101
|
Fulton T, Lathan EC, Karkare MC, Guelfo A, Eghbalzad L, Ahluwalia V, Ely TD, Turner JA, Turner MD, Currier JM, Mekawi Y, Fani N. Civilian Moral Injury and Amygdala Functional Connectivity During Attention to Threat. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:112-120. [PMID: 37487958 PMCID: PMC10803642 DOI: 10.1016/j.bpsc.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Moral injury references emotional and spiritual/existential suffering that may emerge following psychological trauma. Despite being linked to adverse mental health outcomes, little is known about the neurophysiological mechanisms of this phenomenon. In this study, we examined neural correlates of moral injury exposure and distress using the Moral Injury Exposure and Symptom Scale for Civilians. We also examined potential moderation of these effects by race (Black vs. White individuals) given the likely intersection of race-related stress with moral injury. METHODS Forty-eight adults ages 18 to 65 years (mean age = 30.56, SD = 11.93) completed the Moral Injury Exposure and Symptom Scale for Civilians and an affective attentional control measure, the affective Stroop task (AS), during functional magnetic resonance imaging; the AS includes presentation of threat-relevant and neutral distractor stimuli. Voxelwise functional connectivity of the bilateral amygdala was examined in response to threat-relevant versus neutral AS distractor trials. RESULTS Functional connectivity between the right amygdala and left postcentral gyrus/primary somatosensory cortex was positively correlated with the Moral Injury Exposure and Symptom Scale for Civilians exposure score (voxelwise p < .001, cluster false discovery rate-corrected p < .05) in response to threat versus neutral AS distractor trials. Follow-up analyses revealed significant effects of race; Black but not White participants demonstrated this significant pattern of amygdala-left somatosensory cortex connectivity. CONCLUSIONS Increased exposure to potentially morally injurious events may lead to emotion-somatosensory pathway disruptions during attention to threat-relevant stimuli. These effects may be most potent for individuals who have experienced multilayered exposure to morally injurious events, including racial trauma. Moral injury appears to have a distinct neurobiological signature that involves abnormalities in connectivity of emotion-somatosensory paths, which may be amplified by race-related stress.
Collapse
Affiliation(s)
- Travis Fulton
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia; Molecular and Systems Pharmacology PhD Program, Emory University, Atlanta, Georgia
| | - Emma C Lathan
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Maya C Karkare
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Alfonsina Guelfo
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Leyla Eghbalzad
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Vishwadeep Ahluwalia
- Center for Advanced Brain Imaging, Georgia Institute of Technology, Atlanta, Georgia
| | - Timothy D Ely
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | | | | | - Joseph M Currier
- Department of Psychology, University of South Alabama, Mobile, Alabama
| | - Yara Mekawi
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, Kentucky
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
102
|
Setiadi TM, Marsman JBC, Martens S, Tumati S, Opmeer EM, Reesink FE, De Deyn PP, Atienza M, Aleman A, Cantero JL. Alterations in Gray Matter Structural Networks in Amnestic Mild Cognitive Impairment: A Source-Based Morphometry Study. J Alzheimers Dis 2024; 101:61-73. [PMID: 39093069 PMCID: PMC11380280 DOI: 10.3233/jad-231196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Background Amnestic mild cognitive impairment (aMCI), considered as the prodromal stage of Alzheimer's disease, is characterized by isolated memory impairment and cerebral gray matter volume (GMV) alterations. Previous structural MRI studies in aMCI have been mainly based on univariate statistics using voxel-based morphometry. Objective We investigated structural network differences between aMCI patients and cognitively normal older adults by using source-based morphometry, a multivariate approach that considers the relationship between voxels of various parts of the brain. Methods Ninety-one aMCI patients and 80 cognitively normal controls underwent structural MRI and neuropsychological assessment. Spatially independent components (ICs) that covaried between participants were estimated and a multivariate analysis of covariance was performed with ICs as dependent variables, diagnosis as independent variable, and age, sex, education level, and site as covariates. Results aMCI patients exhibited reduced GMV in the precentral, temporo-cerebellar, frontal, and temporal network, and increased GMV in the left superior parietal network compared to controls (pFWER < 0.05, Holm-Bonferroni correction). Moreover, we found that diagnosis, more specifically aMCI, moderated the positive relationship between occipital network and Mini-Mental State Examination scores (pFWER < 0.05, Holm-Bonferroni correction). Conclusions Our results showed GMV alterations in temporo-fronto-parieto-cerebellar networks in aMCI, extending previous results obtained with univariate approaches.
Collapse
Affiliation(s)
- Tania M Setiadi
- Department of Biomedical Sciences of Cells & Systems, Cognitive Neuroscience Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan-Bernard C Marsman
- Department of Biomedical Sciences of Cells & Systems, Cognitive Neuroscience Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sander Martens
- Department of Biomedical Sciences of Cells & Systems, Cognitive Neuroscience Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Shankar Tumati
- Department of Biomedical Sciences of Cells & Systems, Cognitive Neuroscience Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Esther M Opmeer
- Department of Biomedical Sciences of Cells & Systems, Cognitive Neuroscience Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Health and Welfare, Windesheim University of Applied Sciences, Zwolle, The Netherlands
| | - Fransje E Reesink
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter P De Deyn
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Group, University of Antwerp, Antwerp, Belgium
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - André Aleman
- Department of Biomedical Sciences of Cells & Systems, Cognitive Neuroscience Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Psychology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jose L Cantero
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
103
|
Yan H, Zhang Y, Shan X, Li H, Liu F, Xie G, Li P, Guo W. Altered interhemispheric functional connectivity in patients with obsessive-compulsive disorder and its potential in therapeutic response prediction. J Neurosci Res 2024; 102. [PMID: 38284840 DOI: 10.1002/jnr.25272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 01/30/2024]
Abstract
The trajectory of voxel-mirrored homotopic connectivity (VMHC) after medical treatment in obsessive-compulsive disorder (OCD) and its value in prediction of treatment response remains unclear. This study aimed to investigate the pathophysiological mechanism of OCD, as well as biomarkers for prediction of pharmacological efficacy. Medication-free patients with OCD and healthy controls (HCs) underwent magnetic resonance imaging. The patients were scanned again after a 4-week treatment with paroxetine. The acquired data were subjected to VMHC, support vector regression (SVR), and correlation analyses. Compared with HCs (36 subjects), patients with OCD (34 subjects after excluding two subjects with excessive head movement) exhibited significantly lower VMHC in the bilateral superior parietal lobule (SPL), postcentral gyrus, and calcarine cortex, and VMHC in the postcentral gyrus was positively correlated with cognitive function. After treatment, the patients showed increased VMHC in the bilateral posterior cingulate cortex/precuneus (PCC/PCu) with the improvement of symptoms. SVR results showed that VMHC in the postcentral gyrus at baseline could aid to predict a change in the scores of OCD scales. This study revealed that SPL, postcentral gyrus, and calcarine cortex participate in the pathophysiological mechanism of OCD while PCC/PCu participate in the pharmacological mechanism. VMHC in the postcentral gyrus is a potential predictive biomarker of the treatment effects in OCD.
Collapse
Affiliation(s)
- Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yingying Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoxiao Shan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
104
|
Deng L, Xu B, Gao Z, Miao M, Hu C, Song A. Decoding Natural Grasping Behaviors: Insights Into MRCP Source Features and Coupling Dynamics. IEEE Trans Neural Syst Rehabil Eng 2023; 31:4965-4976. [PMID: 38090842 DOI: 10.1109/tnsre.2023.3342426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The effective decoding of natural grasping behaviors is crucial for the natural control of neural prosthetics. This study aims to investigate the decoding performance of movement-related cortical potential (MRCP) source features between complex grasping actions and explore the temporal and frequency differences in inter-muscular and cortical-muscular coupling strength during movement. Based on the human grasping taxonomy and their frequency, five natural grasping motions-medium wrap, adducted thumb, adduction grip, tip pinch, and writing tripod-were chosen. We collected 64-channel electroencephalogram (EEG) and 5-channel surface electromyogram (sEMG) data from 17 healthy participants, and projected six EEG frequency bands into source space for further analysis. Results from multi-classification and binary classification demonstrated that MRCP source features could not only distinguish between power grasp and precision grasp, but also detect subtle action differences such as thumb adduction and abduction during the execution phase. Besides, we found that during natural reach-and-grasp movement, the coupling strength from cortical to muscle is lower than that from muscle to cortical, except in the hold phase of γ frequency band. Furthermore, a 12-Hz peak of inter-muscular coupling strength was found in movement execution, which might be related to movement planning and execution. We believe that this research will enhance our comprehension of the control and feedback mechanisms of human hand grasping and contributes to a natural and intuitive control for brain-computer interface.
Collapse
|
105
|
Gaudio S, Rukh G, Di Ciommo V, Berkins S, Wiemerslage L, Schiöth HB. Higher fresh fruit intake relates to larger grey matter volumes in areas involved in dementia and depression: A UK Biobank study. Neuroimage 2023; 283:120438. [PMID: 37918179 DOI: 10.1016/j.neuroimage.2023.120438] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023] Open
Abstract
The benefits of consuming fruits and vegetables are widely accepted. While previous studies suggest a protective role of fruits and vegetables against a variety of diseases such as dementia and depression, the biological mechanisms/effects remain unclear. Here we investigated the effect of fruit and vegetable consumption on brain structure. Particularly on grey matter (GM) and white matter (WM) volumes, regional GM volumes and subcortical volumes. Cross-sectional imaging data from UK Biobank cohort was used. A total of 9925 participants (Mean age 62.4 ± 7.5 years, 51.1 % men) were included in the present analysis. Measures included fruit and vegetable intake, other dietary patterns and a number of selected lifestyle factors and clinical data. Brain volumes were derived from structural brain magnetic resonance imaging. General linear model was used to study the associations between brain volumes and fruit/vegetable intakes. After adjusting for selected confounding factors, salad/raw vegetable intake showed a positive association with total white matter volume, fresh fruit intake showed a negative association with total grey matter (GM) volume. Regional GM analyses showed that higher fresh fruit intake was associated with larger GM volume in the left hippocampus, right temporal occipital fusiform cortex, left postcentral gyrus, right precentral gyrus, and right juxtapositional lobule cortex. We conclude that fruit and vegetable consumption seems to specifically modulate brain volumes. In particular, fresh fruit intake may have a protective role in specific cortical areas such as the hippocampus, areas robustly involved in the pathophysiology of dementia and depression.
Collapse
Affiliation(s)
- Santino Gaudio
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden.
| | - Gull Rukh
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Vincenzo Di Ciommo
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Samuel Berkins
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Lyle Wiemerslage
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
106
|
Chen S, Yin Y, Zhang Y, Yue Y, Jiang W, Hou Z, Yuan Y. Abnormal spontaneous activity of regions related to mood regulation mediates the effect of childhood emotional neglect on major depressive disorder. Psychiatry Res Neuroimaging 2023; 336:111729. [PMID: 37890409 DOI: 10.1016/j.pscychresns.2023.111729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/29/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023]
Abstract
This study investigated the mediating factors between childhood emotional neglect (EN) and major depressive disorder (MDD) and whether combining multi-indicator could help diagnose MDD. Regional homogeneity (ReHo) and clinical features were compared between 33 MDD patients and 36 healthy controls (HC). Mediation analysis was employed to explore whether social support or ReHo mediates the association between EN and MDD. The linear discriminant analysis model was constructed with EN, social support, and ReHo, and applied to distinguish MDD from HC in both primary and replication cohorts. We found that MDD patients experienced severer EN and poorer social support, and exhibited lower ReHo in the left middle occipital gyrus and bilateral postcentral gyrus, and higher ReHo in the right cerebellum crus1. EN could affect MDD directly and indirectly through ReHo in these discrepant brain regions and social support. Combining ReHo values of these four distinct brain regions, EN, and objective support could classify MDD patients from HC, and the 10-fold cross-validation accuracy within-study replication and in the independent cohort was 83.78 % ± 1.49 % and 82.72 % ± 2.22 %, respectively. These findings suggested that childhood EN, social support, and emotional-related regions' ReHo were associated with risks of MDD, providing new insights into the pathological mechanisms underlying MDD.
Collapse
Affiliation(s)
- Suzhen Chen
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China; Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing, China
| | - Yingying Yin
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China; Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing, China
| | - Yuqun Zhang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yingying Yue
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China; Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing, China
| | - Wenhao Jiang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China; Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing, China
| | - Zhenghua Hou
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China; Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China; Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing, China; Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.
| |
Collapse
|
107
|
Krause-Sorio B, Siddarth P, Milillo MM, Kilpatrick LA, Narr KL, Lavretsky H. Regional gray matter volume correlates with anxiety, apathy, and resilience in geriatric depression. Int Psychogeriatr 2023; 35:698-706. [PMID: 37381880 DOI: 10.1017/s1041610223000510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
OBJECTIVES Geriatric depression (GD) is associated with significant medical comorbidity, cognitive impairment, brain atrophy, premature mortality, and suboptimal treatment response. While apathy and anxiety are common comorbidities, resilience is a protective factor. Understanding the relationships between brain morphometry, depression, and resilience in GD could inform clinical treatment. Only few studies have addressed gray matter volume (GMV) associations with mood and resilience. PARTICIPANTS Forty-nine adults aged >60 years (38 women) with major depressive disorder undergoing concurrent antidepressant treatment participated in the study. MEASUREMENTS Anatomical T1-weighted scans, apathy, anxiety, and resilience data were collected. Freesurfer 6.0 was used to preprocess T1-weighted images and qdec to perform voxel-wise whole-brain analyses. Partial Spearman correlations controlling for age and sex tested the associations between clinical scores, and general linear models identified clusters of associations between GMV and clinical scores, with age and sex as covariates. Cluster correction and Monte-Carlo simulations were applied (corrected alpha = 0.05). RESULTS Greater depression severity was associated with greater anxiety (r = 0.53, p = 0.0001), lower resilience (r = -0.33, p = 0.03), and greater apathy (r = 0.39, p = 0.01). Greater GMV in widespread, partially overlapping clusters across the brain was associated with reduced anxiety and apathy, as well as increased resilience. CONCLUSION Our results suggest that greater GMV in extended brain regions is a potential marker for resilience in GD, while GMV in more focal and overlapping regions may be markers for depression and anxiety. Interventions focused on improving symptoms in GD may seek to examine their effects on these brain regions.
Collapse
Affiliation(s)
- Beatrix Krause-Sorio
- Department of Psychiatry, Semel Institute for Neuroscience and Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Prabha Siddarth
- Department of Psychiatry, Semel Institute for Neuroscience and Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Michaela M Milillo
- Department of Psychiatry, Semel Institute for Neuroscience and Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Lisa A Kilpatrick
- Department of Psychiatry, Semel Institute for Neuroscience and Behavior, University of California Los Angeles, Los Angeles, CA, USA
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Katherine L Narr
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Helen Lavretsky
- Department of Psychiatry, Semel Institute for Neuroscience and Behavior, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
108
|
Diniz JB, Bazán PR, Pereira CADB, Saraiva EF, Ramos PRC, de Oliveira AR, Reimer AE, Hoexter MQ, Miguel EC, Shavitt RG, Batistuzzo MC. Brain activation during fear extinction recall in unmedicated patients with obsessive-compulsive disorder. Psychiatry Res Neuroimaging 2023; 336:111733. [PMID: 37913655 DOI: 10.1016/j.pscychresns.2023.111733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/03/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
Specific brain activation patterns during fear conditioning and the recall of previously extinguished fear responses have been associated with obsessive-compulsive disorder (OCD). However, further replication studies are necessary. We measured skin-conductance response and blood oxygenation level-dependent responses in unmedicated adult patients with OCD (n = 27) and healthy participants (n = 22) submitted to a two-day fear-conditioning experiment comprising fear conditioning, extinction (day 1) and extinction recall (day 2). During conditioning, groups differed regarding the skin conductance reactivity to the aversive stimulus (shock) and regarding the activation of the right opercular cortex, insular cortex, putamen, and lingual gyrus in response to conditioned stimuli. During extinction recall, patients with OCD had higher responses to stimuli and smaller differences between responses to conditioned and neutral stimuli. For the entire sample, the higher the response delta between conditioned and neutral stimuli, the greater the dACC activation for the same contrast during early extinction recall. While activation of the dACC predicted the average difference between responses to stimuli for the entire sample, groups did not differ regarding the activation of the dACC during extinction recall. Larger unmedicated samples might be necessary to replicate the previous findings reported in patients with OCD.
