101
|
Valadez-Renteria E, Oliva J, Navarro-Garcia NE, Rodriguez-Gonzalez V. Novel sustainable composites made of car's waste and sodium titanate for the efficient photocatalytic removal of the bromophenol blue dye: study under solar and UV-Vis light. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76752-76765. [PMID: 35670940 DOI: 10.1007/s11356-022-21301-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
In this research, W-doped sodium nanotube titanate (NaTNT) nanoparticles were used for the photocatalytic degradation of the bromophenol blue (BPB) dye. The NaTNT powder was mixed with car's tire powder (TP) to enhance its light absorption or was supported on recycled car's air filters (AFs) to facilitate its removal from the cleaned water after the degradation of the BPB. The SEM analysis indicated that the NaTNT nanoparticles and the TP had sizes in the range of 150-325 nm and 8-37 µm, respectively. Both powders were also studied by X-ray diffraction and found that the sodium titanate corresponds to the Na2Ti6O13 with monoclinic phase, while the TP is formed by rubber, silicon, ZnS, and ZnO. The photocatalytic activity of the NaTNT powder was evaluated for the degradation of BPB dye (20 ppm) and obtained a maximum degradation of 95 and 80% under UV-Vis and natural solar light, respectively, after 4 h of irradiation. For the NaTNT + TP composite mixture, the maximum degradation was 87 and 68% under UV-Vis and solar light, respectively. The NaTNT and NaTNT + TP powders were supported on the AFs to form the AF + NaTNT and AF + NaTNT + TP composites. Those ones produced maximum degradation of 86% and 74% (under UV-Vis light), respectively. Besides, several initial pHs were tested for the contaminated water and determined that the maximum degradation of BPB (93-95%) is reached for the pHs of 3 and 7. Reuse experiments (3 cycles) revealed that the diminution of the BPB degradation percentage was 23% and 20% for the NaTNT and NaTNT + TP powders, respectively. Overall, it was demonstrated that the wasted car's air filters can be used as a support for photocatalytic powders, and this combination of AF + powder degrades the BPB with high efficiency.
Collapse
Affiliation(s)
- Ernesto Valadez-Renteria
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica Y Tecnológica A.C, 78216, San Luis Potosí, SLP, México
| | - Jorge Oliva
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica Y Tecnológica A.C, 78216, San Luis Potosí, SLP, México
| | - Nayeli E Navarro-Garcia
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica Y Tecnológica A.C, 78216, San Luis Potosí, SLP, México
| | - Vicente Rodriguez-Gonzalez
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica Y Tecnológica A.C, 78216, San Luis Potosí, SLP, México.
| |
Collapse
|
102
|
Hemmatpour P, Nezamzadeh-Ejhieh A. A Z-scheme CdS/BiVO 4 photocatalysis towards Eriochrome black T: An experimental design and mechanism study. CHEMOSPHERE 2022; 307:135925. [PMID: 35952786 DOI: 10.1016/j.chemosphere.2022.135925] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/24/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The synergistic photocatalytic activity was obtained when CdS and BiVO4 nanoparticles (NPs) were coupled. The samples were characterized by XRD, FTIR, SEM-EDX, and UV-DRS techniques, and their pHpzc was also estimated. The crystallite size of the coupled sample was estimated at 37.3 and 12.5 nm by the Scherrer and Williamson-Hall equations, respectively. The band gaps and the potential positions of VB and CB levels of the semiconductors used were determined. The highest boosted photocatalytic activity was obtained when the CdS: BiVO4 mole ratio was 1:1. RSM studied the simultaneous interactions between the selected variables, and the model F-value of 110.61> F0.05, 14, 13 = 2.4 accompanied by the LOF F-value of 5.20 < F0.05, 10, 3 = 8.79 confirm the model significance. The correlation coefficients of R2 = 0.9861, the adjusted R2 = 0.9710, and the predicted R2 = 0.9417, also establish a satisfactory model for processing the experimental data. In the scavenging agent study, photodegradation mechanisms were suggested; among them, the direct Z-scheme mechanism is more favorable for illustrating the EBT-photodegradation by the binary CdS-BiVO4 photocatalyst. The proposed system, especially the direct Z-scheme mechanism, is suitable as a potential hydrogen production system.
Collapse
Affiliation(s)
- Pooneh Hemmatpour
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box, 311-86145, Shahreza, Isfahan, Islamic Republic of Iran.
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box, 311-86145, Shahreza, Isfahan, Islamic Republic of Iran.
| |
Collapse
|
103
|
Khairy G, Hesham A, Jahin H, El-Korashy S, Mahmoud Awad Y. Green Synthesis of a novel eco-friendly hydrochar from Pomegranate peels loaded with iron nanoparticles for the removal of copper ions and methylene blue from aqueous solutions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
104
|
Khamesan A, Esfahani MM, Ghasemi JB, Farzin F, Parsaei-Khomami A, Mousavi M. Graphitic-C3N4/ZnCr-layered double hydroxide 2D/2D nanosheet heterojunction: Mesoporous photocatalyst for advanced oxidation of azo dyes with in situ produced H2O2. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
105
|
Kapoor A, Pratibha, Rajput JK. Solar light photocatalytic activity of CuO/TiO2 mixed oxide derived from conjugated azomethine metal complex for degradation of food colorants. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
106
|
Murshid N, Mouhtady O, Abu-samha M, Obeid E, Kharboutly Y, Chaouk H, Halwani J, Younes K. Metal Oxide Hydrogel Composites for Remediation of Dye-Contaminated Wastewater: Principal Component Analysis. Gels 2022; 8:702. [PMID: 36354610 PMCID: PMC9689451 DOI: 10.3390/gels8110702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 10/28/2023] Open
Abstract
Water pollution is caused by multiple factors, such as industrial dye wastewater. Dye-contaminated water can be treated using hydrogels as adsorbent materials. Recently, composite hydrogels containing metal oxide nanoparticles (MONPs) have been used extensively in wastewater remediation. In this study, we use a statistical and artificial intelligence method, based on principal component analysis (PCA) with different applied parameters, to evaluate the adsorption efficiency of 27 different MONP composite hydrogels for wastewater dye treatment. PCA showed that the hydrogel composites CTS@Fe3O4, PAAm/TiO2, and PEGDMA-rGO/Fe3O4@cellulose should be used in situations involving high pH, time to reach equilibrium, and adsorption capacity. However, as the composites PAAm-co-AAc/TiO2, PVPA/Fe3O4@SiO2, PMOA/ATP/Fe3O4, and PVPA/Fe3O4@SiO2, are preferred when all physical and chemical properties investigated have low magnitudes. To conclude, PCA is a strong method for highlighting the essential factors affecting hydrogel composite selection for dye-contaminated water treatment.
Collapse
Affiliation(s)
- Nimer Murshid
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Omar Mouhtady
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Mahmoud Abu-samha
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Emil Obeid
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Yahya Kharboutly
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Hamdi Chaouk
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Jalal Halwani
- Water and Environment Sciences Lab, Lebanese University, Tripoli, Lebanon
| | - Khaled Younes
- College of Engineering and Technology, American University of the Middle East, Kuwait
| |
Collapse
|
107
|
|
108
|
Balasurya S, Okla MK, Alaraidh IA, Al-Ghamdi AA, Mohebaldin A, Abdel-Maksoud MA, Abdelaziz RF, Thomas AM, Raju LL, Khan SS. Sunlit photocatalytic degradation of organic pollutant by NiCr 2O 4/Bi 2S 3/Cr 2S 3 tracheid skeleton nanocomposite: Mechanism, pathway, reactive sites, genotoxicity and byproduct toxicity evaluation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115674. [PMID: 35868190 DOI: 10.1016/j.jenvman.2022.115674] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
In this study, 3D C2S3 (CS) and 2D Bi2S3 (BS) modified NiCr2O4 nanocomposite (NCO-BS-CS NCs) was prepared by sonochemical assisted co-precipitation method for the enhanced photocatalytic activity. Here, NCO-BS-CS NCs showed band gap energy of 2.23 eV and the PL intensity of NCO-BS-CS NCs was lower than NCO, BS, and CS NPs. Thus, the results indicate the fabricated NCO-BS-CS NCs enhance the charge segregation and lower in recombination rate. NCO-BS-CS NCs showed enhanced photodegradation of methyl orange (MO) (95%) and congo red (CR) (99.7%) respectively. The total organic compound (TOC) analysis shows the complete mineralization of about 91 and 98% for MO and CR respectively. Furthermore, the Fukui function was used for the prediction of reactive sites in the photodegradation pathway of MO and CR by NCs. ECOSAR program was done to determine the toxicity of the intermediate and the results conclude that the degraded product shows nontoxic to the environmental organism (fish, daphnia, and algae). Thus, the fabricated NCO-BS-CS NCs can be used for the remediation of toxic organic pollutants from the waste water by photocatalytic degradation.
