101
|
Shao J, Kraft JC, Li B, Yu J, Freeling J, Koehn J, Ho RJ. Nanodrug formulations to enhance HIV drug exposure in lymphoid tissues and cells: clinical significance and potential impact on treatment and eradication of HIV/AIDS. Nanomedicine (Lond) 2016; 11:545-64. [PMID: 26892323 DOI: 10.2217/nnm.16.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Although oral combination antiretroviral therapy effectively clears plasma HIV, patients on oral drugs exhibit much lower drug concentrations in lymph nodes than blood. This drug insufficiency is linked to residual HIV in cells of lymph nodes. While nanoformulations improve drug solubility, safety and delivery, most HIV nanoformulations are intended to extend plasma levels. A stable nanodrug combination that transports, delivers and accumulates in lymph nodes is needed to clear HIV in lymphoid tissues. This review discusses limitations of current oral combination antiretroviral therapy and advances in anti-HIV nanoformulations. A 'systems approach' has been proposed to overcome these limitations. This concept has been used to develop nanoformulations for overcoming drug insufficiency, extending cell and tissue exposure and clearing virus for treating HIV/AIDS.
Collapse
Affiliation(s)
- Jingwei Shao
- Cancer Metastasis Alert & Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350002, PR China.,Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA
| | - John C Kraft
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA
| | - Bowen Li
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Jesse Yu
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA
| | - Jennifer Freeling
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA
| | - Josefin Koehn
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA
| | - Rodney Jy Ho
- Cancer Metastasis Alert & Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350002, PR China.,Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA.,Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
102
|
|
103
|
Hu M, Patel SK, Zhou T, Rohan LC. Drug transporters in tissues and cells relevant to sexual transmission of HIV: Implications for drug delivery. J Control Release 2015; 219:681-696. [PMID: 26278511 PMCID: PMC4656065 DOI: 10.1016/j.jconrel.2015.08.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 01/11/2023]
Abstract
Efflux and uptake transporters of drugs are key regulators of the pharmacokinetics of many antiretroviral drugs. A growing body of literature has revealed the expression and functionality of multiple transporters in female genital tract (FGT), colorectal tissue, and immune cells. Drug transporters could play a significant role in the efficacy of preventative strategies for HIV-1 acquisition. Pre-exposure prophylaxis (PrEP) is a promising strategy, which utilizes topically (vaginally or rectally), orally or other systemically administered antiretroviral drugs to prevent the sexual transmission of HIV to receptive partners. The drug concentration in the receptive mucosal tissues and target immune cells for HIV is critical for PrEP effectiveness. Hence, there is an emerging interest in utilizing transporter information to explain tissue disposition patterns of PrEP drugs, to interpret inter-individual variability in PrEP drug pharmacokinetics and effectiveness, and to improve tissue drug exposure through modulation of the cervicovaginal, colorectal, or immune cell transporters. In this review, the existing literature on transporter expression, functionality and regulation in the transmission-related tissues and cells is summarized. In addition, the relevance of transporter function for drug delivery and strategies that could exploit transporters for increased drug concentration at target locales is discussed. The overall goal is to facilitate an understanding of drug transporters for PrEP optimization.
Collapse
Affiliation(s)
- Minlu Hu
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA; Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Sravan Kumar Patel
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA; Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Tian Zhou
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA; Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Lisa C Rohan
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA; Magee-Womens Research Institute, Pittsburgh, PA, USA; School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
104
|
Adesina SK, Akala EO. Nanotechnology Approaches for the Delivery of Exogenous siRNA for HIV Therapy. Mol Pharm 2015; 12:4175-87. [PMID: 26524196 DOI: 10.1021/acs.molpharmaceut.5b00335] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA interference (RNAi) is triggered by oligonucleotides that are about 21-23 nucleotides long and are capable of inducing the destruction of complementary mRNA. The RNAi technique has been successfully utilized to target HIV replication; however, the main limitation to the successful utilization of this technique in vivo is the inability of naked siRNA to cross the cell membrane by diffusion due to its strong anionic charge and large molecular weight. This review describes current nonviral nanotechnological approaches to deliver anti-HIV siRNAs for the treatment of HIV infection.
Collapse
Affiliation(s)
- Simeon K Adesina
- Department of Pharmaceutical Sciences, Howard University , Washington, DC 20059, United States
| | - Emmanuel O Akala
- Department of Pharmaceutical Sciences, Howard University , Washington, DC 20059, United States
| |
Collapse
|
105
|
Roy U, Rodríguez J, Barber P, das Neves J, Sarmento B, Nair M. The potential of HIV-1 nanotherapeutics: from in vitro studies to clinical trials. Nanomedicine (Lond) 2015; 10:3597-609. [PMID: 26400459 PMCID: PMC4910962 DOI: 10.2217/nnm.15.160] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Since its discovery almost three decades ago, HIV-1 has grown into the most aggressive pandemic of modern time. Following the implementation of combination antiretroviral therapy, the pathological outcome of HIV infection has substantially improved. However, combination antiretroviral therapy is limited by several factors including, long-term toxicity, serious side effects and complex dosing regimens, and so on. In this regard, researchers have directed their attention toward enhancing current treatment strategies and/or developing alternative HIV-1 therapeutics. In recent years, this attention has fixated on nanomedicine-based anti-HIV therapeutics (HIV-1 nanotherapeutics). In the present study, we have reviewed several HIV-1 nanotherapeutics that have shown success at the preclinical level and/or Phase I/II clinical trials. We also discuss the possible benefits of these nanomedicine-based approaches and their future outlook.
Collapse
Affiliation(s)
- Upal Roy
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | | | - Paul Barber
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - José das Neves
- i3S – Instituto de Investigação e Inovação em Saúde & INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal
| | - Bruno Sarmento
- i3S – Instituto de Investigação e Inovação em Saúde & INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal
| | - Madhavan Nair
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
106
|
das Neves J, Nunes R, Machado A, Sarmento B. Polymer-based nanocarriers for vaginal drug delivery. Adv Drug Deliv Rev 2015; 92:53-70. [PMID: 25550217 DOI: 10.1016/j.addr.2014.12.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/07/2014] [Accepted: 12/18/2014] [Indexed: 10/24/2022]
Abstract
The vaginal delivery of various drugs is well described and its relevance established in current medical practice. Alongside recent advances and achievements in the fields of pharmaceutical nanotechnology and nanomedicine, there is an increasing interest in the potential use of different nanocarriers for the delivery of old and new pharmacologically active molecules with either therapeutic or prophylactic purposes. Nanosystems of polymeric nature in particular have been investigated over the last years and their interactions with mucosal fluids and tissues, as well as genital tract biodistribution upon vaginal administration, are now better understood. While different applications have been envisioned, most of the current research is focusing in the development of nano-formulations with the potential to inhibit the vaginal transmission of HIV upon sexual intercourse. The present work focuses its discussion on the potential and perils of polymer-based nanocarriers for the vaginal administration of different pharmacologically active molecules.
Collapse
|
107
|
Midde NM, Kumar S. Development of NanoART for HIV Treatment: Minding the Cytochrome P450 (CYP) Enzymes. JOURNAL OF PERSONALIZED NANOMEDICINE 2015; 1:24-32. [PMID: 26635972 PMCID: PMC4666551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Sustained suppression of HIV viral load is the primary objective for HIV treatment, which successfully achieved by the use of a wide array of antiretroviral therapies (ART). Despite this enormous success low level of virus persists in the anatomical and cellular reservoirs of the body causing a multitude of immunological and neurocognitive deficits. Towards this, nano-formulations are gaining attention to solve these problems by delivering ART to the targeted locations such as brain, lymphoid tissues, and monocytes/macrophages. As cytochrome P450 (CYP) enzymes play a critical role in the metabolism of drugs and other xenobiotics, it is expected that the interaction of nanoparticles with CYP enzymes may result in adverse drug reactions, cellular toxicity, and alterations in CYP-mediated metabolism of other drug molecules. Considering these potential adverse outcomes it is imperative to design the nano-carriers that will have minimal impact on CYP enzymes. Therefore, developing a long-acting nanoART regimen with minimal side effects is an essential step to improve patient's adherence to the treatment paradigm, effective treatment strategy, and to combat the HIV infection & AIDS.