Collapse
Affiliation(s)
- Juliana Belo Diniz
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, Rua Dr Ovídio Pires de Campos, 785, 05403-010, São Paulo, SP, Brazil.
| | - Paulo Rodrigo Bazán
- Radiology Institute, Faculdade de Medicina, Universidade de São Paulo, Rua Dr Ovídio Pires de Campos, 75, 05403-010, São Paulo, SP, Brazil; Hospital Israelita Albert Einstein, Av. Albert Einstein, 627, 05652-900 São Paulo, SP, Brazil
| | | | - Erlandson Ferreira Saraiva
- Institute of Applied Mathematics, Universidade Federal do Mato grosso do Sul, Cidade Universitária, Caixa Postal 549, 79070-900, Campo Grande, MS, Brazil
| | - Paula Roberta Camargo Ramos
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, Rua Dr Ovídio Pires de Campos, 785, 05403-010, São Paulo, SP, Brazil
| | - Amanda Ribeiro de Oliveira
- Department of Psychology, Federal University of São Carlos, Rod. Washington Luis, km 235, Caixa Postal: 676, 13565-905, São Carlos, SP, Brazil; Institute of Neuroscience and Behavior (INeC), Av. do Café, 2450, 14050-220, Ribeirão Preto, SP, Brazil
| | - Adriano Edgar Reimer
- Department of Psychology, Federal University of São Carlos, Rod. Washington Luis, km 235, Caixa Postal: 676, 13565-905, São Carlos, SP, Brazil; Institute of Neuroscience and Behavior (INeC), Av. do Café, 2450, 14050-220, Ribeirão Preto, SP, Brazil
| | - Marcelo Queiroz Hoexter
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, Rua Dr Ovídio Pires de Campos, 785, 05403-010, São Paulo, SP, Brazil
| | - Euripedes Constantino Miguel
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, Rua Dr Ovídio Pires de Campos, 785, 05403-010, São Paulo, SP, Brazil
| | - Roseli Gedanke Shavitt
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, Rua Dr Ovídio Pires de Campos, 785, 05403-010, São Paulo, SP, Brazil
| | - Marcelo Camargo Batistuzzo
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, Rua Dr Ovídio Pires de Campos, 785, 05403-010, São Paulo, SP, Brazil; Department of Methods and Techniques in Psychology, Pontifical Catholic University, Rua Monte Alegre, 984, 05014-901, São Paulo, SP, Brazil
| |
Collapse
|
109
|
Petruso F, Giff A, Milano B, De Rossi M, Saccaro L. Inflammation and emotion regulation: a narrative review of evidence and mechanisms in emotion dysregulation disorders. Neuronal Signal 2023; 7:NS20220077. [PMID: 38026703 PMCID: PMC10653990 DOI: 10.1042/ns20220077] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Emotion dysregulation (ED) describes a difficulty with the modulation of which emotions are felt, as well as when and how these emotions are experienced or expressed. It is a focal overarching symptom in many severe and prevalent neuropsychiatric diseases, including bipolar disorders (BD), attention deficit/hyperactivity disorder (ADHD), and borderline personality disorder (BPD). In all these disorders, ED can manifest through symptoms of depression, anxiety, or affective lability. Considering the many symptomatic similarities between BD, ADHD, and BPD, a transdiagnostic approach is a promising lens of investigation. Mounting evidence supports the role of peripheral inflammatory markers and stress in the multifactorial aetiology and physiopathology of BD, ADHD, and BPD. Of note, neural circuits that regulate emotions appear particularly vulnerable to inflammatory insults and peripheral inflammation, which can impact the neuroimmune milieu of the central nervous system. Thus far, few studies have examined the link between ED and inflammation in BD, ADHD, and BPD. To our knowledge, no specific work has provided a critical comparison of the results from these disorders. To fill this gap in the literature, we review the known associations and mechanisms linking ED and inflammation in general, and clinically, in BD, ADHD, and BD. Our narrative review begins with an examination of the routes linking ED and inflammation, followed by a discussion of disorder-specific results accounting for methodological limitations and relevant confounding factors. Finally, we critically discuss both correspondences and discrepancies in the results and comment on potential vulnerability markers and promising therapeutic interventions.
Collapse
Affiliation(s)
| | - Alexis E. Giff
- Department of Neuroscience, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Beatrice A. Milano
- Sant’Anna School of Advanced Studies, Pisa, Italy
- University of Pisa, Pisa, Italy
| | | | - Luigi Francesco Saccaro
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Switzerland
- Department of Psychiatry, Geneva University Hospital, Switzerland
| |
Collapse
|
110
|
Lv Y, Zhang JJ, Wang K, Ju L, Zhang H, Zhao Y, Pan Y, Gong J, Wang X, Fong KNK. Determining the Optimal Stimulation Sessions for TMS-Induced Recovery of Upper Extremity Motor Function Post Stroke: A Randomized Controlled Trial. Brain Sci 2023; 13:1662. [PMID: 38137110 PMCID: PMC10741851 DOI: 10.3390/brainsci13121662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
To find out the optimal treatment sessions of repetitive transcranial magnetic stimulation (TMS) over the primary motor cortex (M1) for upper extremity dysfunction after stroke during the 6-week treatment and to explore its mechanism using motor-evoked potentials (MEPs) and resting-state functional magnetic resonance imaging (rs-fMRI), 72 participants with upper extremity motor dysfunction after ischemic stroke were randomly divided into the control group, 10-session, 20-session, and 30-session rTMS groups. Low-frequency (1 Hz) rTMS over the contralesional M1 was applied in all rTMS groups. The motor function of the upper extremity was assessed before and after treatment. In addition, MEPs and rs-fMRI data were analyzed to detect its effect on brain reorganization. After 6 weeks of treatment, there were significant differences in the Fugl-Meyer Assessment of the upper extremity and the Wolf Motor Function Test scores between the 10-session group and the 30-session group and between the 20- and 30-session groups and the control group, while there was no significant difference between the 20-session group and the 30-session group. Meanwhile, no significant difference was found between the 10-session group and the control group. The 20-session group of rTMS decreased the excitability of the contralesional corticospinal tract represented by the amplitudes of MEPs and enhanced the functional connectivity of the ipsilesional M1 or premotor cortex with the the precentral gyrus, postcentral gyrus, and cingulate gyrus, etc. In conclusion, the 20-session of rTMS protocol is the optimal treatment sessions of TMS for upper extremity dysfunction after stroke during the 6-week treatment. The potential mechanism is related to its influence on the excitability of the corticospinal tract and the remodeling of corticomotor functional networks.
Collapse
Affiliation(s)
- Yichen Lv
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264000, China
- Department of Rehabilitation Medicine, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Jack Jiaqi Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Kui Wang
- Department of Rehabilitation Medicine, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Leilei Ju
- Department of Rehabilitation Medicine, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Hongying Zhang
- Department of Medical Imaging, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Yuehan Zhao
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264000, China
- Department of Rehabilitation Medicine, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Yao Pan
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264000, China
- Department of Rehabilitation Medicine, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Jianwei Gong
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264000, China
| | - Xin Wang
- Department of Rehabilitation Medicine, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Kenneth N. K. Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
111
|
Hu Z, Li W, Ye Y, Zhang F, Liu H, Wang C, Lan X, Chen X, You Z, Lan Y, Ning Y, Zhou Y. Alterations of functional connectivity in young people with depression mediate the relationship between sleep quality and cognitive function. J Affect Disord 2023; 340:160-166. [PMID: 37557984 DOI: 10.1016/j.jad.2023.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/07/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Sleep disturbances is common in young people with depression, and poor sleep quality affects the ability to learn. In this study, we examined possible resting-state functional connectivity abnormalities between regions of interest, and clarified the relationship with depressive symptoms, sleep quality, and cognitive function. METHODS Resting-state functional magnetic resonance imaging (fMRI) was collected on 42 healthy controls (HCs), 82 youth depressive patients (44 without sleep disturbances (NSD), and 38 with sleep disturbances (SD)). Regions of interest were defined by using Brainnetome Atlas. Functional connectivity was calculated, and its associations with depressive symptoms, sleep quality, and cognitive function were examined using correlation analysis and mediation analysis. RESULTS The left and right caudal of cingulate gyrus, tongue and larynx region of postcentral gyrus were significant brain regions in NSD versus SD. The average functional connectivity between these regions was associated with poor sleep quality (r = 0.368, p = 0.001) and worse working memory (r = -0.256, p = 0.023) and mediated the relationship between sleep quality and working memory (c = -0.738, c' = -0.500). LIMITATION Data consistency in this study was not good enough. This study did not monitor sleep rhythms to provide objective sleep-related data. CONCLUSION The functional connectivity between the left and right caudal of cingulate gyrus with tongue and larynx region of postcentral gyrus may be the neural mechanism by which sleep disturbances affect working memory. This provides an intervention target for clinically improving cognitive function in young people with depression.
Collapse
Affiliation(s)
- Zhibo Hu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Weicheng Li
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yanxiang Ye
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fan Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Haiyan Liu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chengyu Wang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaofeng Lan
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoyu Chen
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zerui You
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuting Lan
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Yanling Zhou
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
112
|
Song C, Zhao Y, Zhang J, Dong Z, Kang X, Pan Y, Du J, Gao Y, Zhang H, Xi Y, Ding H, Kuang F, Wang W, Luo C, Zhang Z, Zhao Q, Yang J, Jiang W, Wu S, Gao F. Spatial Distribution of Parvalbumin-Positive Fibers in the Mouse Brain and Their Alterations in Mouse Models of Temporal Lobe Epilepsy and Parkinson's Disease. Neurosci Bull 2023; 39:1683-1702. [PMID: 37523099 PMCID: PMC10603013 DOI: 10.1007/s12264-023-01083-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/27/2023] [Indexed: 08/01/2023] Open
Abstract
Parvalbumin interneurons belong to the major types of GABAergic interneurons. Although the distribution and pathological alterations of parvalbumin interneuron somata have been widely studied, the distribution and vulnerability of the neurites and fibers extending from parvalbumin interneurons have not been detailly interrogated. Through the Cre recombinase-reporter system, we visualized parvalbumin-positive fibers and thoroughly investigated their spatial distribution in the mouse brain. We found that parvalbumin fibers are widely distributed in the brain with specific morphological characteristics in different regions, among which the cortex and thalamus exhibited the most intense parvalbumin signals. In regions such as the striatum and optic tract, even long-range thick parvalbumin projections were detected. Furthermore, in mouse models of temporal lobe epilepsy and Parkinson's disease, parvalbumin fibers suffered both massive and subtle morphological alterations. Our study provides an overview of parvalbumin fibers in the brain and emphasizes the potential pathological implications of parvalbumin fiber alterations.
Collapse
Affiliation(s)
- Changgeng Song
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yan Zhao
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Jiajia Zhang
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ziyi Dong
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Xin Kang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuqi Pan
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Jinle Du
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yiting Gao
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Haifeng Zhang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ye Xi
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Hui Ding
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Fang Kuang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Wenting Wang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ceng Luo
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhengping Zhang
- Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, 710054, China
| | - Qinpeng Zhao
- Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, 710054, China
| | - Jiazhou Yang
- The Medical College of Yan'an University, Yan'an, 716000, China
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Shengxi Wu
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Fang Gao
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
113
|
He K, Hua Q, Li Q, Zhang Y, Yao X, Yang Y, Xu W, Sun J, Wang L, Wang A, Ji GJ, Wang K. Abnormal interhemispheric functional cooperation in schizophrenia follows the neurotransmitter profiles. J Psychiatry Neurosci 2023; 48:E452-E460. [PMID: 38123242 PMCID: PMC10743641 DOI: 10.1503/jpn.230037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/26/2023] [Accepted: 09/05/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Interhemispheric cooperation is one of the most prominent functional architectures of the human brain. In patients with schizophrenia, interhemispheric cooperation deficits have been reported using increasingly powerful neurobehavioural and neuroimaging measures. However, these methods rely in part on the assumption of anatomic symmetry between hemispheres. In the present study, we explored interhemispheric cooperation deficits in schizophrenia using a newly developed index, connectivity between functionally homotopic voxels (CFH), which is unbiased by hemispheric asymmetry. METHODS Patients with schizophrenia and age- and sexmatched healthy controls underwent multimodal MRI, and whole-brain CFH maps were constructed for comparison between groups. We examined the correlations of differing CFH values between the schizophrenia and control groups using various neurotransmitter receptor and transporter densities. RESULTS We included 86 patients with schizophrenia and 86 matched controls in our analysis. Patients with schizophrenia showed significantly lower CFH values in the frontal lobes, left postcentral gyrus and right inferior temporal gyrus, and significantly greater CFH values in the right caudate nucleus than healthy controls. Moreover, the differing CFH values in patients with schizophrenia were significantly correlated with positive symptom score and illness duration. Functional connectivity within frontal lobes was significantly reduced at the voxel cluster level compared with healthy controls. Finally, the abnormal CFH map of patients with schizophrenia was spatially associated with the densities of the dopamine D1 and D2 receptors, fluorodopa, dopamine transporter, serotonin transporter and acetylcholine transporter. CONCLUSION Regional abnormalities in interhemispheric cooperation may contribute to the clinical symptoms of schizophrenia. These CFH abnormalities may be associated with dysfunction in neurotransmitter systems strongly implicated in schizophrenia.