Collapse
Affiliation(s)
- S Balasurya
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - Mohammad K Okla
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ibrahim A Alaraidh
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdullah A Al-Ghamdi
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Asmaa Mohebaldin
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ramadan F Abdelaziz
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Austria
| | - Ajith M Thomas
- Department of Botany and Biotechnology, St Xavier's College, Thumba, Thiruvananthapuram, India
| | - Lija L Raju
- Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, India
| | - S Sudheer Khan
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India.
| |
Collapse
|
109
|
Gouthami K, Lakshminarayana L, Veeraraghavan V, Bilal M, Bharagava RN, Ferreira LFR, Rahdar A, Bankole PO, Américo‐Pinheiro JH, Mulla SI. Application of Microbes in Dye Decolorization. Microb Biotechnol 2022. [DOI: 10.1002/9781119834489.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
110
|
James A, Yadav D. Bioaerogels, the emerging technology for wastewater treatment: A comprehensive review on synthesis, properties and applications. ENVIRONMENTAL RESEARCH 2022; 212:113222. [PMID: 35398081 DOI: 10.1016/j.envres.2022.113222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Over the past decade use of aerogels has received much attention as an emerging technology for wastewater treatment. However, production of aerogels is not environment-friendly. Owing to its excellent properties such as porosity, three-dimensional structure, being amenable to chemical modifications, it is imperative to devise strategies for their improved production and use. Bioaerogels are non-toxic and most of their precursor compounds are biomass-derived. This review aims to present a comprehensive report on survey of existing literature published on the use of bioaerogels for removal of all major categories of water contaminants, namely, heavy metals, industrial dyes, oil, organic compounds and pharmaceuticals. It also gives critical analysis of the lacunae in the existing knowledge such as lack of studies on domestic sewage, emerging pollutants, toxicity of raw materials and adequate disposal of used adsorbents. Proposals of overcoming the limitations in the applicability of bioaerogels, like combining constructed wetlands with use of bioaerogels, among others have been discussed. In this review, emphasis has been given on production of bioaerogels, with an aim to underscore the potential of valorization of biomass waste to develop novel materials for wastewater treatment in an effort towards creating a circular and green economy.
Collapse
Affiliation(s)
- Anina James
- Department of Zoology, Deen Dayal Upadhyaya College (University of Delhi), Dwarka Sector 3, Delhi, 110078, India.
| | - Deepika Yadav
- Department of Zoology, Shivaji College, University of Delhi, Delhi, India.
| |
Collapse
|
111
|
Lyu W, Li J, Trchová M, Wang G, Liao Y, Bober P, Stejskal J. Fabrication of polyaniline/poly(vinyl alcohol)/montmorillonite hybrid aerogels toward efficient adsorption of organic dye pollutants. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129004. [PMID: 35500341 DOI: 10.1016/j.jhazmat.2022.129004] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/06/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Fabrication of adsorbents with excellent adsorption capacity, outstanding stability, easy separation ability, excellent recyclability and widely generality for organic dyes removal from wastewater remains challenging. Herein, three-dimensional polyaniline/poly(vinyl alcohol)/montmorillonite (PANI/PVAL/MMT) hybrid aerogels with easy separation performance and highly effective reusable adsorption on both anionic and cationic dyes were fabricated by a simple in-situ polymerization method. As-prepared hybrid aerogels were characterized via infrared and Raman spectra, scanning electron microscopy, energy dispersive spectra mapping, small and wide-angle X-ray scattering, thermogravimetric analysis, mercury intrusion porosimetry and elemental analysis. The results showed that MMT particles were successfully incorporated into aerogel matrix. Well-defined hierarchical structure, where PANI nanofibers are coated on the skeleton wall, can be observed for PANI/PVAL/MMT when the incorporation amount of MMT was around 11.1 wt%. The adsorption performance of as-prepared hybrid aerogels on both anionic and cationic dyes was systemically carried out at different solution pH, adsorbent dosage and initial dye concentration. The data analysis showed that the adsorption process for PVAL/PANI/MMT aerogel for Reactive Black 5, methyl orange and safranin followed Freundlich isotherm and the maximum experimental adsorption capacities were found to be 199, 251 and 57.0 mg g-1 at 25 °C, respectively. Mechanism studies indicated that the electrostatic interaction is the main driving force for the adsorption of dyes. The results demonstrated that the fabricated hybrid aerogel is an efficient adsorbent for the removal of both anionic and cationic organic dyes.
Collapse
Affiliation(s)
- Wei Lyu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague 6, Czech Republic.
| | - Jiaqiang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Miroslava Trchová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague 6, Czech Republic; University of Chemistry and Technology, Prague, 166 28 Prague 6, Czech Republic
| | - Guang Wang
- Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China; Spallation Neutron Source Science Centre, 523803 Dongguan, China
| | - Yaozu Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Patrycja Bober
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague 6, Czech Republic.
| | - Jaroslav Stejskal
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague 6, Czech Republic.
| |
Collapse
|
112
|
Venkatraman SK, Vijayakumar N, Bal DK, Mishra A, Gupta B, Mishra V, Wysokowski M, Koppala S, Swamiappan S. Degradation of environmentally harmful textile dye rhodamine B using silicate ceramic photocatalysts. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
113
|
Synthesis, Characterization, and Application of Magnetized Lanthanum (III)-Based Metal-Organic Framework for the Organic Dye Removal from Water. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/3513829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A hybrid composite based on metal-organic framework (MOF) was chemically fabricated by embedding the magnetic Fe3O4 nanoparticles within amino-functionalized porous La-MOF (MOF/NH2) to produce a highly efficient and reusable composite of MOF/NH2/Fe3O4. Different proper techniques were used for the characterization of surface morphology and chemical arrangement of the prepared MOF/NH2/Fe3O4 composite. The characterization results using various techniques including Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM), Brunauer, Emmett, and Teller analysis (BET), and vibrating sample magnetometer (VSM) approved the successful fabrication of MOF with amino arms on its surface besides the well magnetization using magnetic nanoparticles. The MOF/NH2/Fe3O4 composite showed enhanced adsorption capacity (618 mg/g) toward methyl orange (MO) anionic dye which is higher than many commercial reported adsorbents due to the presence of many types of adsorption sites (NH2 groups and lanthanum sites), large surface area of MOF, and the synergetic effect of magnetic nanoparticles. Moreover, the MOF/NH2/Fe3O4 composite showed selective adsorption of MO dye from dye mixtures owing to the electrostatic attraction. Also, the MOF/NH2/Fe3O4 composite retained over 90% of its efficiency for the dye removal even after six successive cycles. So, the present study provided a practical strategy for the design of functional MOF hybrid composites. Furthermore, due to the adaptability of its architectural form, it is a potential adsorbent material for industrial wastewater treatment uses.
Collapse
|
114
|
The spatial spillover effect of environmental regulation on the total factor productivity of pharmaceutical manufacturing industry in China. Sci Rep 2022; 12:11642. [PMID: 35804005 PMCID: PMC9264754 DOI: 10.1038/s41598-022-15614-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/27/2022] [Indexed: 11/08/2022] Open
Abstract
As an important embodiment of a country's economic strength and national health, pharmaceutical manufacturing industry has made rapid development in China in recent years. But at the same time, the pharmaceutical manufacturing industry is facing many environmental problems, such as large pollution emissions, complex pollution components, controlling difficulties and so on. This paper measures the total factor productivity of pharmaceutical manufacturing industry (HTFP) by using data envelopment analysis with unexpected output, which is more accurate and effective than the traditional model. It also studies the effect of environmental regulation on the total factor productivity of pharmaceutical manufacturing industry (HTFP) by establishing panel data regression model and spatial econometric model based on 30 provinces in China from 2004 to 2019, which enriches the research results in the field of cleaning in pharmaceutical manufacturing industry. The conclusions are as follows: (1) Environmental regulation and total factor productivity of pharmaceutical manufacturing industry have significant spatial autocorrelation, showing "high-high" or "low-low" spatial aggregation characteristics; (2) Environmental regulation has a significant promoting effect on improving pharmaceutical manufacturing total factor productivity in local and surrounding areas, and there are differences in the impact of eastern, central and western regions; (3) Green technology, production technology and industrial structure play an important role in the impact of environmental regulation on pharmaceutical manufacturing total factor productivity, which provides theoretical guidance and policy recommendations for improving the level of total factor productivity of pharmaceutical manufacturing industry in the environmental aspect.