Collapse
|
108
|
Protein/peptide-based entry/fusion inhibitors as anti-HIV therapies: challenges and future direction. Rev Med Virol 2015; 26:4-20. [DOI: 10.1002/rmv.1853] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/02/2015] [Accepted: 07/15/2015] [Indexed: 11/07/2022]
|
109
|
Vacas-Córdoba E, Climent N, De La Mata FJ, Plana M, Gómez R, Pion M, García F, Muñoz-Fernández MÁ. Dendrimers as nonviral vectors in dendritic cell-based immunotherapies against human immunodeficiency virus: steps toward their clinical evaluation. Nanomedicine (Lond) 2015; 9:2683-702. [PMID: 25529571 DOI: 10.2217/nnm.14.172] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although the antiretroviral therapy has led to a long-term control of HIV-1, it does not cure the disease. Therefore, several strategies are being explored to develop an effective HIV vaccine, such as the use of dendritic cells (DCs). DC-based immunotherapies bear different limitations, but one of the most critical point is the antigen loading into DCs. Nanotechnology offers new tools to overcome these constraints. Dendrimers have been proposed as carriers for targeted delivery of HIV antigens in DCs. These nanosystems can release the antigens in a controlled manner leading to a more potent specific immune response. This review focuses on the first steps for clinical development of dendrimers to assess their safety and potential use in DC-based immunotherapies against HIV.
Collapse
Affiliation(s)
- Enrique Vacas-Córdoba
- Laboratorio InmunoBiología Molecular, Sección Inmunologia, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria del Gregorio Marañón, C/Dr. Esquerdo 46, 28007, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Szunerits S, Barras A, Khanal M, Pagneux Q, Boukherroub R. Nanostructures for the Inhibition of Viral Infections. Molecules 2015; 20:14051-81. [PMID: 26247927 PMCID: PMC6332336 DOI: 10.3390/molecules200814051] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 07/21/2015] [Accepted: 07/28/2015] [Indexed: 01/26/2023] Open
Abstract
Multivalent interactions are omnipresent in biology and confer biological systems with dramatically enhanced affinities towards different receptors. Such multivalent binding interactions have lately been considered for the development of new therapeutic strategies against bacterial and viral infections. Multivalent polymers, dendrimers, and liposomes have successfully targeted pathogenic interactions. While a high synthetic effort was often needed for the development of such therapeutics, the integration of multiple ligands onto nanostructures turned to be a viable alternative. Particles modified with multiple ligands have the additional advantage of creating a high local concentration of binding molecules. This review article will summarize the different nanoparticle-based approaches currently available for the treatment of viral infections.
Collapse
Affiliation(s)
- Sabine Szunerits
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN), UMR 8520 CNRS, Lille1 University, Avenue Poincaré-BP 60069, 59652 Villeneuve d\'Ascq, France.
| | - Alexandre Barras
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN), UMR 8520 CNRS, Lille1 University, Avenue Poincaré-BP 60069, 59652 Villeneuve d\'Ascq, France.
| | - Manakamana Khanal
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN), UMR 8520 CNRS, Lille1 University, Avenue Poincaré-BP 60069, 59652 Villeneuve d\'Ascq, France.
| | - Quentin Pagneux
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN), UMR 8520 CNRS, Lille1 University, Avenue Poincaré-BP 60069, 59652 Villeneuve d\'Ascq, France.
| | - Rabah Boukherroub
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN), UMR 8520 CNRS, Lille1 University, Avenue Poincaré-BP 60069, 59652 Villeneuve d\'Ascq, France.
| |
Collapse
|
111
|
Fiandra L, Colombo M, Mazzucchelli S, Truffi M, Santini B, Allevi R, Nebuloni M, Capetti A, Rizzardini G, Prosperi D, Corsi F. Nanoformulation of antiretroviral drugs enhances their penetration across the blood brain barrier in mice. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2015; 11:1387-1397. [PMID: 25839392 DOI: 10.1016/j.nano.2015.03.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 02/23/2015] [Accepted: 03/19/2015] [Indexed: 12/31/2022]
Abstract
UNLABELLED Eradication of virus by sanctuary sites is a main goal in HIV management. The central nervous system (CNS) is a classic model of sanctuary where viral replication occurs despite a complete viral suppression in peripheral blood. In recent years, nanotechnologies have provided a great promise in the eradication of HIV from the CNS. We hereby demonstrate for the first time that the structurally complex antiretroviral drug enfuvirtide (Enf), which normally is unable to penetrate the cerebrospinal fluid, is allowed to cross the blood brain barrier (BBB) in mice by conjugation with a nanoconstruct. Iron oxide nanoparticles coated with an amphiphilic polymer increase Enf translocation across the BBB in both in vitro and in vivo models. The mechanism involves the uptake of nanoconjugated-Enf in the endothelial cells, the nanocomplex dissociation and the release of the peptide, which is eventually excreted by the cells in the brain parenchyma. FROM THE CLINICAL EDITOR Despite the success of cocktail therapy of antiretroviral drugs, the complete eradication of HIV remains elusive, due to existence of viral sanctuary sites. The authors showed in this study that an antiretroviral drug complexed with iron oxide nanoparticles and coated with PMA amphiphilic polymer crosses the blood brain barrier. Furthermore, there was significant anti-viral activity. The results would aid further drug designs to eradicate HIV.
Collapse
Affiliation(s)
| | - Miriam Colombo
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | | | - Marta Truffi
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Università di Milano, Milano, Italy
| | - Benedetta Santini
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Raffaele Allevi
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Università di Milano, Milano, Italy
| | - Manuela Nebuloni
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Università di Milano, Milano, Italy
| | | | | | - Davide Prosperi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy; Laboratorio di Biofisica e Nanomedicina, Polo Tecnologico, Fondazione Don Gnocchi IRCCS-ONLUS, Milan, Italy
| | - Fabio Corsi
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Università di Milano, Milano, Italy.
| |
Collapse
|
112
|
Sepúlveda-Crespo D, Sánchez-Rodríguez J, Serramía MJ, Gómez R, De La Mata FJ, Jiménez JL, Muñoz-Fernández MÁ. Triple combination of carbosilane dendrimers, tenofovir and maraviroc as potential microbicide to prevent HIV-1 sexual transmission. Nanomedicine (Lond) 2015; 10:899-914. [PMID: 25867856 DOI: 10.2217/nnm.14.79] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AIM To research the synergistic activity by triple combinations of carbosilane dendrimers with tenofovir and maraviroc as topical microbicide. METHODS Cytotoxicity, anti-HIV-1 activity, vaginal irritation and histological analysis of triple combinations were determined. Analysis of combined effects and the median effective concentration were performed using CalcuSyn software. RESULTS Combinations showed a greater broad-spectrum anti-HIV-1 activity than the single-drug, and preserved this activity in acid environment or seminal fluid. The strongest combinations were G2-STE16/G2-S24P/tenofovir, G2-STE16/G2-S16/maraviroc and G2-STE16/tenofovir/maraviroc at 2:2:1, 10:10:1 10:5:1 ratios, respectively. They demonstrated strong synergistic activity profile due to the weighted average combination indices varied between 0.06 and 0.38. No irritation was detected in female BALB/c mice. CONCLUSION The three-drug combination increases their antiviral potency and act synergistically as potential microbicide.
Collapse
Affiliation(s)
- Daniel Sepúlveda-Crespo
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Spanish HIV-HGM Biobank, Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
113
|
Adhikary RR, More P, Banerjee R. Smart nanoparticles as targeting platforms for HIV infections. NANOSCALE 2015; 7:7520-7534. [PMID: 25874901 DOI: 10.1039/c5nr01285f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
While Human Immunodeficiency Virus (HIV) infections are reducing in incidence with the advent of Highly Active Anti-retroviral Therapy (HAART), there remain a number of challenges including the existence of reservoirs, drug resistance and anatomical barriers to antiretroviral therapy. To overcome these, smart nanoparticles with stimuli responsive release are proposed for delivery of anti-retroviral agents. The paper highlights the strategic similarities between the design of smart antiretroviral nanocarriers and those optimized for cancer chemotherapy. This includes the development of nanoparticles capable of passive and active targeting as well as those that are responsive to various internal and external triggers. For antiretroviral therapy, the relevant triggers for stimuli responsive release of drugs include semen, enzymes, endosomal escape, temperature and magnetic field. Deriving from the experience of cancer chemotherapy, additional potential triggers are light and ultrasound which remain hitherto unexplored in HIV therapy. In addition, the roles of nanomicrobicides (nanogels) and virus mimetic nanoparticles are discussed from the point of view of prevention of HIV transmission. The challenges associated with translation of smart nanoparticles for HIV infections to realize the Millennium Development Goal of combating HIV infections are discussed.
