101
|
Xu S, Xu Y, Yin M, Zhang S, Liu P, Koroleva M, Si S, Little PJ, Pelisek J, Jin ZG. Flow-dependent epigenetic regulation of IGFBP5 expression by H3K27me3 contributes to endothelial anti-inflammatory effects. Theranostics 2018; 8:3007-3021. [PMID: 29896299 PMCID: PMC5996356 DOI: 10.7150/thno.21966] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 02/17/2018] [Indexed: 01/11/2023] Open
Abstract
Rationale: Atherosclerosis is a chronic inflammatory and epigenetic disease that is influenced by different patterns of blood flow. However, the epigenetic mechanism whereby atheroprotective flow controls endothelial gene programming remains elusive. Here, we investigated the possibility that flow alters endothelial gene expression through epigenetic mechanisms. Methods: En face staining and western blot were used to detect protein expression. Real-time PCR was used to determine relative gene expression. RNA-sequencing of human umbilical vein endothelial cells treated with siRNA of enhancer of zeste homolog 2 (EZH2) or laminar flow was used for transcriptional profiling. Results: We found that trimethylation of histone 3 lysine 27 (H3K27me3), a repressive epigenetic mark that orchestrates gene repression, was reduced in laminar flow areas of mouse aorta and flow-treated human endothelial cells. The decrease of H3K27me3 paralleled a reduction in the epigenetic "writer"-EZH2, the catalytic subunit of the polycomb repressive complex 2 (PRC2). Moreover, laminar flow decreased expression of EZH2 via mechanosensitive miR101. Genome-wide transcriptome profiling studies in endothelial cells treated with EZH2 siRNA and flow revealed the upregulation of novel mechanosensitive gene IGFBP5 (insulin-like growth factor-binding protein 5), which is epigenetically silenced by H3K27me3. Functionally, inhibition of H3K27me3 by EZH2 siRNA or GSK126 (a specific EZH2 inhibitor) reduced H3K27me3 levels and monocyte adhesion to endothelial cells. Adenoviral overexpression of IGFBP5 also recapitulated the anti-inflammatory effects of H3K27me3 inhibition. More importantly, we observed EZH2 upregulation, and IGFBP5 downregulation, in advanced atherosclerotic plaques from human patients. Conclusion: Taken together, our findings reveal that atheroprotective flow reduces H3K27me3 as a chromatin-based mechanism to augment the expression of genes that confer an anti-inflammatory response in the endothelium. Our study exemplifies flow-dependent epigenetic regulation of endothelial gene expression, and also suggests that targeting the EZH2/H3K27me3/IGFBP5 pathway may offer novel therapeutics for inflammatory disorders such as atherosclerosis.
Collapse
Affiliation(s)
- Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Yanni Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Institute of Medicinal Biotechnology Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Meimei Yin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Shuya Zhang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, Ningxia Medical University, Yinchuan, China
| | - Peng Liu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Institute of Medicinal Biotechnology Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Marina Koroleva
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Shuyi Si
- Institute of Medicinal Biotechnology Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Peter J. Little
- School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence (PACE), Woolloongabba QLD 4102, Australia
- Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Jaroslav Pelisek
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar der Technischen Universitaet Muenchen, Germany
| | - Zheng Gen Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
102
|
Pentoxifylline inhibits angiogenesis via decreasing Dll4 and Notch1 expression in mouse proepicardial explant cultures. Eur J Pharmacol 2018. [PMID: 29535000 DOI: 10.1016/j.ejphar.2018.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pentoxifylline (PTX), a non-specific inhibitor of cAMP phosphodiesterases, is commonly used for treatment of peripheral vascular disorders although its direct action on endothelial cells is not well described. The aim of this study was to determine the influence of PTX on tubule formation and mRNA expression for angiogenesis-related proteins in endothelial cell line C166 and mouse proepicardial explants cultured on collagen. C166 cells and explants were stimulated with proangiogenic cocktail containing bFGF/VEGF-A120/VEGF-A164 and with proangiogenic cocktail enriched with PTX. After stimulation the number and morphology of tubules stained with anti-CD31 antibody was examined under a confocal microscope and expression of mRNA for VEGF-A, VEGF-B, VEGF-C, bFGF, IGF-1, Dll4 and Notch1 was measured with RealTime PCR. In C166 cell line there was no significant difference in tubule formation and mRNA expression, but in proepicardial explants we observed a considerable reduction in tubule number and in mRNA levels for Dll4 and Notch1 after PTX administration. In conclusion, PTX indirectly inhibits angiogenesis in mouse proepicardial explant cultures but has no significant effect on C166 endothelial cell line.
Collapse
|
103
|
Patry C, Betzen C, Fathalizadeh F, Fichtner A, Westhoff JH, Fleming T, Eckstein V, Bruckner T, Bielaszewska M, Karch H, Hoffmann GF, Tönshoff B, Rafat N. Endothelial progenitor cells accelerate endothelial regeneration in an in vitro model of Shigatoxin-2a-induced injury via soluble growth factors. Am J Physiol Renal Physiol 2018. [PMID: 29513070 DOI: 10.1152/ajprenal.00633.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelial injury with consecutive microangiopathy and endothelial dysfunction plays a central role in the pathogenesis of the postenteropathic hemolytic uremic syndrome (D + HUS). To identify new treatment strategies, we examined the regenerative potential of endothelial progenitor cells (EPCs) in an in vitro model of Shiga toxin (Stx) 2a-induced glomerular endothelial injury present in D + HUS and the mechanisms of EPC-triggered endothelial regeneration. We simulated the proinflammatory milieu present in D + HUS by priming human renal glomerular endothelial cells (HRGECs) with tumor necrosis factor-α before stimulation with Stx2a. This measure led to a time- and concentration-dependent decrease of HRGEC viability of human renal glomerular endothelial cells as detected by a colorimetric assay. Coincubation with EPCs (104-105 cells/ml) under dynamic flow conditions led to a significant improvement of cell viability in comparison to untreated monolayers (0.45 ± 0.06 vs. 0.16 ± 0.04, P = 0.003). A comparable regenerative effect of EPCs was observed in a coculture model using cell culture inserts (0.41 ± 0.05 vs. 0.16 ± 0.04, P = 0.003) associated with increased concentrations of vascular endothelial growth factor, insulin-like growth factor I, fibroblast growth factor-2, and hepatocyte growth factor in the supernatant. Treatment of Stx2a-injured monolayers with a combination of these growth factors imitated this effect. EPCs did not show distinct sings of migration and angiogenic tube formation in functional assays. These data demonstrate that EPCs significantly improve endothelial viability after Stx2a-induced injury in vitro and that this effect is associated with the release of growth factors by EPCs.
Collapse
Affiliation(s)
- Christian Patry
- Department of Pediatrics I, University Children's Hospital Heidelberg , Heidelberg , Germany.,Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg , Heidelberg , Germany
| | - Christian Betzen
- Department of Pediatrics I, University Children's Hospital Heidelberg , Heidelberg , Germany.,Division of Functional Genome Analysis (B070), German Cancer Research Center , Heidelberg , Germany
| | - Farnoosh Fathalizadeh
- Department of Pediatrics I, University Children's Hospital Heidelberg , Heidelberg , Germany
| | - Alexander Fichtner
- Department of Pediatrics I, University Children's Hospital Heidelberg , Heidelberg , Germany
| | - Jens H Westhoff
- Department of Pediatrics I, University Children's Hospital Heidelberg , Heidelberg , Germany
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg , Heidelberg , Germany.,German Center for Diabetes Research , Neuherberg , Germany
| | - Volker Eckstein
- Flow Cytometry Core Unit, Department of Medicine V, University Hospital Heidelberg , Heidelberg , Germany
| | - Tom Bruckner
- Institute of Medical Biometry and Informatics, University of Heidelberg , Heidelberg , Germany
| | | | - Helge Karch
- Institute for Hygiene, University of Münster , Münster , Germany
| | - Georg F Hoffmann
- Department of Pediatrics I, University Children's Hospital Heidelberg , Heidelberg , Germany
| | - Burkhard Tönshoff
- Department of Pediatrics I, University Children's Hospital Heidelberg , Heidelberg , Germany
| | - Neysan Rafat
- Department of Pediatrics I, University Children's Hospital Heidelberg , Heidelberg , Germany.,Department of Pharmaceutical Sciences, Bahá'í Institute of Higher Education , Tehran , Iran
| |
Collapse
|
104
|
Rochette L, Meloux A, Rigal E, Zeller M, Cottin Y, Vergely C. The role of osteoprotegerin in the crosstalk between vessels and bone: Its potential utility as a marker of cardiometabolic diseases. Pharmacol Ther 2018; 182:115-132. [DOI: 10.1016/j.pharmthera.2017.08.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
105
|
Abstract
Insulinlike growth factor (IGF) binding proteins (IGFBPs) 1 to 6 are high-affinity regulators of IGF activity. They generally inhibit IGF actions by preventing binding to the IGF-I receptor but can also enhance their actions under some conditions. Posttranslational modifications such as glycosylation and phosphorylation modulate IGFBP properties, and IGFBP proteolysis results in IGF release. IGFBPs have more recently been shown to have IGF-independent actions. A number of mechanisms are involved, including modulation of other growth factor pathways, nuclear localization and transcriptional regulation, interaction with the sphingolipid pathway, and binding to non-IGF biomolecules in the extracellular space and matrix, on the cell surface and intracellularly. IGFBPs modulate important biological processes, including cell proliferation, survival, migration, senescence, autophagy, and angiogenesis. Their actions have been implicated in growth, metabolism, cancer, stem cell maintenance and differentiation, and immune regulation. Recent studies have shown that epigenetic mechanisms are involved in the regulation of IGFBP abundance. A more complete understanding of IGFBP biology is necessary to further define their cellular roles and determine their therapeutic potential.