Collapse
Affiliation(s)
- Kongliang He
- From the Affiliated Psychological Hospital of Anhui Medical University, Hefei, China (He, A. Wang); the Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China (He, Hua, Yao, Sun, L. Wang, Ji, K. Wang); the School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China (He, Zhang, Yang, Xu, A. Wang, Ji, K. Wang); the Hefei Fourth People's Hospital, Hefei, China (He, A. Wang); the Anhui Mental Health Center, Hefei, China (He, A. Wang); the Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China (Li); the Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China (Hua, Li, Zhang, Yang, Xu, Sun, L. Wang, Ji, K. Wang); the Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China (Hua, Li, Zhang, Yang, Xu, Sun, L. Wang, Ji, K. Wang); the Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China (K. Wang); and the Anhui Institute of Translational Medicine, Hefei, China (K. Wang)
| | - Qiang Hua
- From the Affiliated Psychological Hospital of Anhui Medical University, Hefei, China (He, A. Wang); the Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China (He, Hua, Yao, Sun, L. Wang, Ji, K. Wang); the School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China (He, Zhang, Yang, Xu, A. Wang, Ji, K. Wang); the Hefei Fourth People's Hospital, Hefei, China (He, A. Wang); the Anhui Mental Health Center, Hefei, China (He, A. Wang); the Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China (Li); the Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China (Hua, Li, Zhang, Yang, Xu, Sun, L. Wang, Ji, K. Wang); the Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China (Hua, Li, Zhang, Yang, Xu, Sun, L. Wang, Ji, K. Wang); the Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China (K. Wang); and the Anhui Institute of Translational Medicine, Hefei, China (K. Wang)
| | - Qianqian Li
- From the Affiliated Psychological Hospital of Anhui Medical University, Hefei, China (He, A. Wang); the Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China (He, Hua, Yao, Sun, L. Wang, Ji, K. Wang); the School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China (He, Zhang, Yang, Xu, A. Wang, Ji, K. Wang); the Hefei Fourth People's Hospital, Hefei, China (He, A. Wang); the Anhui Mental Health Center, Hefei, China (He, A. Wang); the Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China (Li); the Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China (Hua, Li, Zhang, Yang, Xu, Sun, L. Wang, Ji, K. Wang); the Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China (Hua, Li, Zhang, Yang, Xu, Sun, L. Wang, Ji, K. Wang); the Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China (K. Wang); and the Anhui Institute of Translational Medicine, Hefei, China (K. Wang)
| | - Yan Zhang
- From the Affiliated Psychological Hospital of Anhui Medical University, Hefei, China (He, A. Wang); the Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China (He, Hua, Yao, Sun, L. Wang, Ji, K. Wang); the School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China (He, Zhang, Yang, Xu, A. Wang, Ji, K. Wang); the Hefei Fourth People's Hospital, Hefei, China (He, A. Wang); the Anhui Mental Health Center, Hefei, China (He, A. Wang); the Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China (Li); the Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China (Hua, Li, Zhang, Yang, Xu, Sun, L. Wang, Ji, K. Wang); the Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China (Hua, Li, Zhang, Yang, Xu, Sun, L. Wang, Ji, K. Wang); the Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China (K. Wang); and the Anhui Institute of Translational Medicine, Hefei, China (K. Wang)
| | - Xiaoqing Yao
- From the Affiliated Psychological Hospital of Anhui Medical University, Hefei, China (He, A. Wang); the Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China (He, Hua, Yao, Sun, L. Wang, Ji, K. Wang); the School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China (He, Zhang, Yang, Xu, A. Wang, Ji, K. Wang); the Hefei Fourth People's Hospital, Hefei, China (He, A. Wang); the Anhui Mental Health Center, Hefei, China (He, A. Wang); the Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China (Li); the Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China (Hua, Li, Zhang, Yang, Xu, Sun, L. Wang, Ji, K. Wang); the Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China (Hua, Li, Zhang, Yang, Xu, Sun, L. Wang, Ji, K. Wang); the Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China (K. Wang); and the Anhui Institute of Translational Medicine, Hefei, China (K. Wang)
| | - Yinian Yang
- From the Affiliated Psychological Hospital of Anhui Medical University, Hefei, China (He, A. Wang); the Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China (He, Hua, Yao, Sun, L. Wang, Ji, K. Wang); the School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China (He, Zhang, Yang, Xu, A. Wang, Ji, K. Wang); the Hefei Fourth People's Hospital, Hefei, China (He, A. Wang); the Anhui Mental Health Center, Hefei, China (He, A. Wang); the Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China (Li); the Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China (Hua, Li, Zhang, Yang, Xu, Sun, L. Wang, Ji, K. Wang); the Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China (Hua, Li, Zhang, Yang, Xu, Sun, L. Wang, Ji, K. Wang); the Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China (K. Wang); and the Anhui Institute of Translational Medicine, Hefei, China (K. Wang)
| | - Wenqiang Xu
- From the Affiliated Psychological Hospital of Anhui Medical University, Hefei, China (He, A. Wang); the Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China (He, Hua, Yao, Sun, L. Wang, Ji, K. Wang); the School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China (He, Zhang, Yang, Xu, A. Wang, Ji, K. Wang); the Hefei Fourth People's Hospital, Hefei, China (He, A. Wang); the Anhui Mental Health Center, Hefei, China (He, A. Wang); the Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China (Li); the Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China (Hua, Li, Zhang, Yang, Xu, Sun, L. Wang, Ji, K. Wang); the Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China (Hua, Li, Zhang, Yang, Xu, Sun, L. Wang, Ji, K. Wang); the Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China (K. Wang); and the Anhui Institute of Translational Medicine, Hefei, China (K. Wang)
| | - Jinmei Sun
- From the Affiliated Psychological Hospital of Anhui Medical University, Hefei, China (He, A. Wang); the Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China (He, Hua, Yao, Sun, L. Wang, Ji, K. Wang); the School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China (He, Zhang, Yang, Xu, A. Wang, Ji, K. Wang); the Hefei Fourth People's Hospital, Hefei, China (He, A. Wang); the Anhui Mental Health Center, Hefei, China (He, A. Wang); the Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China (Li); the Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China (Hua, Li, Zhang, Yang, Xu, Sun, L. Wang, Ji, K. Wang); the Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China (Hua, Li, Zhang, Yang, Xu, Sun, L. Wang, Ji, K. Wang); the Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China (K. Wang); and the Anhui Institute of Translational Medicine, Hefei, China (K. Wang)
| | - Lu Wang
- From the Affiliated Psychological Hospital of Anhui Medical University, Hefei, China (He, A. Wang); the Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China (He, Hua, Yao, Sun, L. Wang, Ji, K. Wang); the School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China (He, Zhang, Yang, Xu, A. Wang, Ji, K. Wang); the Hefei Fourth People's Hospital, Hefei, China (He, A. Wang); the Anhui Mental Health Center, Hefei, China (He, A. Wang); the Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China (Li); the Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China (Hua, Li, Zhang, Yang, Xu, Sun, L. Wang, Ji, K. Wang); the Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China (Hua, Li, Zhang, Yang, Xu, Sun, L. Wang, Ji, K. Wang); the Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China (K. Wang); and the Anhui Institute of Translational Medicine, Hefei, China (K. Wang)
| | - Anzhen Wang
- From the Affiliated Psychological Hospital of Anhui Medical University, Hefei, China (He, A. Wang); the Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China (He, Hua, Yao, Sun, L. Wang, Ji, K. Wang); the School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China (He, Zhang, Yang, Xu, A. Wang, Ji, K. Wang); the Hefei Fourth People's Hospital, Hefei, China (He, A. Wang); the Anhui Mental Health Center, Hefei, China (He, A. Wang); the Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China (Li); the Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China (Hua, Li, Zhang, Yang, Xu, Sun, L. Wang, Ji, K. Wang); the Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China (Hua, Li, Zhang, Yang, Xu, Sun, L. Wang, Ji, K. Wang); the Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China (K. Wang); and the Anhui Institute of Translational Medicine, Hefei, China (K. Wang)
| | - Gong-Jun Ji
- From the Affiliated Psychological Hospital of Anhui Medical University, Hefei, China (He, A. Wang); the Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China (He, Hua, Yao, Sun, L. Wang, Ji, K. Wang); the School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China (He, Zhang, Yang, Xu, A. Wang, Ji, K. Wang); the Hefei Fourth People's Hospital, Hefei, China (He, A. Wang); the Anhui Mental Health Center, Hefei, China (He, A. Wang); the Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China (Li); the Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China (Hua, Li, Zhang, Yang, Xu, Sun, L. Wang, Ji, K. Wang); the Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China (Hua, Li, Zhang, Yang, Xu, Sun, L. Wang, Ji, K. Wang); the Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China (K. Wang); and the Anhui Institute of Translational Medicine, Hefei, China (K. Wang)
| | - Kai Wang
- From the Affiliated Psychological Hospital of Anhui Medical University, Hefei, China (He, A. Wang); the Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China (He, Hua, Yao, Sun, L. Wang, Ji, K. Wang); the School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China (He, Zhang, Yang, Xu, A. Wang, Ji, K. Wang); the Hefei Fourth People's Hospital, Hefei, China (He, A. Wang); the Anhui Mental Health Center, Hefei, China (He, A. Wang); the Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China (Li); the Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China (Hua, Li, Zhang, Yang, Xu, Sun, L. Wang, Ji, K. Wang); the Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China (Hua, Li, Zhang, Yang, Xu, Sun, L. Wang, Ji, K. Wang); the Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China (K. Wang); and the Anhui Institute of Translational Medicine, Hefei, China (K. Wang)
| |
Collapse
|
114
|
Han Y, Yan H, Shan X, Li H, Liu F, Li P, Zhao J, Guo W. Disrupted functional connectivity associated with cognitive impairment in generalized anxiety disorder (GAD) and comorbid GAD and depression: a follow-up fMRI study. J Psychiatry Neurosci 2023; 48:E439-E451. [PMID: 37935477 PMCID: PMC10635709 DOI: 10.1503/jpn.230091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/01/2023] [Accepted: 08/26/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Impaired functional connectivity between the bilateral hemispheres may serve as the neural substrate for anxiety and depressive disorders, yet its role in comorbid generalized anxiety disorder (GAD) and depression, as well as the effect of treatment on this connectivity, remains unclear. We sought to examine functional connectivity between homotopic regions of the 2 hemispheres (voxel-mirrored homotopic connectivity [VMHC]) among people with GAD with and without comorbid depression at baseline and after a 4-week paroxetine treatment. METHODS Drug-naïve patients with GAD, with or without comorbid depression and healthy controls underwent functional magnetic resonance imaging and clinical assessments at baseline and after treatment. We compared VMHC and seed-based functional connectivity across the 3 groups. We performed correlation analysis and support vector regression (SVR) to examine the intrinsic relationships between VMHC and symptoms. RESULTS Both patient groups (n = 40 with GAD only, n = 58 with GAD and depression) showed decreased VMHC in the precuneus, posterior cingulate cortex and lingual gyrus compared with healthy controls (n = 54). Moreover, they showed decreased VMHC in different brain regions compared with healthy controls. However, we did not observe any significant differences between the 2 patient groups. Seeds from abnormal VMHC clusters in patient groups had decreased functional connectivity. Voxel-mirrored homotopic connectivity in the precuneus, posterior cingulate cortex and lingual gyrus was negatively correlated with cognitive impairment among patients with GAD only and among all patients. The SVR analysis based on abnormal VMHC showed significant positive correlations (p < 0.0001) between predicted and actual treatment responses. However, we did not observe significant differences in VMHC or functional connectivity after treatment. LIMITATIONS A notable dropout rate and intergroup somatic symptom variations may have biased the results. CONCLUSION Patients with GAD with or without comorbid depression exhibited shared and distinct abnormal VMHC patterns, which might be linked to their cognitive deficits. These patterns have the potential to serve as prognostic biomarkers for GAD.Clinical trial registration: ClinicalTrials.gov NCT03894085.
Collapse
Affiliation(s)
- Yiding Han
- From the Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Han, Yan, Shan, Zhao, Guo); the Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (H. Li); the Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China (Liu); the Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China (P. Li)
| | - Haohao Yan
- From the Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Han, Yan, Shan, Zhao, Guo); the Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (H. Li); the Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China (Liu); the Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China (P. Li)
| | - Xiaoxiao Shan
- From the Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Han, Yan, Shan, Zhao, Guo); the Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (H. Li); the Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China (Liu); the Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China (P. Li)
| | - Huabing Li
- From the Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Han, Yan, Shan, Zhao, Guo); the Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (H. Li); the Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China (Liu); the Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China (P. Li)
| | - Feng Liu
- From the Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Han, Yan, Shan, Zhao, Guo); the Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (H. Li); the Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China (Liu); the Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China (P. Li)
| | - Ping Li
- From the Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Han, Yan, Shan, Zhao, Guo); the Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (H. Li); the Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China (Liu); the Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China (P. Li)
| | - Jingping Zhao
- From the Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Han, Yan, Shan, Zhao, Guo); the Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (H. Li); the Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China (Liu); the Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China (P. Li)
| | - Wenbin Guo
- From the Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Han, Yan, Shan, Zhao, Guo); the Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (H. Li); the Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China (Liu); the Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China (P. Li)
| |
Collapse
|
115
|
Krick S, Koob JL, Latarnik S, Volz LJ, Fink GR, Grefkes C, Rehme AK. Neuroanatomy of post-stroke depression: the association between symptom clusters and lesion location. Brain Commun 2023; 5:fcad275. [PMID: 37908237 PMCID: PMC10613857 DOI: 10.1093/braincomms/fcad275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 08/07/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023] Open
Abstract
Post-stroke depression affects about 30% of stroke patients and often hampers functional recovery. The diagnosis of depression encompasses heterogeneous symptoms at emotional, motivational, cognitive, behavioural or somatic levels. Evidence indicates that depression is caused by disruption of bio-aminergic fibre tracts between prefrontal and limbic or striatal brain regions comprising different functional networks. Voxel-based lesion-symptom mapping studies reported discrepant findings regarding the association between infarct locations and depression. Inconsistencies may be due to the usage of sum scores, thereby mixing different symptoms of depression. In this cross-sectional study, we used multivariate support vector regression for lesion-symptom mapping to identify regions significantly involved in distinct depressive symptom domains and global depression. MRI lesion data were included from 200 patients with acute first-ever ischaemic stroke (mean 0.9 ± 1.5 days of post-stroke). The Montgomery-Åsberg Depression Rating interview assessed depression severity in five symptom domains encompassing motivational, emotional and cognitive symptoms deficits, anxiety and somatic symptoms and was examined 8.4 days of post-stroke (±4.3). We found that global depression severity, irrespective of individual symptom domains, was primarily linked to right hemispheric lesions in the dorsolateral prefrontal cortex and inferior frontal gyrus. In contrast, when considering distinct symptom domains individually, the analyses yielded much more sensitive results in regions where the correlations with the global depression score yielded no effects. Accordingly, motivational deficits were associated with lesions in orbitofrontal cortex, dorsolateral prefrontal cortex, pre- and post-central gyri and basal ganglia, including putamen and pallidum. Lesions affecting the dorsal thalamus, anterior insula and somatosensory cortex were significantly associated with emotional symptoms such as sadness. Damage to the dorsolateral prefrontal cortex was associated with concentration deficits, cognitive symptoms of guilt and self-reproach. Furthermore, somatic symptoms, including loss of appetite and sleep disturbances, were linked to the insula, parietal operculum and amygdala lesions. Likewise, anxiety was associated with lesions impacting the central operculum, insula and inferior frontal gyrus. Interestingly, symptoms of anxiety were exclusively left hemispheric, whereas the lesion-symptom associations of the other domains were lateralized to the right hemisphere. In conclusion, this large-scale study shows that in acute stroke patients, differential post-stroke depression symptom domains are associated with specific structural correlates. Our findings extend existing concepts on the neural underpinnings of depressive symptoms, indicating that differential lesion patterns lead to distinct depressive symptoms in the first weeks of post-stroke. These findings may facilitate the development of personalized treatments to improve post-stroke rehabilitation.
Collapse
Affiliation(s)
- Sebastian Krick
- Department of Neurology, University Hospital Cologne, Cologne 50937, Germany
| | - Janusz L Koob
- Department of Neurology, University Hospital Cologne, Cologne 50937, Germany
| | - Sylvia Latarnik
- Department of Neurology, University Hospital Cologne, Cologne 50937, Germany
| | - Lukas J Volz
- Department of Neurology, University Hospital Cologne, Cologne 50937, Germany
| | - Gereon R Fink
- Department of Neurology, University Hospital Cologne, Cologne 50937, Germany
- Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM-3), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Christian Grefkes
- Department of Neurology, University Hospital Cologne, Cologne 50937, Germany
- Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM-3), Forschungszentrum Jülich, Jülich 52425, Germany
- Department of Neurology, Goethe University Hospital Frankfurt, Frankfurt am Main 60528, Germany
| | - Anne K Rehme
- Department of Neurology, University Hospital Cologne, Cologne 50937, Germany
| |
Collapse
|
116
|
Zhang X, Yang X, Wu B, Pan N, He M, Wang S, Kemp GJ, Gong Q. Large-scale brain functional network abnormalities in social anxiety disorder. Psychol Med 2023; 53:6194-6204. [PMID: 36330833 PMCID: PMC10520603 DOI: 10.1017/s0033291722003439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/06/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Although aberrant brain regional responses are reported in social anxiety disorder (SAD), little is known about resting-state functional connectivity at the macroscale network level. This study aims to identify functional network abnormalities using a multivariate data-driven method in a relatively large and homogenous sample of SAD patients, and assess their potential diagnostic value. METHODS Forty-six SAD patients and 52 demographically-matched healthy controls (HC) were recruited to undergo clinical evaluation and resting-state functional MRI scanning. We used group independent component analysis to characterize the functional architecture of brain resting-state networks (RSNs) and investigate between-group differences in intra-/inter-network functional network connectivity (FNC). Furtherly, we explored the associations of FNC abnormalities with clinical characteristics, and assessed their ability to discriminate SAD from HC using support vector machine analyses. RESULTS SAD patients showed widespread intra-network FNC abnormalities in the default mode network, the subcortical network and the perceptual system (i.e. sensorimotor, auditory and visual networks), and large-scale inter-network FNC abnormalities among those high-order and primary RSNs. Some aberrant FNC signatures were correlated to disease severity and duration, suggesting pathophysiological relevance. Furthermore, intrinsic FNC anomalies allowed individual classification of SAD v. HC with significant accuracy, indicating potential diagnostic efficacy. CONCLUSIONS SAD patients show distinct patterns of functional synchronization abnormalities both within and across large-scale RSNs, reflecting or causing a network imbalance of bottom-up response and top-down regulation in cognitive, emotional and sensory domains. Therefore, this could offer insights into the neurofunctional substrates of SAD.
Collapse
Affiliation(s)
- Xun Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| | - Xun Yang
- School of Public Affairs, Chongqing University, Chongqing 400044, China
| | - Baolin Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| | - Min He
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| | - Graham J. Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian 361000, China
| |
Collapse
|
117
|
Bao B, Sun Y, Lin J, Gao T, Shen J, Hu W, Zhu H, Zhu T, Li J, Wang Z, Wei H, Zheng X. Altered cortical thickness and structural covariance networks in upper limb amputees: A graph theoretical analysis. CNS Neurosci Ther 2023; 29:2901-2911. [PMID: 37122148 PMCID: PMC10493660 DOI: 10.1111/cns.14226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND The extensive functional and structural remodeling that occurs in the brain after amputation often results in phantom limb pain (PLP). These closely related phenomena are still not fully understood. METHODS Using magnetic resonance imaging (MRI) and graph theoretical analysis (GTA), we explored how alterations in brain cortical thickness (CTh) and structural covariance networks (SCNs) in upper limb amputees (ULAs) relate to PLP. In all, 45 ULAs and 45 healthy controls (HCs) underwent structural MRI. Regional network properties, including nodal degree, betweenness centrality (BC), and node efficiency, were analyzed with GTA. Similarly, global network properties, including global efficiency (Eglob), local efficiency (Eloc), clustering coefficient (Cp), characteristic path length (Lp), and the small-worldness index, were evaluated. RESULTS Compared with HCs, ULAs had reduced CThs in the postcentral and precentral gyri contralateral to the amputated limb; this decrease in CTh was negatively correlated with PLP intensity in ULAs. ULAs showed varying degrees of change in node efficiency in regional network properties compared to HCs (p < 0.005). There were no group differences in Eglob, Eloc, Cp, and Lp properties (all p > 0.05). The real-worldness SCN of ULAs showed a small-world topology ranging from 2% to 34%, and the area under the curve of the small-worldness index in ULAs was significantly different compared to HCs (p < 0.001). CONCLUSION These results suggest that the topological organization of human CNS functional networks is altered after amputation of the upper limb, providing further support for the cortical remapping theory of PLP.