Collapse
Affiliation(s)
- Rishi Rajat Adhikary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| | | | | |
Collapse
|
114
|
Giacalone G, Hillaireau H, Fattal E. Improving bioavailability and biodistribution of anti-HIV chemotherapy. Eur J Pharm Sci 2015; 75:40-53. [PMID: 25937367 DOI: 10.1016/j.ejps.2015.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/07/2015] [Accepted: 04/13/2015] [Indexed: 11/25/2022]
Abstract
In the context of the treatment of HIV/AIDS, many improvements have been achieved since the introduction of the combination therapy (HAART). Nevertheless, no cure for this disease has been so far possible, because of some particular features of the therapies. Among them, two important ones have been selected and will be the subject of this review. The first main concern in the treatments is the poor drug bioavailability, resulting in repeated administrations and therefore a demanding compliance (drug regimens consist of multiple drugs daily intake, and non-adherence to therapy is among the important reasons for treatment failure). A second important challenge is the need to target the drugs into the so-called reservoirs and sanctuaries, i.e. cells or body compartments where drugs cannot penetrate or are distributed in sub-active concentrations. The lack of antiviral action in these regions allows the virus to lie latent and start to replicate at any moment after therapy suspension. Recent drug delivery strategies addressing these two limitations will be presented in this review. In the first part, strategies to improve the bioavailability are proposed in order to overcome the absorption or the target cell barrier, or to extend the efficacy time of drugs. In the second section, the biodistribution issues are considered in order to target the drugs into the reservoirs and the sanctuaries, in particular the mononuclear phagocyte system and the brain.
Collapse
Affiliation(s)
- Giovanna Giacalone
- Institut Galien Paris-Sud, Université Paris-Sud, Faculté de Pharmacie, 5 rue J.-B. Clément, F-92290 Châtenay-Malabry, France; CNRS, UMR 8612, F-92290 Châtenay-Malabry, France.
| | - Hervé Hillaireau
- Institut Galien Paris-Sud, Université Paris-Sud, Faculté de Pharmacie, 5 rue J.-B. Clément, F-92290 Châtenay-Malabry, France; CNRS, UMR 8612, F-92290 Châtenay-Malabry, France.
| | - Elias Fattal
- Institut Galien Paris-Sud, Université Paris-Sud, Faculté de Pharmacie, 5 rue J.-B. Clément, F-92290 Châtenay-Malabry, France; CNRS, UMR 8612, F-92290 Châtenay-Malabry, France.
| |
Collapse
|
115
|
Sudhakar B, Krishna MC, Murthy KVR. Factorial design studies of antiretroviral drug-loaded stealth liposomal injectable: PEGylation, lyophilization and pharmacokinetic studies. APPLIED NANOSCIENCE 2015. [DOI: 10.1007/s13204-015-0408-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
116
|
Sánchez-Rodríguez J, Vacas-Córdoba E, Gómez R, De La Mata FJ, Muñoz-Fernández MÁ. Nanotech-derived topical microbicides for HIV prevention: the road to clinical development. Antiviral Res 2014; 113:33-48. [PMID: 25446339 DOI: 10.1016/j.antiviral.2014.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/20/2014] [Accepted: 10/29/2014] [Indexed: 11/15/2022]
Abstract
More than three decades since its discovery, HIV infection remains one of the most aggressive epidemics worldwide, with more than 35 million people infected. In sub-Saharan Africa, heterosexual transmissions represent nearly 80% of new infections, with 50% of these occurring in women. In an effort to stop the dramatic spread of the HIV epidemic, new preventive treatments, such as microbicides, have been developed. Nanotechnology has revolutionized this field by designing and engineering novel highly effective nano-sized materials as microbicide candidates. This review illustrates the most recent advances in nanotech-derived HIV prevention strategies, as well as the main steps required to translate promising in vitro results into clinical trials.
Collapse
Affiliation(s)
- Javier Sánchez-Rodríguez
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Enrique Vacas-Córdoba
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Rafael Gómez
- Dendrimers for Biomedical Applications Group (BioInDen), University of Alcalá, Alcalá de Henares, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - F Javier De La Mata
- Dendrimers for Biomedical Applications Group (BioInDen), University of Alcalá, Alcalá de Henares, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Ma Ángeles Muñoz-Fernández
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
117
|
Rosemary Bastian A, Nangarlia A, Bailey LD, Holmes A, Kalyana Sundaram RV, Ang C, Moreira DRM, Freedman K, Duffy C, Contarino M, Abrams C, Root M, Chaiken I. Mechanism of multivalent nanoparticle encounter with HIV-1 for potency enhancement of peptide triazole virus inactivation. J Biol Chem 2014; 290:529-43. [PMID: 25371202 DOI: 10.1074/jbc.m114.608315] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Entry of HIV-1 into host cells remains a compelling yet elusive target for developing agents to prevent infection. A peptide triazole (PT) class of entry inhibitor has previously been shown to bind to HIV-1 gp120, suppress interactions of the Env protein at host cell receptor binding sites, inhibit cell infection, and cause envelope spike protein breakdown, including gp120 shedding and, for some variants, virus membrane lysis. We found that gold nanoparticle-conjugated forms of peptide triazoles (AuNP-PT) exhibit substantially more potent antiviral effects against HIV-1 than corresponding peptide triazoles alone. Here, we sought to reveal the mechanism of potency enhancement underlying nanoparticle conjugate function. We found that altering the physical properties of the nanoparticle conjugate, by increasing the AuNP diameter and/or the density of PT conjugated on the AuNP surface, enhanced potency of infection inhibition to impressive picomolar levels. Further, compared with unconjugated PT, AuNP-PT was less susceptible to reduction of antiviral potency when the density of PT-competent Env spikes on the virus was reduced by incorporating a peptide-resistant mutant gp120. We conclude that potency enhancement of virolytic activity and corresponding irreversible HIV-1 inactivation of PTs upon AuNP conjugation derives from multivalent contact between the nanoconjugates and metastable Env spikes on the HIV-1 virus. The findings reveal that multispike engagement can exploit the metastability built into virus the envelope to irreversibly inactivate HIV-1 and provide a conceptual platform to design nanoparticle-based antiviral agents for HIV-1 specifically and putatively for metastable enveloped viruses generally.
Collapse
Affiliation(s)
- Arangassery Rosemary Bastian
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, the School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104
| | - Aakansha Nangarlia
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, the School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104
| | - Lauren D Bailey
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Andrew Holmes
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - R Venkat Kalyana Sundaram
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, the School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104
| | - Charles Ang
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, the School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104
| | - Diogo R M Moreira
- the Fundação Oswaldo Cruz, Centro de Pesquisas Goncalo Moniz, Salvador-BA 40296-710, Brazil
| | - Kevin Freedman
- the Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, and
| | - Caitlin Duffy
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Mark Contarino
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Cameron Abrams
- the Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, and
| | - Michael Root
- the Department of Biochemistry and Molecular Biology, Jefferson University, Philadelphia, Pennsylvania 19107
| | - Irwin Chaiken
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102,
| |
Collapse
|
118
|
Knuschke T, Bayer W, Rotan O, Sokolova V, Wadwa M, Kirschning CJ, Hansen W, Dittmer U, Epple M, Buer J, Westendorf AM. Prophylactic and therapeutic vaccination with a nanoparticle-based peptide vaccine induces efficient protective immunity during acute and chronic retroviral infection. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1787-98. [DOI: 10.1016/j.nano.2014.06.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/13/2014] [Indexed: 01/31/2023]
|
119
|
Nel A, Swindells S, Bronich T, Gendelman HE. Interview: Nanomedicine and the fight against HIV/AIDS. Nanomedicine (Lond) 2014; 9:193-206. [PMID: 24552561 DOI: 10.2217/nnm.13.213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Ahead of the 4th Annual Meeting of the American Society of Nanomedicine, this collection of interviews brings together experts from the fields of nanomedicine and HIV/AIDS treatment. Professor André Nel gives us a general introduction and update on the nanomedicine field and how he hopes it will progress. Professor Susan Swindells describes the current challenges faced in the clinic for HIV/AIDS treatment. Professor Tatiana Bronich explains the research efforts being undertaken by the nanomedicine community for the treatment of microbial infections and HIV/AIDS specifically. Finally, Professor Howard Gendelman looks to the future and assesses the potential and challenges of nanomedicine approaches for HIV eradication.