Collapse
|
115
|
Hoang NT, Nguyen VT, Minh Tuan ND, Manh TD, Le PC, Van Tac D, Mwazighe FM. Degradation of dyes by UV/Persulfate and comparison with other UV-based advanced oxidation processes: Kinetics and role of radicals. CHEMOSPHERE 2022; 298:134197. [PMID: 35276111 DOI: 10.1016/j.chemosphere.2022.134197] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/11/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the degradation of methylene blue (MeB), methyl orange (MeO), and rhodamin B (RhB) by the UV/Persulfate (UV/PS) process. The dye degradation in the investigated UV-based Advanced Oxidation Processes (UV/AOPs) followed the first-order kinetic model. The second-order rate constant of the dyes with •OH, SO4•-, and CO3•- were calculated and found to be: k•OH,MeB = 5.6 × 109 M-1 s-1, [Formula: see text] = 3.3 × 109 M-1 s-1, [Formula: see text] = 6.9 × 107 M-1 s-1; k•OH,MeO = 3.2 × 109 M-1 s-1, [Formula: see text] = 13 × 109 M-1 s-1, [Formula: see text] = 4.4 × 106 M-1 s-1; k•OH,RhB = 14.8 × 109 M-1 s-1, [Formula: see text] = 5 × 109 M-1 s-1, [Formula: see text] = 1 × 107 M-1 s-1. The steady-state concentrations of •OH and SO4•- (including other reactive species) were determined using both chemical probes and modeling methods (Kintecus® V6.8). In the UV/PS, the dye degradation depends on the pH of the solution with the order: kdye (at pH of 7) > kdye (in acidic conditions) > kdye (in alkaline conditions). The presence of water matrices had different impacts on dye degradation: 1) The HCO3- and Cl- promoted the degradation efficiency of one dye, but also inhibited the degradation of other dyes; 2) Humic acid (HA) inhibited dye degradation as it scavenged both •OH and SO4•-. The degradation of the dyes by UV/PS was also compared with the UV/Chlorine (UV/HOCl) and UV/H2O2 and it was established that: 1) In UV/PS and UV/HOCl, SO4•- and RCS contributed to dye degradation more than •OH, while •OH played a major role in dye degradation by UV/H2O2; 2) The calculated toxicity in UV/PS was the lowest probably due to the low toxicity of by-products; 3) For MeO and RhB, the UV/PS process is more beneficial for the total organic carbon (TOC) removal compared to that of the UV/HOCl and UV/H2O2 processes; 4) The UV/PS showed lower cost than the UV/HOCl and UV/H2O2 systems for MeO, and RhB degradation but higher cost for MeB removal.
Collapse
Affiliation(s)
- Nguyen Tien Hoang
- The University of Danang, University of Science and Education, Da Nang, 550 000, Viet Nam.
| | - Vo Thang Nguyen
- The University of Danang, University of Science and Education, Da Nang, 550 000, Viet Nam
| | - Nguyen Dinh Minh Tuan
- The University of Danang, University of Science and Technology, Da Nang, 550 000, Viet Nam
| | - Tran Duc Manh
- The University of Danang, University of Science and Education, Da Nang, 550 000, Viet Nam
| | - Phuoc-Cuong Le
- The University of Danang, University of Science and Technology, Da Nang, 550 000, Viet Nam
| | - Dinh Van Tac
- The University of Danang, University of Science and Education, Da Nang, 550 000, Viet Nam
| | - Fredrick M Mwazighe
- Department of Chemistry, University of Nairobi, P. O. Box 30197, 00100, Nairobi, Kenya
| |
Collapse
|
116
|
Rani B, Nayak AK, Sahu NK. Degradation of mixed cationic dye pollutant by metal free melem derivatives and graphitic carbon nitride. CHEMOSPHERE 2022; 298:134249. [PMID: 35278450 DOI: 10.1016/j.chemosphere.2022.134249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 01/26/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Graphitic carbon nitride (GCN), a polymeric metal free catalyst is widely used to degrade the toxic organic dye from the aqueous pollution. However, its catalytic efficiency and effective simultaneous reduction of mixed dye is still a challenge. Here, we have tuned the physiochemical properties of the GCN and melem derivatives by facilely tuning the degree of polycondensation and examined their catalytic activity towards the removal of cationic dye individually and together in solution. Catalysts were synthesized by thermal treatment of low-cost melamine and characterized by XRD, FTIR, RAMAN, FE-SEM, EDX, UV-DRS, and FL spectroscopy to confirm materials' structure, phase, morphology and optical properties. A suitable phase of the catalyst (M-450) exhibited superior removal capacity with a high-rate constant compared to others. The results demonstrate that M-450 has a maximum loading efficacy of 2.13 and 1.12 mg g-1 for methylene blue (MB) and Rhodamine B (RhB) dyes respectively in a single dye system. Attractively, when MB and RhB co-exist in the solution, the efficacy increased by 14% (2.44 mg g-1) and 27% (1.43 mg g-1) for MB and RhB respectively. The adsorption kinetics, stability, effect of pH and reusability of M-450 catalyst was testified. Further, radical scavenger experiments and terephthalic acid tests were carried out to explain the reaction mechanism involved in the degradation of textile dyes. Moreover, electron paramagnetic resonance (EPR) analysis validated the availability of hydroxyl radicals in the photocatalytic reaction. Excellent stability and reusability were attained even after five successive cycles, demonstrating a suitable photocatalyst for the efficient degradation of mixed dye.
Collapse
Affiliation(s)
- Barkha Rani
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, 632014, India; School of Electronics Engineering, Vellore Institute of Technology, Vellore, 632014, India
| | - Arpan Kumar Nayak
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | - Niroj Kumar Sahu
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
117
|
Fabrication of Copper(II)-Coated Magnetic Core-Shell Nanoparticles Fe3O4@SiO2: An Effective and Recoverable Catalyst for Reduction/Degradation of Environmental Pollutants. CRYSTALS 2022. [DOI: 10.3390/cryst12060862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this work, we report the synthesis of a magnetically recoverable catalyst through immobilizing copper (II) over the Fe3O4@SiO2 nanoparticles (NPs) surface [Fe3O4@SiO2-L–Cu(II)] (L = pyridine-4-carbaldehyde thiosemicarbazide). Accordingly, synthesized catalysts were determined and characterized by energy dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), field emission scanning electron microscopy (FESEM), and thermogravimetric-differential thermal analysis (TG-DTA) procedures. The [Fe3O4@SiO2-L–Cu(II)] was used for the reduction of Cr(VI), 4-nitrophenol (4-NP) and organic dyes such as Congo Red (CR) and methylene blue (MB) in aqueous media. Catalytic performance studies showed that the [Fe3O4@SiO2–L–Cu(II)] has excellent activity toward reduction reactions under mild conditions. Remarkable attributes of this method are high efficiency, removal of a homogeneous catalyst, easy recovery from the reaction mixture, and uncomplicated route. The amount of activity in this catalytic system was almost constant after several stages of recovery and reuse. The results show that the catalyst was easily separated and retained 83% of its efficiency after five cycles without considerable loss of activity and stability.
Collapse
|
118
|
Vijayan JG, Prabhu TN. Catalytic and Non-catalytic Approach for the Synthesis of Green Functionalized Nanocellulose from Different Biomass: Properties and Adsorption Studies. Top Catal 2022. [DOI: 10.1007/s11244-022-01637-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
119
|
Synthesis, Characterization, and Photocatalytic Investigation of CuFe2O4 for the Degradation of Dyes under Visible Light. Catalysts 2022. [DOI: 10.3390/catal12060623] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The CuFe2O4 photocatalysts were synthesized by the solution combustion synthesis method, followed by heat treatment at a temperature range of 400 to 1100 °C. Later, they were characterized for application in the photodegradation of synthetic dyes under visible radiation. The X-ray diffraction results showed the presence of cubic and tetragonal phases of CuFe2O4 and secondary phases of Fe2O3 and CuO, at low temperatures. The infrared spectrum profile confirms the formation of the phases pointed out in the XRD. For most specimens, the scanning electron microscopy examination revealed a morphology similar to porous flakes and a quasi-spherical shape. On the other hand, samples heat-treated at 1100 °C displayed a plate-like morphology. The specimens’ band gap ranged from 1.49 to 1.58 eV, indicating that the material is a semiconductor. Regarding the photocatalytic efficiency, the 400 °C heat-treated samples showed better activity when the visible irradiation was used over the green malachite and rhodamine B dyes. The solution degradation rates on the first and former dyes were 56.60% and 84.30%, respectively.
Collapse
|
120
|
Han M, Shen X, Shao H, Wang X, Liu Y, Zhai Y. Adsorption of Congo red by fibrous xonotlite prepared from waste silicon residue. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:3159-3168. [PMID: 35704402 DOI: 10.2166/wst.2022.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fibrous xonotlite was synthesized under the conditions of Na2SiO3 concentration of 0.05 mol·L-1, molar ratio of Si/Ca of 1:1, temperature of 220 °C and time of 9 h. It is worth pointing out that the Na2SiO3 solution as raw material was obtained from silicon residue through several procedures. The fibrous xonotlite exhibits excellent adsorption capacity for Congo red. 50 mL solution of Congo red with the concentrations of 100, 150 and 200 mg·L-1 can be almost completely adsorbed by 30 mg of fibrous xonotlite within 10 min, and the adsorption ratios are 94.05%, 95.50% and 94.14%. The Langmuir model describes the adsorption well, indicating the adsorption is monolayer. The adsorption kinetics follows the pseudo-second-order model. The calculated maximum adsorption capacity of fibrous xonotlite for Congo red is 574.71 mg·g-1 at room temperature. Fibrous xonotlite is a potential efficient adsorbent for Congo red owing to its rapid adsorption, high adsorption capacity and regeneration capacity.