Collapse
Affiliation(s)
- Leon A Bach
- Department of Endocrinology and Diabetes, The Alfred Hospital, Melbourne, Victoria, Australia
- Department of Medicine, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
106
|
Yang Q, Wang P, Du X, Wang W, Zhang T, Chen Y. Direct repression of IGF2 is implicated in the anti-angiogenic function of microRNA-210 in human retinal endothelial cells. Angiogenesis 2018; 21:313-323. [DOI: 10.1007/s10456-018-9597-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 01/08/2018] [Indexed: 12/11/2022]
|
107
|
Cho HY, Cho Y, Shin YJ, Park J, Shim S, Jung Y, Shim S, Cha D. Functional analysis of cell-free RNA using mid-trimester amniotic fluid supernatant in pregnancy with the fetal growth restriction. Medicine (Baltimore) 2018; 97:e9572. [PMID: 29480850 PMCID: PMC5943846 DOI: 10.1097/md.0000000000009572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The prediction and monitoring of fetal growth restriction (FGR) fetuses has become with the use of ultrasound. However, these tools lack the fundamental evidence for the growth of fetus with FGR excluding pathogenic factors.Amniotic fluid samples were obtained from pregnant women for fetal karyotyping and genetic diagnosis at 16 to 19 weeks of gestation. For this study, 15 FGR and 9 control samples were selected, and cell-free fetal RNA was isolated from each supernatant of the amniotic fluid for microarray analysis.In this study, 411 genes were differentially expressed between the FGR and control group. Of these genes, 316 genes were up-regulated, while 95 genes were down-regulated. In terms of gene ontology, the up-regulated genes were highly related to metabolic process as well as protein synthesis, while the down-regulated genes were related to receptor activity and biological adhesion. In terms of tissue-specific expression, the up-regulated genes were involved in various organs while down-regulated genes were involved only in the brain. In terms of organ-specific expression, many genes were enriched for B-cell lymphoma, pancreas, eye, placenta, epithelium, skin, and muscle. In the functional significance of gene, low-density lipoprotein receptor-related protein 10 (LRP10) was significantly increased (6-fold) and insulin-like growth factor (IGF-2) was dramatically increased (17-fold) in the FGR cases.The results show that the important brain-related genes are predominantly down-regulated in the intrauterine growth restriction fetuses during the second trimester of pregnancy. This study also suggested possible genes related to fetal development such as B-cell lymphoma, LRP10, and IGF-2. To monitor the fetal development, further study may be needed to elucidate the role of the genes identified.
Collapse
Affiliation(s)
- Hee Young Cho
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam
| | - Yeonkyung Cho
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University
| | - Yun-Jeong Shin
- Genetic Laboratory, CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Jieun Park
- Genetic Laboratory, CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Sunghan Shim
- Genetic Laboratory, CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Yongwook Jung
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University
| | - Sungshin Shim
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University
| | - Donghyun Cha
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University
- Genetic Laboratory, CHA Gangnam Medical Center, CHA University, Seoul, Korea
| |
Collapse
|
108
|
Ahluwalia A, Jones MK, Hoa N, Tarnawski AS. NGF protects endothelial cells from indomethacin-induced injury through activation of mitochondria and upregulation of IGF-1. Cell Signal 2017; 40:22-29. [PMID: 28843696 DOI: 10.1016/j.cellsig.2017.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/02/2017] [Accepted: 08/20/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIMS Endothelial cells (ECs) lining blood vessels are critical for delivery of oxygen and nutrients to all tissues and organs and play a crucial role in the regeneration of blood vessel following tissue injury. ECs are also major targets of injury by a variety of noxious factors [e.g., ethanol and nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin, indomethacin, diclofenac], especially in gastric mucosa that has direct exposure to these agents. In this study, we investigated whether nerve growth factor (NGF) can protect gastric microvascular ECs (GECs) from injury by indomethacin (INDO) and the mechanisms involved. METHODS GECs were isolated from rat gastric mucosa and pre-treated with either vehicle or NGF (100ng/ml) for 30min to 4h followed by treatment with vehicle or 0.25mM INDO for 4h. STUDIES 1) cell viability using Calcein AM live cell tracking dye, 2) mitochondrial structure and function using MitoTracker, molecular probe that stains mitochondria in live cells in a manner dependent on mitochondrial membrane potential (MMP), 3) in vitro angiogenesis - endothelial tube formation on Matrigel, 4) expression and subcellular localization of NGF receptor, TrkA, and 5) expression of IGF-1 protein. RESULTS Treatment with INDO reduced GEC viability and in vitro angiogenesis and induced mitochondrial injury and MMP depolarization. NGF pre-treatment protected GECs from INDO-induced injury preventing both INDO-induced MMP depolarization and reduced in vitro angiogenesis. The NGF high affinity receptor, TrkA, was localized in GECs to both cell membrane and mitochondria. NGF treatment of GECs also resulted in increased IGF-1 protein expression. CONCLUSIONS 1) NGF protects GECs against IND-induced injury. 2) Mitochondria are major targets of both INDO-induced injury and NGF afforded protection of GECs. 3) TrkA expression in the mitochondria of GECs indicates that the protection afforded by NGF is partly mediated by its direct action on mitochondria. 4) NGF prevents MMP depolarization and increases expression of IGF-1 protein in GECs. These studies indicate that NGF may play a protective role against injury to GECs; and, that maintenance of mitochondrial structure and function is one of the mechanisms.
Collapse
Affiliation(s)
- Amrita Ahluwalia
- Medical and Research Services, Veterans Affairs Long Beach Healthcare System (VALBHS), Long Beach, CA, USA
| | - Michael K Jones
- Medical and Research Services, Veterans Affairs Long Beach Healthcare System (VALBHS), Long Beach, CA, USA; Department of Medicine, University of California, Irvine, CA, USA
| | - Neil Hoa
- Medical and Research Services, Veterans Affairs Long Beach Healthcare System (VALBHS), Long Beach, CA, USA
| | - Andrzej S Tarnawski
- Medical and Research Services, Veterans Affairs Long Beach Healthcare System (VALBHS), Long Beach, CA, USA; Department of Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
109
|
Friedrich CC, Lin Y, Krannich A, Wu Y, Vacanti JP, Neville CM. Enhancing engineered vascular networks in vitro and in vivo: The effects of IGF1 on vascular development and durability. Cell Prolif 2017; 51. [PMID: 29110360 DOI: 10.1111/cpr.12387] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/21/2017] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Creation of functional, durable vasculature remains an important goal within the field of regenerative medicine. Engineered biological vasculature has the potential to restore or improve human tissue function. We hypothesized that the pleotropic effects of insulin-like growth factor 1 (IGF1) would enhance the engineering of capillary-like vasculature. MATERIALS AND METHODS The impact of IGF1 upon vasculogenesis was examined in in vitro cultures for a period of up to 40 days and as subcutaneous implants within immunodeficient mice. Co-cultures of human umbilical vein endothelial cells and human bone marrow-derived mesenchymal stem cells in collagen-fibronectin hydrogels were supplemented with either recombinant IGF1 protein or genetically engineered cells to provide sustained IGF1. Morphometric analysis was performed on the vascular networks that formed in four concentrations of IGF1. RESULTS IGF1 supplementation significantly enhanced de novo vasculogenesis both in vitro and in vivo. Effects were long-term as they lasted the duration of the study period, and included network density, vessel length, and diameter. Bifurcation density was not affected. However, the highest concentrations of IGF1 tested were either ineffective or even deleterious. Sustained IGF1 delivery was required in vivo as the inclusion of recombinant IGF1 protein had minimal impact. CONCLUSION IGF1 supplementation can be used to produce neovasculature with significantly enhanced network density and durability. Its use is a promising methodology for engineering de novo vasculature to support regeneration of functional tissue.
Collapse
Affiliation(s)
- Claudia C Friedrich
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Surgery, Massachusetts General Hospital, Boston, MA, USA.,Department of Anesthesiology and Intensive Care Medicine, Campus Virchow Klinikum and Campus Charité Mitte, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Yunfeng Lin
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Orthopaedics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Alexander Krannich
- Department of Biostatistics, Clinical Research Unit, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Yinan Wu
- Department of Biostatistics, Clinical Research Unit, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Joseph P Vacanti
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Craig M Neville
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Surgery, Massachusetts General Hospital, Boston, MA, USA.,Department of Orthopaedics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
110
|
Identification of proteins associated with clinical and pathological features of proliferative diabetic retinopathy in vitreous and fibrovascular membranes. PLoS One 2017; 12:e0187304. [PMID: 29095861 PMCID: PMC5667868 DOI: 10.1371/journal.pone.0187304] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 10/16/2017] [Indexed: 01/17/2023] Open
Abstract
Purpose To identify the protein profiles in vitreous associated with retinal fibrosis, angiogenesis, and neurite formation in epiretinal fibrovascular membranes (FVMs) in patients with proliferative diabetic retinopathy (PDR). Methods Vitreous samples of 5 non-diabetic control patients with vitreous debris and 7 patients with PDR membranes were screened for 507 preselected proteins using the semi-quantitative RayBio® L-series 507 antibody array. From this array, 60 proteins were selected for a custom quantitative antibody array (Raybiotech, Human Quantibody® array), analyzing 7 control patients, 8 PDR patients with FVMs, and 5 PDR patients without FVMs. Additionally, mRNA levels of proteins of interest were measured in 10 PDR membranes and 11 idiopathic membranes and in retinal tissues and cells to identify possible sources of protein production. Results Of the 507 proteins screened, 21 were found to be significantly elevated in PDR patients, including neurogenic and angiogenic factors such as neuregulin 1 (NRG1), nerve growth factor receptor (NGFR), placental growth factor (PlGF) and platelet derived growth factor (PDGF). Angiopoietin-2 (Ang2) concentrations were strongly correlated to the degree of fibrosis and the presence of FVMs in patients with PDR. Protein correlation analysis showed PDGF to be extensively co-regulated with other proteins, including thrombospondin-1 and Ang2. mRNA levels of glial-derived and brain/derived neurotrophic factor (GDNF and BDNF) were elevated in PDR membranes. These results were validated in a second study of 52 vitreous samples of 32 PDR patients and 20 control patients. Conclusions This exploratory study reveals protein networks that potentially contribute to neurite outgrowth, angiogenesis and fibrosis in the formation of fibrovascular membranes in PDR. We identified a possible role of Ang2 in fibrosis and the formation of FVMs, and of the neurotrophic factors NRG1, PDGF and GDNF in neurite growth that occurs in all FVMs in PDR.