Collapse
Affiliation(s)
- André Nel
- California NanoSystems Institute, David Geffen School of Medicine at UCLA, 52-175 Center for the Health Sciences, 10833 Le Conte Ave, Los Angeles, CA 90095-1736, USA.
| | | | | | | |
Collapse
|
120
|
Mishra V, Kesharwani P, Jain NK. siRNA nanotherapeutics: a Trojan horse approach against HIV. Drug Discov Today 2014; 19:1913-20. [PMID: 25281591 DOI: 10.1016/j.drudis.2014.09.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/07/2014] [Accepted: 09/23/2014] [Indexed: 01/19/2023]
Abstract
The concept of RNA interference (RNAi) is gaining popularity for the better management of various diseases, including HIV. Currently, the successful biomedical utilization of siRNA therapeutics is hampered, both in vivo and in vitro, mainly by the inherent inability of naked siRNA to cross the cell membrane. RNAi can potentially improve the weakness of current highly active antiretroviral therapy (HAART) by diminishing the chances of the appearance of antiHIV-resistant strains. Here, we discuss the nanocarrier-mediated delivery of siRNA delivery as well as highlighted the scope of siRNA-mediated gene-silencing technology for improved HIV treatment.
Collapse
Affiliation(s)
- Vijay Mishra
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr H.S. Gour Central University, Sagar, MP, India
| | - Prashant Kesharwani
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr H.S. Gour Central University, Sagar, MP, India
| | - Narendra K Jain
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr H.S. Gour Central University, Sagar, MP, India.
| |
Collapse
|
121
|
Dizaj SM, Jafari S, Khosroushahi AY. A sight on the current nanoparticle-based gene delivery vectors. NANOSCALE RESEARCH LETTERS 2014; 9:252. [PMID: 24936161 PMCID: PMC4046008 DOI: 10.1186/1556-276x-9-252] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 04/25/2014] [Indexed: 05/17/2023]
Abstract
Nowadays, gene delivery for therapeutic objects is considered one of the most promising strategies to cure both the genetic and acquired diseases of human. The design of efficient gene delivery vectors possessing the high transfection efficiencies and low cytotoxicity is considered the major challenge for delivering a target gene to specific tissues or cells. On this base, the investigations on non-viral gene vectors with the ability to overcome physiological barriers are increasing. Among the non-viral vectors, nanoparticles showed remarkable properties regarding gene delivery such as the ability to target the specific tissue or cells, protect target gene against nuclease degradation, improve DNA stability, and increase the transformation efficiency or safety. This review attempts to represent a current nanoparticle based on its lipid, polymer, hybrid, and inorganic properties. Among them, hybrids, as efficient vectors, are utilized in gene delivery in terms of materials (synthetic or natural), design, and in vitro/in vivo transformation efficiency.
Collapse
Affiliation(s)
- Solmaz Maleki Dizaj
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Jafari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Daneshgah Street, P.O.Box 51664, 14766 Tabriz, Iran
| |
Collapse
|
122
|
The role of neuroplasticity and cognitive reserve in aging with HIV: recommendations for cognitive protection and rehabilitation. J Neurosci Nurs 2014; 45:306-16. [PMID: 24025470 DOI: 10.1097/jnn.0b013e31829d8b29] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
By and large, the immune systems of people infected with HIV are being protected and maintained by advances in highly active antiretroviral therapy; as such, this is extending the lives of people into old age. Unfortunately, for many living with this disease, HIV is associated with neuroinflammation, co-morbidities, and accelerated aging which can compromise brain function, resulting in cognitive deficits. The purpose of this article is to highlight how to interpret these deficits within the framework of neuroplasticity and cognitive reserve for this clinical population. We suggest several recommendations for cognitive rehabilitation and mitigation such as addressing lifestyle factors, psychostimulants, cognitive remediation therapy, and treatment of depression and anxiety. Implications for nursing research and practice are posited.
Collapse
|
123
|
Shafiee H, Lidstone EA, Jahangir M, Inci F, Hanhauser E, Henrich TJ, Kuritzkes DR, Cunningham BT, Demirci U. Nanostructured optical photonic crystal biosensor for HIV viral load measurement. Sci Rep 2014; 4:4116. [PMID: 24576941 PMCID: PMC3937800 DOI: 10.1038/srep04116] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 01/28/2014] [Indexed: 01/20/2023] Open
Abstract
Detecting and quantifying biomarkers and viruses in biological samples have broad applications in early disease diagnosis and treatment monitoring. We have demonstrated a label-free optical sensing mechanism using nanostructured photonic crystals (PC) to capture and quantify intact viruses (HIV-1) from biologically relevant samples. The nanostructured surface of the PC biosensor resonantly reflects a narrow wavelength band during illumination with a broadband light source. Surface-adsorbed biotarget induces a shift in the resonant Peak Wavelength Value (PWV) that is detectable with <10 pm wavelength resolution, enabling detection of both biomolecular layers and small number of viruses that sparsely populate the transducer surface. We have successfully captured and detected HIV-1 in serum and phosphate buffered saline (PBS) samples with viral loads ranging from 104 to 108 copies/mL. The surface density of immobilized biomolecular layers used in the sensor functionalization process, including 3-mercaptopropyltrimethoxysilane (3-MPS), N-gamma-Maleimidobutyryl-oxysuccinimide ester (GMBS), NeutrAvidin, anti-gp120, and bovine serum albumin (BSA) were also quantified by the PC biosensor.
Collapse
Affiliation(s)
- Hadi Shafiee
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Erich A Lidstone
- Department of Electrical & Computer Engineering, and Department of Bioengineering, University of Illinois at Urbana-Champaign, IL, USA
| | - Muntasir Jahangir
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Fatih Inci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Emily Hanhauser
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, MA, USA
| | - Timothy J Henrich
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, MA, USA
| | - Daniel R Kuritzkes
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, MA, USA
| | - Brian T Cunningham
- Department of Electrical & Computer Engineering, and Department of Bioengineering, University of Illinois at Urbana-Champaign, IL, USA
| | - Utkan Demirci
- 1] Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA [2] Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, MA, USA [3] Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| |
Collapse
|
124
|
Meng J, Zhang T, Agrahari V, Ezoulin MJ, Youan BBC. Comparative biophysical properties of tenofovir-loaded, thiolated and nonthiolated chitosan nanoparticles intended for HIV prevention. Nanomedicine (Lond) 2014; 9:1595-612. [PMID: 24405490 DOI: 10.2217/nnm.13.136] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
AIM This study is designed to test the hypothesis that tenofovir-loaded (an anti-HIV microbicide) chitosan-thioglycolic acid-conjugated (CS-TGA) nanoparticles (NPs) exhibit superior biophysical properties for mucoadhesion compared with those of native CS NPs. MATERIALS & METHODS The NPs are prepared by ionotropic gelation. The particle mean diameter, encapsulation efficiency and release profile are analyzed by dynamic light scattering and UV spectroscopy, respectively. The cytotoxicity, cellular uptake and uptake mechanism are assessed on VK2/E6E7 and End1/E6E7 cell lines by colorimetry/fluorimetry, and percentage mucoadhesion is assessed using porcine vaginal tissue. RESULTS The mean diameter of the optimal NP formulations ranges from 240 to 252 nm, with a maximal encapsulation efficiency of 22.60%. Tenofovir release from CS and CS-TGA NPs follows first-order and Higuchi models, respectively. Both NPs are noncytotoxic in 48 h. The cellular uptake, which is time dependent, mainly occurs via the caveolin-mediated pathway. The percentage of mucoadhesion of CS-TGA NPs is fivefold higher than that of CS NPs, and reached up to 65% after 2 h. CONCLUSION Collectively, CS-TGA NPs exhibit superior biophysical properties and can potentially maximize the retention time of a topical microbicide, such as tenofovir, intended for the prevention of HIV transmission.