Collapse
Affiliation(s)
- Bingbo Bao
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yi Sun
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Junqing Lin
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Tao Gao
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Junjie Shen
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Wencheng Hu
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Hongyi Zhu
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Tianhao Zhu
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Jing Li
- Institute of Diagnostic and Interventional RadiologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Zhibin Wang
- Institute of Diagnostic and Interventional RadiologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Haifeng Wei
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Xianyou Zheng
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| |
Collapse
|
118
|
Li W, Sun L, Yue L, Xiao S. The left temporal transverse cortex is affected by poor sleep quality, which in turn contributes to depressive symptoms in older adults. Heliyon 2023; 9:e20751. [PMID: 37860546 PMCID: PMC10582376 DOI: 10.1016/j.heliyon.2023.e20751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023] Open
Abstract
Sleep quality is critical for improving mental health among older adults. Despite this, there is a dearth of studies examining the correlation between sleep quality and emotional symptoms in the elderly population of China. This study included 496 community elders aged 55 years and older. The participants were divided into two groups based on their scores on the Pittsburgh Sleep Quality Index (PSQI), with 249 being classified as poor sleepers and 247 as good sleepers. All participants were asked to fill out a uniform survey which included details about their demographics, daily habits, and any illnesses they were dealing with. The Self-rating anxiety scale (SAS) and Geriatric Depression Scale (GDS) were employed to measure their levels of anxiety and depression, respectively. In addition, 50 healthy individuals also agreed to brain MR imaging. The finding of our study indicated that those with inadequate sleep had higher levels of depression and anxiety, and the overall anxiety and depression score was linked to the total PSQI score in a positive manner; The MRI subgroup analysis revealed that those with inadequate sleep quality had a greater thickness of the left transverse temporal gyrus (p < 0.05). In addition, a Linear regression analysis of the mediation model showed that poor sleep quality would result in higher scores on the GDS, and cortical thickness in the left transverse temporal gyrus played a fully mediated role in this process. Our research indicates that elderly people in community who have difficulty sleeping may be more likely to suffer from anxiety and depression, and this lack of sleep can result in depressive symptoms due to its impact on the thickness of the left transverse temporal cortex.
Collapse
Affiliation(s)
- Wei Li
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Sun
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Yue
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Shifu Xiao
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
119
|
Vu HT, Pham TN, Nishijo M, Yokawa T, Pham The T, Takiguchi T, Nishino Y, Nishijo H. Impact of dioxin exposure on brain morphometry and social anxiety in men living in the most dioxin-contaminated area in Vietnam. J Psychiatr Res 2023; 166:169-177. [PMID: 37774667 DOI: 10.1016/j.jpsychires.2023.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 06/16/2023] [Accepted: 09/13/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Previously, we reported that the global brain volume was significantly higher in men with estimated perinatal dioxin exposure in Vietnam. In this study, we aimed to clarify which brain lobes, consisting of several gyri, contributed to the increased global brain volume. We then analyzed associations between changes in brain volume and social anxiety symptoms to investigate the role of structural changes of the brain on social anxiety following perinatal dioxin exposure. METHODS Thirty-three men living near the dioxin-contaminated Bien Hoa airbase, underwent MRI examination. The regional gray matter volumes were extracted using the SPM12 in a MATLAB environment, and compared between subgroups with and without perinatal dioxin exposure estimated from their maternal residency in Bien Hoa during pregnancy. The social anxiety questionnaire for adults (SAQ-A30) was used to assess social anxiety. RESULTS In both hemispheres, higher gray matter volume in the frontal and temporal lobes, particularly in the superior frontal gyrus, superior temporal gyrus, and temporal pole were found in men with perinatal dioxin exposure. Superior temporal gyrus volume was significantly higher in men with perinatal exposure also after adjusting for reduction of its volume associated with increasing 1,2,3,7,8-PentaCDD levels in blood. Increased volume of these gyri, which showed higher volume in men with perinatal exposure, was associated with increased SAQ-A30 scores. CONCLUSION Perinatal dioxin exposure may increase the brain volume of gyri involved in social behavior, which was associated with increased social anxiety symptoms, suggesting functional effects accompanied the morphological effects of dioxin exposure.
Collapse
Affiliation(s)
- Hoa Thi Vu
- Department of Public Health, Kanazawa Medical University, Japan; Biomedical and Pharmaceutical Research Center, Vietnam Military Medical University, Hanoi, Viet Nam
| | - Thao Ngoc Pham
- Department of Functional Diagnosis, 103 Military Hospital, Vietnam Military Medical University, Hanoi, Viet Nam
| | - Muneko Nishijo
- Department of Public Health, Kanazawa Medical University, Japan.
| | | | - Tai Pham The
- Biomedical and Pharmaceutical Research Center, Vietnam Military Medical University, Hanoi, Viet Nam
| | | | | | | |
Collapse
|
120
|
Gao X, Wei T, Xu S, Sun W, Zhang B, Li C, Sui R, Fei N, Li Y, Xu W, Han D. Sleep disorders causally affect the brain cortical structure: A Mendelian randomization study. Sleep Med 2023; 110:243-253. [PMID: 37657176 DOI: 10.1016/j.sleep.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/14/2023] [Accepted: 08/13/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND s: Previous studies have reported that patients with sleep disorders have altered brain cortical structures. However, the causality has not been determined. We performed a two-sample Mendelian randomization (MR) to reveal the causal effect of sleep disorders on brain cortical structure. METHODS We included as exposures 11 phenotypes of sleep disorders including subjective and objective sleep duration, insomnia symptom and poor sleep efficiency, daytime sleepiness (narcolepsy)/napping, morning/evening preference, and four sleep breathing related traits from nine European-descent genome-wide association studies (GWASs). Further, outcome variables were provided by ENIGMA Consortium GWAS for full brain and 34 region-specific cortical thickness (TH) and surface area (SA) of grey matter. Inverse-variance weighted (IVW) was used as the primary estimate whereas alternative MR methods were implemented as sensitivity analysis approaches to ensure results robustness. RESULTS At the global level, both self-reported or accelerometer-measured shorter sleep duration decreases the thickness of full brain both derived from self-reported data (βIVW = 0.03 mm, standard error (SE) = 0.02, P = 0.038; βIVW = 0.02 mm, SE = 0.01, P = 0.010). At the functional level, there were 66 associations of suggestive evidence of causality. Notably, one robust evidence after multiple testing correction (1518 tests) suggests the without global weighted SA of superior parietal lobule was influenced significantly by sleep efficiency (βIVW = -285.28 mm2, SE = 68.59, P = 3.2 × 10-5). CONCLUSIONS We found significant evidence that shorter sleep duration, as estimated by self-reported interview and accelerometer measurements, was causally associated with atrophy in the entire human brain.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China; Obstructive Sleep Apnea-Hypopnea Syndrome Clinical Diagnosis and Therapy and Research Centre, Capital Medical University, Beijing, 100730, People's Republic of China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Tao Wei
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, People's Republic of China
| | - Shenglong Xu
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China; Obstructive Sleep Apnea-Hypopnea Syndrome Clinical Diagnosis and Therapy and Research Centre, Capital Medical University, Beijing, 100730, People's Republic of China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Wei Sun
- Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, People's Republic of China
| | - Bowen Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China; Obstructive Sleep Apnea-Hypopnea Syndrome Clinical Diagnosis and Therapy and Research Centre, Capital Medical University, Beijing, 100730, People's Republic of China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Cancan Li
- Department of Epidemiology and Health Statistics, School of Public Halth, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Rongcui Sui
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China; Obstructive Sleep Apnea-Hypopnea Syndrome Clinical Diagnosis and Therapy and Research Centre, Capital Medical University, Beijing, 100730, People's Republic of China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Nanxi Fei
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Yanru Li
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China; Obstructive Sleep Apnea-Hypopnea Syndrome Clinical Diagnosis and Therapy and Research Centre, Capital Medical University, Beijing, 100730, People's Republic of China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, 100730, People's Republic of China.
| | - Wen Xu
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China; Obstructive Sleep Apnea-Hypopnea Syndrome Clinical Diagnosis and Therapy and Research Centre, Capital Medical University, Beijing, 100730, People's Republic of China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Demin Han
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China; Obstructive Sleep Apnea-Hypopnea Syndrome Clinical Diagnosis and Therapy and Research Centre, Capital Medical University, Beijing, 100730, People's Republic of China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, 100730, People's Republic of China.
| |
Collapse
|
121
|
Zhang J, Zhang J, Sun H, Yang J, Ma Y, Chen K, Su J, Yu X, Yang F, Zhang Z, Zhao T, Hu X, Zhai Y, Liu Q, Wang J, Liu C, Wang Z. Cerebellum drives functional dysfunctions in restless leg syndrome. Sleep Med 2023; 110:172-178. [PMID: 37595434 DOI: 10.1016/j.sleep.2023.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/04/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
OBJECTIVE Restless legs syndrome (RLS) has serious effects on patients' sleep quality, physical and mental health. However, the pathophysiological mechanisms of RLS remain unclear. This study utilized both static and dynamic functional activity and connectivity analyses approaches as well as effective connectivity analysis to reveal the neurophysiological basis of RLS. METHODS The resting-state functional MRI (rs-fMRI) data from 32 patients with RLS and 33 age-, and gender-matched healthy control (HC) were collected. Dynamic and static amplitude of low frequency fluctuation (ALFF), functional connectivity (FC), and Granger causality analysis (GCA) were employed to reveal the abnormal functional activities and couplings in patients with RLS. RESULTS RLS patients showed over-activities in left parahippocampus and right cerebellum, hyper-connectivities of right cerebellum with left basal ganglia, left postcentral gyrus and right precentral gyrus, and enhanced effective connectivity from right cerebellum to left postcentral gyrus compared to HC. CONCLUSIONS Abnormal cerebellum-basal ganglia-sensorimotor cortex circuit may be the underlying neuropathological basis of RLS. Our findings highlight the important role of right cerebellum in the onset of RLS and suggest right cerebellum may be a potential target for precision therapy.
Collapse
Affiliation(s)
- Jiang Zhang
- College of Electrical Engineering, Sichuan University, Chengdu, China; Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Jingyue Zhang
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Hui Sun
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Jia Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Yingzi Ma
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Kexuan Chen
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jing Su
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Xiaohui Yu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Futing Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Zhiwei Zhang
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Tianyu Zhao
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Xiuying Hu
- Med-X Center for Informatics, Sichuan University, Chengdu, China; Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Yiran Zhai
- College of Electrical Engineering, Sichuan University, Chengdu, China; Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Qihong Liu
- College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China.
| | - Chunyan Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neuromodulation, Beijing, China.
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China.
| |
Collapse
|
122
|
Ogura Y, Wakatsuki Y, Hashimoto N, Miyamoto T, Nakai Y, Toyomaki A, Tsuchida Y, Nakagawa S, Inoue T, Kusumi I. Hyperthymic temperament predicts neural responsiveness for nonmonetary reward. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2023; 2:e140. [PMID: 38867834 PMCID: PMC11114308 DOI: 10.1002/pcn5.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 06/14/2024]
Abstract
Aim Hyperthymic temperament is a cheerful action orientation that is suggested to have a protective effect on depressive symptoms. We recently reported that hyperthymic temperament can positively predict activation of reward-related brain areas in anticipation of monetary rewards, which could serve as a biomarker of hyperthymic temperament. However, the relationship between hyperthymic temperament and neural responsiveness to nonmonetary rewards (i.e., feedback indicating success in a task) remains unclear. Methods Healthy participants performed a modified monetary incentive delay task inside a functional magnetic resonance imaging scanner. To examine the effect of nonmonetary positive feedback, the participants performed feedback and no-feedback trials. We explored brain regions whose neural responsiveness to nonmonetary rewards was predicted by hyperthymic temperament. Results There was premotor area activation in anticipation of a nonmonetary reward, which was negatively predicted by hyperthymic temperament. Moreover, brain areas located mainly in the primary somatosensory area and somatosensory association area were activated by performance feedback, which was positively predicted by hyperthymic temperament. Conclusion We found that hyperthymic temperament is related to neural responsiveness to both monetary and nonmonetary rewards. This may be related to the process of affective regulation in the somatosensory area.
Collapse
Affiliation(s)
- Yukiko Ogura
- Center for Experimental Research in Social SciencesHokkaido UniversitySapporoJapan
| | - Yumi Wakatsuki
- Department of PsychiatryThe Hokkaido Medical CenterSapporoJapan
| | - Naoki Hashimoto
- Department of PsychiatryHokkaido University Graduate School of MedicineSapporoJapan
| | - Tamaki Miyamoto
- Department of PsychiatryHokkaido University Graduate School of MedicineSapporoJapan
| | | | - Atsuhito Toyomaki
- Department of PsychiatryHokkaido University Graduate School of MedicineSapporoJapan
| | - Yukio Tsuchida
- School of EducationOsaka University of Health and Sport SciencesOsakaJapan
| | - Shin Nakagawa
- Division of Neuropsychiatry, Department of NeuroscienceYamaguchi University Graduate School of MedicineYamaguchiJapan
| | - Takeshi Inoue
- Department of PsychiatryTokyo Medical UniversityTokyoJapan
| | - Ichiro Kusumi
- Department of PsychiatryHokkaido University Graduate School of MedicineSapporoJapan
| |
Collapse
|
123
|
Sempere-Bigorra M, Julián-Rochina I, Pérez-Ros P, Navarro-Flores E, Martínez-Arnau FM, Cauli O. Relationship between Cognitive Impairment and Depressive Symptoms with Somatosensory Functions in Diabetic and Non-Diabetic Older Adults and Its Impact on Quality of Life. Life (Basel) 2023; 13:1790. [PMID: 37763194 PMCID: PMC10532541 DOI: 10.3390/life13091790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/01/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
Aging is an inevitable process that impacts the peripheral and central nervous systems and is considered one of the strongest risk factors for neurodegenerative diseases. In addition, when it also presents with diabetes mellitus, the risk of neurological damage may be further increased. This current study aimed to explore the relationships between peripheral sensory system decline and cognitive functions, the symptoms of depression, and quality of life (QoL) as metrics of central nervous system impairment in institutionalized older adults. A total of 95 individuals participated in this case-control study, which included diabetics and non-diabetics. The superficial sensory pathway was assessed in terms of thermal sensation, nociception, and non-discriminative touch, and the deep sensory pathway was evaluated by assessing vibration and light touch-pressure sensations. To assess function at the intellectual level, the Mini-Mental State Examination (MMSE) and Trail Making Test (TMT) cognitive functional tests were used, while the symptoms of depression and QoL were explored by employing the Yesavage Geriatric Depression Scale and EuroQol 5D questionnaire (EQ-5D), respectively. In the overall population analyses, altered thermal sensation was significantly associated with cognitive impairment (CI; p < 0.05). In turn, bivariate analyses and a binary logistic regression showed that the symptoms of depression and QoL were significantly related to altered vibratory sensation when assessed using a medical tuning fork (p < 0.05). In the group of diabetic patients, those with CI also had significantly lower thermal sensation (p < 0.05) and non-discriminative touch sensation, although this was only a trend (p = 0.055). Diabetics with depression had a significantly worse non-discriminative touch (p < 0.05) and vibratory sensation when tested with a tuning fork (p < 0.05). In addition, poorer QoL was associated with reduced sensitivity to heat (p < 0.05), light touch pressure (p < 0.05), and vibrations when assessed either with a tuning fork (p < 0.05) or a biothesiometer (p < 0.05). In contrast, no relationships were found between sensory functions and cognitive assessments in non-diabetic patients. These findings indicate that superficial sensitivity damage was related to CI, while deep sensation alterations were related to depression and poor QoL, with diabetes apparently further strengthening these relationships.