Collapse
|
111
|
Guo M, Shi JH, Wang PL, Shi DZ. Angiogenic Growth Factors for Coronary Artery Disease: Current Status and Prospects. J Cardiovasc Pharmacol Ther 2017; 23:130-141. [PMID: 29025278 DOI: 10.1177/1074248417735399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ming Guo
- China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun-He Shi
- Department of Periodontics, University of Illinois at Chicago, Chicago, IL, USA
| | - Pei-Li Wang
- China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Da-Zhuo Shi
- China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
112
|
Kravchenko IV, Furalyov VA, Popov VO. Specific titin and myomesin domains stimulate myoblast proliferation. Biochem Biophys Rep 2017; 9:226-231. [PMID: 28956009 PMCID: PMC5614584 DOI: 10.1016/j.bbrep.2016.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/16/2016] [Accepted: 12/28/2016] [Indexed: 12/11/2022] Open
Abstract
Myofibrillar proteins titin and myomesin stimulated myoblast proliferation as determined by MTT-test and labelled thymidine incorporation in the DNA. Specific Fn type III and Ig-like domains of these proteins were able to exert mitogenic effects as well. Proliferative effect of Fn type III domains was highly sensitive to inhibition of Ca2+/calmodulin dependent protein kinase, whereas the effect of Ig-like domains showed greater sensitivity to the inhibition of adenylyl cyclase – cAMP – PKA pathway. IGF-1 autocrine signalling inhibition partially suppressed mitogenic effects revealed by both domain types. Titin and myomesin as well as their domains stimulate myoblast proliferation. Ig-like and Fn type III domains activate proliferation via different pathways. IGF-1 autocrine signalling is partially involved in observed proliferative effects.
Collapse
Affiliation(s)
- Irina V Kravchenko
- Federal Research Centre of Biotechnology, Bach Institute of Biochemistry, Russian Academy of Sciences, Leninskiy prospect 33, 119071 Moscow, Russia
| | - Vladimir A Furalyov
- Federal Research Centre of Biotechnology, Bach Institute of Biochemistry, Russian Academy of Sciences, Leninskiy prospect 33, 119071 Moscow, Russia
| | - Vladimir O Popov
- Federal Research Centre of Biotechnology, Bach Institute of Biochemistry, Russian Academy of Sciences, Leninskiy prospect 33, 119071 Moscow, Russia
| |
Collapse
|
113
|
Strzalka-Mrozik B, Kimsa-Furdzik M, Kabiesz A, Michalska-Malecka K, Nita M, Mazurek U. Gene expression levels of the insulin-like growth factor family in patients with AMD before and after ranibizumab intravitreal injections. Clin Interv Aging 2017; 12:1401-1408. [PMID: 28919726 PMCID: PMC5592959 DOI: 10.2147/cia.s135030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Purpose The present study focused on the assessment of the mRNA levels of the insulin-like growth factor (IGF) family in patients with the exudative form of age-related macular degeneration (AMD) before and after ranibizumab intravitreal injections. Patients and methods An analysis of the expression profile of the IGF family of genes in patients with AMD was carried out using the oligonucleotide microarray and quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) methods. Results In the peripheral blood mononuclear cells (PBMCs) obtained from AMD group receiving ranibizumab compared to the peripheral blood mononuclear cells from AMD group before ranibizumab treatment using oligonucleotide microarray technique, six statistically significant differentially expressed transcripts related to the IGF family were detected (unpaired t-test, p<0.05, fold change >1.5). Moreover, analysis using the real-time RT-qPCR technique revealed statistically significant differences in the IGF2 and IGF2R mRNA levels (Mann–Whitney U test, p<0.05) between the two groups that were studied. Statistical analyses of both oligonucleotide microarray and real-time RT-qPCR results demonstrated a significant decreased expression only for IGF2 mRNA. Conclusion Our results revealed a changed expression of IGF2 mRNA after ranibizumab treatment.
Collapse
Affiliation(s)
- Barbara Strzalka-Mrozik
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Malgorzata Kimsa-Furdzik
- Department of Biochemistry, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Adam Kabiesz
- University Center for Ophthalmology and Oncology, Independent Public Clinical Hospital, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Michalska-Malecka
- University Center for Ophthalmology and Oncology, Independent Public Clinical Hospital, Medical University of Silesia, Katowice, Poland.,Department of Ophthalmology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Malgorzata Nita
- Domestic and Specialized Medicine Centre "Dilmed", Katowice, Poland
| | - Urszula Mazurek
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
114
|
Human stem cells alter the invasive properties of somatic cells via paracrine activation of mTORC1. Nat Commun 2017; 8:595. [PMID: 28928383 PMCID: PMC5605703 DOI: 10.1038/s41467-017-00661-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 07/17/2017] [Indexed: 12/21/2022] Open
Abstract
Controlled invasion is essential during many physiological processes, whereas its deregulation is a hallmark of cancer. Here we demonstrate that embryonic, induced pluripotent and amniotic fluid stem cells share the property to induce the invasion of primary somatic cells of various origins through insulin-like growth factor I (IGF-I)- or II (IGF-II)-mediated paracrine activation of mechanistic target of rapamycin complex 1 (mTORC1). We propose a model in which downstream of mTORC1 this stem cell-induced invasion is mediated by hypoxia-inducible factor 1-alpha (HIF-1α)-regulated matrix metalloproteinases. Manipulating the IGF signalling pathway in the context of teratoma formation experiments demonstrates that human stem cells use this mechanism to induce invasion and thereby attract cells from the microenvironment in vivo. In this study we have identified a so far unknown feature of human stem cells, which might play a role for the development of stem cell-derived tumours.Cell invasion is required for several physiological processes but it is unknown if stem cells induce invasiveness in other cells. Here, the authors show that human stem cells secrete insulin-like growth factor, which in turn activates the mTORC1 pathway, initiating invasive behaviour and attracting other cells.
Collapse
|
115
|
Ligand-dependent Hedgehog pathway activation in Rhabdomyosarcoma: the oncogenic role of the ligands. Br J Cancer 2017; 117:1314-1325. [PMID: 28881358 PMCID: PMC5672936 DOI: 10.1038/bjc.2017.305] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/02/2017] [Accepted: 08/08/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Rhabdomyosarcoma (RMS) is the most common type of soft tissue sarcoma in children. The Hedgehog (HH) pathway is known to develop an oncogenic role in RMS. However, the molecular mechanism that drives activation of the pathway in RMS is not well understood. METHODS The expression of HH ligands was studied by qPCR, western blot and immunohistochemistry. Functional and animal model studies were carried out with cells transduced with shRNAs against HH ligands or treated with HH-specific inhibitors (Vismodegib and MEDI-5304). Finally, the molecular characterisation of an off-target effect of Vismodegib was also made. RESULTS The results showed a prominent expression of HH ligands supporting an autocrine ligand-dependent activation of the pathway. A comparison of pharmacologic Smoothened inhibition (Vismodegib) and HH ligand blocking (MEDI-5304) is also provided. Interestingly, a first description of pernicious off-target effect of Vismodegib is also reported. CONCLUSIONS The clarification of the HH pathway activation mechanism in RMS opens a door for targeted therapies against HH ligands as a possible alternative in the future development of better treatment protocols. Moreover, the description of a pernicious off-target effect of Vismodegib, via unfolded protein response activation, may mechanistically explain its previously reported inefficiency in several ligand-dependent cancers.
Collapse
|
116
|
Retinal and choroidal angiogenesis: a review of new targets. Int J Retina Vitreous 2017; 3:31. [PMID: 28835854 PMCID: PMC5563895 DOI: 10.1186/s40942-017-0084-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/01/2017] [Indexed: 11/10/2022] Open
Abstract
Retinal and choroidal neovascularization are a major cause of significant visual impairment, worldwide. Understanding the various factors involved in the accompanying physiopathology is vital for development of novel treatments, and most important, for preserving patient vision. The intraocular use of anti-vascular endothelial growth factor therapeutics has improved management of the retinal and choroidal neovascularization but some patients do not respond, suggesting other vascular mediators may also contribute to ocular angiogenesis. Several recent studies examined possible new targets for future anti-angiogenic therapies. Potential targets of retinal and choroidal neovascularization therapy include members of the platelet-derived growth factor family, vascular endothelial growth factor sub-family, epidermal growth factor family, fibroblast growth factor family, transforming growth factor-β superfamily (TGF-β1, activins, follistatin and bone morphogenetic proteins), angiopoietin-like family, galectins family, integrin superfamily, as well as pigment epithelium derived factor, hepatocyte growth factor, angiopoietins, endothelins, hypoxia-inducible factors, insulin-like growth factors, cytokines, matrix metalloproteinases and their inhibitors and glycosylation proteins. This review highlights current antiangiogenic therapies under development, and discusses future retinal and choroidal pro- and anti-angiogenic targets as wells as the importance of developing of new drugs.
Collapse
|
117
|
The role of insulin growth factor-1 on the vascular regenerative effect of MAA coated disks and macrophage-endothelial cell crosstalk. Biomaterials 2017; 144:199-210. [PMID: 28841464 DOI: 10.1016/j.biomaterials.2017.08.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/04/2017] [Accepted: 08/14/2017] [Indexed: 12/21/2022]
Abstract
The IGF-1 signaling pathway and IGF-1-dependent macrophage/endothelial cell crosstalk was found to be critical features of the vascular regenerative effect displayed by implanted methacrylic acid -co-isodecyl acrylate (MAA-co-IDA; 40% MAA) coated disks in CD1 mice. Inhibition of IGF-1 signaling using AG1024 an IGF1-R tyrosine kinase inhibitor abrogated vessel formation 14 days after disk implantation in a subcutaneous pocket. Explanted tissue had increased arginase 1 expression and reduced iNOS expression consistent with the greater shift from "M1" ("pro-inflammatory") macrophages to "M2" ("pro-angiogenic") macrophages for MAA coated disks relative to control MM (methyl methacrylate-co-IDA) disks; the latter did not generate a vascular response and the polarization shift was muted with AG1024. In vitro, medium conditioned by macrophages (both human dTHP1 cells and mouse bone marrow derived macrophages) had elevated IGF-1 mRNA and protein levels, while the cells had reduced IGF1-R but elevated IGFBP-3 mRNA levels. These cells also had reduced iNOS and elevated Arg1 expression, consistent with the in vivo polarization results, including the inhibitory effects of AG1024. On the other hand, HUVEC exposed to dTHP1 conditioned medium migrated and proliferated faster suggesting that the primary target of the macrophage released IGF-1 was endothelial cells. Although further investigation is warranted, IGF-1 appears to be a key feature underpinning the observed vascularization. Why MAA based materials have this effect remains to be defined, however.