Collapse
Affiliation(s)
- Mingyu Han
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), School of Metallurgy, Northeastern University, Shenyang 110819, China E-mail:
| | - Xiaoyi Shen
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), School of Metallurgy, Northeastern University, Shenyang 110819, China E-mail:
| | - Hongmei Shao
- School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110159, China
| | - Xinyue Wang
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), School of Metallurgy, Northeastern University, Shenyang 110819, China E-mail:
| | - Yan Liu
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), School of Metallurgy, Northeastern University, Shenyang 110819, China E-mail:
| | - Yuchun Zhai
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), School of Metallurgy, Northeastern University, Shenyang 110819, China E-mail:
| |
Collapse
|
121
|
Pratibha, Rajput JK. Synergistically Enhanced Solar‐light Driven Degradation of Hazardous Food Colorants by Ultrasonically Derived MgFe
2
O
4
/S‐doped g‐C
3
N
4
Nanocomposite: A Z‐Scheme System Based Heterojunction Approach. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pratibha
- Department of Chemistry, Dr. B. R Ambedkar National Institute of Technology Jalandhar Punjab India
| | - Jaspreet Kaur Rajput
- Department of Chemistry, Dr. B. R Ambedkar National Institute of Technology Jalandhar Punjab India
| |
Collapse
|
122
|
Collu DA, Carucci C, Piludu M, Parsons DF, Salis A. Aurivillius Oxides Nanosheets-Based Photocatalysts for Efficient Oxidation of Malachite Green Dye. Int J Mol Sci 2022; 23:5422. [PMID: 35628232 PMCID: PMC9140923 DOI: 10.3390/ijms23105422] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023] Open
Abstract
Aurivillius oxides ferroelectric layered materials are formed by bismuth oxide and pseu-do-perovskite layers. They have a good ionic conductivity, which is beneficial for various photo-catalyzed reactions. Here, we synthesized ultra-thin nanosheets of two different Aurivillius oxides, Bi2WO6 (BWO) and Bi2MoO6 (BMO), by using a hard-template process. All materials were characterized through XRD, TEM, FTIR, TGA/DSC, DLS/ELS, DRS, UV-Vis. Band gap material (Eg) and potential of the valence band (EVB) were calculated for BWO and BMO. In contrast to previous reports on the use of multi composite materials, a new procedure for photocatalytic efficient BMO nanosheets was developed. The procedure, with an additional step only, avoids the use of composite materials, improves crystal structure, and strongly reduces impurities. BWO and BMO were used as photocatalysts for the degradation of the water pollutant dye malachite green (MG). MG removal kinetics was fitted with Langmuir-Hinshelwood model obtaining a kinetic constant k = 7.81 × 10-2 min-1 for BWO and k = 9.27 × 10-2 min-1 for BMO. Photocatalytic dye degradation was highly effective, reaching 89% and 91% MG removal for BWO and BMO, respectively. A control experiment, carried out in the absence of light, allowed to quantify the contribution of adsorption to MG removal process. Adsorption contributed to MG removal by a 51% for BWO and only by a 19% for BMO, suggesting a different degradation mechanism for the two photocatalysts. The advanced MG degradation process due to BMO is likely caused by the high crystallinity of the material synthetized with the new procedure. Reuse tests demonstrated that both photocatalysts are highly active and stable reaching a MG removal up to 95% at the 10th reaction cycle. These results demonstrate that BMO nanosheets, synthesized with an easy additional step, achieved the best degradation performance, and can be successfully used for environmental remediation applications.
Collapse
Affiliation(s)
- David A. Collu
- Department of Chemical and Geological Sciences, University of Cagliari, S.P. 8 km 0.700, 09042 Monserrato, Italy; (D.A.C.); (C.C.); (D.F.P.)
| | - Cristina Carucci
- Department of Chemical and Geological Sciences, University of Cagliari, S.P. 8 km 0.700, 09042 Monserrato, Italy; (D.A.C.); (C.C.); (D.F.P.)
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Marco Piludu
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
- Department of Biomedical Sciences, University of Cagliari, S.P. 8 km 0.700, 09042 Monserrato, Italy;
| | - Drew F. Parsons
- Department of Chemical and Geological Sciences, University of Cagliari, S.P. 8 km 0.700, 09042 Monserrato, Italy; (D.A.C.); (C.C.); (D.F.P.)
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Andrea Salis
- Department of Chemical and Geological Sciences, University of Cagliari, S.P. 8 km 0.700, 09042 Monserrato, Italy; (D.A.C.); (C.C.); (D.F.P.)
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
123
|
Riaz M, Sharafat U, Zahid N, Ismail M, Park J, Ahmad B, Rashid N, Fahim M, Imran M, Tabassum A. Synthesis of Biogenic Silver Nanocatalyst and their Antibacterial and Organic Pollutants Reduction Ability. ACS OMEGA 2022; 7:14723-14734. [PMID: 35557704 PMCID: PMC9088900 DOI: 10.1021/acsomega.1c07365] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/01/2022] [Indexed: 05/24/2023]
Abstract
Plant-mediated nanoparticles are gaining popularity due to biologically active secondary metabolites that aid in green synthesis. This study describes a simple, environmentally friendly, dependable, and cost-effective production of silver nanoparticles utilizing Cucumis sativus and Aloe vera aqueous leaf extracts. The aqueous leaf extracts of Cucumis sativus and Aloe vera, which worked as a reducing and capping agent, were used to biosynthesize silver nanoparticles (AgNPs). The formation of surface plasmon resonance peaks at 403 and 405 nm corresponds to the formation of colloidal Ag nanoparticles. Similarly, the Bragg reflection peaks in X-ray diffraction patterns observed at 2θ values of 38.01°, 43.98°, 64.24°, and 77.12° representing the planes of [111], [200], [220], and [311] correspond to the face-centered cubic crystal structure of silver nanoparticles. Fourier transform infrared spectroscopy confirms that bioactive chemicals are responsible for the capping of biogenic silver nanoparticles. The size, structure, and morphology of AgNPs with diameters ranging from 8 to 15 nm were examined using transmission electron microscopy. Water contamination by azo dyes and nitrophenols is becoming a more significant threat every day. The catalytic breakdown of organic azo dye methyl orange (MO) and the conversion of para-nitrophenol (PNP) into para-aminophenol using sodium borohydride was evaluated using the prepared biogenic nanoparticles. Our nanoparticles showed excellent reduction ability against PNP and MO with rate constants of 1.51 × 10-3 and 6.03 × 10-4s-1, respectively. The antibacterial activity of the nanomaterials was also tested against four bacteria: Staphylococcus aureus, Klebsiella pneumoniae, Enterobacter, and Streptococcus pneumoniae. These biogenic AgNPs displayed effective catalytic and antibacterial characteristics by reducing MO and PNP and decreasing bacterial growth.
Collapse
Affiliation(s)
- Muhammad Riaz
- Department
of Biological Sciences, International Islamic
University Islamabad, Islamabad 44000, Pakistan
- School
of Electrical Engineering and Computer Science, University of Ottawa, Ottawa K1N 6N5, Ontario, Canada
| | - Uzma Sharafat
- Institute
of Chemical Sciences, University of Swat, Swat 19200, Khyber Pakhtunkhwa, Pakistan
| | - Nafeesa Zahid
- Department
of Botany, Mirpur University of Science
and Technology, Mirpur 10250, Azad Kashmir, Pakistan
| | - Muhammad Ismail
- Department
of Chemistry, Kohat University of Science
& Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Jeongwon Park
- School
of Electrical Engineering and Computer Science, University of Ottawa, Ottawa K1N 6N5, Ontario, Canada
- Department
of Electrical and Biomedical Engineering, University of Nevada, Reno 89557, Nevada, United States
| | - Bashir Ahmad
- Department
of Biological Sciences, International Islamic
University Islamabad, Islamabad 44000, Pakistan
| | - Neelum Rashid
- Department
of Botany, Mirpur University of Science
and Technology, Mirpur 10250, Azad Kashmir, Pakistan
| | - Muhammad Fahim
- Department
of Biological Sciences, International Islamic
University Islamabad, Islamabad 44000, Pakistan
| | - Muhammad Imran
- Department
of Biological Sciences, International Islamic
University Islamabad, Islamabad 44000, Pakistan
| | - Aisha Tabassum
- Department
of Biochemistry, University of Sialkot, Sialkot 51040, Pakistan
| |
Collapse
|
124
|
Removal of Methylene Blue from Aqueous Solution Using Black Tea Wastes: Used as Efficient Adsorbent. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/5713077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The biosorbent black tea wastes (BTW) after preliminary treatments was used in this study for the removal of methylene blue (M.B) from aqueous solution. The removal of M.B from aqueous solution was studied as a function of time, initial concentration of M.B temperature, pH, and BTW dosage. The optimum time for equilibration was achieved in 3 min. The optimum dosage of adsorbent was found to be 0.4 g. Various kinetic models were applied to the sorption kinetic data in which the obtained data was best explained by the pseudo-second-order model (
) with a rate constant K2 of 0.0714–0.0763 g.mg-1 min-1. Additionally, the calculated amount of adsorption was approximately equal to the experimentally determined value. The isotherm data was best fitted to the Langmuir model rather than the Freundlich model. The intraparticle diffusion model exhibited the process to be diffusion dependent. The various organic functional groups on the surface of BTW played a significant role in the sorption of the selected dye. Consequently, BTW has the prospective to act as a potential sorbent for the removal of other contaminants from aquatic media as well.