Collapse
Affiliation(s)
- Mar Sempere-Bigorra
- Department of Nursing, Faculty of Nursing and Podiatry, University of Valencia, 46010 Valencia, Spain; (M.S.-B.); (I.J.-R.); (P.P.-R.); (E.N.-F.)
- Frailty Research Organized Group (FROG), Department of Nursing, University of Valencia, 46010 Valencia, Spain;
| | - Iván Julián-Rochina
- Department of Nursing, Faculty of Nursing and Podiatry, University of Valencia, 46010 Valencia, Spain; (M.S.-B.); (I.J.-R.); (P.P.-R.); (E.N.-F.)
- Frailty Research Organized Group (FROG), Department of Nursing, University of Valencia, 46010 Valencia, Spain;
| | - Pilar Pérez-Ros
- Department of Nursing, Faculty of Nursing and Podiatry, University of Valencia, 46010 Valencia, Spain; (M.S.-B.); (I.J.-R.); (P.P.-R.); (E.N.-F.)
- Frailty Research Organized Group (FROG), Department of Nursing, University of Valencia, 46010 Valencia, Spain;
| | - Emmanuel Navarro-Flores
- Department of Nursing, Faculty of Nursing and Podiatry, University of Valencia, 46010 Valencia, Spain; (M.S.-B.); (I.J.-R.); (P.P.-R.); (E.N.-F.)
- Frailty Research Organized Group (FROG), Department of Nursing, University of Valencia, 46010 Valencia, Spain;
| | - Francisco Miguel Martínez-Arnau
- Frailty Research Organized Group (FROG), Department of Nursing, University of Valencia, 46010 Valencia, Spain;
- Department of Physiotherapy, University of Valencia, 46010 Valencia, Spain
| | - Omar Cauli
- Department of Nursing, Faculty of Nursing and Podiatry, University of Valencia, 46010 Valencia, Spain; (M.S.-B.); (I.J.-R.); (P.P.-R.); (E.N.-F.)
- Frailty Research Organized Group (FROG), Department of Nursing, University of Valencia, 46010 Valencia, Spain;
| |
Collapse
|
124
|
Wang Z, Pang J, Zhou R, Qi J, Shi X, Han B, Man X, Wang Q, Sun J. Differences in resting-state brain networks and gray matter between APOE ε2 and APOE ε4 carriers in non-dementia elderly. Front Psychiatry 2023; 14:1197987. [PMID: 37636817 PMCID: PMC10449453 DOI: 10.3389/fpsyt.2023.1197987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Background Apolipoprotein E (APOE) ε2 and APOE ε4 are the most distinct alleles among the three APOE alleles, both structurally and functionally. However, differences in cognition, brain function, and brain structure between the two alleles have not been comprehensively reported in the literature, especially in non-demented elderly individuals. Methods A neuropsychological test battery was used to evaluate the differences in cognitive performance in five cognitive domains. Independent component analysis (ICA) and voxel-based morphometry (VBM) were used separately to analyze resting-state functional magnetic resonance imaging (rs-fMRI) data and the structure MRI data between the two groups. Finally, correlations between differential brain regions and neuropsychological tests were calculated. Results APOE ε2 carriers had better cognitive performance in general cognitive, memory, attention, and executive function than APOE ε4 carriers (all p < 0.05). In ICA analyses of rs-fMRI data, the difference in the resting-state functional connectivity (rsFC) between two groups is shown in 7 brain networks. In addition, VBM analyses of the T1-weighted image revealed that APOE ε2 carriers had a larger thalamus and right postcentral gyrus volume and a smaller bilateral putamen volume than APOE ε4 carriers. Finally, differences in brain function and structure may be might be the reason that APOE ε2 carriers are better than APOE ε4 carriers in cognitive performance. Conclusion These findings suggest that there are significant differences in brain function and structure between APOE ε2 carriers and APOE ε4 carriers, and these significant differences are closely related to their cognitive performance.
Collapse
Affiliation(s)
- Zhiyuan Wang
- Institute of Integrative Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Pang
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ruizhi Zhou
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jianjiao Qi
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xianglong Shi
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Han
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xu Man
- Institute of Integrative Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qingqing Wang
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jinping Sun
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
125
|
Zhang X, Lai H, Li Q, Yang X, Pan N, He M, Kemp GJ, Wang S, Gong Q. Disrupted brain gray matter connectome in social anxiety disorder: a novel individualized structural covariance network analysis. Cereb Cortex 2023; 33:9627-9638. [PMID: 37381581 DOI: 10.1093/cercor/bhad231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/11/2023] [Accepted: 06/10/2023] [Indexed: 06/30/2023] Open
Abstract
Phenotyping approaches grounded in structural network science can offer insights into the neurobiological substrates of psychiatric diseases, but this remains to be clarified at the individual level in social anxiety disorder (SAD). Using a recently developed approach combining probability density estimation and Kullback-Leibler divergence, we constructed single-subject structural covariance networks (SCNs) based on multivariate morphometry (cortical thickness, surface area, curvature, and volume) and quantified their global/nodal network properties using graph-theoretical analysis. We compared network metrics between SAD patients and healthy controls (HC) and analyzed the relationship to clinical characteristics. We also used support vector machine analysis to explore the ability of graph-theoretical metrics to discriminate SAD patients from HC. Globally, SAD patients showed higher global efficiency, shorter characteristic path length, and stronger small-worldness. Locally, SAD patients showed abnormal nodal centrality mainly involving left superior frontal gyrus, right superior parietal lobe, left amygdala, right paracentral gyrus, right lingual, and right pericalcarine cortex. Altered topological metrics were associated with the symptom severity and duration. Graph-based metrics allowed single-subject classification of SAD versus HC with total accuracy of 78.7%. This finding, that the topological organization of SCNs in SAD patients is altered toward more randomized configurations, adds to our understanding of network-level neuropathology in SAD.
Collapse
Affiliation(s)
- Xun Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Han Lai
- Department of Medical Psychology, Army Medical University, Chongqing 400038, China
| | - Qingyuan Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Xun Yang
- School of Public Affairs, Chongqing University, Chongqing 400044, China
| | - Nanfang Pan
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Min He
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Song Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361000, China
| |
Collapse
|
126
|
Syan SK, McIntyre-Wood C, Vandehei E, Vidal ML, Hargreaves T, Levitt EE, Scarfe M, Marsden E, MacKillop E, Sarles-Whittlesey H, Amlung M, Sweet L, MacKillop J. Resting state functional connectivity as a predictor of brief intervention response in adults with alcohol use disorder: A preliminary study. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1590-1602. [PMID: 37572293 DOI: 10.1111/acer.15123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Brief interventions for alcohol use disorder (AUD) are generally efficacious, albeit with variability in response. Resting state functional connectivity (rsFC) may characterize neurobiological indicators that predict the response to brief interventions and is the focus of the current investigation. MATERIALS AND METHODS Forty-six individuals with AUD (65.2% female) completed a resting state functional magnetic resonance imaging (fMRI) scan immediately followed by a brief intervention aimed at reducing alcohol consumption. Positive clinical response was defined as a reduction in alcohol consumption by at least one World Health Organization (WHO) risk drinking level at 3-month follow-up. rsFC was analyzed using seed-to-voxel analysis with seed regions from four networks: salience network, reward network, frontoparietal network, and default mode network. RESULTS At baseline, responders had greater rsFC between the following seed regions in relation to voxel-based clusters than non-responders: (i) anterior cingulate cortex (ACC) in relation to left postcentral gyrus and right supramarginal gyrus (salience network); (ii) right posterior parietal cortex in relation to right ventral ACC (salience network); (iii) right interior frontal gyrus (IFG) pars opercularis in relation to right cerebellum and right occipital fusiform gyrus (frontoparietal); and (iv) right primary motor cortex in relation to left thalamus (default mode). Lower rsFC in responders vs. nonresponders was seen between the (i) right rostral prefrontal cortex in relation to left IFG pars triangularis (frontoparietal); (ii) right IFG pars triangularis in relation to right cerebellum (frontoparietal); (iii) right IFG pars triangularis in relation to right frontal eye fields and right angular gyrus (frontoparietal); and (iv) right nucleus accumbens in relation to right orbital frontal cortex and right insula (reward). CONCLUSIONS Resting state functional connectivity in the frontoparietal, salience, and reward networks predicts the response to a brief intervention in individuals with AUD and could reflect greater receptivity or motivation for behavior change.
Collapse
Affiliation(s)
- Sabrina K Syan
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Carly McIntyre-Wood
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Emily Vandehei
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Mae Linda Vidal
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Tegan Hargreaves
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Emily E Levitt
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Molly Scarfe
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Emma Marsden
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Emily MacKillop
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | | | - Michael Amlung
- Cofrin Logan Center for Addiction Research and Treatment, University of Kansas, Lawrence, Kansas, USA
- Department of Applied Behavioral Science, University of Kansas, Lawrence, Kansas, USA
| | - Lawrence Sweet
- Department of Psychology, University of Georgia, Athens, Georgia, USA
| | - James MacKillop
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
127
|
Ohad T, Yeshurun Y. Neural synchronization as a function of engagement with the narrative. Neuroimage 2023; 276:120215. [PMID: 37269956 DOI: 10.1016/j.neuroimage.2023.120215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/19/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023] Open
Abstract
We can all agree that a good story engages us, however, agreeing which story is good is far more debatable. In this study, we explored whether engagement with a narrative synchronizes listeners' brain responses, by examining individual differences in engagement to the same story. To do so, we pre-registered and re-analyzed a previously collected dataset by Chang et al. (2021) of functional Magnetic Resonance Imaging (fMRI) scans of 25 participants who listened to a one-hour story and answered questionnaires. We assessed the degree of their overall engagement with the story and their engagement with the main characters. The questionnaires revealed individual differences in engagement with the story, as well as different valence towards specific characters. Neuroimaging data showed that the auditory cortex, the default mode network (DMN) and language regions were involved in processing the story. Increased engagement with the story was correlated with increased neural synchronization within regions in the DMN (especially the medial prefrontal cortex), as well as regions outside the DMN such as the dorso-lateral prefrontal cortex and the reward system. Interestingly, positively and negatively engaging characters elicited different patterns of neural synchronization. Finally, engagement increased functional connectivity within and between the DMN, the ventral attention network and the control network. Taken together, these findings suggest that engagement with a narrative synchronizes listeners' responses in regions involved in mentalizing, reward, working memory and attention. By examining individual differences in engagement, we revealed that these synchronization patterns are due to engagement, and not due to differences in the narrative's content.
Collapse
Affiliation(s)
- Tal Ohad
- Sagol School of Neuroscience, Tel-Aviv University, Israel
| | - Yaara Yeshurun
- Sagol School of Neuroscience, Tel-Aviv University, Israel; School of Psychological Sciences, Tel-Aviv University, Israel.
| |
Collapse
|
128
|
Jin C, Qi S, Yang L, Teng Y, Li C, Yao Y, Ruan X, Wei X. Abnormal functional connectivity density involvement in freezing of gait and its application for subtyping Parkinson's disease. Brain Imaging Behav 2023; 17:375-385. [PMID: 37243751 DOI: 10.1007/s11682-023-00765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2023] [Indexed: 05/29/2023]
Abstract
The pathophysiological mechanisms at work in Parkinson's disease (PD) patients with freezing of gait (FOG) remain poorly understood. Functional connectivity density (FCD) could provide an unbiased way to analyse connectivity across the brain. In this study, a total of 23 PD patients with FOG (PD FOG + patients), 26 PD patients without FOG (PD FOG- patients), and 22 healthy controls (HCs) were recruited, and their resting-state functional magnetic resonance imaging (rs-fMRI) images were collected. FCD mapping was first performed to identify differences between groups. Pearson correlation analysis was used to explore relationships between FCD values and the severity of FOG. Then, a machine learning model was employed to classify each pair of groups. PD FOG + patients showed significantly increased short-range FCD in the precuneus, cingulate gyrus, and fusiform gyrus and decreased long-range FCD in the frontal gyrus, temporal gyrus, and cingulate gyrus. Short-range FCD values in the middle temporal gyrus and inferior temporal gyrus were positively correlated with FOG questionnaire (FOGQ) scores, and long-range FCD values in the middle frontal gyrus were negatively correlated with FOGQ scores. Using FCD in abnormal regions as input, a support vector machine (SVM) classifier can achieve classification with good performance. The mean accuracy values were 0.895 (PD FOG + vs. HC), 0.966 (PD FOG- vs. HC), and 0.897 (PD FOG + vs. PD FOG-). This study demonstrates that PD FOG + patients showed altered short- and long-range FCD in several brain regions involved in action planning and control, motion processing, emotion, cognition, and object recognition.
Collapse
Affiliation(s)
- Chaoyang Jin
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Shouliang Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China.
| | - Lei Yang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Yueyang Teng
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Chen Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Yudong Yao
- Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, USA
| | - Xiuhang Ruan
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xinhua Wei
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
129
|
Isakoglou C, Haak KV, Wolfers T, Floris DL, Llera A, Oldehinkel M, Forde NJ, Oakley BFM, Tillmann J, Holt RJ, Moessnang C, Loth E, Bourgeron T, Baron-Cohen S, Charman T, Banaschewski T, Murphy DGM, Buitelaar JK, Marquand AF, Beckmann CF. Fine-grained topographic organization within somatosensory cortex during resting-state and emotional face-matching task and its association with ASD traits. Transl Psychiatry 2023; 13:270. [PMID: 37500630 PMCID: PMC10374902 DOI: 10.1038/s41398-023-02559-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 03/26/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
Sensory atypicalities are particularly common in autism spectrum disorders (ASD). Nevertheless, our knowledge about the divergent functioning of the underlying somatosensory region and its association with ASD phenotype features is limited. We applied a data-driven approach to map the fine-grained variations in functional connectivity of the primary somatosensory cortex (S1) to the rest of the brain in 240 autistic and 164 neurotypical individuals from the EU-AIMS LEAP dataset, aged between 7 and 30. We estimated the S1 connection topography ('connectopy') at rest and during the emotional face-matching (Hariri) task, an established measure of emotion reactivity, and accessed its association with a set of clinical and behavioral variables. We first demonstrated that the S1 connectopy is organized along a dorsoventral axis, mapping onto the S1 somatotopic organization. We then found that its spatial characteristics were linked to the individuals' adaptive functioning skills, as measured by the Vineland Adaptive Behavior Scales, across the whole sample. Higher functional differentiation characterized the S1 connectopies of individuals with higher daily life adaptive skills. Notably, we detected significant differences between rest and the Hariri task in the S1 connectopies, as well as their projection maps onto the rest of the brain suggesting a task-modulating effect on S1 due to emotion processing. All in all, variation of adaptive skills appears to be reflected in the brain's mesoscale neural circuitry, as shown by the S1 connectivity profile, which is also differentially modulated during rest and emotional processing.
Collapse
Affiliation(s)
- Christina Isakoglou
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, Netherlands.
- Department for Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands.
| | - Koen V Haak
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, Netherlands
| | - Thomas Wolfers
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, Netherlands
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Dorothea L Floris
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Alberto Llera
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marianne Oldehinkel
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| | - Natalie J Forde
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bethany F M Oakley
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Julian Tillmann
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Rosemary J Holt
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Carolin Moessnang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Applied Psychology, SRH University, Heidelberg, Germany
| | - Eva Loth
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, Université de Paris, Paris, France
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Declan G M Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jan K Buitelaar
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, Netherlands
- Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, Netherlands
| | - Andre F Marquand
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Christian F Beckmann
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
- Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
130
|
He S, Peng Y, Chen X, Ou Y. Causality between inflammatory bowel disease and the cerebral cortex: insights from Mendelian randomization and integrated bioinformatics analysis. Front Immunol 2023; 14:1175873. [PMID: 37588593 PMCID: PMC10425804 DOI: 10.3389/fimmu.2023.1175873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/06/2023] [Indexed: 08/18/2023] Open
Abstract
Background Inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD), is a chronic, progressive, and recurrent intestinal condition that poses a significant global health burden. The high prevalence of neuropsychiatric comorbidities in IBD necessitates the development of targeted management strategies. Methods Leveraging genetic data from genome-wide association studies and Immunochip genotype analyses of nearly 150,000 individuals, we conducted a two-sample Mendelian randomization study to elucidate the driving force of IBD, UC, and CD on cortical reshaping. Genetic variants mediating the causality were collected to disclose the biological pathways linking intestinal inflammation to brain dysfunction. Results Here, 115, 69, and 98 instrumental variables genetically predicted IBD, UC, and CD. We found that CD significantly decreased the surface area of the temporal pole gyrus (β = -0.946 mm2, P = 0.005, false discovery rate-P = 0.085). Additionally, we identified suggestive variations in cortical surface area and thickness induced by exposure across eight functional gyri. The top 10 variant-matched genes were STAT3, FOS, NFKB1, JAK2, STAT4, TYK2, SMAD3, IL12B, MYC, and CCL2, which are interconnected in the interaction network and play a role in inflammatory and immune processes. Conclusion We explore the causality between intestinal inflammation and altered cortical morphology. It is likely that neuroinflammation-induced damage, impaired neurological function, and persistent nociceptive input lead to morphological changes in the cerebral cortex, which may trigger neuropsychiatric disorders.