Collapse
|
118
|
Liu C, Yao MD, Li CP, Shan K, Yang H, Wang JJ, Liu B, Li XM, Yao J, Jiang Q, Yan B. Silencing Of Circular RNA-ZNF609 Ameliorates Vascular Endothelial Dysfunction. Theranostics 2017; 7:2863-2877. [PMID: 28824721 PMCID: PMC5562221 DOI: 10.7150/thno.19353] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/08/2017] [Indexed: 12/23/2022] Open
Abstract
Vascular dysfunction is a hallmark of ischemic, cancer, and inflammatory diseases, contributing to disease progression. Circular RNAs (circRNAs) are endogenous non-coding RNAs, which have been reported to be abnormally expressed in many human diseases. In this study, we used retinal vasculature to determine the role of circular RNA in vascular dysfunction. We revealed that cZNF609 was significantly up-regulated upon high glucose and hypoxia stress in vivo and in vitro. cZNF609 silencing decreased retinal vessel loss and suppressed pathological angiogenesis in vivo. cZNF609 silencing increased endothelial cell migration and tube formation, and protected endothelial cell against oxidative stress and hypoxia stress in vitro. By contrast, transgenic overexpression of cZNF609 showed an opposite effects. cZNF609 acted as an endogenous miR-615-5p sponge to sequester and inhibit miR-615-5p activity, which led to increased MEF2A expression. MEF2A overexpression could rescue cZNF609 silencing-mediated effects on endothelial cell migration, tube formation, and apoptosis. Moreover, dysregulated cZNF609 expression was detected in the clinical samples of the patients with diabetes, hypertension, and coronary artery disease. Intervention of cZNF609 expression is promising therapy for vascular dysfunction.
Collapse
|
119
|
Haro Durand LA, Vargas GE, Vera-Mesones R, Baldi A, Zago MP, Fanovich MA, Boccaccini AR, Gorustovich A. In Vitro Human Umbilical Vein Endothelial Cells Response to Ionic Dissolution Products from Lithium-Containing 45S5 Bioactive Glass. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E740. [PMID: 28773103 PMCID: PMC5551783 DOI: 10.3390/ma10070740] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/24/2017] [Accepted: 06/29/2017] [Indexed: 12/27/2022]
Abstract
Since lithium (Li⁺) plays roles in angiogenesis, the localized and controlled release of Li⁺ ions from bioactive glasses (BGs) represents a promising alternative therapy for the regeneration and repair of tissues with a high degree of vascularization. Here, microparticles from a base 45S5 BG composition containing (wt %) 45% SiO₂, 24.5% Na₂O, 24.5% CaO, and 6% P₂O₅, in which Na₂O was partially substituted by 5% Li₂O (45S5.5Li), were obtained. The results demonstrate that human umbilical vein endothelial cells (HUVECs) have greater migratory and proliferative response and ability to form tubules in vitro after stimulation with the ionic dissolution products (IDPs) of the 45S5.5Li BG. The results also show the activation of the canonical Wnt/β-catenin pathway and the increase in expression of proangiogenic cytokines insulin like growth factor 1 (IGF1) and transforming growth factor beta (TGFβ). We conclude that the IDPs of 45S5.5Li BG would act as useful inorganic agents to improve tissue repair and regeneration, ultimately stimulating HUVECs behavior in the absence of exogenous growth factors.
Collapse
Affiliation(s)
- Luis A Haro Durand
- Department of Pathology and Molecular Pharmacology, IByME-CONICET, C1428ADN Buenos Aires, Argentina.
| | - Gabriela E Vargas
- Department of Developmental Biology, National University of Salta, A4408FVY Salta, Argentina.
| | - Rosa Vera-Mesones
- Department of Developmental Biology, National University of Salta, A4408FVY Salta, Argentina.
| | - Alberto Baldi
- Department of Pathology and Molecular Pharmacology, IByME-CONICET, C1428ADN Buenos Aires, Argentina.
| | - María P Zago
- Institute of Experimental Pathology, IPE-CONICET, A4408FVY Salta, Argentina.
| | - María A Fanovich
- Research Institute for Materials Science and Technology, INTEMA-CONICET, B7608FDQ Mar del Plata, Argentina.
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| | - Alejandro Gorustovich
- Interdisciplinary Materials Group-IESIING-UCASAL, INTECIN UBA-CONICET, A4400EDD Salta, Argentina.
| |
Collapse
|
120
|
Li C, Wang S, Chen Y, Zhang X. Somatosensory Neuron Typing with High-Coverage Single-Cell RNA Sequencing and Functional Analysis. Neurosci Bull 2017; 34:200-207. [PMID: 28612318 PMCID: PMC5799126 DOI: 10.1007/s12264-017-0147-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/04/2017] [Indexed: 12/27/2022] Open
Abstract
Different physical and chemical stimuli are detected by the peripheral sensory receptors of dorsal root ganglion (DRG) neurons, and the generated inputs are transmitted via afferent fibers into the central nervous system. The gene expression profiles of DRG neurons contribute to the generation, transmission, and regulation of various somatosensory signals. Recently, the single-cell transcriptomes, cell types, and functional annotations of somatosensory neurons have been studied. In this review, we introduce our classification of DRG neurons based on single-cell RNA-sequencing and functional analyses, and discuss the technical approaches. Moreover, studies on the molecular and cellular mechanisms underlying somatic sensations are discussed.
Collapse
Affiliation(s)
- Changlin Li
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Center for Excellence in Brain Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Sashuang Wang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Center for Excellence in Brain Science, Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTec University, Shanghai, 200031, China
| | - Yan Chen
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Center for Excellence in Brain Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xu Zhang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Center for Excellence in Brain Science, Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Science and Technology, ShanghaiTec University, Shanghai, 200031, China.
| |
Collapse
|
121
|
EGF and hydrocortisone as critical factors for the co-culture of adipogenic differentiated ASCs and endothelial cells. Differentiation 2017; 95:21-30. [DOI: 10.1016/j.diff.2017.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/10/2017] [Accepted: 01/18/2017] [Indexed: 01/08/2023]
|
122
|
GDM alters paracrine regulation of feto-placental angiogenesis via the trophoblast. J Transl Med 2017; 97:409-418. [PMID: 28112754 DOI: 10.1038/labinvest.2016.149] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 11/16/2016] [Accepted: 11/22/2016] [Indexed: 01/13/2023] Open
Abstract
Feto-placental angiogenesis and vascular development are tightly regulated by pro- and anti-angiogenic factors. Villous trophoblast may be a major source of these factors. It forms the classical placental barrier between mother and fetus, and is thus exposed to maternal influences as well. Metabolic and hormonal derangements in gestational diabetes mellitus (GDM) affect feto-placental angiogenesis and vascular growth. Here we hypothesized that GDM alters the trophoblast secretome, which will modulate the paracrine regulation of feto-placental angiogenesis. Primary term trophoblasts were isolated from normal (n=6) and GDM (n=6) pregnancies. Trophoblast conditioned medium (CM) was used to investigate paracrine effects of normal and GDM-exposed trophoblasts on feto-placental endothelial cells (fpECs; n=7), using functional assays for 2D network formation, wound healing, chemotaxis, and proliferation. Gene expression of 23 pro- and anti-angiogenic factors was analyzed. Four trophoblast-derived paracrine regulators of angiogenesis were specifically measured in CM. CM from GDM trophoblasts increased 2D network formation of fpEC by 2.4-fold (P<0.001), whereas wound healing was attenuated by 1.8-fold (P=0.02) and chemo-attraction to the CM was reduced by 33±9% (P=0.02). The effect of CM on proliferation was unchanged between normal and GDM trophoblasts. Expression analysis of pro- and anti-angiogenic molecules in normal and GDM trophoblasts revealed significant differences in ANGPT2, HGF, KISS1 and PLGF expression. Analysis of secreted proteins demonstrated reduced pigment epithelium derived factor and tumor necrosis factor-α secretion by GDM trophoblasts. GDM alters the balance of trophoblast derived, angiogenesis modulating paracrine factors. This may contribute to GDM-associated changes in placental angiogenesis and vascular structure.
Collapse
|
123
|
Faxén UL, Hage C, Benson L, Zabarovskaja S, Andreasson A, Donal E, Daubert JC, Linde C, Brismar K, Lund LH. HFpEF and HFrEF Display Different Phenotypes as Assessed by IGF-1 and IGFBP-1. J Card Fail 2017; 23:293-303. [DOI: 10.1016/j.cardfail.2016.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/03/2016] [Accepted: 06/15/2016] [Indexed: 12/17/2022]
|
124
|
VanWagner LB, Terry JG, Chow LS, Alman AC, Kang H, Ingram KH, Shay C, Lewis CE, Bryan RN, Launer LJ, Carr JJ. Nonalcoholic fatty liver disease and measures of early brain health in middle-aged adults: The CARDIA study. Obesity (Silver Spring) 2017; 25:642-651. [PMID: 28169509 PMCID: PMC5323279 DOI: 10.1002/oby.21767] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/08/2016] [Accepted: 12/19/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To assess associations between nonalcoholic fatty liver disease (NAFLD) and measures of brain health in a population-based sample of adults. METHODS Participants from the CARDIA study (Y25 exam; age 43-55 years) with concurrent computed tomography quantification of liver fat, visceral adipose tissue (VAT), and brain magnetic resonance (MR) images were included (n = 505). NAFLD was identified after exclusion of other causes of liver fat. Total tissue volume (TTV) and gray matter cerebral blood flow (GM-CBF) were estimated using 3T brain MR images. RESULTS NAFLD prevalence was 18%. NAFLD was associated with lower TTV and GM-CBF after adjusting for intracranial volume, demographics, and health behaviors (P < 0.04 for all). In models with additional adjustment for cardiovascular risk factors, the association of NAFLD with GM-CBF remained significant (P = 0.04) but was attenuated after adjustment for VAT (P = 0.06) and eliminated with BMI (P = 0.20). NAFLD was not associated with TTV after adjustment for cardiovascular risk factors (P = 0.10) or additional adjustment for VAT (P = 0.14) or BMI (P = 0.05). CONCLUSIONS NAFLD is negatively associated with early brain health as assessed by MR measures of structure (TTV) and perfusion (GM-CBF). BMI and VAT attenuated this relationship, providing insight into the potential metabolic role of liver fat in brain health and disease.