Collapse
Affiliation(s)
- Jianing Meng
- Laboratory of Future Nanomedicines & Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, University of Missouri, Kansas City, MO 64108, USA
| | | | | | | | | |
Collapse
|
125
|
Rivera LE, Colon K, Cantres-Rosario YM, Zenon FM, Melendez LM. Macrophage derived cystatin B/cathepsin B in HIV replication and neuropathogenesis. Curr HIV Res 2014; 12:111-20. [PMID: 24862331 PMCID: PMC4122617 DOI: 10.2174/1570162x12666140526120249] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/22/2013] [Accepted: 07/24/2013] [Indexed: 11/22/2022]
Abstract
Mononuclear phagocytes including monocytes and macrophages, are important defense components of innate immunity, but can be detrimental in HIV-1 infection by serving as the principal reservoirs of virus in brain and triggering a strong immune response. These viral reservoirs represent a challenge to HIV-1 eradication since they continue producing virus in tissue despite antiretroviral therapy. HIV-1 associated neurocognitive disorders (HAND) involve alterations to the blood-brain barrier and migration of activated HIV-1 infected monocytes to the brain with subsequent induced immune activation response. Our group recently showed that HIV replication in monocyte-derived macrophages is associated with increased cystatin B. This cysteine protease inhibitor also inhibits the interferon-induced antiviral response by decreasing levels of tyrosine phosphorylated STAT-1. These recent discoveries reveal novel mechanisms of HIV persistence that could be targeted by new therapeutic approaches to eliminate HIV in macrophage reservoirs. However, cystatin B has been also associated with neuroprotection. Cystatin B is an inhibitor of the cysteine protease cathepsin B, a potent neurotoxin. During HIV-1 infection cystatin B and cathepsin B are upregulated in macrophages. Reduction in cystatin/cathepsin interactions in infected macrophages leads to increased cathepsin B secretion and activity which contributes to neuronal apoptosis. Increased intracellular expression of both proteins was recently found in monocytes from Hispanic women with HAND. These findings provide new evidence for the role of cathepsin /cystatin system in the neuropathogenesis induced by HIV-infected macrophages. We summarize recent research on cystatin B and one of its substrates, cathepsin B, in HIV replication in macrophages and neuropathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Loyda M Melendez
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, 00935, Puerto Rico.
| |
Collapse
|
126
|
A review of nanotechnological approaches for the prophylaxis of HIV/AIDS. Biomaterials 2013; 34:6202-28. [PMID: 23726227 DOI: 10.1016/j.biomaterials.2013.05.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 05/06/2013] [Indexed: 01/06/2023]
Abstract
Successful treatment and control of HIV/AIDS is one of the biggest challenges of 21st century. More than 33 million individuals are infected with HIV worldwide and more than 2 million new cases of HIV infection have been reported. The situation demands development of effective prevention strategies to control the pandemic of AIDS. Due to lack of availability of an effective HIV vaccine, antiretroviral drugs and nucleic acid therapeutics like siRNA have been explored for HIV prophylaxis. Clinical trials shave shown that antiretroviral drugs, tenofovir and emtricitabine can offer some degree of HIV prevention. However, complete prevention of HIV infection has not been achieved yet. Nanotechnology has brought a paradigm shift in the diagnosis, treatment and prevention of many diseases. The current review discusses potential of various nanocarriers such as dendrimers, polymeric nanoparticles, liposomes, lipid nanocarriers, drug nanocrystals, inorganic nanocarriers and nanofibers in improving efficacy of various modalities available for HIV prophylaxis.
Collapse
|
127
|
Shiang YC, Ou CM, Chen SJ, Ou TY, Lin HJ, Huang CC, Chang HT. Highly efficient inhibition of human immunodeficiency virus type 1 reverse transcriptase by aptamers functionalized gold nanoparticles. NANOSCALE 2013; 5:2756-2764. [PMID: 23429884 DOI: 10.1039/c3nr33403a] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We have developed aptamer (Apt)-conjugated gold nanoparticles (Apt-Au NPs, 13 nm in diameter) as highly effective inhibitors for human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT). Two Apts, RT1t49 (Aptpol) and ODN 93 (AptRH), which recognize the polymerase and RNase H regions of HIV-1 RT, are used to conjugate Au NPs to prepare Aptpol-Au NPs and AptRH-Au NPs, respectively. In addition to DNA sequence, the surface density of the aptamers on Au NPs (nApt-Au NPs; n is the number of aptamer molecules on each Au NP) and the linker length number (Tm; m is the base number of the deoxythymidine linker) between the aptamer and Au NPs play important roles in determining their inhibition activity. A HIV-lentiviral vector-based antiviral assay has been applied to determine the inhibitory effect of aptamers or Apt-Au NPs on the early stages of their replication cycle. The nuclease-stable G-quadruplex structure of 40AptRH-T45-Au NPs shows inhibitory efficiency in the retroviral replication cycle with a decreasing infectivity (40.2%).
Collapse
Affiliation(s)
- Yen-Chun Shiang
- Department of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | | | | | | | | | | | | |
Collapse
|
128
|
Lisziewicz J, Tőke ER. Nanomedicine applications towards the cure of HIV. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:28-38. [DOI: 10.1016/j.nano.2012.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/23/2012] [Accepted: 05/16/2012] [Indexed: 10/28/2022]
|
129
|
Marrache S, Pathak RK, Darley KL, Choi JH, Zaver D, Kolishetti N, Dhar S. Nanocarriers for tracking and treating diseases. Curr Med Chem 2013; 20:3500-14. [PMID: 23834187 PMCID: PMC8085808 DOI: 10.2174/0929867311320280007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/04/2013] [Indexed: 12/11/2022]
Abstract
Site directed drug delivery with high efficacy is the biggest challenge in the area of current pharmaceuticals. Biodegradable polymer-based controlled release nanoparticle platforms could be beneficial for targeted delivery of therapeutics and contrast agents for a myriad of important human diseases. Biodegradable nanoparticles, which can be engineered to load multiple drugs with varied physicochemical properties, contrast agents, and cellular or intracellular component targeting moieties, have emerged as potential alternatives for tracking and treating human diseases. In this review, we will highlight the current advances in the design and execution of such platforms for their potential application in the diagnosis and treatment of variety of diseases ranging from cancer to Alzheimer's and we will provide a critical analysis of the associated challenges for their possible clinical translation.
Collapse
Affiliation(s)
- Sean Marrache
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602
| | - Rakesh Kumar Pathak
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602
| | - Kasey L. Darley
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602
| | - Joshua H. Choi
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602
| | - Dhillon Zaver
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602
| | | | - Shanta Dhar
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
130
|
Ensign LM, Tang BC, Wang YY, Tse TA, Hoen T, Cone R, Hanes J. Mucus-penetrating nanoparticles for vaginal drug delivery protect against herpes simplex virus. Sci Transl Med 2012; 4:138ra79. [PMID: 22700955 DOI: 10.1126/scitranslmed.3003453] [Citation(s) in RCA: 265] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Incomplete coverage and short duration of action limit the effectiveness of vaginally administered drugs, including microbicides, for preventing sexually transmitted infections. We investigated vaginal distribution, retention, and safety of nanoparticles with surfaces modified to enhance transport through mucus. We show that mucus-penetrating particles (MPPs) provide uniform distribution over the vaginal epithelium, whereas conventional nanoparticles (CPs) that are mucoadhesive are aggregated by mouse vaginal mucus, leading to poor distribution. Moreover, when delivered hypotonically, MPPs were transported advectively (versus diffusively) through mucus deep into vaginal folds (rugae) within minutes. By penetrating into the deepest mucus layers, more MPPs were retained in the vaginal tract after 6 hours compared to CPs. After 24 hours, when delivered in a conventional vaginal gel, patches of a model drug remained on the vaginal epithelium, whereas the epithelium was coated with drug delivered by MPPs. We then developed MPPs composed of acyclovir monophosphate (ACVp). When administered before vaginal herpes simplex virus 2 challenge, ACVp-MPPs protected 53% of mice compared to only 16% protected by soluble drug. Overall, MPPs improved vaginal drug distribution and retention, provided more effective protection against vaginal viral challenge than soluble drug, and were nontoxic when administered daily for 1 week.
