins through the porin.
Collapse
|
139
|
Milan-Lobo L, Gsandtner I, Gaubitzer E, Rünzler D, Buchmayer F, Köhler G, Bonci A, Freissmuth M, Sitte HH. Subtype-specific differences in corticotropin-releasing factor receptor complexes detected by fluorescence spectroscopy. Mol Pharmacol 2009; 76:1196-210. [PMID: 19755522 PMCID: PMC4503342 DOI: 10.1124/mol.109.059139] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
G protein-coupled receptors have been proposed to exist in signalosomes subject to agonist-driven shifts in the assembly disassembly equilibrium, affected by stabilizing membrane lipids and/or cortical actin restricting mobility. We investigated the highly homologous corticotropin-releasing factor receptors (CRFRs), CRFR1 and -2, which are different within their hydrophobic core. Agonist stimulation of CRFR1 and CRFR2 gave rise to similar concentration-response curves for cAMP accumulation, but CRFR2 underwent restricted collision coupling. Both CRFR1 and CRFR2 formed constitutive oligomers at the cell surface and recruited beta-arrestin upon agonist activation (as assessed by fluorescence resonance energy transfer microscopy in living cells). However, CRFR2, but not CRFR1, failed to undergo agonist-induced internalization. Likewise, agonist binding accelerated the diffusion rate of CRFR2 only (detected by fluorescence recovery after photobleaching and fluorescence correlation spectroscopy) but reduced the mobile fraction, which is indicative of local confinement. Fluorescence intensity distribution analysis demonstrated that the size of CRFR complexes was not changed. Disruption of the actin cytoskeleton abolished the agonist-dependent increase in CRFR2 mobility, shifted the agonist concentration curve for CRFR2 to the left, and promoted agonist-induced internalization of CRFR2. Our observations are incompatible with an agonist-induced change in monomer-oligomer equilibrium, but they suggest an agonist-induced redistribution of CRFR2 into a membrane microdomain that affords rapid diffusion but restricted mobility and that is stabilized by the actin cytoskeleton. Our data show that membrane anisotropy can determine the shape and duration of receptor-generated signals in a subtype-specific manner.
Collapse
Affiliation(s)
- Laura Milan-Lobo
- Medical University of Vienna, Center for Biomolecular Medicine and Pharmacology, Institute of Pharmacology, Waehringerstrasse 13a, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Mashanov GI, Nobles M, Harmer SC, Molloy JE, Tinker A. Direct observation of individual KCNQ1 potassium channels reveals their distinctive diffusive behavior. J Biol Chem 2009; 285:3664-3675. [PMID: 19940153 DOI: 10.1074/jbc.m109.039974] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have directly observed the trafficking and fusion of ion channel containing vesicles and monitored the release of individual ion channels at the plasma membrane of live mammalian cells using total internal reflection fluorescence microscopy. Proteins were fused in-frame with green or red fluorescent proteins and expressed at low level in HL-1 and HEK293 cells. Dual color imaging revealed that vesicle trafficking involved motorized movement along microtubules followed by stalling, fusion, and subsequent release of individual ion channels at the plasma membrane. We found that KCNQ1-KCNE1 complexes were released in batches of about 5 molecules per vesicle. To elucidate the properties of ion channel complexes at the cell membrane we tracked the movement of individual molecules and compared the diffusive behavior of two types of potassium channel complex (KCNQ1-KCNE1 and Kir6.2-SUR2A) to that of a G-protein coupled receptor, the A1 adenosine receptor. Plots of mean squared displacement against time intervals showed that mobility depended on channel type, cell type, and temperature. Analysis of the mobility of wild type KCNQ1-KCNE1 complexes showed the existence of a significant immobile subpopulation and also a significant number of molecules that demonstrated periodic stalling of diffusive movements. This behavior was enhanced in cells treated with jasplakinolide and was abrogated in a C-terminal truncated form (KCNQ1(R518X)-KCNE1) of the protein. This mutant has been identified in patients with the long QT syndrome. We propose that KCNQ1-KCNE1 complexes interact intermittently with the actin cytoskeleton via the C-terminal region and this interaction may have a functional role.