Collapse
Affiliation(s)
- Lisa B. VanWagner
- Departments of Medicine-Gastroenterology & Hepatology and Preventive Medicine, Northwestern University, Chicago, IL USA
| | - James G. Terry
- Department of Radiology, Vanderbilt University, Nashville, TN USA
| | - Lisa S. Chow
- Division of Diabetes, Endocrinology & Metabolism, University of Minnesota, Minneapolis, MN USA
| | - Amy C. Alman
- Department of Epidemiology and Biostatistics, College of Public Health, University of South Florida, Tampa, FL USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University, Nashville, TN USA
| | - Katherine H. Ingram
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA USA
| | - Christina Shay
- Center for Health Metrics and Evaluation, American Heart Association, Dallas, TX, USA
| | - Cora E. Lewis
- Division of Preventive Medicine, University of Alabama Birmingham, Birmingham AL USA
| | - R. Nick Bryan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA USA
| | - Lenore J. Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, MD, USA
| | - J. Jeffrey Carr
- Department of Radiology, Vanderbilt University, Nashville, TN USA
| |
Collapse
|
125
|
Hoffmann M, Wolf J, Szyndler A, Singh P, Somers VK, Narkiewicz K. Serum of obstructive sleep apnea patients impairs human coronary endothelial cell migration. Arch Med Sci 2017; 13:223-227. [PMID: 28144275 PMCID: PMC5206357 DOI: 10.5114/aoms.2015.56490] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 08/12/2015] [Indexed: 12/01/2022] Open
Abstract
INTRODUCTION Endothelial cell migration and proliferation play an important role in the growth and development of new blood vessels and endothelium healing. This process occurs in response to injury, inflammation and immune reactions. Dysfunction of the endothelium may play a significant role in development and progression of cardiovascular disease related to sleep-disordered breathing. The aim of our study was to evaluate the chemo-attractant activity of serum from obstructive sleep apnea (OSA) and normal subjects on coronary artery endothelial cell migration. MATERIAL AND METHODS We studied 12 severe OSA patients, free of other co-morbidities and on no treatment, along with 12 age-, body mass index, and gender matched healthy controls. Blood was collected at three time points: at 21:00 before sleep, at 6:00 after waking from sleep, and at 11:00 (after 5 h of normal daytime activity). Serum chemo-attractant activity for human coronary endothelial cells was assessed using a colorimetric cell migration assay kit. RESULTS In healthy subjects, serum chemo-attractant activity peaked in the morning after waking from sleep (p = 0.02). This early morning increase was blunted in severe OSA subjects, in whom chemo-attractant activity was weaker than in normal controls (p = 0.02), and did not change significantly at the different time-points (p < 0.001 vs. controls). CONCLUSIONS Chemo-attractant activity of the serum from OSA patients is lower compared to serum from healthy subjects, especially in the morning. Altered chemo-attractant serum activity may conceivably contribute to the impairment of endothelial function in obstructive sleep apnea patients.
Collapse
Affiliation(s)
- Michał Hoffmann
- Department of Hypertension and Diabetology, Medical University of Gdansk, Gdansk, Poland
| | - Jacek Wolf
- Department of Hypertension and Diabetology, Medical University of Gdansk, Gdansk, Poland
| | - Anna Szyndler
- Department of Hypertension and Diabetology, Medical University of Gdansk, Gdansk, Poland
| | - Prachi Singh
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Virend K. Somers
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Krzysztof Narkiewicz
- Department of Hypertension and Diabetology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
126
|
van Beijnum JR, Pieters W, Nowak-Sliwinska P, Griffioen AW. Insulin-like growth factor axis targeting in cancer and tumour angiogenesis - the missing link. Biol Rev Camb Philos Soc 2016; 92:1755-1768. [PMID: 27779364 DOI: 10.1111/brv.12306] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/15/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
Abstract
Numerous molecular players in the process of tumour angiogenesis have been shown to offer potential for therapeutic targeting. Initially denoted to be involved in malignant transformation and tumour progression, the insulin-like growth factor (IGF) signalling axis has been subject to therapeutic interference, albeit with limited clinical success. More recently, IGFs and their receptors have received attention for their contribution to tumour angiogenesis, which offers novel therapeutic opportunities. Here we review the contribution of this signalling axis to tumour angiogenesis, the mechanisms of resistance to therapy and the interplay with other pro-angiogenic pathways, to offer insight in the renewed interest in the application of IGF axis targeting agents in anti-cancer combination therapies.
Collapse
Affiliation(s)
- Judy R van Beijnum
- Department of Medical Oncology, Angiogenesis Laboratory, VU University Medical Center, PO box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Wietske Pieters
- Department of Medical Oncology, Angiogenesis Laboratory, VU University Medical Center, PO box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Patrycja Nowak-Sliwinska
- School of Pharmaceutical Sciences, University of Geneva (UNIGE), Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Arjan W Griffioen
- Department of Medical Oncology, Angiogenesis Laboratory, VU University Medical Center, PO box 7057, 1007 MB, Amsterdam, The Netherlands
| |
Collapse
|
127
|
Sousa LMMDC, Mendes GP, Campos DB, Baruselli PS, Papa PDC. Equine Chorionic Gonadotropin Modulates the Expression of Genes Related to the Structure and Function of the Bovine Corpus Luteum. PLoS One 2016; 11:e0164089. [PMID: 27711194 PMCID: PMC5053489 DOI: 10.1371/journal.pone.0164089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/18/2016] [Indexed: 01/13/2023] Open
Abstract
We hypothesized that stimulatory and superovulatory treatments, using equine chorionic gonadotropin (eCG), modulate the expression of genes related to insulin, cellular modelling and angiogenesis signaling pathways in the bovine corpus luteum (CL). Therefore, we investigated: 1—the effect of these treatments on circulating insulin and somatomedin C concentrations and on gene and protein expression of INSR, IGF1 and IGFR1, as well as other insulin signaling molecules; 2—the effects of eCG on gene and protein expression of INSR, IGF1, GLUT4 and NFKB1A in bovine luteal cells; and 3—the effect of stimulatory and superovulatory treatments on gene and protein expression of ANG, ANGPT1, NOS2, ADM, PRSS2, MMP9 and PLAU. Serum insulin did not differ among groups (P = 0.96). However, serum somatomedin C levels were higher in both stimulated and superovulated groups compared to the control (P = 0.01). In stimulated cows, lower expression of INSR mRNA and higher expression of NFKB1A mRNA and IGF1 protein were observed. In superovulated cows, lower INSR mRNA expression, but higher INSR protein expression and higher IGF1, IGFR1 and NFKB1A gene and protein expression were observed. Expression of angiogenesis and cellular modelling pathway-related factors were as follows: ANGPT1 and PLAU protein expression were higher and MMP9 gene and protein expression were lower in stimulated animals. In superovulated cows, ANGPT1 mRNA expression was higher and ANG mRNA expression was lower. PRSS2 gene and protein expression were lower in both stimulated and superovulated animals related to the control. In vitro, eCG stimulated luteal cells P4 production as well as INSR and GLUT4 protein expression. In summary, our results suggest that superovulatory treatment induced ovarian proliferative changes accompanied by increased expression of genes providing the CL more energy substrate, whereas stimulatory treatment increased lipogenic activity, angiogenesis and plasticity of the extracellular matrix (ECM).
Collapse
Affiliation(s)
| | - Gabriela Pacheco Mendes
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Danila Barreiro Campos
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Federal University of Paraíba, Areia, Paraíba, Brazil
| | - Pietro Sampaio Baruselli
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Paula de Carvalho Papa
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
128
|
Hellström A, Ley D, Hansen-Pupp I, Hallberg B, Ramenghi LA, Löfqvist C, Smith LEH, Hård AL. IGF-I in the clinics: Use in retinopathy of prematurity. Growth Horm IGF Res 2016; 30-31:75-80. [PMID: 27720550 PMCID: PMC5154870 DOI: 10.1016/j.ghir.2016.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/15/2016] [Accepted: 09/22/2016] [Indexed: 10/20/2022]
Abstract
Retinopathy of prematurity is a potentially blinding disease, which is associated with low neonatal IGF-I serum concentrations and poor growth. In severe cases impaired retinal vessel growth is followed by pathologic neovascularization, which may lead to retinal detachment. IGF-I may promote growth even in catabolic states. Treating preterm infants with recombinant human (rh) IGF-I to concentrations normally found during gestation has been suggested to have a preventative effect on ROP. A recent phase 2 study treating infants (gestational age between 23weeks+0days and 27weeks +6days) with rhIGF-I/IGF binding protein-3 until 30 postmenstrual weeks showed no effect on ROP but a 53% reduction in severe bronchopulmonary dysplasia and 44% reduction in severe intraventricular hemorrhage. Oxygen is a major risk factor for ROP and during the phase 2 study oxygen saturation targets were increased to 90-95%, due to national guidelines, which might have affected ROP rate and severity making increased IGF-I a weaker preventative factor for ROP.
Collapse
Affiliation(s)
- Ann Hellström
- Section for Ophthalmology, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.
| | - David Ley
- Department of Clinical Sciences, Lund, Skåne University Hospital and University of Lund, Sweden
| | - Ingrid Hansen-Pupp
- Department of Clinical Sciences, Lund, Skåne University Hospital and University of Lund, Sweden
| | - Boubou Hallberg
- Department of Neonatology, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Luca A Ramenghi
- Genova Neonatal Intensive Care Unit, Instituto Pediatrico Giannina Gaslini, Genova, Italy
| | - Chatarina Löfqvist
- Section for Ophthalmology, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anna-Lena Hård
- Section for Ophthalmology, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
129
|
Ribot J, Caliaperoumal G, Paquet J, Boisson-Vidal C, Petite H, Anagnostou F. Type 2 diabetes alters mesenchymal stem cell secretome composition and angiogenic properties. J Cell Mol Med 2016; 21:349-363. [PMID: 27641937 PMCID: PMC5264143 DOI: 10.1111/jcmm.12969] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/06/2016] [Indexed: 01/09/2023] Open
Abstract
This study aimed at characterizing the impact of type 2 diabetes mellitus (T2DM) on the bone marrow mesenchymal stem cell (BMMSC) secretome and angiogenic properties. BMMSCs from Zucker diabetic fatty rats (ZDF) (a T2DM model) and Zucker LEAN littermates (control) were cultured. The supernatant conditioned media (CM) from BMMSCs of diabetic and control rats were collected and analysed. Compared to results obtained using CM from LEAN‐BMMSCs, the bioactive content of ZDF‐BMMSC CM (i) differently affects endothelial cell (HUVEC) functions in vitro by inducing increased (3.5‐fold; P < 0.01) formation of tubule‐like structures and migration of these cells (3‐fold; P < 0.001), as well as promotes improved vascular formation in vivo, and (ii) contains different levels of angiogenic factors (e.g. IGF1) and mediators, such as OSTP, CATD, FMOD LTBP1 and LTBP2, which are involved in angiogenesis and/or extracellular matrix composition. Addition of neutralizing antibodies against IGF‐1, LTBP1 or LTBP2 in the CM of BMMSCs from diabetic rats decreased its stimulatory effect on HUVEC migration by approximately 60%, 40% or 40%, respectively. These results demonstrate that BMMSCs from T2DM rats have a unique secretome with distinct angiogenic properties and provide new insights into the role of BMMSCs in aberrant angiogenesis in the diabetic milieu.