Collapse
Affiliation(s)
- Laura M Ensign
- Center for Nanomedicine, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA
| | | | | | | | | | | | | |
Collapse
|
131
|
Mahajan SD, Aalinkeel R, Law WC, Reynolds JL, Nair BB, Sykes DE, Yong KT, Roy I, Prasad PN, Schwartz SA. Anti-HIV-1 nanotherapeutics: promises and challenges for the future. Int J Nanomedicine 2012; 7:5301-14. [PMID: 23055735 PMCID: PMC3468275 DOI: 10.2147/ijn.s25871] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The advent of highly active antiretroviral therapy (HAART) has significantly improved the prognosis for human immunodeficiency virus (HIV)-infected patients, however the adverse side effects associated with prolonged HAART therapy use continue. Although systemic viral load can be undetectable, the virus remains sequestered in anatomically privileged sites within the body. Nanotechnology-based delivery systems are being developed to target the virus within different tissue compartments and are being evaluated for their safety and efficacy. The current review outlines the various nanomaterials that are becoming increasingly used in biomedical applications by virtue of their robustness, safety, multimodality, and multifunctionality. Nanotechnology can revolutionize the field of HIV medicine by not only improving diagnosis, but also by improving delivery of antiretrovirals to targeted regions in the body and by significantly enhancing the efficacy of the currently available antiretroviral medications.
Collapse
Affiliation(s)
- Supriya D Mahajan
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, State University of New York at Buffalo, Buffalo Niagara Medical Campus, Buffalo, NY, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Cho WS, Dart K, Nowakowska DJ, Zheng X, Donaldson K, Howie SEM. Adjuvanticity and toxicity of cobalt oxide nanoparticles as an alternative vaccine adjuvant. Nanomedicine (Lond) 2012; 7:1495-505. [DOI: 10.2217/nnm.12.35] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Aim: There are very few adjuvants licensed for use in human vaccination, and alum-based adjuvants are the most widely used. Alum adjuvants predominantly boost Th2 immune responses and there is a need for new adjuvants that also stimulate Th1 immunity. We recently reported that cobalt oxide nanoparticles (Co3O4NPs) stimulate Th1-type immune responses in vivo. Here, we exploited this property to examine whether Co3O4NP could act as an adjuvant using the model antigen ovalbumin. Materials & methods: Female C57BL/6 mice were immunized subcutaneously twice with ovalbumin plus adjuvant (Co3O4NPs or Imject® Alum) followed by intraperitoneal stimulation with soluble ovalbumin. Results: Co3O4NPs induced a more balanced Th1- and Th2-type response, triggering higher specific Th1-dependent IgG2c production in addition to Th2-dependent IgG1 and less ‘allergic’ IgE production, and induced less inflammation at both the subcutaneous and intraperitoneal injection sites. Discussion: Co3O4NPs could be a very useful adjuvant where both Th1 and Th2 responses are needed to clear pathogens. Original submitted 22 August 2011; Revised submitted 28 February 2012; Published online 20 July 2012
Collapse
Affiliation(s)
- Wan-Seob Cho
- ELEGI/Colt Laboratory, Center for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4TJ, UK
- Department of Medicinal Biotechnology, College of Natural Resources and Life Science, Dong-A University, Busan 604–714, South Korea
| | - Kenneth Dart
- ELEGI/Colt Laboratory, Center for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4TJ, UK
- Immunity and Chronic Inflammation Group, Center for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Dominika J Nowakowska
- Immunity and Chronic Inflammation Group, Center for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Xiaozhong Zheng
- Immunity and Chronic Inflammation Group, Center for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Ken Donaldson
- ELEGI/Colt Laboratory, Center for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Sarah EM Howie
- ELEGI/Colt Laboratory, Center for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
133
|
Mamo T, Poland GA. Nanovaccinology: The next generation of vaccines meets 21st century materials science and engineering. Vaccine 2012; 30:6609-11. [DOI: 10.1016/j.vaccine.2012.08.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 08/13/2012] [Indexed: 10/27/2022]
|
134
|
Kumar S, Dilbaghi N, Saharan R, Bhanjana G. Nanotechnology as Emerging Tool for Enhancing Solubility of Poorly Water-Soluble Drugs. BIONANOSCIENCE 2012. [DOI: 10.1007/s12668-012-0060-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
135
|
Mohammed Fayaz A, Ao Z, Girilal M, Chen L, Xiao X, Kalaichelvan P, Yao X. Inactivation of microbial infectiousness by silver nanoparticles-coated condom: a new approach to inhibit HIV- and HSV-transmitted infection. Int J Nanomedicine 2012; 7:5007-18. [PMID: 23049252 PMCID: PMC3459690 DOI: 10.2147/ijn.s34973] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Indexed: 11/23/2022] Open
Abstract
Recent research suggests that today’s condoms are only 85% effective in preventing human immunodeficiency virus (HIV) and other sexually transmitted diseases. In response, there has been a push to develop more effective ways of decreasing the spread of the disease. The new nanotechnology-based condom holds the promise of being more potent than the first-generation products. The preliminary goal of this study was to develop a silver nanoparticles (Ag-NPs)-coated polyurethane condom (PUC) and to investigate its antimicrobial potential including the inactivation of HIV and herpes simplex virus (HSV) infectiousness. The Ag-NPs-coated PUC was characterized by using ultraviolet-visible spectrophotometry, Fourier transform-infrared spectroscopy, high-resolution scanning electron microscopy, and energy-dispersive analysis of X-ray spectroscopy. Nanoparticles were stable on the PUC and not washed away by water. Morphology of the PUC was retained after coating. The NP binding is due to its interaction with the nitrogen atom of the PUC. No significant toxic effects was observed when human HeLa cells, 293T and C8166 T cells were contacted to Ag-NPs-coated PUC for three hours. Interestingly, our results demonstrated that the contact of the Ag-NPs-coated PUC with HIV-1 and HSV-1/2 was able to efficiently inactivate their infectiousness. In an attempt to elucidate the antiviral action of the Ag-NPs, we have demonstrated that the anti-HIV activity was primarily mediated by the Ag-NPs, which are associated with the PUC. In addition, the data showed that both macrophage (M)-tropic and T lymphocyte (T)-tropic strains of HIV-1 were highly sensitive to the Ag-NPs-coated PUC. Furthermore, we also showed that the Ag-NPs-coated PUC was able to inhibit the growth of bacteria and fungi. These results demonstrated that the Ag-NPs-coated PUC is able to directly inactivate the microbe’s infectious ability and provides another defense line against these sexually transmitted microbial infections.
Collapse
Affiliation(s)
- A Mohammed Fayaz
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | | | | | |
Collapse
|
136
|
Lee IH, Kwon HK, An S, Kim D, Kim S, Yu MK, Lee JH, Lee TS, Im SH, Jon S. Imageable antigen-presenting gold nanoparticle vaccines for effective cancer immunotherapy in vivo. Angew Chem Int Ed Engl 2012; 51:8800-5. [PMID: 22847719 DOI: 10.1002/anie.201203193] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Indexed: 01/08/2023]
Affiliation(s)
- In-Hyun Lee
- Biological Science Department, Korea Advanced Institute of Science and Technology, 291 Daehak-ro,Yuseong-gu, Daejeon 305-701, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Lee IH, Kwon HK, An S, Kim D, Kim S, Yu MK, Lee JH, Lee TS, Im SH, Jon S. Imageable Antigen-Presenting Gold Nanoparticle Vaccines for Effective Cancer Immunotherapy In Vivo. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203193] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
138
|
Le Douce V, Janossy A, Hallay H, Ali S, Riclet R, Rohr O, Schwartz C. Achieving a cure for HIV infection: do we have reasons to be optimistic? J Antimicrob Chemother 2012; 67:1063-74. [PMID: 22294645 PMCID: PMC3324423 DOI: 10.1093/jac/dkr599] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The introduction of highly active antiretroviral therapy (HAART) in 1996 has transformed a lethal disease to a chronic pathology with a dramatic decrease in mortality and morbidity of AIDS-related symptoms in infected patients. However, HAART has not allowed the cure of HIV infection, the main obstacle to HIV eradication being the existence of quiescent reservoirs. Several other problems have been encountered with HAART (such as side effects, adherence to medication, emergence of resistance and cost of treatment), and these motivate the search for new ways to treat these patients. Recent advances hold promise for the ultimate cure of HIV infection, which is the topic of this review. Besides these new strategies aiming to eliminate the virus, efforts must be made to improve current HAART. We believe that the cure of HIV infection will not be attained in the short term and that a strategy based on purging the reservoirs has to be associated with an aggressive HAART strategy.