Collapse
Affiliation(s)
- Gregory I Mashanov
- From the Medical Research Council National Institute for Medical Research, Mill Hill, London NW7 1AA and
| | - Muriel Nobles
- the BHF Laboratories and Department of Medicine, University College London, 5 University Street, London WC1E 6JJ, United Kingdom
| | - Stephen C Harmer
- the BHF Laboratories and Department of Medicine, University College London, 5 University Street, London WC1E 6JJ, United Kingdom
| | - Justin E Molloy
- From the Medical Research Council National Institute for Medical Research, Mill Hill, London NW7 1AA and.
| | - Andrew Tinker
- the BHF Laboratories and Department of Medicine, University College London, 5 University Street, London WC1E 6JJ, United Kingdom.
| |
Collapse
|
141
|
Schaaf MJM, Koopmans WJA, Meckel T, van Noort J, Snaar-Jagalska BE, Schmidt TS, Spaink HP. Single-molecule microscopy reveals membrane microdomain organization of cells in a living vertebrate. Biophys J 2009; 97:1206-14. [PMID: 19686669 DOI: 10.1016/j.bpj.2009.05.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 04/30/2009] [Accepted: 05/22/2009] [Indexed: 12/30/2022] Open
Abstract
It has been possible for several years to study the dynamics of fluorescently labeled proteins by single-molecule microscopy, but until now this technology has been applied only to individual cells in culture. In this study, it was extended to stem cells and living vertebrate organisms. As a molecule of interest we used yellow fluorescent protein fused to the human H-Ras membrane anchor, which has been shown to serve as a model for proteins anchored in the plasma membrane. We used a wide-field fluorescence microscopy setup to visualize individual molecules in a zebrafish cell line (ZF4) and in primary embryonic stem cells. A total-internal-reflection microscopy setup was used for imaging in living organisms, in particular in epidermal cells in the skin of 2-day-old zebrafish embryos. Our results demonstrate the occurrence of membrane microdomains in which the diffusion of membrane proteins in a living organism is confined. This membrane organization differed significantly from that observed in cultured cells, illustrating the relevance of performing single-molecule microscopy in living organisms.
Collapse
Affiliation(s)
- Marcel J M Schaaf
- Molecular Cell Biology, Institute of Biology, Leiden University, Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
142
|
Sung BJ, Yethiraj A. Computer simulations of protein diffusion in compartmentalized cell membranes. Biophys J 2009; 97:472-9. [PMID: 19619461 DOI: 10.1016/j.bpj.2009.04.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 04/01/2009] [Accepted: 04/22/2009] [Indexed: 10/20/2022] Open
Abstract
The diffusion of proteins in the cell membrane is investigated using computer simulations of a two-dimensional model. The membrane is assumed to be divided into compartments, with adjacent compartments separated by a barrier of stationary obstacles. Each compartment contains traps represented by stationary attractive disks. Depending on their size, these traps are intended to model either smaller compartments or binding sites. The simulations are intended to model the double-compartment model, which has been used to interpret single molecule experiments in normal rat kidney cells, where five regimes of transport are observed. The simulations show, however, that five regimes are observed only when there is a large separation between the sizes of the traps and large compartments, casting doubt on the double compartment model for the membrane. The diffusive behavior is sensitive to the concentration and size of traps and the strength of the barrier between compartments suggesting that the diffusion of proteins can be effectively used to characterize the structure of the membrane.
Collapse
Affiliation(s)
- Bong June Sung
- Department of Chemistry, Sogang University, Seoul, Republic of Korea.