Collapse
Affiliation(s)
- Jonathan Ribot
- Laboratory of Bioingénierie et Biomécanique Ostéo-articulaires-UMR CNRS 7052 Paris 7-Denis Diderot University, Sorbonne Paris Cite, Paris, France
| | - Guavri Caliaperoumal
- Laboratory of Bioingénierie et Biomécanique Ostéo-articulaires-UMR CNRS 7052 Paris 7-Denis Diderot University, Sorbonne Paris Cite, Paris, France
| | - Joseph Paquet
- Laboratory of Bioingénierie et Biomécanique Ostéo-articulaires-UMR CNRS 7052 Paris 7-Denis Diderot University, Sorbonne Paris Cite, Paris, France
| | | | - Herve Petite
- Laboratory of Bioingénierie et Biomécanique Ostéo-articulaires-UMR CNRS 7052 Paris 7-Denis Diderot University, Sorbonne Paris Cite, Paris, France
| | - Fani Anagnostou
- Laboratory of Bioingénierie et Biomécanique Ostéo-articulaires-UMR CNRS 7052 Paris 7-Denis Diderot University, Sorbonne Paris Cite, Paris, France.,Department of Periodontology, Service of Odontology, Pitié Salpêtrière Hospital et Hôtel-Dieu Hospital AP-HP, U.F.R. of Odontology Paris 7-Denis Diderot University, Sorbonne Paris Cite, Paris, France
| |
Collapse
|
130
|
Hellström A, Ley D, Hansen-Pupp I, Hallberg B, Ramenghi LA, Löfqvist C, Smith LEH, Hård AL. Role of Insulinlike Growth Factor 1 in Fetal Development and in the Early Postnatal Life of Premature Infants. Am J Perinatol 2016; 33:1067-71. [PMID: 27603537 PMCID: PMC5779855 DOI: 10.1055/s-0036-1586109] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The neonatal period of very preterm infants is often characterized by a difficult adjustment to extrauterine life, with an inadequate nutrient supply and insufficient levels of growth factors, resulting in poor growth and a high morbidity rate. Long-term multisystem complications include cognitive, behavioral, and motor dysfunction as a result of brain damage as well as visual and hearing deficits and metabolic disorders that persist into adulthood. Insulinlike growth factor 1 (IGF-1) is a major regulator of fetal growth and development of most organs especially the central nervous system including the retina. Glucose metabolism in the developing brain is controlled by IGF-1 which also stimulates differentiation and prevents apoptosis. Serum concentrations of IGF-1 decrease to very low levels after very preterm birth and remain low for most of the perinatal development. Strong correlations have been found between low neonatal serum concentrations of IGF-1 and poor brain and retinal growth as well as poor general growth with multiorgan morbidities, such as intraventricular hemorrhage, retinopathy of prematurity, bronchopulmonary dysplasia, and necrotizing enterocolitis. Experimental and clinical studies indicate that early supplementation with IGF-1 can improve growth in catabolic states and reduce brain injury after hypoxic/ischemic events. A multicenter phase II study is currently underway to determine whether intravenous replacement of human recombinant IGF-1 up to normal intrauterine serum concentrations can improve growth and development and reduce prematurity-associated morbidities.
Collapse
Affiliation(s)
- Ann Hellström
- Department of Ophthalmology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - David Ley
- Department of Pediatrics, Institute of Clinical Sciences, Lund University and Skane University Hospital, Lund, Sweden
| | - Ingrid Hansen-Pupp
- Department of Pediatrics, Institute of Clinical Sciences, Lund University and Skane University Hospital, Lund, Sweden
| | - Boubou Hallberg
- Department of Neonatology, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Luca A. Ramenghi
- Genova Neonatal Intensive Care Unit, Instituto Pediatrico Giannina Gaslini, Genova, Italy
| | - Chatarina Löfqvist
- Department of Ophthalmology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Lois E. H. Smith
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anna-Lena Hård
- Department of Ophthalmology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
131
|
Song X, Teng J, Wang A, Li X, Wang J, Liu Y. Positive correlation between serum IGF-1 and HDL-C in type 2 diabetes mellitus. Diabetes Res Clin Pract 2016; 118:44-9. [PMID: 27322526 DOI: 10.1016/j.diabres.2016.04.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 02/24/2016] [Accepted: 04/21/2016] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Dyslipidemia and low levels of high density lipoprotein cholesterol (HDL-C) can increase the risk of atherosclerosis development in people with type 2 diabetes mellitus (T2DM). This study aimed to investigate the correlation between serum HDL-C and insulin-like growth factor-1 (IGF-1), which are crucially involved inT2DM. METHODS Serum concentrations of IGF-1, total cholesterol, triglyceride, low density lipoprotein cholesterol, and HDL-C were measured in 498 participants with T2DM without any lipid-modifying medicine prior to study. Participants were divided into three groups according to the 25th and 75th percentile of IGF-1 levels: low IGF-1 group (G1), middle IGF-1 group (G2), and high IGF-1 group (G3), respectively. Serum levels of HDL-C were compared among the three groups. RESULTS G1 presented a higher body mass index and higher fasting plasma insulin (FINS) than G2 (P<0.05), yet a lower HDL-C than G2 (P<0.05). Moreover, HDL-C, postprandial blood glucose, FINS, postprandial plasma insulin (PINS), hip circumference ratio, glycated hemoglobin A1c were significantly lower in G3 than in G2 (P<0.05). After adjusting for age and gender, serum levels of IGF-1 were negatively correlated with age, duration of disease, waist circumference, FINS, PINS, and insulin resistance, but positively correlated with HDL-C. Each increase of 2.71ng/dl in IGF-I concentration was associated with an increase of 1.34mg/dl in HDL level. CONCLUSIONS IGF-1 serum level in people with T2DM is correlated positively with HDL-C.
Collapse
Affiliation(s)
- Xiaofei Song
- Department of Endocrinology, 306 Hospital of PLA, Beijing 100101, China
| | - Jiali Teng
- Internal Medicine 2, Dezhou People's Hospital, Shandong Province 253000, China
| | - Aihong Wang
- Department of Endocrinology, 306 Hospital of PLA, Beijing 100101, China
| | - Xiang Li
- Department of Endocrinology, 306 Hospital of PLA, Beijing 100101, China
| | - Jing Wang
- Department of Endocrinology, 306 Hospital of PLA, Beijing 100101, China
| | - Yanjun Liu
- Department of Endocrinology, 306 Hospital of PLA, Beijing 100101, China.
| |
Collapse
|
132
|
Hertle E, Arts IC, van der Kallen CJ, Feskens EJ, Schalkwijk CG, Hoffmann-Petersen IT, Thiel S, Stehouwer CD, van Greevenbroek MM. Distinct Longitudinal Associations of MBL, MASP-1, MASP-2, MASP-3, and MAp44 With Endothelial Dysfunction and Intima–Media Thickness. Arterioscler Thromb Vasc Biol 2016; 36:1278-85. [DOI: 10.1161/atvbaha.115.306552] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 03/28/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Elisabeth Hertle
- From the Department of Internal Medicine (E.H., C.J.H.v.d.K., C.G.S., C.D.A.S., M.M.J.v.G.), CARIM School for Cardiovascular Diseases (EH, C.J.H.v.d.K., C.G.S., C.D.A.S., M.M.J.v.G., I.C.W.A.), Department of Epidemiology, School for Public Health and Primary Care (CAPHRI) (I.C.W.A.), Maastricht University Medical Centre, Maastricht, The Netherlands; Division of Human Nutrition, Section Nutrition and Epidemiology, Wageningen University, Wageningen, The Netherlands (E.J.M.F.); and Department of
| | - Ilja C.W. Arts
- From the Department of Internal Medicine (E.H., C.J.H.v.d.K., C.G.S., C.D.A.S., M.M.J.v.G.), CARIM School for Cardiovascular Diseases (EH, C.J.H.v.d.K., C.G.S., C.D.A.S., M.M.J.v.G., I.C.W.A.), Department of Epidemiology, School for Public Health and Primary Care (CAPHRI) (I.C.W.A.), Maastricht University Medical Centre, Maastricht, The Netherlands; Division of Human Nutrition, Section Nutrition and Epidemiology, Wageningen University, Wageningen, The Netherlands (E.J.M.F.); and Department of
| | - Carla J.H. van der Kallen
- From the Department of Internal Medicine (E.H., C.J.H.v.d.K., C.G.S., C.D.A.S., M.M.J.v.G.), CARIM School for Cardiovascular Diseases (EH, C.J.H.v.d.K., C.G.S., C.D.A.S., M.M.J.v.G., I.C.W.A.), Department of Epidemiology, School for Public Health and Primary Care (CAPHRI) (I.C.W.A.), Maastricht University Medical Centre, Maastricht, The Netherlands; Division of Human Nutrition, Section Nutrition and Epidemiology, Wageningen University, Wageningen, The Netherlands (E.J.M.F.); and Department of
| | - Edith J.M. Feskens
- From the Department of Internal Medicine (E.H., C.J.H.v.d.K., C.G.S., C.D.A.S., M.M.J.v.G.), CARIM School for Cardiovascular Diseases (EH, C.J.H.v.d.K., C.G.S., C.D.A.S., M.M.J.v.G., I.C.W.A.), Department of Epidemiology, School for Public Health and Primary Care (CAPHRI) (I.C.W.A.), Maastricht University Medical Centre, Maastricht, The Netherlands; Division of Human Nutrition, Section Nutrition and Epidemiology, Wageningen University, Wageningen, The Netherlands (E.J.M.F.); and Department of
| | - Casper G. Schalkwijk
- From the Department of Internal Medicine (E.H., C.J.H.v.d.K., C.G.S., C.D.A.S., M.M.J.v.G.), CARIM School for Cardiovascular Diseases (EH, C.J.H.v.d.K., C.G.S., C.D.A.S., M.M.J.v.G., I.C.W.A.), Department of Epidemiology, School for Public Health and Primary Care (CAPHRI) (I.C.W.A.), Maastricht University Medical Centre, Maastricht, The Netherlands; Division of Human Nutrition, Section Nutrition and Epidemiology, Wageningen University, Wageningen, The Netherlands (E.J.M.F.); and Department of
| | - Ingeborg T. Hoffmann-Petersen
- From the Department of Internal Medicine (E.H., C.J.H.v.d.K., C.G.S., C.D.A.S., M.M.J.v.G.), CARIM School for Cardiovascular Diseases (EH, C.J.H.v.d.K., C.G.S., C.D.A.S., M.M.J.v.G., I.C.W.A.), Department of Epidemiology, School for Public Health and Primary Care (CAPHRI) (I.C.W.A.), Maastricht University Medical Centre, Maastricht, The Netherlands; Division of Human Nutrition, Section Nutrition and Epidemiology, Wageningen University, Wageningen, The Netherlands (E.J.M.F.); and Department of