Collapse
|
125
|
Ghaedi S, Seifpanahi-Shabani K, Sillanpää M. Waste-to-Resource: New application of modified mine silicate waste to remove Pb 2+ ion and methylene blue dye, adsorption properties, mechanism of action and recycling. CHEMOSPHERE 2022; 292:133412. [PMID: 34974049 DOI: 10.1016/j.chemosphere.2021.133412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/08/2021] [Accepted: 12/21/2021] [Indexed: 05/07/2023]
Abstract
Currently, heavy metals and dyes are some of the most critical pollutants in the aquatic environment. So, in this paper "waste-to-resource conversion", as a new application of modified mine silicate waste to remove Pb2+ ion and methylene blue (MB) dye, adsorption properties, mechanism of action and recycling were studied. Silicate wastes are located in the alteration zone and the margin of molybdenum ore, these wastes are under the influence of hydrothermal solutions which are impregnated with iron and manganese ions. Hence, acid and base modifications have been commonly used. So, in this study, a highly porous nanostructure of modified silicate waste was used to remove MB and Pb2+ ion, in subsequent to our previous study on the application of the raw material of the same in the removal of malachite green. Acid, base, and acid/base treatments were used to activate and modify the adsorbent. Results show a significantly higher potential of modified adsorbent in the removal of MB and Pb2+ compared to the raw material. According to the isotherm and kinetic studies for MB and Pb2+ the Langmuir and Temkin and pseudo-second-order models were investigated with experimental data. Modified nanomaterial was used for several adsorption and desorption processes, without a significant decrease in the capability of the adsorbent in the removal of MB and Pb2+ pollutants. Leached iron and manganese ions (as production of modification) are deposited in the form of sludge using a simple pH adjustment and precipitation process and can be used to recover iron and manganese metals in the long run. The comparison of monolayer adsorption capacity using for Pb2+ ion and MB dye are as ((untreated SW: 29.41, 1.05); (NaOH treated: 21.74, 100); (Nitric Acid treated: 16.67, 142.86); (Citric Acid treated: 40, 125); (Nitric/Citric Acids treated: 15.63, 111.11) and (Nitric/Citric Acids/NaOH treated: 15.15, 83.33)), respectively. Higher adsorption capacity and re-generable properties of this adsorbent suggest the usage of this natural and abundant mine waste to treat wastewater containing toxic elements and dyes.
Collapse
Affiliation(s)
- Samaneh Ghaedi
- Faculty of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Kumars Seifpanahi-Shabani
- Faculty of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran.
| | - Mika Sillanpää
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
| |
Collapse
|
126
|
Homagai PL, Poudel R, Poudel S, Bhattarai A. Adsorption and removal of crystal violet dye from aqueous solution by modified rice husk. Heliyon 2022; 8:e09261. [PMID: 35464698 PMCID: PMC9019243 DOI: 10.1016/j.heliyon.2022.e09261] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/30/2022] [Accepted: 04/05/2022] [Indexed: 11/04/2022] Open
Abstract
An approach to removing crystal violet (CV) dye from aqueous solutions was investigated by introducing a xanthate group on charred rice husk. The newly prepared charred rice husk (CRH) and xanthated rice husk (XRH) were characterized by XRD, SEM, FTIR, and elemental analysis. A batch technique was used to adsorb CV dye in aqueous suspensions. Different adsorbent quantities, concentrations, pH, and contact times were investigated to find the effect of these parameters. The optimum pH for both CRH and XRH was found to be 10. The adsorption capacity of CV dye onto CRH and XRH was found to be 62.85 mg/g and 90.02 mg/g at pH10, respectively. Langmuir isotherms could be reasonably explained by the experimental data. Within 60 min, equilibrium was achieved. Similarly, the kinetic data are best suited to the pseudo-second-order model. In comparison to XRH with CRH, XRH was found more efficient and can be used as a feasible alternative for removing CV dye from aqueous solutions.
Collapse
|
127
|
Kalantari E, Lucia L, Lavoine N. Green synthesis, characterization, and catalytic application of a supported and magnetically isolable copper-iron oxide-sodium alginate. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
128
|
Kamal T, Khalil A, Bakhsh EM, Khan SB, Chani MTS, Ul-Islam M. Efficient fabrication, antibacterial and catalytic performance of Ag-NiO loaded bacterial cellulose paper. Int J Biol Macromol 2022; 206:917-926. [PMID: 35304202 DOI: 10.1016/j.ijbiomac.2022.03.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 11/26/2022]
Abstract
This study reports the synthesis of bacterial cellulose (BC) hydrogel sheets and their utilization as a support for silver‑nickel oxide nanocomposites (Ag/NiO). A two-step facile hydrothermal method was employed for the preparation of Ag/NiO, followed by impregnation into BC hydrogel sheets. A 20% Ag/NiO composition was revealed by dry weight analysis. The stability of nanocomposites-Hydrogel was confirmed by Ag+ and Ni2+ ion release study. The catalytic activity of the BC-Ag/NiO was evaluated against chemical reduction of congo red, methyl orange and methylene blue. The reduction reaction followed pseudo first order kinetics and kapp values of 0.1147 min-1, 0.1323 min-1 and 0.12989 min-1 were obtained for CR, MO, and MB dyes, respectively. The BC-Ag/NiO catalyst could be easily recovered and re-used in another reaction without centrifugation. The synthesized nanocomposites hydrogel was also tested for its antibacterial activity against Gram-negative bacteria, Escherichia coli (E.coli) and Gram-positive bacteria, Staphylococcus aureus (S.aureus).
Collapse
Affiliation(s)
- Tahseen Kamal
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia..
| | - Ashi Khalil
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Pakistan
| | - Esraa M Bakhsh
- Department of Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sher Bahadar Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Mazhar Ul-Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah, Oman
| |
Collapse
|
129
|
Nanoarchitectured Cu based catalysts supported on alginate/glycyl leucine hybrid beads for tainted water treatment. Int J Biol Macromol 2022; 208:56-69. [PMID: 35278516 DOI: 10.1016/j.ijbiomac.2022.03.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022]
Abstract
Water pollution reached worrying point due to different dye pollutants which demands an instant solution. One of the best ways to manage water pollutants is their reduction and decolorization to less-toxic and useful compounds. However, reduction process requires an effective, stable, and recyclable catalyst to reduce such pollutants more effectively. Metal nanoparticles (M0) are highly effective catalysts but separation of nanoparticles after reaction is difficult and requires a high-speed centrifugation. If loaded on polymer-beads, they can be easily separated from the reaction-mixture. Hearin, alginate/glycyl leucine (AGL) hybrid-beads were prepared, and copper nanoparticles (Cu0) were grown on it by simple process. M0/AGL bead catalysts were tested toward reducing various toxic compounds. Among all developed composite-beads, the catalytic performance of Cu0/AGL was highest in terms of reduction kinetics. After initial screening for different pollutants, Cu0/AGL was much more effective for MO reduction, thus, all optimized different parameters i.e., catalyst dosage, stability, amount of reducing-agent and recyclability were experimentally determined. The Cu0/AGL showed high-rate constants (kapp) of 0.7566 and 2.9506 min-1 depending on beads content. The reusability of the Cu0/AGL catalysts up to the 7th cycle has been checked. With the use of AGL as support for the Cu nanoparticles, not only the catalytic activity was retained for longer times during reusability, but it helped in their easy separation.