| | | |
Collapse
|
143
|
Time series analysis of particle tracking data for molecular motion on the cell membrane. Bull Math Biol 2009; 71:1967-2024. [PMID: 19657701 DOI: 10.1007/s11538-009-9434-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 05/26/2009] [Indexed: 10/20/2022]
Abstract
Biophysicists use single particle tracking (SPT) methods to probe the dynamic behavior of individual proteins and lipids in cell membranes. The mean squared displacement (MSD) has proven to be a powerful tool for analyzing the data and drawing conclusions about membrane organization, including features like lipid rafts, protein islands, and confinement zones defined by cytoskeletal barriers. Here, we implement time series analysis as a new analytic tool to analyze further the motion of membrane proteins. The experimental data track the motion of 40 nm gold particles bound to Class I major histocompatibility complex (MHCI) molecules on the membranes of mouse hepatoma cells. Our first novel result is that the tracks are significantly autocorrelated. Because of this, we developed linear autoregressive models to elucidate the autocorrelations. Estimates of the signal to noise ratio for the models show that the autocorrelated part of the motion is significant. Next, we fit the probability distributions of jump sizes with four different models. The first model is a general Weibull distribution that shows that the motion is characterized by an excess of short jumps as compared to a normal random walk. We also fit the data with a chi distribution which provides a natural estimate of the dimension d of the space in which a random walk is occurring. For the biological data, the estimates satisfy 1 < d < 2, implying that particle motion is not confined to a line, but also does not occur freely in the plane. The dimension gives a quantitative estimate of the amount of nanometer scale obstruction met by a diffusing molecule. We introduce a new distribution and use the generalized extreme value distribution to show that the biological data also have an excess of long jumps as compared to normal diffusion. These fits provide novel estimates of the microscopic diffusion constant. Previous MSD analyses of SPT data have provided evidence for nanometer-scale confinement zones that restrict lateral diffusion, supporting the notion that plasma membrane organization is highly structured. Our demonstration that membrane protein motion is autocorrelated and is characterized by an excess of both short and long jumps reinforces the concept that the membrane environment is heterogeneous and dynamic. Autocorrelation analysis and modeling of the jump distributions are powerful new techniques for the analysis of SPT data and the development of more refined models of membrane organization. The time series analysis also provides several methods of estimating the diffusion constant in addition to the constant provided by the mean squared displacement. The mean squared displacement for most of the biological data shows a power law behavior rather the linear behavior of Brownian motion. In this case, we introduce the notion of an instantaneous diffusion constant. All of the diffusion constants show a strong consistency for most of the biological data.
Collapse
|
144
|
Baier CJ, Gallegos CE, Levi V, Barrantes FJ. Cholesterol modulation of nicotinic acetylcholine receptor surface mobility. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:213-27. [PMID: 19641915 DOI: 10.1007/s00249-009-0521-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Accepted: 07/06/2009] [Indexed: 12/26/2022]
Abstract
Nicotinic acetylcholine receptor (AChR) function and distribution are quite sensitive to cholesterol (Chol) levels in the plasma membrane (reviewed by Barrantes in J Neurochem 103 (suppl 1):72-80, 2007). Here we combined confocal fluorescence recovery after photobleaching (FRAP) and confocal fluorescence correlation spectroscopy (FCS) to examine the mobility of the AChR and its dependence on Chol content at the cell surface of a mammalian cell line. Plasma membrane AChR exhibited limited mobility and only ~55% of the fluorescence was recovered within 10 min after photobleaching. Depletion of membrane Chol by methyl-beta-cyclodextrin strongly affected the mobility of the AChR at the plasma membrane; the fraction of mobile AChR fell from 55 to 20% in Chol-depleted cells, whereas Chol enrichment by methyl-beta-cyclodextrin-Chol treatment did not reduce receptor mobility at the cell surface. Actin depolymerization caused by latrunculin A partially restored receptor mobility in Chol-depleted cells. In agreement with the FRAP data, scanning FCS experiments showed that the diffusion coefficient of the AChR was about 30% lower upon Chol depletion. Taken together, these results suggest that membrane Chol modulates AChR mobility at the plasma membrane through a Chol-dependent mechanism sensitive to cortical actin.
Collapse
Affiliation(s)
- Carlos J Baier
- UNESCO Chair of Biophysics and Molecular Neurobiology, Instituto de Investigaciones Bioquímicas de Bahía Blanca, C.C. 857, B8000FWB, Bahía Blanca, Argentina
| | | | | | | |
Collapse
|
145
|
Costa MN, Radhakrishnan K, Wilson BS, Vlachos DG, Edwards JS. Coupled stochastic spatial and non-spatial simulations of ErbB1 signaling pathways demonstrate the importance of spatial organization in signal transduction. PLoS One 2009; 4:e6316. [PMID: 19626123 PMCID: PMC2710010 DOI: 10.1371/journal.pone.0006316] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 06/17/2009] [Indexed: 01/24/2023] Open
Abstract
Background The ErbB family of receptors activates intracellular signaling pathways that control cellular proliferation, growth, differentiation and apoptosis. Given these central roles, it is not surprising that overexpression of the ErbB receptors is often associated with carcinogenesis. Therefore, extensive laboratory studies have been devoted to understanding the signaling events associated with ErbB activation. Methodology/Principal Findings Systems biology has contributed significantly to our current understanding of ErbB signaling networks. However, although computational models have grown in complexity over the years, little work has been done to consider the spatial-temporal dynamics of receptor interactions and to evaluate how spatial organization of membrane receptors influences signaling transduction. Herein, we explore the impact of spatial organization of the epidermal growth factor receptor (ErbB1/EGFR) on the initiation of downstream signaling. We describe the development of an algorithm that couples a spatial stochastic model of membrane receptors with a nonspatial stochastic model of the reactions and interactions in the cytosol. This novel algorithm provides a computationally efficient method to evaluate the effects of spatial heterogeneity on the coupling of receptors to cytosolic signaling partners. Conclusions/Significance Mathematical models of signal transduction rarely consider the contributions of spatial organization due to high computational costs. A hybrid stochastic approach simplifies analyses of the spatio-temporal aspects of cell signaling and, as an example, demonstrates that receptor clustering contributes significantly to the efficiency of signal propagation from ligand-engaged growth factor receptors.