Collapse
Affiliation(s)
- Valentin Le Douce
- University of Strasbourg, EA4438, Institute of Parasitology, Strasbourg, France
| | - Andrea Janossy
- University of Strasbourg, EA4438, Institute of Parasitology, Strasbourg, France
| | - Houda Hallay
- University of Strasbourg, EA4438, Institute of Parasitology, Strasbourg, France
| | - Sultan Ali
- University of Strasbourg, EA4438, Institute of Parasitology, Strasbourg, France
| | - Raphael Riclet
- University of Strasbourg, EA4438, Institute of Parasitology, Strasbourg, France
| | - Olivier Rohr
- University of Strasbourg, EA4438, Institute of Parasitology, Strasbourg, France
- IUT de Schiltigheim, 1 Allée d'Athènes, 67300 Schiltigheim, France
- Institut Universitaire de France, 103 Bd Saint Michel, Paris, France
| | - Christian Schwartz
- University of Strasbourg, EA4438, Institute of Parasitology, Strasbourg, France
- IUT de Schiltigheim, 1 Allée d'Athènes, 67300 Schiltigheim, France
| |
Collapse
|
139
|
Parboosing R, Maguire GEM, Govender P, Kruger HG. Nanotechnology and the treatment of HIV infection. Viruses 2012; 4:488-520. [PMID: 22590683 PMCID: PMC3347320 DOI: 10.3390/v4040488] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 03/15/2012] [Accepted: 03/27/2012] [Indexed: 01/25/2023] Open
Abstract
Suboptimal adherence, toxicity, drug resistance and viral reservoirs make the lifelong treatment of HIV infection challenging. The emerging field of nanotechnology may play an important role in addressing these challenges by creating drugs that possess pharmacological advantages arising out of unique phenomena that occur at the “nano” scale. At these dimensions, particles have physicochemical properties that are distinct from those of bulk materials or single molecules or atoms. In this review, basic concepts and terms in nanotechnology are defined, and examples are provided of how nanopharmaceuticals such as nanocrystals, nanocapsules, nanoparticles, solid lipid nanoparticles, nanocarriers, micelles, liposomes and dendrimers have been investigated as potential anti-HIV therapies. Such drugs may, for example, be used to optimize the pharmacological characteristics of known antiretrovirals, deliver anti-HIV nucleic acids into infected cells or achieve targeted delivery of antivirals to the immune system, brain or latent reservoirs. Also, nanopharmaceuticals themselves may possess anti-HIV activity. However several hurdles remain, including toxicity, unwanted biological interactions and the difficulty and cost of large-scale synthesis of nanopharmaceuticals.
Collapse
Affiliation(s)
- Raveen Parboosing
- Department of Virology, National Health Laboratory Service/University of KwaZulu-Natal, c/o Inkosi Albert Luthuli Central Hospital, 5th Floor Laboratory Building, 800 Bellair Road, Mayville, Durban 4091, South Africa
- Author to whom correspondence should be addressed; ; Tel.: +27-31-240-2816; Fax: +27-31-240-2797
| | - Glenn E. M. Maguire
- School of Chemistry, University of KwaZulu-Natal, Varsity Drive, Durban 4001, South Africa; (G.E.M. M.); (H.G.K.)
| | - Patrick Govender
- School of Biochemistry, Genetics and Microbiology, University of KwaZulu-Natal, Durban 4001, South Africa; (P.G.)
| | - Hendrik G. Kruger
- School of Chemistry, University of KwaZulu-Natal, Varsity Drive, Durban 4001, South Africa; (G.E.M. M.); (H.G.K.)
| |
Collapse
|
140
|
Ni X, Castanares M, Mukherjee A, Lupold SE. Nucleic acid aptamers: clinical applications and promising new horizons. Curr Med Chem 2012; 18:4206-14. [PMID: 21838685 DOI: 10.2174/092986711797189600] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/15/2011] [Accepted: 07/17/2011] [Indexed: 12/25/2022]
Abstract
Aptamers are a special class of nucleic acid molecules that are beginning to be investigated for clinical use. These small RNA/DNA molecules can form secondary and tertiary structures capable of specifically binding proteins or other cellular targets; they are essentially a chemical equivalent of antibodies. Aptamers have the advantage of being highly specific, relatively small in size, and non-immunogenic. Since the discovery of aptamers in the early 1990s, great efforts have been made to make them clinically relevant for diseases like cancer, HIV, and macular degeneration. In the last two decades, many aptamers have been clinically developed as inhibitors for targets such as vascular endothelial growth factor (VEGF) and thrombin. The first aptamer based therapeutic was FDA approved in 2004 for the treatment of age-related macular degeneration and several other aptamers are currently being evaluated in clinical trials. With advances in targeted-therapy, imaging, and nanotechnology, aptamers are readily considered as potential targeting ligands because of their chemical synthesis and ease of modification for conjugation. Preclinical studies using aptamer-siRNA chimeras and aptamer targeted nanoparticle therapeutics have been very successful in mouse models of cancer and HIV. In summary aptamers are in several stages of development, from pre-clinical studies to clinical trials and even as FDA approved therapeutics. In this review, we will discuss the current state of aptamers in clinical trials as well as some promising aptamers in pre-clinical development.
Collapse
Affiliation(s)
- X Ni
- James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine 600 N Wolfe St., Baltimore, MD 21287, USA
| | | | | | | |
Collapse
|
141
|
Walkey CD, Olsen JB, Guo H, Emili A, Chan WCW. Nanoparticle Size and Surface Chemistry Determine Serum Protein Adsorption and Macrophage Uptake. J Am Chem Soc 2012; 134:2139-47. [DOI: 10.1021/ja2084338] [Citation(s) in RCA: 1385] [Impact Index Per Article: 106.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Carl D. Walkey
- Institute
of Biomaterials and Biomedical Engineering, ‡Banting and Best Department of
Medical Research, §Donnelly Centre for Cellular and Biomolecular Research, ⊥Department of Chemical
Engineering, ∥Department of Chemistry, and #Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario,
Canada M5S 3G9
| | - Jonathan B. Olsen
- Institute
of Biomaterials and Biomedical Engineering, ‡Banting and Best Department of
Medical Research, §Donnelly Centre for Cellular and Biomolecular Research, ⊥Department of Chemical
Engineering, ∥Department of Chemistry, and #Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario,
Canada M5S 3G9
| | - Hongbo Guo
- Institute
of Biomaterials and Biomedical Engineering, ‡Banting and Best Department of
Medical Research, §Donnelly Centre for Cellular and Biomolecular Research, ⊥Department of Chemical
Engineering, ∥Department of Chemistry, and #Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario,
Canada M5S 3G9
| | - Andrew Emili
- Institute
of Biomaterials and Biomedical Engineering, ‡Banting and Best Department of
Medical Research, §Donnelly Centre for Cellular and Biomolecular Research, ⊥Department of Chemical
Engineering, ∥Department of Chemistry, and #Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario,
Canada M5S 3G9
| | - Warren C. W. Chan
- Institute
of Biomaterials and Biomedical Engineering, ‡Banting and Best Department of
Medical Research, §Donnelly Centre for Cellular and Biomolecular Research, ⊥Department of Chemical
Engineering, ∥Department of Chemistry, and #Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario,
Canada M5S 3G9
| |
Collapse
|
142
|
Lara HH, Ixtepan-Turrent L, Garza Treviño EN, Singh DK. Use of silver nanoparticles increased inhibition of cell-associated HIV-1 infection by neutralizing antibodies developed against HIV-1 envelope proteins. J Nanobiotechnology 2011; 9:38. [PMID: 21923937 PMCID: PMC3180349 DOI: 10.1186/1477-3155-9-38] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 09/18/2011] [Indexed: 12/22/2022] Open
Abstract
Background HIV/AIDS pandemic is a worldwide public health issue. There is a need for new approaches to develop new antiviral compounds or other therapeutic strategies to limit viral transmission. The envelope glycoproteins gp120 and gp41 of HIV are the main targets for both silver nanoparticles (AgNPs) and neutralizing antibodies. There is an urgency to optimize the efficiency of the neutralizing antibodies (NABs). In this study, we demonstrated that there is an additive effect between the four NABs and AgNPs when combined against cell-associated HIV-1 infection in vitro Results Four NABs (Monoclonal antibody to HIV-1 gp41 126-7, HIV-1 gp120 Antiserum PB1 Sub 2, HIV-1 gp120 Antiserum PB1, HIV-1 gp120 Monoclonal Antibody F425 B4e8) with or without AgNPs of 30-50 nm in size were tested against cell free and cell-associated HIVIIIB virus. All NABs inhibited HIV-1 cell free infection at a dose response manner, but with AgNPs an antiviral additive effect was not achieved Although there was no inhibition of infection with cell-associated virus by the NABs itself, AgNPs alone were able to inhibit cell associated virus infection and more importantly, when mixed together with NABs they inhibited the HIV-1 cell associated infection in an additive manner. Discussion The most attractive strategies to deal with the HIV problem are the development of a prophylactic vaccine and the development of effective topical vaginal microbicide. For two decades a potent vaccine that inhibits transmission of infection of HIV has been searched. There are vaccines that elicit NABs but none of them has the efficacy to stop transmission of HIV-1 infection. We propose that with the addition of AgNPs, NABs will have an additive effect and become more potent to inhibit cell-associated HIV-1 transmission/infection. Conclusions The addition of AgNPs to NABs has significantly increased the neutralizing potency of NABs in prevention of cell-associated HIV-1 transmission/infection. Further exploration is required to standardize potentiation of NABs by AgNPs. It is also required to evaluate in vivo toxicity of AgNPs before AgNPs could be incorporated in any antiviral vaginal creams.