Collapse
|
130
|
Polymer based ON-OFF-ON fluorescent logic gate: Synthesis, characterization and understanding. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
131
|
Intachai S, Sumanatrakul P, Pankam P, Suppaso C, Khaorapapong N. Efficient Removal of Both Anionic and Cationic Dyes by Activated Carbon/NiFe-layered Double Oxide. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02254-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
132
|
Patra T, Mohanty A, Singh L, Muduli S, Parhi PK, Sahoo TR. Effect of calcination temperature on morphology and phase transformation of MnO 2 nanoparticles: A step towards green synthesis for reactive dye adsorption. CHEMOSPHERE 2022; 288:132472. [PMID: 34634271 DOI: 10.1016/j.chemosphere.2021.132472] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/16/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Green synthesis of manganese oxide nanoparticles (NPs) was carried out by sol-gel method using Acacia Concinna fruit extract for removal of reactive dye. The effect of calcination temperature on its morphology was investigated. α-MnO2 and Mn3O4 NPs were synthesized at 400 °C and 900 °C respectively and were characterized by PXRD, SEM, TEM, FTIR, BET, Raman and TGA. As-synthesized MnO2 NPs were investigated for the adsorption of Reactive Blue 21 (RB-21) dye. The effect of pH, adsorbent dose, agitation speed, initial dye concentration and temperature on dye removal was explored. pHpzc was calculated from zeta potential study showing positive surface charge below pH 3.18 resulting in electrostatic force of attraction between adsorbate and adsorbent. Both linear and non-linear regression approaches were utilised for the fitting of kinetic models and adsorption isotherms. Adsorption data follows a pseudo second order kinetics and fits well with the Freundlich isotherm model. Thermodynamic parameters such as ΔHo, ΔSo and ΔGo were determined. The dye removal efficiency, in case of MnO2 NPs at pH 3.0 was obtained to be 98% whereas for Mn3O4, no such dye adsorption was observed. The mechanism of adsorption was studied theoretically confirming π-π interaction and H-bonding between the MnO2 and RB dye molecules.
Collapse
Affiliation(s)
- Tanaswini Patra
- Department of Chemistry, School of Applied Sciences, KIIT Deemed to Be University, Bhubaneswar, 24, Odisha, India
| | - Ashutosh Mohanty
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, 560012, India
| | - Lovjeet Singh
- Department of Chemical Engineering, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India
| | - Sthitiprajna Muduli
- Department of Chemistry, School of Applied Sciences, KIIT Deemed to Be University, Bhubaneswar, 24, Odisha, India
| | - Pankaj K Parhi
- Department of Chemistry, Fakir Mohan University, Vyasa Vihar, Balasore, 756089, Odisha, India
| | - Tapas Ranjan Sahoo
- Department of Chemistry, School of Applied Sciences, KIIT Deemed to Be University, Bhubaneswar, 24, Odisha, India.
| |
Collapse
|
133
|
Boubekri FZ, Benkhaled A, Elbahri Z. Design of experiments for the methylene blue adsorption study onto biocomposite material based on Algerian earth chestnut and cellulose derivatives. JOURNAL OF POLYMER ENGINEERING 2022. [DOI: 10.1515/polyeng-2021-0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Novel bio-composite films based on Algerian earth chestnut i.e. Bunium incrassatum roots (Talghouda, TG) and cellulose derivatives (ethylcellulose; EC and cellulose acetate; AC) are prepared and tested for methylene blue (MB) adsorption from aqueous solutions. The biomaterial films are elaborated by dissolution solvent evaporation technique and are characterized by infrared spectroscopy, X-ray diffraction, SEM and optical microscopy. The pHpzc is also determined. For the adsorption tests, design of experiments based on 23 factorial design is built and followed. So, the effects of TG:EC:AC ratio, pH and MB initial concentration are discussed on the basis of mathematical modelling using Minitab software. Mathematical relations between equilibrium adsorption percentages and capacities versus selected variables were obtained and illustrated by surface plots. The interactive effects between variables have been also identified. The results showed that the MB adsorption percentage exceeded 83% and is mostly affected by pH value. Nevertheless the adsorption capacity is affected by MB initial concentration.
Collapse
Affiliation(s)
- Fatima Zohra Boubekri
- Laboratoire de Matériaux & Catalyse, Faculté des Sciences Exactes , Université Djillali Liabès de Sidi Bel Abbes , Djillali Liabes University of Sidi Bel Abbes , Sidi Bel Abbes 22000 , Algeria
| | - Amal Benkhaled
- Laboratoire Toxicomed , Université Abou bekr Belkaid , Tlemcen 13000 , Abou bekr Belkaid University of Tlemcen, Algeria
| | - Zineb Elbahri
- Laboratoire de Matériaux & Catalyse, Faculté des Sciences Exactes , Université Djillali Liabès de Sidi Bel Abbes , Djillali Liabes University of Sidi Bel Abbes , Sidi Bel Abbes 22000 , Algeria
| |
Collapse
|
134
|
Bayahia H. Green synthesis of activated carbon doped tungsten trioxide photocatalysts using leaf of basil (Ocimum basilicum) for photocatalytic degradation of methylene blue under sunlight. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
135
|
Arif M, Shahid M, Irfan A, Nisar J, Wu W, Farooqi ZH, Begum R. Polymer microgels for the stabilization of gold nanoparticles and their application in the catalytic reduction of nitroarenes in aqueous media. RSC Adv 2022; 12:5105-5117. [PMID: 35425556 PMCID: PMC8981384 DOI: 10.1039/d1ra09380k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/25/2022] [Indexed: 12/28/2022] Open
Abstract
Polymer microgels containing a polystyrene core and poly(N-isopropylmethacrylamide) shell were synthesized in aqueous media following a free radical precipitation polymerization. Au nanoparticles were fabricated into the shell region of the core–shell microgels denoted as P(STY@NIPM) by the in situ reduction of chloroauric acid with sodium borohydride. Various characterization techniques such as transmission electron microscopy (TEM), ultraviolet–visible spectroscopy (UV-visible) and Fourier transform infrared spectroscopy (FTIR) were used for the characterization of Au–P(STY@NIPM). The catalytic potential of Au–P(STY@NIPM) toward the reductive reaction of 4-nitrophenol (4NP) under various reaction conditions was evaluated. The Arrhenius and Eyring parameters for the catalytic reduction of 4NP were determined to explore the process of catalysis. A variety of nitroarenes were converted successfully into their corresponding aminoarenes with good to excellent yields in the presence of the Au–P(STY@NIPM) system using NaBH4 as a reductant. The Au–P(STY@NIPM) system was found to be an efficient and recyclable catalyst with no significant loss in its catalytic efficiency. A core–shell microgel system was synthesized and used as a micro-reactor for the synthesis of gold nanoparticles. The resulting hybrid system has the ability to catalyze the reduction of various nitroarenes in aqueous media.![]()
Collapse
Affiliation(s)
- Muhammad Arif
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Muhammad Shahid
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Ahmad Irfan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Jan Nisar
- National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Zahoor H. Farooqi
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Robina Begum
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| |
Collapse
|
136
|
Roy D, Poddar N, Singh M, Neogi S, De S. Photocatalytic degradation of Rhodamine-B by visible light assisted peroxymonosulfate activation using Z-scheme MIL-100(Fe)/Bi2S3 composite: a combined experimental and theoretical approach. NEW J CHEM 2022. [DOI: 10.1039/d2nj00497f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photocatalytic efficiency of binary MIL-100(Fe)/Bi2S3 (MIL-BS) composite was utilized towards visible light assisted peroxymonosulfate (PMS) activation and degradation of Rhodamine-B (RhB) dye. The binary catalyst, with 10wt% Bi2S3 (MIL-BS(10)),...
Collapse
|
137
|
Giri BS, Sonwani RK, Varjani S, Chaurasia D, Varadavenkatesan T, Chaturvedi P, Yadav S, Katiyar V, Singh RS, Pandey A. Highly efficient bio-adsorption of Malachite green using Chinese Fan-Palm Biochar (Livistona chinensis). CHEMOSPHERE 2022; 287:132282. [PMID: 34826941 DOI: 10.1016/j.chemosphere.2021.132282] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/31/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The discharge of effluents from the textile industry is a multidimensional problem that affects the ecosystem in many ways. Though many new technologies are being developed, it remains to be seen which of those can be practiced in a real scenario. The current investigation attempts to absorb the Malachite Green, an effluent from textile dye using Chinese Fan Palm Seed Biochar. Accordingly, biochar was prepared using fruits of Chinese Fan Palm (Livistona chinensis) tree. The fruit also yielded a significant amount of biochar and bio-oil. 1.346 kg of fresh and cleaned fruit was fast pyrolyzed at 500 °C in a laboratory-scale Pyrolyzer resulting in 0.487 kg of biochar and 0.803 L of bio-oil. The remaining fruit matter was converted to gaseous products. The kinetics of dye removal were studied and the parameters were determined. The study advocates that the Langmuir isotherm model simulates the adsorption experiment, to a good extent. From the plot, the maximum (monolayer) adsorption capacity, Qm was determined to be 21.4 mg/g. The suitability of the Langmuir isotherm model onto biochar was established by the high correlation coefficient, R2 that was higher than 0.97.