Collapse
Affiliation(s)
- Michelle N. Costa
- Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Krishnan Radhakrishnan
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
- Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Bridget S. Wilson
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
- Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Dionisios G. Vlachos
- Department of Chemical Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Jeremy S. Edwards
- Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico, United States of America
- Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
- Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
146
|
Lopez A, Salomé L. Membrane functional organisation and dynamic of mu-opioid receptors. Cell Mol Life Sci 2009; 66:2093-108. [PMID: 19300905 PMCID: PMC11115522 DOI: 10.1007/s00018-009-0008-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 02/17/2009] [Accepted: 02/18/2009] [Indexed: 12/30/2022]
Abstract
The activation and signalling activity of the membrane mu-opioid receptor (MOP-R) involve interactions among the receptor, G-proteins, effectors and many other membrane or cytosolic proteins. Decades of investigation have led to identification of the main biochemical processes, but the mechanisms governing the successive protein-protein interactions have yet to be established. We will need to unravel the dynamic membrane organisation of this complex and multifaceted molecular machinery if we are to understand these mechanisms. Here, we review and discuss advances in our understanding of the signalling mechanism of MOP-R resulting from biochemical or biophysical studies of the organisation of this receptor in the plasma membrane.
Collapse
Affiliation(s)
- André Lopez
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, 31077 Toulouse, France
- Université de Toulouse, UPS, IPBS, 31077 Toulouse, France
| | - Laurence Salomé
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, 31077 Toulouse, France
- Université de Toulouse, UPS, IPBS, 31077 Toulouse, France
| |
Collapse
|
147
|
Owen DM, Williamson D, Rentero C, Gaus K. Quantitative microscopy: protein dynamics and membrane organisation. Traffic 2009; 10:962-71. [PMID: 19416480 DOI: 10.1111/j.1600-0854.2009.00908.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The mobility of membrane proteins is a critical determinant of their interaction capabilities and protein functions. The heterogeneity of cell membranes imparts different types of motion onto proteins; immobility, random Brownian motion, anomalous sub-diffusion, 'hop' or confined diffusion, or directed flow. Quantifying the motion of proteins therefore enables insights into the lateral organisation of cell membranes, particularly membrane microdomains with high viscosity such as lipid rafts. In this review, we examine the hypotheses and findings of three main techniques for analysing protein dynamics: fluorescence recovery after photobleaching, single particle tracking and fluorescence correlation spectroscopy. These techniques, and the physical models employed in data analysis, have become increasingly sophisticated and provide unprecedented details of the biophysical properties of protein dynamics and membrane domains in cell membranes. Yet despite these advances, there remain significant unknowns in the relationships between cholesterol-dependent lipid microdomains, protein-protein interactions, and the effect of the underlying cytoskeleton. New multi-dimensional microscopy approaches may afford greater temporal and spatial resolution resulting in more accurate quantification of protein and membrane dynamics in live cells.
Collapse
Affiliation(s)
- Dylan M Owen
- Centre for Vascular Research, University of New South Wales, and the Department of Haematology, Prince of Wales Hospital, Sydney, Australia
| | | | | | | |
Collapse
|
148
|
Auth T, Gov NS. Diffusion in a fluid membrane with a flexible cortical cytoskeleton. Biophys J 2009; 96:818-30. [PMID: 19186123 DOI: 10.1016/j.bpj.2008.10.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 10/15/2008] [Indexed: 10/21/2022] Open
Abstract
We calculate the influence of a flexible network of long-chain proteins, which is anchored to a fluid membrane, on protein diffusion in this membrane. This is a model for the cortical cytoskeleton and the lipid bilayer of the red blood cell, which we apply to predict the influence of the cytoskeleton on the diffusion coefficient of a mobile band 3 protein. Using the pressure field that the cytoskeleton exerts on the membrane, from the steric repulsion between the diffusing protein and the cytoskeletal filaments, we define a potential landscape for the diffusion within the bilayer. We study the changes to the diffusion coefficient on removal of one type of anchor proteins, e.g., in several hemolytic anemias, as well as for isotropic and anisotropic stretching of the cytoskeleton. We predict an overall increase of the diffusion for a smaller number of anchor proteins and increased diffusion for anisotropic stretching in the direction of the stretch, because of the decrease in the spatial frequency as well as in the height of the potential barriers.