Collapse
Affiliation(s)
- Shubei He
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of the People's Liberation Army, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
- Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
| | - Ying Peng
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of the People's Liberation Army, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
- Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaofang Chen
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of the People's Liberation Army, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
- Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
| | - Ying Ou
- Department of Psychiatry, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
131
|
Huynh V, Lütolf R, Rosner J, Luechinger R, Curt A, Kollias S, Michels L, Hubli M. Intrinsic brain connectivity alterations despite intact pain inhibition in subjects with neuropathic pain after spinal cord injury: a pilot study. Sci Rep 2023; 13:11943. [PMID: 37488130 PMCID: PMC10366123 DOI: 10.1038/s41598-023-37783-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/27/2023] [Indexed: 07/26/2023] Open
Abstract
Endogenous pain modulation in humans is frequently investigated with conditioned pain modulation (CPM). Deficient pain inhibition is a proposed mechanism that contributes to neuropathic pain (NP) after spinal cord injury (SCI). Recent studies have combined CPM testing and neuroimaging to reveal neural correlates of CPM efficiency in chronic pain. This study investigated differences in CPM efficiency in relation to resting-state functional connectivity (rsFC) between 12 SCI-NP subjects and 13 age- and sex-matched healthy controls (HC). Twelve and 11 SCI-NP subjects were included in psychophysical and rsFC analyses, respectively. All HC were included in the final analyses. Psychophysical readouts were analysed to determine CPM efficiency within and between cohorts. Group differences of rsFC, in relation to CPM efficiency, were explored with seed-to-voxel rsFC analyses with pain modulatory regions, e.g. ventrolateral periaqueductal gray (vlPAG) and amygdala. Overall, pain inhibition was not deficient in SCI-NP subjects and was greater in those with more intense NP. Greater pain inhibition was associated with weaker rsFC between the vlPAG and amygdala with the visual and frontal cortex, respectively, in SCI-NP subjects but with stronger rsFC in HC. Taken together, SCI-NP subjects present with intact pain inhibition, but can be differentiated from HC by an inverse relationship between CPM efficiency and intrinsic connectivity of supraspinal regions. Future studies with larger cohorts are necessary to consolidate the findings in this study.
Collapse
Affiliation(s)
- Vincent Huynh
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland.
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich & University of Zurich, Zurich, Switzerland.
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland.
| | - Robin Lütolf
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Jan Rosner
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
- Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Roger Luechinger
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Spyridon Kollias
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| | - Lars Michels
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| |
Collapse
|
132
|
Wang X, Xu B, Zhang W, Wang J, Deng L, Ping J, Hu C, Li H. Recognizing emotions induced by wearable haptic vibration using noninvasive electroencephalogram. Front Neurosci 2023; 17:1219553. [PMID: 37483356 PMCID: PMC10357513 DOI: 10.3389/fnins.2023.1219553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
The integration of haptic technology into affective computing has led to a new field known as affective haptics. Nonetheless, the mechanism underlying the interaction between haptics and emotions remains unclear. In this paper, we proposed a novel haptic pattern with adaptive vibration intensity and rhythm according to the volume, and applied it into the emotional experiment paradigm. To verify its superiority, the proposed haptic pattern was compared with an existing haptic pattern by combining them with conventional visual-auditory stimuli to induce emotions (joy, sadness, fear, and neutral), and the subjects' EEG signals were collected simultaneously. The features of power spectral density (PSD), differential entropy (DE), differential asymmetry (DASM), and differential caudality (DCAU) were extracted, and the support vector machine (SVM) was utilized to recognize four target emotions. The results demonstrated that haptic stimuli enhanced the activity of the lateral temporal and prefrontal areas of the emotion-related brain regions. Moreover, the classification accuracy of the existing constant haptic pattern and the proposed adaptive haptic pattern increased by 7.71 and 8.60%, respectively. These findings indicate that flexible and varied haptic patterns can enhance immersion and fully stimulate target emotions, which are of great importance for wearable haptic interfaces and emotion communication through haptics.
Collapse
Affiliation(s)
- Xin Wang
- The State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory of Remote Measurement and Control, School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Baoguo Xu
- The State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory of Remote Measurement and Control, School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Wenbin Zhang
- The State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory of Remote Measurement and Control, School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Jiajin Wang
- The State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory of Remote Measurement and Control, School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Leying Deng
- The State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory of Remote Measurement and Control, School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Jingyu Ping
- The State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory of Remote Measurement and Control, School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Cong Hu
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, China
| | - Huijun Li
- The State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory of Remote Measurement and Control, School of Instrument Science and Engineering, Southeast University, Nanjing, China
| |
Collapse
|
133
|
Lee SE, Shin H, Kim G, Moon H, Hur JW. Decreased gray matter volume in regions associated with affective pain processing in unmedicated individuals with nonsuicidal self-injury. Psychiatry Res 2023; 326:115314. [PMID: 37406398 DOI: 10.1016/j.psychres.2023.115314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023]
Abstract
Nonsuicidal self-injury (NSSI) has been consistently associated with a reduced aversion to physical pain. Yet, little research has been done to investigate the brain structures related to pain in individuals with NSSI. This study examined gray matter volume patterns of pain processing regions in participants engaging in NSSI (n = 63) and age-, sex-, and handedness-matched healthy controls (n = 63). Voxel-based morphometry was performed to explore gray matter volume in regions of interest (ROIs) and partial correlation analyses were conducted to identify their associations with the frequency, versatility, duration, functions, and pain intensity of self-injury. As a result, significant volume decreases were found in the right anterior insula, bilateral secondary somatosensory cortex (SII), and left inferior frontal gyrus. Moreover, individuals with smaller anterior insula and SII volume showed a higher likelihood of endorsing affect-regulation and sensation-seeking functions of NSSI, as well as engaging in self-injury with a greater perceived intensity of pain. Our results provide the first empirical evidence that individuals with NSSI may exhibit distinct characteristics in brain regions associated with the affective component of pain processing. These neurobiological changes may be associated with their maladaptive response to noxious and painful NSSI experiences.
Collapse
Affiliation(s)
- Soo-Eun Lee
- School of Psychology, Korea University, 145 Anam-ro, Seoul, South Korea
| | - Hyemin Shin
- School of Psychology, Korea University, 145 Anam-ro, Seoul, South Korea
| | - Gyumyoung Kim
- School of Psychology, Korea University, 145 Anam-ro, Seoul, South Korea
| | - Hyeri Moon
- School of Psychology, Korea University, 145 Anam-ro, Seoul, South Korea
| | - Ji-Won Hur
- School of Psychology, Korea University, 145 Anam-ro, Seoul, South Korea.
| |
Collapse
|
134
|
Saccaro LF, Gaviria J, Ville DVD, Piguet C. Dynamic functional hippocampal markers of residual depressive symptoms in euthymic bipolar disorder. Brain Behav 2023; 13:e3010. [PMID: 37062926 PMCID: PMC10275545 DOI: 10.1002/brb3.3010] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/18/2023] Open
Abstract
OBJECTIVES Bipolar disorder (BD) is a severe, chronic, affective disorder characterized by recurrent switching between mood states, psychomotor and cognitive symptoms, which can linger in euthymic states as residual symptoms. Hippocampal alterations may play a key role in the neural processing of BD symptoms. However, its dynamic functional connectivity (dFC) remains unclear. Therefore, the present study explores hippocampal dFC in relation to BD symptoms. METHODS We assessed hippocampus-based dFC coactivation patterns (CAPs) on resting-state fMRI data of 25 euthymic BD patients and 25 age- and sex-matched healthy controls (HC). RESULTS Bilateral hippocampal dFC with somatomotor networks (SMN) was reduced in BD, compared to HC, while at the same time dFC between the left hippocampus and midcingulo-insular salience system (SN) was higher in BD. Correlational analysis between CAPs and clinical scores revealed that dFC between the bilateral hippocampus and the default-like network (DMN) correlated with depression scores in BD. Furthermore, pathological hyperconnectivity between the default mode network (DMN) and SMN and the frontoparietal network (FPN) was modulated by the same depression scores in BD. CONCLUSIONS Overall, we observed alterations of large-scale functional brain networks associated with decreased flexibility in cognitive control, salience detection, and emotion processing in BD. Additionally, the present study provides new insights on the neural architecture underlying a self-centered perspective on the environment in BD patients. dFC markers may improve detection, treatment, and follow-up of BD patients and of disabling residual depressive symptoms in particular.
Collapse
Affiliation(s)
- Luigi F Saccaro
- Faculty of Medicine, Psychiatry DepartmentUniversity of GenevaGenevaSwitzerland
- Psychiatry DivisionGeneva University HospitalGenevaSwitzerland
| | - Julian Gaviria
- Faculty of Medicine, Psychiatry DepartmentUniversity of GenevaGenevaSwitzerland
- Department of Basic NeurosciencesUniversity of GenevaGenevaSwitzerland
- Swiss Center for Affective SciencesCampus BiotechGenevaSwitzerland
| | - Dimitri Van De Ville
- Swiss Center for Affective SciencesCampus BiotechGenevaSwitzerland
- Faculty of Medicine, Department of Radiology and Medical InformaticsUniversity of GenevaGenevaSwitzerland
- Neuro‐X Institute, School of EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)GenevaSwitzerland
| | - Camille Piguet
- Faculty of Medicine, Psychiatry DepartmentUniversity of GenevaGenevaSwitzerland
- Child and Adolescence Psychiatry DivisionGeneva University HospitalGenevaSwitzerland
| |
Collapse
|
135
|
Shi Y, Yang Y, Li W, Zhao Z, Yan L, Wang W, Aschner M, Zhang J, Zheng G, Shen X. High blood lead level correlates with selective hippocampal subfield atrophy and neuropsychological impairments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114945. [PMID: 37105093 DOI: 10.1016/j.ecoenv.2023.114945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/28/2023] [Accepted: 04/19/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Lead contamination is a major public health concern. Previous studies have demonstrated that lead exposure could affect the hippocampus, which is a complex and heterogeneous structure composed of 12 subregions. Here, we explored volumetric and functional changes in hippocampal subfields and neuropsychological alterations after lead exposure. METHODS We performed a cross-sectional study at a smelting company between September 2020 and December 2021. Blood lead level was recorded, and neuropsychological functions were assessed by Montreal Cognitive Assessment (MoCA), Mini-Mental State Examination (MMSE), Self-rating Anxiety Scale (SAS), and Self-rating Depression Scale (SDS). The hippocampus was segmented into 12 subfields in each hemisphere in magnetic resonance images (MRIs). Then, the effect of altered hippocampal subfield volumes on brain functions were studied by seed-based functional connectivity (FC) analysis. Finally, the relationships between the lead level with hippocampal subfield volumes and neuropsychological functions were investigated. Baseline characteristics, hippocampal subfield volumes, and FC analysis were compared between lead-exposed (≥ 300 μg/L) and the control group (≤ 100 μg/L). RESULTS In 76 participants, lead level positively correlated with SDS(r = 0.422) and negatively correlated with MoCA(r = -0.414), MMSE(r = -0.251), Concentration(r = -0.331), Recall(r = -0.319), Orientation(r = -0.298) and Executive Function/Visuospatial abilities(r = -0.231). Lead group (26 participants) had lower MoCA and MMSE and higher SDS than control group (23 participants). A significantly decreased volume in the left CA4 and GC-ML-DG subfields was found in the lead group compared with the control group. The left GC-ML-DG of the lead group showed a decreased FC with the bilateral postcentral gyrus. The left CA4(r = -0.409) and left GC-ML-DG (r = -0.383) volumes negatively correlated with lead level. The FC between left GC-ML-DG and left postcentral gyrus positively correlated with MoCA(r = 0.318), MMSE(r = 0.379) and Recall(r = 0.311). The FC between left GC-ML-DG and right postcentral gyrus positively correlated with MoCA(r = 0.326), Executive Function/Visuospatial abilities(r = 0.307) and Concentration(r = 0.297). CONCLUSION High blood lead level was associated with neuropsychological alterations, hippocampal structural and functional changes. The left GC-ML-DG and CA4 atrophy might serve as predictive imaging markers for neurological damage associated with high lead exposure.
Collapse
Affiliation(s)
- Yi Shi
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 of West Changle Road, Xi'an, Shaanxi 710032, China
| | - Yang Yang
- Department of Radiology, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Wenhao Li
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 of West Changle Road, Xi'an, Shaanxi 710032, China
| | - Zaihua Zhao
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 of West Changle Road, Xi'an, Shaanxi 710032, China
| | - Linfeng Yan
- Department of Radiology, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Wen Wang
- Department of Radiology, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, United States
| | - Jianbin Zhang
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 of West Changle Road, Xi'an, Shaanxi 710032, China
| | - Gang Zheng
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 of West Changle Road, Xi'an, Shaanxi 710032, China
| | - Xuefeng Shen
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 of West Changle Road, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
136
|
Piguel NH, Yoon S, Gao R, Horan KE, Garza JC, Petryshen TL, Smith KR, Penzes P. Lithium rescues dendritic abnormalities in Ank3 deficiency models through the synergic effects of GSK3β and cyclic AMP signaling pathways. Neuropsychopharmacology 2023; 48:1000-1010. [PMID: 36376465 PMCID: PMC10209204 DOI: 10.1038/s41386-022-01502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/07/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022]
Abstract
Bipolar disorder (BD) is a highly heritable mood disorder with intermittent episodes of mania and depression. Lithium is the first-in-line medication to treat BD, but it is only effective in a subset of individuals. Large-scale human genomic studies have repeatedly linked the ANK3 gene (encoding ankyrin-G, AnkG) to BD. Ank3 knockout mouse models mimic BD behavioral features and respond positively to lithium treatment. We investigated cellular phenotypes associated with BD, including dendritic arborization of pyramidal neurons and spine morphology in two models: (1) a conditional knockout mouse model which disrupts Ank3 expression in adult forebrain pyramidal neurons, and (2) an AnkG knockdown model in cortical neuron cultures. We observed a decrease in dendrite complexity and a reduction of dendritic spine number in both models, reminiscent of reports in BD. We showed that lithium treatment corrected dendrite and spine deficits in vitro and in vivo. We targeted two signaling pathways known to be affected by lithium using a highly selective GSK3β inhibitor (CHIR99021) and an adenylate cyclase activator (forskolin). In our cortical neuron culture model, CHIR99021 rescues the spine morphology defects caused by AnkG knockdown, whereas forskolin rescued the dendrite complexity deficit. Interestingly, a synergistic action of both drugs was required to rescue dendrite and spine density defects in AnkG knockdown neurons. Altogether, our results suggest that dendritic abnormalities observed in loss of function ANK3 variants and BD patients may be rescued by lithium treatment. Additionally, drugs selectively targeting GSK3β and cAMP pathways could be beneficial in BD.