Collapse
Affiliation(s)
- Balendu Shekher Giri
- Centre of Excellence, Sustainable Polymers, Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India.
| | - Ravi Kumar Sonwani
- Department of Chemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382010, Gujarat, India
| | - Deepshi Chaurasia
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Sudeep Yadav
- Department of Chemical Engineering, Bundelkhand Institute of Engineering and Technology, Jhansi, 284128, UP, India
| | - Vimal Katiyar
- Centre of Excellence, Sustainable Polymers, Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Ram Sharan Singh
- Department of Chemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India; Centre for Energy and Environmental Sustainability, Lucknow, 226029, India.
| |
Collapse
|
138
|
Agbor Tabi G, Ngouateu Rene Blaise L, Daouda K, Naphtali Odogu A, Aime Victoire A, Nsami Julius N, Joseph Mbadcam K. Non-linear modelling of the adsorption of Indigo Carmine dye from wastewater onto characterized activated carbon/volcanic ash composite. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103515] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
139
|
Toward Eco-Friendly Dye-Sensitized Solar Cells (DSSCs): Natural Dyes and Aqueous Electrolytes. ENERGIES 2021. [DOI: 10.3390/en15010219] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Due to their low cost, facile fabrication, and high-power conversion efficiency (PCE), dye-sensitized solar cells (DSSCs) have attracted much attention. Ruthenium (Ru) complex dyes and organic solvent-based electrolytes are typically used in high-efficiency DSSCs. However, Ru dyes are expensive and require a complex synthesis process. Organic solvents are toxic, environmentally hazardous, and explosive, and can cause leakage problems due to their low surface tension. This review summarizes and discusses previous works to replace them with natural dyes and water-based electrolytes to fabricate low-cost, safe, biocompatible, and environmentally friendly DSSCs. Although the performance of “eco-friendly DSSCs” remains less than 1%, continuous efforts to improve the PCE can accelerate the development of more practical devices, such as designing novel redox couples and photosensitizers, interfacial engineering of photoanodes and electrolytes, and biomimetic approaches inspired by natural systems.
Collapse
|
140
|
Gul MM, Ahmad KS. Review elucidating graphene derivatives (GO/rGO) supported metal sulfides based hybrid nanocomposites for efficient photocatalytic dye degradation. REV INORG CHEM 2021. [DOI: 10.1515/revic-2021-0039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Abstract
Photocatalysis by utilizing semiconductors for the removal of toxic pollutants has gained tremendous interest for remediation purposes. The organic pollutants usually include; pesticides, dyes and other phenolic compounds. An imperative restraint associated with the photocatalytic effectiveness of the catalyst is the rapid recombination of the light generated electrons and holes. The particle agglomeration and electron-hole recombination hinders the rate of pollutant removal. For decades, researchers have used metal-sulfides efficiently for photocatalytic dye degradation. The recent use of hybrid nanomaterials with the combination of graphene derivatives such as graphene oxide and reduced graphene oxide (GO/rGO)-metal sulfide has gained interest. These composites have displayed an impressive upsurge in the photocatalytic activity of materials. The current review describes the various researches on dye photodegradation by employing (GO/rGO)-metal sulfide, exhibiting a boosted potential for photocatalytic dye degradation. A comprehensive study on (CuS, ZnS and CdS)–GO/rGO hybrid composites have been discussed in detail for effective photocatalytic dye degradation in this review. Astonishingly improved dye degradation rates were observed in all these studies employing such hybrid composites. The several studies described in the review highlighted the varying degradation rates based on diverse research parameters and efficacy of graphene derivatives for enhancement of photocatalytic activity.
Collapse
Affiliation(s)
- Mahwash Mahar Gul
- Department of Environmental Sciences , Fatima Jinnah Women University , The Mall , 46000 , Pakistan
| | - Khuram Shahzad Ahmad
- Department of Environmental Sciences , Fatima Jinnah Women University , The Mall , 46000 , Pakistan
| |
Collapse
|
141
|
Khan MS, Riaz N, Shaikh AJ, Shah JA, Hussain J, Irshad M, Awan MS, Syed A, Kallerhoff J, Arshad M, Bilal M. Graphene quantum dot and iron co-doped TiO 2 photocatalysts: Synthesis, performance evaluation and phytotoxicity studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112855. [PMID: 34628153 DOI: 10.1016/j.ecoenv.2021.112855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
The present study reports the synthesis, photocatalytic decolorization of reactive black 5 dye and phytotoxicity of graphene quantum dots (GQDs) and iron co-doped TiO2 photocatalysts via modified sol gel method. GQDs were synthesized by direct pyrolysis of citric acid (CA). Scanning electron microscopy (SEM) and energy dispersion spectroscopy (EDS), Raman spectroscopy, atomic force microscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), diffuse reflectance spectroscopy (DRS), Brunauer-Emmett-Teller (BET) and photoluminescence spectroscopy (PL) were used to determine the physicochemical properties of the best performing photocatalysts. The results indicated improved physicochemical properties of GQD-0.1Fe-TiO2-300 with root mean square roughness (Rz) (33.82 nm), higher surface area (170.79 m2 g-1), pore volume (0.08 cm3 g-1), and bandgap (2.94 eV). Moreover, GQD-0.1Fe co-doping of TiO2 greatly improved the photocatalytic decolorization efficiency for RB5 dye. The photocatalytic reaction followed the pseudo first order reaction with gradual decrease in Kapp values for increment in RB5 concentration. The KC value was obtained as 2.45 mg L-1 min-1 while the KLH value was 0.45 L mg-1 indicating the heterogeneous reaction system followed the Langmuir-Hinshelwood isotherm and simultaneously occurring adsorption and photocatalytic processes. Photocatalytic reaction mechanism studies exhibited the holes and OH radicals as the main active species in the GQD-0.1Fe-TiO2-300 responsible for the decolorization of RB5. The proposed reaction pathway showed that both Fe-TiO2 and GQDs play important role in generation of electrons and holes. Additionally, GQD-0.1Fe-TiO2-300 were durable up to four cycles. Phytotoxicity assay displayed that treated water and best performing photocatalysts had no effect on Lycopersicon esculentum seed germination. Therefore, the proposed system can pave a viable solution for safe usage of dye loaded wastewater and effluent for irrigation after treatment.
Collapse
Affiliation(s)
- Muhammad Saqib Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Nadia Riaz
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Ahson Jabbar Shaikh
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Jehanzeb Ali Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Jamshaid Hussain
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Muhammad Irshad
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - M Saifullah Awan
- Nano Science and Technology Department, National Centre for Physics (NCP), Shahdra Valley Road, Islamabad 44000, Pakistan
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455 Riyadh 11451, Saudi Arabia
| | | | - Muhammad Arshad
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan.
| | - Muhammad Bilal
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| |
Collapse
|
142
|
Haq S, Afsar H, Din IU, Ahmad P, Khandaker MU, Osman H, Alamri S, Shahzad MI, Shahzad N, Rehman W, Waseem M. Enhanced Photocatalytic Activity of Ficus elastica Mediated Zinc Oxide-Zirconium Dioxide Nanocatalyst at Elevated Calcination Temperature: Physicochemical Study. Catalysts 2021; 11:1481. [DOI: 10.3390/catal11121481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
The photocatalytic degradation of Rhodamine 6G dye was achieved using a Ficus elastica (F. elastic) leaf extract mediated zinc oxide-zirconium dioxide nanocatalyst (ZnO-ZrO2 NC) under stimulated solar light, resulting in a substantial increase in photocatalytic activity at the highest calcination temperature. The crystal phase and crystallite size were determined using an X-ray diffractometer (XRD), and the degree of crystallinity was observed to rise with increasing calcination temperature. Energy dispersive X-ray (EDX) was used to investigate the elemental composition and purity of ZnO-ZrO2 NC. Scanning electron microscopy (SEM) was used to investigate the surface morphology, and the morphological characteristics were altered when the calcination temperature was varied. For the ZnO-ZrO2 NC calcined at 100, 300, 600, and 900 °C, the average grain size determined from SEM images is 79.56 nm, 98.78 (2) nm, 54.86 (2) nm, and 67.43 (2) nm, respectively. Using diffuse reflectance spectroscopy (DRS) data, the optical band gap energy was calculated using a Tauc’s plot. The ZnO in ZnO-ZrO2 NC calcined at 100, 300, 600, and 900 °C had band gap energies of 3.31, 3.36, 3.38, and 3.29 eV. Similarly, ZrO2 in ZnO-ZrO2 NC calcined at 100, 300, 600, and 900 °C had band gap energies of 3.96, 3.99, 3.97, and 4.01 eV, respectively. Fourier transform infrared (FTIR) spectroscopy was used to identify the presence of various functional groups. The photocatalytic activity was also examined in relation to calcination temperature, pH, starting concentration, and catalyst dosage. Enhanced photocatalytic activity was observed at pH 11 and 15 ppm initial concentration with a catalyst dose of 25 mg. The photocatalytic activity of the sample calcined at 900 °C was the highest, with 98.94 percent of the dye mineralized in 330 min at a degradation rate of 0.01261/min.