| | - Steffen Thiel
- From the Department of Internal Medicine (E.H., C.J.H.v.d.K., C.G.S., C.D.A.S., M.M.J.v.G.), CARIM School for Cardiovascular Diseases (EH, C.J.H.v.d.K., C.G.S., C.D.A.S., M.M.J.v.G., I.C.W.A.), Department of Epidemiology, School for Public Health and Primary Care (CAPHRI) (I.C.W.A.), Maastricht University Medical Centre, Maastricht, The Netherlands; Division of Human Nutrition, Section Nutrition and Epidemiology, Wageningen University, Wageningen, The Netherlands (E.J.M.F.); and Department of
| | - Coen D.A. Stehouwer
- From the Department of Internal Medicine (E.H., C.J.H.v.d.K., C.G.S., C.D.A.S., M.M.J.v.G.), CARIM School for Cardiovascular Diseases (EH, C.J.H.v.d.K., C.G.S., C.D.A.S., M.M.J.v.G., I.C.W.A.), Department of Epidemiology, School for Public Health and Primary Care (CAPHRI) (I.C.W.A.), Maastricht University Medical Centre, Maastricht, The Netherlands; Division of Human Nutrition, Section Nutrition and Epidemiology, Wageningen University, Wageningen, The Netherlands (E.J.M.F.); and Department of
| | - Marleen M.J. van Greevenbroek
- From the Department of Internal Medicine (E.H., C.J.H.v.d.K., C.G.S., C.D.A.S., M.M.J.v.G.), CARIM School for Cardiovascular Diseases (EH, C.J.H.v.d.K., C.G.S., C.D.A.S., M.M.J.v.G., I.C.W.A.), Department of Epidemiology, School for Public Health and Primary Care (CAPHRI) (I.C.W.A.), Maastricht University Medical Centre, Maastricht, The Netherlands; Division of Human Nutrition, Section Nutrition and Epidemiology, Wageningen University, Wageningen, The Netherlands (E.J.M.F.); and Department of
| |
Collapse
|
133
|
Bugueno IM, Khelif Y, Seelam N, Morand DN, Tenenbaum H, Davideau JL, Huck O. Porphyromonas gingivalis Differentially Modulates Cell Death Profile in Ox-LDL and TNF-α Pre-Treated Endothelial Cells. PLoS One 2016; 11:e0154590. [PMID: 27124409 PMCID: PMC4849801 DOI: 10.1371/journal.pone.0154590] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/17/2016] [Indexed: 12/24/2022] Open
Abstract
Objective Clinical studies demonstrated a potential link between atherosclerosis and periodontitis. Porphyromonas gingivalis (Pg), one of the main periodontal pathogen, has been associated to atheromatous plaque worsening. However, synergism between infection and other endothelial stressors such as oxidized-LDL or TNF-α especially on endothelial cell (EC) death has not been investigated. This study aims to assess the role of Pg on EC death in an inflammatory context and to determine potential molecular pathways involved. Methods Human umbilical vein ECs (HUVECs) were infected with Pg (MOI 100) or stimulated by its lipopolysaccharide (Pg-LPS) (1μg/ml) for 24 to 48 hours. Cell viability was measured with AlamarBlue test, type of cell death induced was assessed using Annexin V/propidium iodide staining. mRNA expression regarding caspase-1, -3, -9, Bcl-2, Bax-1 and Apaf-1 has been evaluated with RT-qPCR. Caspases enzymatic activity and concentration of APAF-1 protein were evaluated to confirm mRNA results. Results Pg infection and Pg-LPS stimulation induced EC death. A cumulative effect has been observed in Ox-LDL pre-treated ECs infected or stimulated. This effect was not observed in TNF-α pre-treated cells. Pg infection promotes EC necrosis, however, in infected Ox-LDL pre-treated ECs, apoptosis was promoted. This effect was not observed in TNF-α pre-treated cells highlighting specificity of molecular pathways activated. Regarding mRNA expression, Pg increased expression of pro-apoptotic genes including caspases-1,-3,-9, Bax-1 and decreased expression of anti-apoptotic Bcl-2. In Ox-LDL pre-treated ECs, Pg increased significantly the expression of Apaf-1. These results were confirmed at the protein level. Conclusion This study contributes to demonstrate that Pg and its Pg-LPS could exacerbate Ox-LDL and TNF-α induced endothelial injury through increase of EC death. Interestingly, molecular pathways are differentially modulated by the infection in function of the pre-stimulation.
Collapse
Affiliation(s)
- Isaac Maximiliano Bugueno
- INSERM 1109 « Osteoarticular & Dental Regenerative Nanomedicine », Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Yacine Khelif
- INSERM 1109 « Osteoarticular & Dental Regenerative Nanomedicine », Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Narendra Seelam
- INSERM 1109 « Osteoarticular & Dental Regenerative Nanomedicine », Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie-dentaire, Department of Periodontology, Strasbourg, France
| | - David-Nicolas Morand
- INSERM 1109 « Osteoarticular & Dental Regenerative Nanomedicine », Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie-dentaire, Department of Periodontology, Strasbourg, France
| | - Henri Tenenbaum
- INSERM 1109 « Osteoarticular & Dental Regenerative Nanomedicine », Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie-dentaire, Department of Periodontology, Strasbourg, France
| | - Jean-Luc Davideau
- INSERM 1109 « Osteoarticular & Dental Regenerative Nanomedicine », Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie-dentaire, Department of Periodontology, Strasbourg, France
| | - Olivier Huck
- INSERM 1109 « Osteoarticular & Dental Regenerative Nanomedicine », Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie-dentaire, Department of Periodontology, Strasbourg, France
- * E-mail:
| |
Collapse
|
134
|
Gao S, Cheng C, Chen H, Li M, Liu K, Wang G. IGF1 3'UTR functions as a ceRNA in promoting angiogenesis by sponging miR-29 family in osteosarcoma. J Mol Histol 2016; 47:135-43. [PMID: 26759259 DOI: 10.1007/s10735-016-9659-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/08/2016] [Indexed: 01/11/2023]
Abstract
Osteosarcoma is one of the most common malignant bone tumors in human worldwide. Angiogenesis is a pivotal process during osteosarcoma development. Insulin-like growth factor 1 (IGF1) has been reported to promote angiogenesis. However, the role of 3' untranslational region (3'UTR) of IGF1 mRNA in angiogenic activity in osteosarcomas is still unknown. In the present study, we performed gain-of-function assays to investigate the role of IGF1-3'UTR in angiogenesis. For the first time, we demonstrated that IGF1 3'UTR increased VEGF expression and promotes angiogenesis in osteosarcoma cells. In addition, RNA-immunoprecipitation and luciferase reporter assays showed that IGF1 3'UTR was a direct target of miR-29s. Our data also demonstrated that there existed a competition of miR-29s between IGF1-3'UTR and VEGF mRNA, and IGF1-3'UTR promoted angiogenesis at least in part via sponging miR-29s. Taken together, our study suggests that IGF1-3'UTR functions as a ceRNA in promoting angiogenesis by sponging miR-29s in osteosarcoma.
Collapse
Affiliation(s)
- Shuming Gao
- Department of orthopaedics, Cangzhou Central Hospital, Xinhua Road, Cangzhou, Hebei Province, China
| | - Cai Cheng
- Department of orthopaedics, Cangzhou Central Hospital, Xinhua Road, Cangzhou, Hebei Province, China
| | - Hanwen Chen
- Department of orthopaedics, Cangzhou Central Hospital, Xinhua Road, Cangzhou, Hebei Province, China
| | - Min Li
- Department of orthopaedics, Cangzhou Central Hospital, Xinhua Road, Cangzhou, Hebei Province, China
| | - Kehun Liu
- Department of orthopaedics, Cangzhou Central Hospital, Xinhua Road, Cangzhou, Hebei Province, China
| | - Guangya Wang
- Department of orthopaedics, Cangzhou Central Hospital, Xinhua Road, Cangzhou, Hebei Province, China.
| |
Collapse
|
135
|
Leid J, Carrelha J, Boukarabila H, Epelman S, Jacobsen SEW, Lavine KJ. Primitive Embryonic Macrophages are Required for Coronary Development and Maturation. Circ Res 2016; 118:1498-511. [PMID: 27009605 DOI: 10.1161/circresaha.115.308270] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/23/2016] [Indexed: 12/24/2022]
Abstract
RATIONALE It is now recognized that macrophages residing within developing and adult tissues are derived from diverse progenitors including those of embryonic origin. Although the functions of macrophages in adult organisms are well studied, the functions of macrophages during organ development remain largely undefined. Moreover, it is unclear whether distinct macrophage lineages have differing functions. OBJECTIVE To address these issues, we investigated the functions of macrophage subsets resident within the developing heart, an organ replete with embryonic-derived macrophages. METHODS AND RESULTS Using a combination of flow cytometry, immunostaining, and genetic lineage tracing, we demonstrate that the developing heart contains a complex array of embryonic macrophage subsets that can be divided into chemokine (C-C motif) receptor 2(-) and chemokine (C-C motif) receptor 2(+) macrophages derived from primitive yolk sac, recombination activating gene 1(+) lymphomyeloid, and Fms-like tyrosine kinase 3(+) fetal monocyte lineages. Functionally, yolk sac-derived chemokine (C-C motif) receptor 2(-) macrophages are instrumental in coronary development where they are required for remodeling of the primitive coronary plexus. Mechanistically, chemokine (C-C motif) receptor 2(-) macrophages are recruited to coronary blood vessels at the onset of coronary perfusion where they mediate coronary plexus remodeling through selective expansion of perfused vasculature. We further demonstrate that insulin like growth factor signaling may mediate the proangiogenic properties of embryonic-derived macrophages. CONCLUSIONS Together, these findings demonstrate that the embryonic heart contains distinct lineages of embryonic macrophages with unique functions and reveal a novel mechanism that governs coronary development.