Collapse
Affiliation(s)
- Nicolas H Piguel
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Sehyoun Yoon
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ruoqi Gao
- University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Katherine E Horan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jacob C Garza
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tracey L Petryshen
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Katharine R Smith
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Peter Penzes
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Northwestern University, Center for Autism and Neurodevelopment, Chicago, IL, 60611, USA.
| |
Collapse
|
137
|
Lin D, Gao J, Lu M, Han X, Tan Z, Zou Y, Cui F. Scalp acupuncture regulates functional connectivity of cerebral hemispheres in patients with hemiplegia after stroke. Front Neurol 2023; 14:1083066. [PMID: 37305743 PMCID: PMC10248137 DOI: 10.3389/fneur.2023.1083066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Background Stroke is a common cause of acquired disability on a global scale. Patients with motor dysfunction after a stroke have a reduced quality of life and suffer from an economic burden. Scalp acupuncture has been proven to be an effective treatment for motor recovery after a stroke. However, the neural mechanism of scalp acupuncture for motor function recovery remains to be researched. This study aimed to investigate functional connectivity (FC) changes in region of interest (ROI) and other brain regions to interpret the neural mechanism of scalp acupuncture. Methods Twenty-one patients were included and randomly divided into patient control (PCs) and scalp acupuncture (SAs) groups with left hemiplegia due to ischemic stroke, and we also selected 20 matched healthy controls (HCs). The PCs were treated with conventional Western medicine, while the SAs were treated with scalp acupuncture (acupuncture at the right anterior oblique line of vertex temporal). All subjects received whole-brain resting-state functional magnetic resonance imaging (rs-fMRI) scan before treatment, and the patients received a second scan after 14 days of treatment. We use the National Institutes of Health Stroke Scale (NIHSS) scores and the analyses of resting-state functional connectivity (RSFC) as the observational indicators. Results The contralateral and ipsilateral cortex of hemiplegic patients with cerebral infarction were associated with an abnormal increase and decrease in basal internode function. An abnormal increase in functional connectivity mainly exists in the ipsilateral hemisphere between the cortex and basal ganglia and reduces the abnormal functional connectivity in the cortex and contralateral basal ganglia. Increased RSFC was observed in the bilateral BA6 area and bilateral basal ganglia and the connectivity between bilateral basal ganglia nuclei improved. However, the RSFC of the conventional treatment group only improved in the unilateral basal ganglia and contralateral BA6 area. The RSFC in the left middle frontal gyrus, superior temporal gyrus, precuneus, and other healthy brain regions were enhanced in SAs after treatment. Conclusion The changes in functional connectivity between the cerebral cortex and basal ganglia in patients with cerebral infarction showed a weakening of the bilateral hemispheres and the enhancement of the connections between the hemispheres. Scalp acupuncture has the function of bidirectional regulation, which makes the unbalanced abnormal brain function state restore balance.
Collapse
Affiliation(s)
- Dan Lin
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jinyang Gao
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mengxin Lu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao Han
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhongjian Tan
- Department of Radiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yihuai Zou
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fangyuan Cui
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
138
|
Lu Y, Kim J, Kim T. A neurophysiological approach to the distinction between motor and cognitive skills: a functional magnetic resonance imaging study. Front Neurosci 2023; 17:1178800. [PMID: 37274191 PMCID: PMC10235625 DOI: 10.3389/fnins.2023.1178800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
This study investigated the neurophysiological differences underpinning motor and cognitive skills by measuring the brain activity via functional magnetic resonance imaging. Twenty-five healthy adults (11 women, 25.8 ± 3.5 years of age) participated in the study. We developed three types of tasks, namely, simple motor task (SMT), complex motor task (CMT), and cognitive task (CT), using two-dimensional images of Gomoku, a traditional game known as five in a row. When shown the stimulus, participants were instructed to identify the best spot to win the game and to perform motor imagery of placing the stone for the SMT and CMT but not for the CT. Accordingly, we found significant activation from the CMT minus SMT contrast in the dorsolateral prefrontal cortex, posterior parietal cortex, precentral gyrus, and superior frontal cortex, which reflected increased visuospatial attention, working memory, and motor planning. From the CT minus SMT contrast, we observed significant activation in the left caudate nucleus, right medial prefrontal cortex, and right primary somatosensory cortex, responsible for visuospatial working memory, error detection, and cognitive imagery, respectively. The present findings indicate that adopting a conventional classification of cognitive and motor tasks focused on the extent of decision making and motor control involved in task performance might not be ideal.
Collapse
Affiliation(s)
- Yunhang Lu
- Department of Physical Education, Kyungpook National University, Daegu, Republic of Korea
- Institute of Sports Science, Kyungpook National University, Daegu, Republic of Korea
| | - Jingu Kim
- Department of Physical Education, Kyungpook National University, Daegu, Republic of Korea
| | - Teri Kim
- Institute of Sports Science, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
139
|
Delavari F, Rafi H, Sandini C, Murray RJ, Latrèche C, Van De Ville D, Eliez S. Amygdala subdivisions exhibit aberrant whole-brain functional connectivity in relation to stress intolerance and psychotic symptoms in 22q11.2DS. Transl Psychiatry 2023; 13:145. [PMID: 37142582 PMCID: PMC10160125 DOI: 10.1038/s41398-023-02458-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
The amygdala is a key region in emotional regulation, which is often impaired in psychosis. However, it is unclear if amygdala dysfunction directly contributes to psychosis, or whether it contributes to psychosis through symptoms of emotional dysregulation. We studied the functional connectivity of amygdala subdivisions in patients with 22q11.2DS, a known genetic model for psychosis susceptibility. We investigated how dysmaturation of each subdivision's connectivity contributes to positive psychotic symptoms and impaired tolerance to stress in deletion carriers. Longitudinally-repeated MRI scans from 105 patients with 22q11.2DS (64 at high-risk for psychosis and 37 with impaired tolerance to stress) and 120 healthy controls between the ages of 5 to 30 years were included. We calculated seed-based whole-brain functional connectivity for amygdalar subdivisions and employed a longitudinal multivariate approach to evaluate the developmental trajectory of functional connectivity across groups. Patients with 22q11.2DS presented a multivariate pattern of decreased basolateral amygdala (BLA)-frontal connectivity alongside increased BLA-hippocampal connectivity. Moreover, associations between developmental drops in centro-medial amygdala (CMA)-frontal connectivity to both impaired tolerance to stress and positive psychotic symptoms in deletion carriers were detected. Superficial amygdala hyperconnectivity to the striatum was revealed as a specific pattern arising in patients who develop mild to moderate positive psychotic symptoms. Overall, CMA-frontal dysconnectivity was found as a mutual neurobiological substrate in both impaired tolerance to stress and psychosis, suggesting a role in prodromal dysregulation of emotions in psychosis. While BLA dysconnectivity was found to be an early finding in patients with 22q11.2DS, which contributes to impaired tolerance to stress.
Collapse
Affiliation(s)
- Farnaz Delavari
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland.
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.
| | - Halima Rafi
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
- Developmental Clinical Psychology Research Unit, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Corrado Sandini
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Ryan J Murray
- Psychiatry Department, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Center for Affective Sciences, University of Geneva, Campus Biotech, Geneva, Switzerland
| | - Caren Latrèche
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Dimitri Van De Ville
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
- Department of Genetic Medicine and Development, University of Geneva School of Medicine, Geneva, Switzerland
| |
Collapse
|
140
|
Liu Q, Song X, Zhou X, Huang L, Zhang X, Wang L, Zhu S, Lan C, Yang W, Zhao W. Regional superficial amygdala resting-state functional connectivity in adults infers childhood maltreatment severity. PSYCHORADIOLOGY 2023; 3:kkad004. [PMID: 38666120 PMCID: PMC11003424 DOI: 10.1093/psyrad/kkad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2024]
Abstract
Background Childhood maltreatment (CM) is a potential risk factor for some neuropsychiatric disorders in adulthood (e.g. depression and anxiety) and alters trajectories of brain development. Accumulating evidence suggests that functional connectivity of the limbic system, especially the amygdala, is highly associated with childhood maltreatment, although not all studies have found this. These inconsistent results may be due to differential alterations of amygdala resting-state functional connectivity (rsFC) following childhood maltreatment. Objective Our aim was to investigate the relationship between the rsFC of amygdala subregions and CM severity, as well as to develop a stable rsFC-based model for inferring the severity of CM. Methods In this study, we employed the Childhood Trauma Questionnaire (CTQ) to assess CM severity in each individual. We explored the relationship between the rsFC of amygdala subregions (i.e. centromedial -CMA, basolateral -BLA, superficial-SFA amygdala) and CM experience in a discovery dataset of n = 110 healthy Chinese participants by linear multiple regression analysis. Subsequent dimensional and categorical approach were performed to elucidate the relationship between rsFCs and CM severity and CM subtypes, respectively. A support vector regression model was then conducted to validate the associations between rsFCs and total CTQ scores. Moreover, we also verified the model into another independent replication dataset (n = 38). Results Our findings suggested that childhood maltreatment was negatively associated with rsFC between the right superficial amygdala and perigenual anterior cingulate cortex (pgACC)/postcentral gyrus (PCG) but not the other two amygdala subregions. Moreover, SFA-pgACC coupling was more associated with physical neglect whereas the SFA-PCG was more related to emotional neglect. In addition, supervised machine learning confirmed that using these two rsFCs as predictors could stably estimate continuous maltreatment severity in both discovery and replication datasets. Conclusion The current study supports that the rsFCs of superficial amygdala are related to childhood maltreatment and which may be a potential biomarker for the effects of childhood maltreatment-related psychiatric disorders (i.e. depression and anxiety).
Collapse
Affiliation(s)
- Qi Liu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xinwei Song
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xinqi Zhou
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Linghong Huang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiaodong Zhang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lan Wang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Siyu Zhu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chunmei Lan
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Wenxu Yang
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Weihua Zhao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
- Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguan 523808, China
| |
Collapse
|
141
|
Cai LN, Yue J, Cao DN, Wang P, Zhang Q, Li A, Zhao WW, Yang G, Wang Y, Peng CL, Han SW, Hou Y, Li XL. Structural and functional activities of brain in patients with vascular cognitive impairment: A case-controlled magnetic resonance imaging study. Medicine (Baltimore) 2023; 102:e33534. [PMID: 37058059 PMCID: PMC10101273 DOI: 10.1097/md.0000000000033534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/24/2023] [Indexed: 04/15/2023] Open
Abstract
This study aimed to identify abnormal brain regions and imaging indices of vascular cognitive impairment (VCI) and explore specific imaging diagnostic markers of VCI. In this study, 24 patients with VCI were allocated to the VCI group and 25 healthy subjects were assigned to the healthy control (HC) group. Demographic data and neuropsychological test scores were compared using SPSS 25.0. The structural and functional imaging data were post-processed and statistically analyzed using CAT12, DPARSF and SPM12 software, based on the MATLAB platform. The structural and functional indices of gray matter volume (GMV) and regional homogeneity (ReHo) were obtained, and inter-group data were analyzed using an independent-sample t test. Sex, age, years of education, and total brain volume were used as covariates. Compared to the HC group, the GMV of VCI in the VCI group decreased significantly in the rectus muscles of the bilateral gyrus, left superior temporal gyrus, left supplementary motor area (SMA), right insula, right superior temporal gyrus, right anterior cuneiform lobe, and right anterior central gyrus (PRECG) (P < .05, FWE correction), without GMV enlargement in the brain area. ReHo decreased in the right inferior temporal gyrus (ITG), right parahippocampal gyrus, and left temporal pole (middle temporal gyrus, right lingual gyrus, left posterior central gyrus, and right middle temporal gyrus), the areas of increased ReHo were the left caudate nucleus, left rectus gyrus, right anterior cingulate gyrus and lateral cingulate gyrus (P < .05, FWE correction). Correlation analysis showed that the GMV of the left superior temporal gyrus was positively correlated with the Montreal Cognitive Assessment (MoCA) score (P < .05), and the GMV of the right insula was positively correlated with the MESE and long delayed memory scores (P < .05). There was a significant positive correlation between the ReHo and short-term delayed memory scores in the middle temporal gyrus of the left temporal pole (P < .05). The volume of GMV and ReHo decreased in VCI patients, suggesting that impairment of brain structure and function in specific regions is the central mechanism of cognitive impairment in these patients. Meanwhile, the functional indices of some brain regions were increased, which may be a compensatory mechanism for the cognitive impairment associated with VCI.
Collapse
Affiliation(s)
- Li-Na Cai
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jinhuan Yue
- Shenzhen Frontier in Chinese Medicine Research Co., Ltd., Shenzhen, China
- Department of Tuina, Acupuncture and Moxibustion, Shenzhen Jiuwei Chinese Medicine Clinic, Shenzhen, China
| | - Dan-Na Cao
- Division of CT and MRI, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Peng Wang
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Oncology, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qinhong Zhang
- Shenzhen Frontier in Chinese Medicine Research Co., Ltd., Shenzhen, China
- Department of Tuina, Acupuncture and Moxibustion, Shenzhen Jiuwei Chinese Medicine Clinic, Shenzhen, China
| | - Ang Li
- Sanofi-Aventis China Investment Co., Ltd., Beijing, China
| | | | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH
| | - Yang Wang
- Division of CT and MRI, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Cai-Liang Peng
- Department of Third Cardiovascular, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Sheng-Wang Han
- Department of Third Cardiovascular, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Third Rehabilitation Medicine, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Hou
- Department of Gynecology, Harbin Traditional Chinese Medicine Hospital, Harbin, China
| | - Xiao-Ling Li
- Division of CT and MRI, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
142
|
Berenbaum JG, Nadkarni PA, Marvel CL. An fMRI analysis of verbal and non-verbal working memory in people with a past history of opioid dependence. Front Neurosci 2023; 17:1053500. [PMID: 37090800 PMCID: PMC10113507 DOI: 10.3389/fnins.2023.1053500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
Introduction Working memory describes the ability to maintain and manipulate information held in mind, and it is a fundamental aspect of executive function. Within drug addiction, impairments of executive control over behavior are thought to lead to poor decision making and risky behaviors. Previous research has demonstrated working memory (WM) and executive function difficulties in opioid-dependent individuals, but the neural underpinnings of such impairments in this population are not well understood. Methods This study used functional magnetic resonance imaging to examine the neural mechanisms involved in WM in 13 opioid-dependent, methadone-maintained participants (OP) and 13 matched, healthy controls (HC). A Sternberg item-recognition task was administered with three conditions: (1) a "verbal" condition in which participants determined whether any six visually presented target letters matched a probe item that was presented 4-6 s later, (2) a "non-verbal" condition in which participants were presented with a Chinese character and, following a 4-6 s delay, determined whether the character matched the probe item, and (3) a "control" condition in which participants were presented with three horizontal lines and following the same delay, determined whether the lines matched a probe item (always the same three lines). Functional magnetic resonance imaging (fMRI) contrasts focused on the delay (or "maintenance") phase for verbal and non-verbal conditions relative to the control condition. Results Accuracy on the WM task did not differ between groups, but the OP group was significantly slower to respond. The fMRI imaging results indicated differences in brain activity between the OP and HC groups. fMRI-guided regions of interest correlated with age of first alcohol and THC use, suggesting that early substance use, in addition to years of opioid-abuse, may have played a role in the OP group's WM performance. Discussion A deeper understanding of these neural differences between opioid-dependent individuals and their healthy control counterparts helps shed light on fundamental ways in which substance use impacts the brain and cognition, potentially opening up novel avenues for therapeutic targets to treat substance use disorder.
Collapse
Affiliation(s)
| | | | - Cherie L. Marvel
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
143
|
Xue C, Zhang X, Cao P, Yuan Q, Liang X, Zhang D, Qi W, Hu J, Xiao C. Evidence of functional abnormalities in the default mode network in bipolar depression: A coordinate-based activation likelihood estimation meta-analysis. J Affect Disord 2023; 326:96-104. [PMID: 36717032 DOI: 10.1016/j.jad.2023.01.088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND The default mode network (DMN) is thought to be involved in the pathophysiology of bipolar depression (BD). However, the findings of prior studies on DMN alterations in BD are inconsistent. Thus, this study aimed to systematically investigate functional abnormalities of the DMN in BD patients. METHODS We systematically searched PubMed, Ovid, and Web of Science for functional neuroimaging studies on regional homogeneity, amplitude of low frequency fluctuations (ALFF), and functional connectivity of the DMN in BD patients published before March 18, 2022. The stereotactic coordinates of the reported altered brain regions were extracted and incorporated into a brain map using the coordinate-based activation likelihood estimation approach. RESULTS A total of 43 original research studies were included in the meta-analysis. BD patients showed specific changes in the DMN including decreased ALFF/fractional ALFF in the left cingulate gyrus (CG) and bilateral precuneus (PCUN); increased functional connectivity (FC) in the left CG, left posterior CG, left PCUN, bilateral medial frontal gyrus, and bilateral superior frontal gyrus; and decreased FC in the left CG, left PCUN, left inferior parietal lobule, and left postcentral gyrus. LIMITATIONS Conclusions are limited by the small number of studies, additional meta-analyses are needed to obtain more data in BD subgroup. CONCLUSION This meta-analysis supports specific changes in DMN activity and FC in BD patients, which may be powerful biomarkers for the diagnosis of BD. The CG and PCUN were the most affected regions and are thus potential targets for clinical interventions to delay BD progression.