Collapse
Affiliation(s)
- Sirajul Haq
- Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan
| | - Humma Afsar
- Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan
| | - Israf Ud Din
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Pervaiz Ahmad
- Department of Physics, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan
| | - Mayeen Uddin Khandaker
- Center for Applied Physics and Radiation Technology, School of Engineering and Technology, Sunway University, Bandar Sunway 47500, Malaysia
| | - Hamid Osman
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Sultan Alamri
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Muhammad Imran Shahzad
- National Center for Physics (NCP), Nanosciences and Technology Department (NS & TD), Islamabad 44000, Pakistan
| | - Nadia Shahzad
- US-Pakistan Centre for Advanced Studies in Energy, National University of Science and Technology (NUST), Islamabad 44000, Pakistan
| | - Wajid Rehman
- Department of Chemistry, Hazara University, Mansehra 21300, Pakistan
| | - Muhammad Waseem
- Department of Chemistry, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan
| |
Collapse
|
143
|
Kubendiran H, Hui D, Pulimi M, Chandrasekaran N, Murthy PS, Mukherjee A. Removal of methyl orange from aqueous solution using SRB supported Bio-Pd/Fe NPs. ENVIRONMENTAL NANOTECHNOLOGY, MONITORING & MANAGEMENT 2021; 16:100561. [DOI: 10.1016/j.enmm.2021.100561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
|
144
|
Nia MH, Kiasat AR, van de Ven TGM. Dendritic Fibrous Colloidal Silica Internally Cross-linked by Bivalent Organic Cations: An Efficient Support for Dye Removal and the Reduction of Nitrobenzene Derivatives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13676-13688. [PMID: 34762441 DOI: 10.1021/acs.langmuir.1c02308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We designed a new unique amphoteric monodisperse colloid with a large complex internal structure, in which silica surfaces are bridged with an organic cross-linker. The rationale was that such colloids would be excellent adsorbents for cationic and anionic dyes and, when doped with noble metal nanoparticles, would be an excellent catalyst for the reduction of a variety of organic compounds. In the first step, the organo-silica bridging agent (bivalent organic cross-linkers) DABCO-S (silanated DABCO) was prepared through a simple nucleophilic substitution reaction between (3-chloropropyl)triethoxysilane and bivalent 1,4-diazabicyclo[2.2.2]octane (DABCO) (a strong base). In the second step, a DABCO-S bridge was introduced into dendritic fibrous nanostructured colloidal silica (DFNS) under open-vessel reflux conditions. We refer to the product obtained by incorporating DABCO-S in DFNS as DDS. The unique characteristics of DFNS are completely preserved in this new type of periodic mesoporous organo-silica-DFNS. The produced nanocomposite has a high surface area of about 807 m2 g-1, a large pore volume of 1.9 cm3 g-1, and a bimodal pore size distribution, with small 2.5 nm pores and large 30 nm pores. As such, DDS is an efficient adsorbent for dye removal from wastewater. The results show that DDS can adsorb positive and negative dyes such as methylene blue, orange II sodium salt (OR), and procion red mx-58 (PR) with a capacity of 678, 3192, and 3190 mg dye/g adsorbent. Introducing silver nanoparticles in situ into DDS leads to a composite with excellent accessibility of reactants to the Ag surface, resulting in an efficient catalytic reduction of nitro aromatic compounds (NACs) in aqueous media.
Collapse
Affiliation(s)
- Marzieh Heidari Nia
- Department of Chemistry, College of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135743337, Iran
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Quebec Centre for Advanced Materials (QCAM) and Pulp and Paper Research Centre, McGill University, 3420 University Street, Montreal, Quebec H3A 2A7, Canada
| | - Ali Reza Kiasat
- Department of Chemistry, College of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135743337, Iran
| | - Theo G M van de Ven
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Quebec Centre for Advanced Materials (QCAM) and Pulp and Paper Research Centre, McGill University, 3420 University Street, Montreal, Quebec H3A 2A7, Canada
| |
Collapse
|
145
|
Kamal T, Asiri AM, Ali N. Catalytic reduction of 4-nitrophenol and methylene blue pollutants in water by copper and nickel nanoparticles decorated polymer sponges. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120019. [PMID: 34126398 DOI: 10.1016/j.saa.2021.120019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
In the present study, two catalysts based-on copper and nickel nanoparticles anchored on agarose-coated sponge (Cu-AG-sponge and Ni-AG-sponge) were prepared, respectively. Both catalysts were characterized by analytical techniques of thermogravimetric analysis energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM). Spherical Cu and Ni nanoparticles on struts of AG-coated sponge were observed by FESEM and the samples' elemental composition was confirmed by EDX technique. After characterization, the Cu-AG-sponge and Ni-AG-sponge catalysts were tested in 4-nitrophenol (4-NP) and methylene blue dye (MB) reduction in an aqueous medium. The reduction of the 4-NP to 4-aminophenol (4-AP) was achieved up to 95% using the NaBH4 reductant and Cu-AG-sponge and Ni-AG-sponge catalysts, respectively. Similarly, the rate of reduction of MB was faster for the Cu-AG-sponge as compared to the Ni-AG-sponge which was discussed based-on the catalyst morphology and other factors. The high rate of reactions for the 4-NP and MB reduction suggests that the Cu-AG-sponge and Ni-AG-sponge catalyst possess high catalytic efficiency, low cost and good reusability having the potential to be used in similar other reactions.
Collapse
Affiliation(s)
- Tahseen Kamal
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Nauman Ali
- Institute of Chemical Science, University of Peshawar, Peshawar, Pakistan
| |
Collapse
|
146
|
Elaboration of porous alumina nanofibers by electrospinning and molecular layer deposition for organic pollutant removal. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
147
|
Solid-State Thermolysis of 1D and 3D Cd-Coordination Polymers of l-methionine Derived Ligand to CdS Nanospheres: Facile Synthesis, Charecterization and Dye degredation Studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
148
|
Advances in the Application of Nanocatalysts in Photocatalytic Processes for the Treatment of Food Dyes: A Review. SUSTAINABILITY 2021. [DOI: 10.3390/su132111676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The use of food additives (such as dyes, which improve the appearance of the products) has become more prominent, due to the rapid population growth and the increase in demand for beverages and processed foods. The dyes are usually found in effluents that are discharged into the environment without previous treatment; this promotes mass contamination and alters the aquatic environment. In recent years, advanced oxidation processes (AOPs) have proven to be effective technologies used for wastewater treatment through the destruction of the total organic content of toxic contaminants, including food dyes. Studies have shown that the introduction of catalysts in AOPs improve treatment efficiency (i.e., complete decomposition without secondary contamination). The present review offers a quick reference for researchers, regarding the treatment of wastewater containing food dyes and the different types of AOPs, with different catalyst and nanocatalyst materials obtained from traditional and green chemical syntheses.
Collapse
|
149
|
Adsorption of Anionic Dyes from Wastewater onto Magnetic Nanocomposite Powders Synthesized by Combustion Method. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present study, new magnetic nanocomposites were successfully prepared by combustion method, characterized by X-ray diffraction, Fourier transform infrared spectroscopy, magnetic measurements, N2 adsorption–desorption thermal analysis, and scanning electron microscopy, and tested as adsorbents for the removal of anionic dyes (Acid Yellow 42 and Acid Red 213) from aqueous solutions. The influence of process variables solution pH, adsorbent dose, initial dye concentration and temperature on the adsorption was evaluated. The best kinetic model that fitted with experimental data was a pseudo-second order model, and the equilibrium data were correlated by Langmuir isotherm model for the investigated dyes. Maximum removal efficiencies of 98.54% and 97.58% was obtained for Acid Yellow 42 and Acid Red 213, respectively, indicating the superior adsorption capacity of the new synthesized magnetic nanocomposites. The thermodynamic parameters indicated the spontaneous and endothermic nature of the adsorption process.
Collapse
|
150
|
Keerthana L, Ahmad Dar M, Dharmalingam G. Plasmonic Au-Metal Oxide Nanocomposites for High-Temperature and Harsh Environment Sensing Applications. Chem Asian J 2021; 16:3558-3584. [PMID: 34510778 DOI: 10.1002/asia.202100885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/09/2021] [Indexed: 12/13/2022]
Abstract
Noble metal nanoparticles like Au have long been admired for their brilliant colour, significantly influenced by plasmon resonance. When embedded in metal oxides, they exhibit unique properties which make them an excellent choice for sensing in high-temperature and harsh environment atmospheres. In this review, the various morphologies of Au nanoparticles (AuNPs) used in combination with metal oxides for sensing gases at temperatures greater than 300 °C are discussed. Theoretical discussions on the plasmon resonance properties of AuNPs as well as computational techniques like finite difference time domain (FDTD), are often used for understanding and correlating their extinction spectra and are briefed initially. The sensing properties of AuNPs embedded on a metal oxide matrix (such as TiO2 , SiO2 , NiO etc) for quantifying multiple analytes are then elucidated. The effect of high temperature as well as gas environments including corrosive atmospheres on such nanocomposites, and the different approaches to comprehend them are presented. Finally, techniques and methods to improve on the challenges associated with the realization and integration such Au-metal oxide plasmonic nanostructures for applications such as combustion monitoring, fuel cells, and other applications are discussed.
Collapse
Affiliation(s)
- L Keerthana
- Plasmonic nanomaterials laboratory, PSG Institute of Advanced Studies, Coimbatore, 641004, India
| | - Mushtaq Ahmad Dar
- Center of Excellence for Research in Engineering (CEREM), College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia
| | | |
Collapse
|