Collapse
Affiliation(s)
- Jamison Leid
- From the Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO (J.L., K.J.L.); Haematopoietic Stem Cell Biology Laboratory, MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford, United Kingdom (J.C., H.B., S.E.W.J.); Peter Munk Cardiac Centre, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada (S.E.); and Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO (K.J.L.)
| | - Joana Carrelha
- From the Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO (J.L., K.J.L.); Haematopoietic Stem Cell Biology Laboratory, MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford, United Kingdom (J.C., H.B., S.E.W.J.); Peter Munk Cardiac Centre, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada (S.E.); and Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO (K.J.L.)
| | - Hanane Boukarabila
- From the Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO (J.L., K.J.L.); Haematopoietic Stem Cell Biology Laboratory, MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford, United Kingdom (J.C., H.B., S.E.W.J.); Peter Munk Cardiac Centre, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada (S.E.); and Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO (K.J.L.)
| | - Slava Epelman
- From the Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO (J.L., K.J.L.); Haematopoietic Stem Cell Biology Laboratory, MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford, United Kingdom (J.C., H.B., S.E.W.J.); Peter Munk Cardiac Centre, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada (S.E.); and Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO (K.J.L.)
| | - Sten E W Jacobsen
- From the Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO (J.L., K.J.L.); Haematopoietic Stem Cell Biology Laboratory, MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford, United Kingdom (J.C., H.B., S.E.W.J.); Peter Munk Cardiac Centre, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada (S.E.); and Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO (K.J.L.)
| | - Kory J Lavine
- From the Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO (J.L., K.J.L.); Haematopoietic Stem Cell Biology Laboratory, MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford, United Kingdom (J.C., H.B., S.E.W.J.); Peter Munk Cardiac Centre, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada (S.E.); and Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO (K.J.L.).
| |
Collapse
|
136
|
Shan S, Li Y, Wang J, Lv Z, Yi D, Huang Q, Corrigan CJ, Wang W, Quangeng Z, Ying S. Nasal administration of interleukin-33 induces airways angiogenesis and expression of multiple angiogenic factors in a murine asthma surrogate. Immunology 2016; 148:83-91. [PMID: 27035894 DOI: 10.1111/imm.12589] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/14/2016] [Accepted: 01/22/2016] [Indexed: 12/12/2022] Open
Abstract
The T-helper cell type 2-promoting cytokine interleukin-33 (IL-33) has been implicated in asthma pathogenesis. Angiogenesis is a feature of airways remodelling in asthma. We hypothesized that IL-33 induces airways angiogenesis and expression of angiogenic factors in an established murine surrogate of asthma. In the present study, BALB/c mice were subjected to serial intranasal challenge with IL-33 alone for up to 70 days. In parallel, ovalbumin (OVA) -sensitized mice were subjected to serial intranasal challenge with OVA or normal saline to serve as positive and negative controls, respectively. Immunohistochemical analysis of expression of von Willebrand factor and erythroblast transformation-specific-related gene, both blood vessel markers, and angiogenic factors angiogenin, insulin-like growth factor-1, endothelin-1, epidermal growth factor and amphiregulin was performed in lung sections ex vivo. An established in-house assay was used to test whether IL-33 was able to induce microvessel formation by human vascular endothelial cells. Results showed that serial intranasal challenge of mice with IL-33 or OVA resulted in proliferation of peribronchial von Willebrand factor-positive blood vessels to a degree closely related to the total expression of the angiogenic factors amphiregulin, angiogenin, endothelin-1, epidermal growth factor and insulin-like growth factor-1. IL-33 also induced microvessel formation by human endothelial cells in a concentration-dependent fashion in vitro. Our data are consistent with the hypothesis that IL-33 has the capacity to induce angiogenesis at least partly by increasing local expression of multiple angiogenic factors in an allergen-independent murine asthma surrogate, and consequently that IL-33 or its receptor is a potential novel molecular target for asthma therapy.
Collapse
Affiliation(s)
- Shan Shan
- The Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan Li
- The Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jingjing Wang
- The Department of Laboratory Animal Sciences, Capital Medical University, Beijing, China
| | - Zhe Lv
- The Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Dawei Yi
- The Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Qiong Huang
- The Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chris J Corrigan
- Division of Asthma, Allergy & Lung Biology, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, UK
| | - Wei Wang
- The Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhang Quangeng
- The Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Sun Ying
- The Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Division of Asthma, Allergy & Lung Biology, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, UK
| |
Collapse
|
137
|
Almubarak S, Nethercott H, Freeberg M, Beaudon C, Jha A, Jackson W, Marcucio R, Miclau T, Healy K, Bahney C. Tissue engineering strategies for promoting vascularized bone regeneration. Bone 2016; 83:197-209. [PMID: 26608518 PMCID: PMC4911893 DOI: 10.1016/j.bone.2015.11.011] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/06/2015] [Accepted: 11/17/2015] [Indexed: 02/07/2023]
Abstract
This review focuses on current tissue engineering strategies for promoting vascularized bone regeneration. We review the role of angiogenic growth factors in promoting vascularized bone regeneration and discuss the different therapeutic strategies for controlled/sustained growth factor delivery. Next, we address the therapeutic uses of stem cells in vascularized bone regeneration. Specifically, this review addresses the concept of co-culture using osteogenic and vasculogenic stem cells, and how adipose derived stem cells compare to bone marrow derived mesenchymal stem cells in the promotion of angiogenesis. We conclude this review with a discussion of a novel approach to bone regeneration through a cartilage intermediate, and discuss why it has the potential to be more effective than traditional bone grafting methods.
Collapse
Affiliation(s)
- Sarah Almubarak
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Hubert Nethercott
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Marie Freeberg
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Caroline Beaudon
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Amit Jha
- Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States
| | - Wesley Jackson
- Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States
| | - Ralph Marcucio
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Theodore Miclau
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Kevin Healy
- Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States
| | - Chelsea Bahney
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States.
| |
Collapse
|
138
|
Role of MnSOD in propofol protection of human umbilical vein endothelial cells injured by heat stress. J Anesth 2016; 30:410-9. [DOI: 10.1007/s00540-015-2129-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 12/20/2015] [Indexed: 12/25/2022]
|
139
|
Cowley AW, Yang C, Kumar V, Lazar J, Jacob H, Geurts AM, Liu P, Dayton A, Kurth T, Liang M. Pappa2 is linked to salt-sensitive hypertension in Dahl S rats. Physiol Genomics 2015; 48:62-72. [PMID: 26534937 DOI: 10.1152/physiolgenomics.00097.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/29/2015] [Indexed: 01/11/2023] Open
Abstract
A 1.37 Mbp region of chromosome 13 previously identified by exclusion mapping was consistently associated with a reduction of salt-induced hypertension in the Dahl salt-sensitive (SS) rat. This region contained five genes that were introgressed from the salt-insensitive Brown Norway (BN) rat. The goal of the present study was to further narrow that region to identify the gene(s) most likely to protect from salt-induced hypertension. The studies yielded a subcongenic SS rat strain containing a 0.71 Mbp insert from BN (26-P strain) in which salt-induced hypertension was reduced by 24 mmHg. The region contained two protein-coding genes (Astn1 and Pappa2) and a microRNA (miR-488). Pappa2 mRNA in the renal cortex of the protected 26-P was 6- to 10-fold greater than in SS fed a 0.4% NaCl diet but was reduced to levels observed in SS when fed 8.0% NaCl diet for 7 days. Compared with brain nuclei (NTS, RVLM, CVLM) and the adrenal gland, Pappa2 in the renal cortex was the only gene found to be differentially expressed between SS and 26-P and that responded to changes of salt diet. Immunohistochemistry studies found Pappa2 localized in the cytosol of the epithelial cells of the cortical thick ascending limbs. In more distal segments of the renal tubules, it was observed within tubular lumens and most notably bound to the apical membranes of the intercalated cells of collecting ducts. We conclude that we have identified a variant form of Pappa2 that can protect against salt-induced hypertension in the Dahl S rat.
Collapse
Affiliation(s)
- Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin;
| | - Chun Yang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Vikash Kumar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jozef Lazar
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Howard Jacob
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Pengyuan Liu
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alex Dayton
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Theresa Kurth
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
140
|
Matsuki M, Kabara M, Saito Y, Shimamura K, Minoshima A, Nishimura M, Aonuma T, Takehara N, Hasebe N, Kawabe JI. Ninjurin1 Is a Novel Factor to Regulate Angiogenesis Through the Function of Pericytes. Circ J 2015; 79:1363-71. [DOI: 10.1253/circj.cj-14-1376] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Motoki Matsuki
- Department of Medicine, Division of Cardiovascular, Respiratory and Neurology, Asahikawa Medical University
| | - Maki Kabara
- Department of Medicine, Division of Cardiovascular, Respiratory and Neurology, Asahikawa Medical University
| | - Yukihiro Saito
- Department of Vascular Surgery, Asahikawa Medical University
| | - Kohei Shimamura
- Department of Medicine, Division of Cardiovascular, Respiratory and Neurology, Asahikawa Medical University
| | - Akiho Minoshima
- Department of Medicine, Division of Cardiovascular, Respiratory and Neurology, Asahikawa Medical University
| | - Masato Nishimura
- Department of Medicine, Division of Cardiovascular, Respiratory and Neurology, Asahikawa Medical University
| | - Tatsuya Aonuma
- Department of Medicine, Division of Cardiovascular, Respiratory and Neurology, Asahikawa Medical University
| | - Naofumi Takehara
- Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University
| | - Naoyuki Hasebe
- Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University
- Department of Medicine, Division of Cardiovascular, Respiratory and Neurology, Asahikawa Medical University
| | - Jun-ichi Kawabe
- Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University
| |
Collapse
|