Collapse
Affiliation(s)
- Chen Xue
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xulian Zhang
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ping Cao
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Qianqian Yuan
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xuhong Liang
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Da Zhang
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wenzhang Qi
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jun Hu
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Chaoyong Xiao
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
144
|
Zhu H, Zhu H, Liu X, Wei F, Li H, Guo Z. The Characteristics of Entorhinal Cortex Functional Connectivity in Alzheimer's Disease Patients with Depression. Curr Alzheimer Res 2023; 19:CAR-EPUB-129980. [PMID: 36872356 DOI: 10.2174/1567205020666230303093112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Depression is one of the most common neuropsychiatric symptoms of Alzheimer's disease (AD) which decreases the life quality of both patients and caregivers. There are currently no effective drugs. It is therefore important to explore the pathogenesis of depression in AD patients. OBJECTIVE The present study aimed to investigate the characteristics of the entorhinal cortex (EC) functional connectivity (FC) in the whole brain neural network of AD patients with depression (D-AD). METHODS Twenty-four D-AD patients, 14 AD patients without depression (nD-AD), and 20 healthy controls underwent resting-state functional magnetic resonance imaging. We set the EC as the seed and used FC analysis. One-way analysis of variance was used to examine FC differences among the three groups. RESULTS Using the left EC as the seed point, there were FC differences among the three groups in the left EC-inferior occipital gyrus. Using the right EC as the seed point, there were FC differences among the three groups in the right EC-middle frontal gyrus, -superior parietal gyrus, -superior medial frontal gyrus, and -precentral gyrus. Compared with the nD-AD group, the D-AD group had increased FC between the right EC and right postcentral gyrus. CONCLUSION Asymmetry of FC in the EC and increased FC between the EC and right postcentral gyrus may be important in the pathogenesis of depression in AD.
Collapse
Affiliation(s)
- Haokai Zhu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang 310000, China
| | - Hong Zhu
- Tongde Hospital of Zhejiang Province, Zhejiang Mental Health Center, Hangzhou, Zhejiang 310012, China
| | - Xiaozheng Liu
- Department of Radiology of the Second Affiliated Hospital, China-USA Neuroimaging Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Fuquan Wei
- Tongde Hospital of Zhejiang Province, Zhejiang Mental Health Center, Hangzhou, Zhejiang 310012, China
| | - Huichao Li
- Tongde Hospital of Zhejiang Province, Zhejiang Mental Health Center, Hangzhou, Zhejiang 310012, China
| | - Zhongwei Guo
- Tongde Hospital of Zhejiang Province, Zhejiang Mental Health Center, Hangzhou, Zhejiang 310012, China
| |
Collapse
|
145
|
Wu X, Palaniyappan L, Yu G, Zhang K, Seidlitz J, Liu Z, Kong X, Schumann G, Feng J, Sahakian BJ, Robbins TW, Bullmore E, Zhang J. Morphometric dis-similarity between cortical and subcortical areas underlies cognitive function and psychiatric symptomatology: a preadolescence study from ABCD. Mol Psychiatry 2023; 28:1146-1158. [PMID: 36473996 DOI: 10.1038/s41380-022-01896-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
Preadolescence is a critical period characterized by dramatic morphological changes and accelerated cortico-subcortical development. Moreover, the coordinated development of cortical and subcortical regions underlies the emerging cognitive functions during this period. Deviations in this maturational coordination may underlie various psychiatric disorders that begin during preadolescence, but to date these deviations remain largely uncharted. We constructed a comprehensive whole-brain morphometric similarity network (MSN) from 17 neuroimaging modalities in a large preadolescence sample (N = 8908) from Adolescent Brain Cognitive Development (ABCD) study and investigated its association with 10 cognitive subscales and 27 psychiatric subscales or diagnoses. Based on the MSNs, each brain was clustered into five modules with distinct cytoarchitecture and evolutionary relevance. While morphometric correlation was positive within modules, it was negative between modules, especially between isocortical and paralimbic/subcortical modules; this developmental dissimilarity was genetically linked to synapse and neurogenesis. The cortico-subcortical dissimilarity becomes more pronounced longitudinally in healthy children, reflecting developmental differentiation of segregated cytoarchitectonic areas. Higher cortico-subcortical dissimilarity (between the isocortical and paralimbic/subcortical modules) were related to better cognitive performance. In comparison, children with poor modular differentiation between cortex and subcortex displayed higher burden of externalizing and internalizing symptoms. These results highlighted cortical-subcortical morphometric dissimilarity as a dynamic maturational marker of cognitive and psychiatric status during the preadolescent stage and provided insights into brain development.
Collapse
Affiliation(s)
- Xinran Wu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Lena Palaniyappan
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, QC, Canada
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Gechang Yu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, 999077, Hong Kong SAR, China
| | - Kai Zhang
- School of Computer Science and Technology, East China Normal University, 200062, Shanghai, China
| | - Jakob Seidlitz
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhaowen Liu
- Psychiatric & Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Xiangzhen Kong
- Department of Psychology and Behavioral Sciences, Zhejiang University, Zhejiang, China
| | - Gunter Schumann
- The Centre for Population Neuroscience and Stratified Medicine (PONS), ISTBI, Fudan University, Shanghai, China
- PONS Centre and SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- PONS Centre, Charite Mental Health, Dept. of Psychiatry and Psychotherapie, CCM, Charite Universitaetsmedizin Berlin, Berlin, Germany
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
- Shanghai Center for Mathematical Sciences, Shanghai, 200433, China
- Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Barbara J Sahakian
- Department of Psychiatry, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Trevor W Robbins
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
- Cambridge shire and Peterborough NHS Trust, Elizabeth House, Fulbourn Hospital, Cambridge, UK
| | - Edward Bullmore
- Department of Psychiatry and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Jie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China.
| |
Collapse
|
146
|
Wang Y, Wen J, Kong C, Xu Z, Hu S, Li M, Wang X, Zhang H, Jia X, Ding Q, Wu J, Hou D. Regional homogeneity alterations in multifrequency bands in patients with extracranial multi-organ tuberculosis: a prospective cross-sectional study. Quant Imaging Med Surg 2023; 13:1753-1767. [PMID: 36915302 PMCID: PMC10006160 DOI: 10.21037/qims-22-229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 01/04/2023] [Indexed: 02/16/2023]
Abstract
Background This study aimed to clarify the spontaneous neural activity in the conventional frequency band (0.01-0.08 Hz) and 2 subfrequency bands (slow-4: 0.027-0.073 Hz; slow-5: 0.01-0.027 Hz) in patients with extracranial multi-organ tuberculosis (EMTB) through regional homogeneity (ReHo) analysis. Methods In all, 32 patients with EMTB and 31 healthy controls (HCs) were assessed by resting-state functional magnetic resonance imaging (rs-fMRI) scans to clarify the abnormal spontaneous neural activity through ReHo analysis in the conventional frequency band and 2 subfrequency bands. Results Compared with the HCs, the patients with EMTB exhibited decreased ReHo in the left postcentral gyrus [t=-4.79; 95% confidence interval (CI): -0.79 to -0.31] and the left superior cerebellum (t=-4.45; 95% CI: -0.54 to -0.21) in the conventional band. Conversely, increased ReHo was observed in the right middle occipital gyrus (t=3.94; 95% CI: 0.18-0.53). In the slow-4 band, patients with EMTB only exhibited decreased ReHo in the superior cerebellum (t=-4.69; 95% CI: -0.54 to -0.22); meanwhile, in the slow-5 band, these patients exhibited decreased ReHo in the right postcentral gyrus (t=-3.76; 95% CI: -0.74 to -0.21) and the left superior cerebellum (t=-5.20, 95% CI: -0.72 to -0.31). After Bonferroni correction, no significant correlation was observed between the ReHo values in clusters showing significant between-group differences and cognitive test scores. Conclusions ReHo showed abnormal synchronous neural activity in patients with EMTB in different frequency bands, which provides a novel understanding of the pathological mechanism of EMTB.
Collapse
Affiliation(s)
- Yichuan Wang
- Department of Medical Imaging, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.,Department of Medical Imaging, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jianjie Wen
- School of Teacher Education, Zhejiang Normal University, Jinhua, China.,Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Chengcheng Kong
- Department of Medical Imaging, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.,Department of Medical Imaging, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zexuan Xu
- Department of Medical Imaging, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Su Hu
- School of Teacher Education, Zhejiang Normal University, Jinhua, China.,Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Mengting Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China.,Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Xinguang Wang
- School of Information Science and Electronic Technology, Jiamusi University, Jiamusi, China
| | - Hongqiang Zhang
- Department of Radiology, Changshu No. 2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China
| | - Xize Jia
- School of Teacher Education, Zhejiang Normal University, Jinhua, China.,Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China.,Department of Radiology, Changshu No. 2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China
| | - Qingguo Ding
- Department of Radiology, Changshu No. 2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China
| | - Jili Wu
- Department of Medical Imaging, Fourth People's Hospital of Taiyuan, Taiyuan, China
| | - Dailun Hou
- Department of Medical Imaging, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.,Department of Medical Imaging, Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
147
|
Zhou Q, Du J, Gao R, Hu S, Yu T, Wang Y, Pan NC. Discriminative neural pathways for perception-cognition activity of color and face in the human brain. Cereb Cortex 2023; 33:1972-1984. [PMID: 35580851 DOI: 10.1093/cercor/bhac186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/13/2022] Open
Abstract
Human performance can be examined using a visual lens. The identification of psychophysical colors and emotional faces with perceptual visual pathways may remain invalid for simple detection tasks. In particular, how the visual dorsal and ventral processing streams handle discriminative visual perceptions and subsequent cognition activities are obscure. We explored these issues using stereoelectroencephalography recordings, which were obtained from patients with pharmacologically resistant epilepsy. Delayed match-to-sample paradigms were used for analyzing the processing of simple colors and complex emotional faces in the human brain. We showed that the angular-cuneus gyrus acts as a pioneer in discriminating the 2 features, and dorsal regions, including the middle frontal gyrus (MFG) and postcentral gyrus, as well as ventral regions, such as the middle temporal gyrus (MTG) and posterior superior temporal sulcus (pSTS), were involved in processing incongruent colors and faces. Critically, the beta and gamma band activities between the cuneus and MTG and between the cuneus and pSTS would tune a separate pathway of incongruency processing. In addition, posterior insular gyrus, fusiform, and MFG were found for attentional modulation of the 2 features via alpha band activities. These findings suggest the neural basis of the discriminative pathways of perception-cognition activities in the human brain.
Collapse
Affiliation(s)
- Qilin Zhou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China.,Beijing Key Laboratory of Neuromodulation, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China
| | - Jialin Du
- Department of Pharmacy Phase I Clinical Trial Center, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China
| | - Runshi Gao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China
| | - Shimin Hu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China.,Beijing Key Laboratory of Neuromodulation, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China
| | - Tao Yu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China
| | - Yuping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China.,Beijing Key Laboratory of Neuromodulation, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China.,Institute of sleep and consciousness disorders, Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, No. 10, Xi Tou Tiao, Youanmen wai, Fengtai District, Beijing, 100069, China
| | - Na Clara Pan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China.,Beijing Key Laboratory of Neuromodulation, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China
| |
Collapse
|
148
|
The relationship between brain neural correlates, self-objectification, and interoceptive sensibility. Behav Brain Res 2023; 439:114227. [PMID: 36436730 DOI: 10.1016/j.bbr.2022.114227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
Interoceptive sensibility refers to the tendency to focus on internal bodily states and the capacity to detect them. As the subjective dimension of interoception, interoceptive sensibility plays a key role in individuals' health. Self-objectification, a process by which individuals tend to adopt a third-person's perspective of their physical self, leads to decreased interoceptive sensibility. However, few studies regarding the neural basis of interoceptive sensibility and the underlying mechanism of the relationship between self-objectification and interoceptive sensibility have been conducted. In this study, we assessed the resting-state brain activity (fractional amplitude of low-frequency fluctuation, fALFF) and connectivity (resting-state functional connectivity, RSFC) of 442 college students. Whole-brain correlation analyses revealed that a higher level of interoceptive sensibility was linked to higher fALFF in the right inferior frontal gyrus (IFG) and left cerebellum and to lower fALFF in the left paracentral lobule and left superior/middle temporal gyrus. Interoceptive sensibility also was negatively associated with the RSFC between the right IFG and the right secondary somatosensory cortex (S2) and the right IFG and the ventral premotor cortex (VPC). These brain regions and connections are mainly responsible for switching attention to internal/external information and processing body-related somatosensory as well as sensory information. Mediation analyses suggested that the fALFF of the right IFG and the RSFC of IFG-S2 and IFG-VPC mediated the relationship between self-objectification and interoceptive sensibility. Overall, these results suggest that the IFG may be the neural marker of interoceptive sensibility and reveal several potential mediation models of the relationship between brain neural correlates and self-objectification and interoceptive sensibility.
Collapse
|
149
|
Agoalikum E, Klugah-Brown B, Wu H, Hu P, Jing J, Biswal B. Structural differences among children, adolescents, and adults with attention-deficit/hyperactivity disorder and abnormal Granger causality of the right pallidum and whole-brain. Front Hum Neurosci 2023; 17:1076873. [PMID: 36866118 PMCID: PMC9971633 DOI: 10.3389/fnhum.2023.1076873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a childhood mental health disorder that often persists to adulthood and is characterized by inattentive, hyperactive, or impulsive behaviors. This study investigated structural and effective connectivity differences through voxel-based morphometry (VBM) and Granger causality analysis (GCA) across child, adolescent, and adult ADHD patients. Structural and functional MRI data consisting of 35 children (8.64 ± 0.81 years), 40 adolescents (14.11 ± 1.83 years), and 39 adults (31.59 ± 10.13 years) was obtained from New York University Child Study Center for the ADHD-200 and UCLA dataset. Structural differences in the bilateral pallidum, bilateral thalamus, bilateral insula, superior temporal cortex, and the right cerebellum were observed among the three ADHD groups. The right pallidum was positively correlated with disease severity. The right pallidum as a seed precedes and granger causes the right middle occipital cortex, bilateral fusiform, left postcentral gyrus, left paracentral lobule, left amygdala, and right cerebellum. Also, the anterior cingulate cortex, prefrontal cortex, left cerebellum, left putamen, left caudate, bilateral superior temporal pole, middle cingulate cortex, right precentral gyrus, and the left supplementary motor area demonstrated causal effects on the seed region. In general, this study showed the structural differences and the effective connectivity of the right pallidum amongst the three ADHD age groups. Our work also highlights the evidence of the frontal-striatal-cerebellar circuits in ADHD and provides new insights into the effective connectivity of the right pallidum and the pathophysiology of ADHD. Our results further demonstrated that GCA could effectively explore the interregional causal relationship between abnormal regions in ADHD.
Collapse
Affiliation(s)
- Elijah Agoalikum
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Benjamin Klugah-Brown
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Hongzhou Wu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Peng Hu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Junlin Jing
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Bharat Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
150
|
Discriminating between bipolar and major depressive disorder using a machine learning approach and resting-state EEG data. Clin Neurophysiol 2023; 146:30-39. [PMID: 36525893 DOI: 10.1016/j.clinph.2022.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/28/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Distinguishing major depressive disorder (MDD) from bipolar disorder (BD) is a crucial clinical challenge as effective treatment is quite different for each condition. In this study electroencephalography (EEG) was explored as an objective biomarker for distinguishing MDD from BD using an efficient machine learning algorithm (MLA) trained by a relatively large and balanced dataset. METHODS A 3 step MLA was applied: (1) a multi-step preprocessing method was used to improve the quality of the EEG signal, (2) symbolic transfer entropy (STE), an effective connectivity measure, was applied to the resultant EEG and (3) the MLA used the extracted STE features to distinguish MDD (N = 71) from BD (N = 71) subjects. RESULTS 14 connectivity features were selected by the proposed algorithm. Most of the selected features were related to the frontal, parietal, and temporal lobe electrodes. The major involved regions were the Broca region in the frontal lobe and the somatosensory association cortex in the parietal lobe. These regions are near electrodes FC5 and CPz and are involved in processing language and sensory information, respectively. The resulting classifier delivered an evaluation accuracy of 88.5% and a test accuracy of 89.3%, using 80% of the data for training and evaluation and the remaining 20% for testing, respectively. CONCLUSIONS The high evaluation and test accuracies of our algorithm, derived from a large balanced training sample suggests that this method may hold significant promise as a clinical tool. SIGNIFICANCE The proposed MLA may provide an inexpensive and readily available tool that clinicians may use to enhance diagnostic accuracy and shorten time to effective treatment.
Collapse
|