Collapse
Affiliation(s)
- Humberto H Lara
- Department of Life Sciences, Winston-Salem State University, Winston Salem, NC 27110, USA
| | | | | | | |
Collapse
|
143
|
pH-responsive nanoparticles releasing tenofovir intended for the prevention of HIV transmission. Eur J Pharm Biopharm 2011; 79:526-36. [PMID: 21736940 DOI: 10.1016/j.ejpb.2011.06.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/25/2011] [Accepted: 06/20/2011] [Indexed: 12/25/2022]
Abstract
This study is designed to test the hypothesis that tenofovir (TNF) or tenofovir disoproxil fumarate (TDF) loaded nanoparticles (NPs) prepared with a blend of poly(lactic-co-glycolic acid) (PLGA) and methacrylic acid copolymer (Eudragit® S-100, or S-100) are noncytotoxic and exhibit significant pH-responsive release of anti-HIV microbicides in the presence of human semen fluid simulant (SFS). After NPs preparation by emulsification diffusion, their size, encapsulation efficiency (EE%), drug release profile, morphology, and cytotoxicity are characterized by dynamic light scattering, spectrophotometry, transmission electron microscopy, and cellular viability assay/transepithelial electrical resistance measurement, respectively. Cellular uptake was elucidated by fluorescence spectroscopy and confocal microscopy. The NPs have an average size of 250 nm, maximal EE% of 16.1% and 37.2% for TNF and TDF, respectively. There is a 4-fold increase in the drug release rate from the 75% S-100 blend in the presence of SFS over 72 h. At a concentration up to 10mg/ml, the PLGA/S-100 NPs are noncytotoxic for 48 h to vaginal endocervical/epithelial cells and Lactobacillus crispatus. The particle uptake (∼ 50% in 24h) by these vaginal cell lines mostly occurred through caveolin-mediated pathway. These data suggest the promise of using PLGA/S-100 NPs as an alternative controlled drug delivery system in intravaginal delivery of an anti-HIV/AIDS microbicide.
Collapse
|
144
|
Valencia PM, Hanewich-Hollatz MH, Gao W, Karim F, Langer R, Karnik R, Farokhzad OC. Effects of ligands with different water solubilities on self-assembly and properties of targeted nanoparticles. Biomaterials 2011; 32:6226-33. [PMID: 21658757 DOI: 10.1016/j.biomaterials.2011.04.078] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 04/26/2011] [Indexed: 12/31/2022]
Abstract
The engineering of drug-encapsulated targeted nanoparticles (NPs) has the potential to revolutionize drug therapy. A major challenge for the smooth translation of targeted NPs to the clinic has been developing methods for the prediction and optimization of the NP surface composition, especially when targeting ligands (TL) of different chemical properties are involved in the NP self-assembly process. Here we investigated the self-assembly and properties of two different targeted NPs decorated with two widely used TLs that have different water solubilities, and developed methods to characterize and optimize NP surface composition. We synthesized two different biofunctional polymers composed of poly(lactide-co-glycolide)-b-polyethyleneglycol-RGD (PLGA-PEG-RGD, high water solubility TL) and PLGA-PEG-Folate (low water solubility TL). Targeted NPs with different ligand densities were prepared by mixing TL-conjugated polymers with non-conjugated PLGA-PEG at different ratios through nanoprecipitation. The NP surface composition was quantified and the results revealed two distinct nanoparticle assembly behaviors: for the case of PLGA-PEG-RGD, nearly all RGD molecules conjugated to the polymer were found to be on the surface of the NPs. In contrast, only ∼20% of the folate from PLGA-PEG-Folate was present on the NP surface while the rest remained presumably buried in the PLGA NP core due to hydrophobic interactions of PLGA and folate. Finally, in vitro phagocytosis and cell targeting of NPs were investigated, from which a window of NP formulations exhibiting minimum uptake by macrophages and maximum uptake by targeted cells was determined. These results underscore the impact that the ligand chemical properties have on the targeting capabilities of self-assembled targeted nanoparticles and provide an engineering strategy for improving their targeting specificity.
Collapse
Affiliation(s)
- Pedro M Valencia
- The David H. Koch Institute for Integrative Cancer Research and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
145
|
Jin Y, Xin R, Tong L, Du L, Li M. Combination Anti-HIV Therapy with the Self-Assemblies of an Asymmetric Bolaamphiphilic Zidovudine/Didanosine Prodrug. Mol Pharm 2011; 8:867-76. [DOI: 10.1021/mp100457d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
- Institute of Pharmacy, Pharmaceutical College of Henan University, Henan 475004, China
| | - Rui Xin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
- Institute of Pharmacy, Pharmaceutical College of Henan University, Henan 475004, China
| | - Li Tong
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Lina Du
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Miao Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
146
|
Castro-Chavez F. The Rules of Variation Expanded, Implications for the Research on Compatible Genomics. BIOSEMIOTICS 2011; 2011:1-25. [PMID: 21743816 PMCID: PMC3130522 DOI: 10.1007/s12304-011-9118-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The main focus of this article is to present the practical aspect of the code rules of variation and the search for a second set of genomic rules, including comparison of sequences to understand how to preserve compatible organisms in danger of extinction and how to generate biodiversity. Three new rules of variation are introduced: 1) homologous recombination, 2) a healthy fertile offspring, and 3) comparison of compatible genomes. The novel search in the natural world for fully compatible genomes capable of homologous recombination is explored by using examples of human polymorphisms in the LDLRAP1 gene, and by the production of fertile offspring by crossbreeding. Examples of dogs, llamas and finches will be presented by a rational control of: natural crossbreeding of organisms with compatible genomes (something already happening in nature), the current work focuses on the generation of new varieties after a careful plan. This study is presented within the context of biosemiotics, which studies the processing of information, signaling and signs by living systems. I define a group of organisms having compatible genomes as a single theme: the genomic species or population, able to speak the same molecular language through different accents, with each variety within a theme being a different version of the same book. These studies have a molecular, compatible genetics context. Population and ecosystem biosemiotics will be exemplified by a possible genetic damage capable of causing mutations by breaking the rules of variation through the coordinated patterns of atoms present in the 9/11 World Trade Center contaminated dust (U, Ba, La, Ce, Sr, Rb, K, Mn, Mg, etc.), combination that may be able to overload the molecular quality control mechanisms of the human body. I introduce here the balance of codons in the circular genetic code: 2[1(1)+1(3)+1(4)+4(2)]=2[2(2)+3(4)].
Collapse
|
147
|
das Neves J, Amiji M, Sarmento B. Mucoadhesive nanosystems for vaginal microbicide development: friend or foe? WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2011; 3:389-99. [DOI: 10.1002/wnan.144] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- José das Neves
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA
| | - Bruno Sarmento
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- CICS, Health Sciences Research Center, Department of Pharmaceutical Sciences, Instituto Superior de Ciências da Saúde‐Norte, Gandra, Portugal
| |
Collapse
|
148
|
Bibliography. Neonatology and perinatology. Current world literature. Curr Opin Pediatr 2011; 23:253-7. [PMID: 21412083 DOI: 10.1097/mop.0b013e3283454167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
149
|
Kim PS, Read SW. Nanotechnology and HIV: potential applications for treatment and prevention. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 2:693-702. [DOI: 10.1002/wnan.118] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Peter S. Kim
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah W. Read
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|