Collapse
Affiliation(s)
- Thorsten Auth
- Department of Materials and Interfaces, The Weizmann Institute of Science, Rehovot, Israel; Institute for Solid State Research, Research Centre Jülich, Jülich, Germany.
| | | |
Collapse
|
149
|
Single-molecule imaging of beta-actin mRNAs in the cytoplasm of a living cell. Exp Cell Res 2009; 315:1142-7. [PMID: 19245805 DOI: 10.1016/j.yexcr.2009.02.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2008] [Revised: 01/16/2009] [Accepted: 02/13/2009] [Indexed: 11/20/2022]
Abstract
Beta-actin mRNA labeled with an MS2-EGFP fusion protein was expressed in chicken embryo fibroblasts and its localization and movement were analyzed by single-molecule imaging. Most beta-Actin mRNAs localized to the leading edge, while some others were observed in the perinuclear region. Singe-molecule tracking of individual mRNAs revealed that the majority of mRNAs were in unrestricted Brownian motion at the leading edge and in restricted Brownian motion in the perinuclear region. The macroscopic diffusion coefficient of mRNA (D(MACRO)) at the leading edge was 0.3 microm(2)/s. On the other hand, D(MACRO) in the perinuclear region was 0.02 microm(2)/s. The destruction of microfilaments with cytochalasin D, which is known to delocalize beta-actin mRNAs, led to an increase in D(MACRO) to 0.2 microm(2)/s in the perinuclear region. These results suggest that the microstructure, composed of microfilaments, serves as a barrier for the movement of beta-actin mRNA.
Collapse
|
150
|
Wells NP, Lessard GA, Phipps ME, Goodwin PM, Lidke DS, Wilson BS, Werner JH. Going beyond 2D: Following membrane diffusion and topography in the IgE-Fc[Epsilon]RI system using 3-dimensional tracking microscopy. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2009; 7185:71850Z. [PMID: 25520545 DOI: 10.1117/12.809412] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The ability to follow and observe single molecules as they function in live cells represents a major milestone for molecular-cellular biology. Here we present a tracking microscope that is able to track quantum dots in three dimensions and simultaneously record time-resolved emission statistics from a single dot. This innovative microscopy approach is based on four spatial filters and closed loop feedback to constantly keep a single quantum dot in the focal spot. Using this microscope, we demonstrate the ability to follow quantum dot labeled IgE antibodies bound to FcεRI membrane receptors in live RBL-2H3 cells. The results are consistent with prior studies of two dimensional membrane diffusion (Andrews et al., Nat. Cell Biol., 10, 955, 2008). In addition, the microscope captures motion in the axial (Z) direction, which permits tracking of diffusing receptors relative to the "hills and valleys" of the dynamically changing membrane landscape. This approach is uniquely capable of following single molecule dynamics on live cells with three dimensional spatial resolution.
Collapse
Affiliation(s)
- Nathan P Wells
- Los Alamos National Laboratory (MPA-CINT), Los Alamos, New Mexico 87545 USA
| | | | - Mary E Phipps
- Los Alamos National Laboratory (MPA-CINT), Los Alamos, New Mexico 87545 USA
| | - Peter M Goodwin
- Los Alamos National Laboratory (MPA-CINT), Los Alamos, New Mexico 87545 USA
| | - Diane S Lidke
- University of New Mexico, Department of Pathology and Cancer Research and Treatment Center, Albuquerque, New Mexico 87175 USA
| | - Bridget S Wilson
- University of New Mexico, Department of Pathology and Cancer Research and Treatment Center, Albuquerque, New Mexico 87175 USA
| | - James H Werner
- Los Alamos National Laboratory (MPA-CINT), Los Alamos, New Mexico 87545 USA
| |
Collapse
|