101
|
Corvigno S, Frödin M, Wisman GBA, Nijman HW, Van der Zee AG, Jirström K, Nodin B, Hrynchyk I, Edler D, Ragnhammar P, Johansson M, Dahlstrand H, Mezheyeuski A, Östman A. Multi-parametric profiling of renal cell, colorectal, and ovarian cancer identifies tumour-type-specific stroma phenotypes and a novel vascular biomarker. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2017; 3:214-224. [PMID: 28770105 PMCID: PMC5527322 DOI: 10.1002/cjp2.74] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/08/2017] [Indexed: 01/01/2023]
Abstract
A novel set of integrated procedures for quantification of fibroblast‐rich stroma and vascular characteristics has recently been presented allowing discovery of novel perivascular and stromal biomarkers in colorectal, renal cell, and ovarian cancer. In the present study, data obtained through these procedures from clinically well‐annotated collections of these three tumour types have been used to address two novel questions. First, data have been used to investigate if the three tumour types demonstrate significant differences regarding features such as vessel diameter, vessel density, and perivascular marker expression. Second, analyses of the cohorts have been used to explore the prognostic significance of a novel vascular metric, ‘vessel distance inter‐quartile range (IQR)’ that describes intra‐case heterogeneity regarding vessel distribution. The comparisons between the three tumour types demonstrated a set of significant differences. Vessel density of renal cell cancer was statistically significantly higher than in colorectal and ovarian cancer. Vessel diameter was statistically significantly higher in ovarian cancer. Concerning perivascular status, colorectal cancer displayed significantly higher levels of perivascular PDGFR‐β expression than the other two tumour types. Intra‐case heterogeneity of perivascular PDGFR‐β expression was also higher in colorectal cancer. Notably, these fibroblast‐dominated stroma phenotypes matched previously described experimental tumour stroma characteristics, which have been linked to differential sensitivity to anti‐VEGF drugs. High ‘vessel distance IQR’ was significantly associated with poor survival in both renal cell cancer and colorectal cancer. In renal cell cancer, this characteristic also acted as an independent prognostic marker according to multivariate analyses including standard clinico‐pathological characteristics. Explorative subset analyses indicated particularly strong prognostic significance of ‘vessel distance IQR’ in T stage 4 of this cancer type. Together, these analyses identified tumour‐type‐specific vascular‐stroma phenotypes of possible functional significance, and suggest ‘vessel distance IQR’ as a novel prognostic biomarker.
Collapse
Affiliation(s)
- Sara Corvigno
- Department of Oncology-PathologyKarolinska InstitutetStockholmSweden
| | - Magnus Frödin
- Department of Oncology-PathologyKarolinska InstitutetStockholmSweden
| | - G Bea A Wisman
- Department of Gynecologic OncologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Hans W Nijman
- Department of Gynecologic OncologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Ate Gj Van der Zee
- Department of Gynecologic OncologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Karin Jirström
- Department of Clinical Sciences, Division of Oncology and PathologyLund UniversityLundSweden
| | - Björn Nodin
- Department of Clinical Sciences, Division of Oncology and PathologyLund UniversityLundSweden
| | - Ina Hrynchyk
- City Clinical Pathologoanatomic BureauMinskBelarus
| | - David Edler
- Department of Molecular Medicine and SurgeryKarolinska University Hospital SolnaStockholmSweden
| | - Peter Ragnhammar
- Department of Oncology-PathologyKarolinska InstitutetStockholmSweden
| | - Martin Johansson
- Department of Laboratory MedicineSkånes UniversitetssjukhusMalmö
| | - Hanna Dahlstrand
- Department of Oncology-PathologyKarolinska InstitutetStockholmSweden.,Department of OncologyUppsala University HospitalUppsalaSweden
| | - Artur Mezheyeuski
- Department of Oncology-PathologyKarolinska InstitutetStockholmSweden.,Department of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Arne Östman
- Department of Oncology-PathologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
102
|
Kunts TA, Mikhaylova ES, Marinkin IO, Varaksin NA, Autenshlyus AI, Lyakhovich VV. Cytokine production by the tumor from patients with breast cancer in different age groups. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2017; 475:172-174. [PMID: 28861874 DOI: 10.1134/s0012496617040020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Indexed: 06/07/2023]
Abstract
Dependence of cytokine pattern in the tumor supernatant obtained after cultivation of biopsy samples-on the patients' age was evaluated among patients with invasive ductal carcinoma of the breast. An increase in VEGF and IL-6 production in a group of younger patients was observed. An increase only in interferon γ concentration was revealed in the supernatants of the tumor after addition of polyclonal activators to the culture medium. This result indicates likely secretion of interferon γ in younger patients. The relation among the production of angiogenic factors by tumor cells, age of the patients, and presence or absence of lymph node metastases shows that in such studies, patients have to be stratified by age.
Collapse
Affiliation(s)
- T A Kunts
- Novosibirsk State Medical University, Novosibirsk, 630091, Russia.
| | - E S Mikhaylova
- Novosibirsk State Medical University, Novosibirsk, 630091, Russia
- Research Institute of Molecular Biology and Biophysics, Siberian Branch, Russian Academy of Medical Sciences, Novosibirsk, 630117, Russia
| | - I O Marinkin
- Novosibirsk State Medical University, Novosibirsk, 630091, Russia
| | - N A Varaksin
- AO Vektor-Best, Kol'tsovo, Novosibirsk oblast, 630559, Russia
| | - A I Autenshlyus
- Novosibirsk State Medical University, Novosibirsk, 630091, Russia
- Research Institute of Molecular Biology and Biophysics, Siberian Branch, Russian Academy of Medical Sciences, Novosibirsk, 630117, Russia
| | - V V Lyakhovich
- Research Institute of Molecular Biology and Biophysics, Siberian Branch, Russian Academy of Medical Sciences, Novosibirsk, 630117, Russia
| |
Collapse
|
103
|
Distribution of Vascular Patterns in Different Subtypes of Renal Cell Carcinoma. A Morphometric Study in Two Distinct Types of Blood Vessels. Pathol Oncol Res 2017; 24:515-524. [DOI: 10.1007/s12253-017-0262-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/21/2017] [Indexed: 10/19/2022]
|
104
|
Ronca R, Benkheil M, Mitola S, Struyf S, Liekens S. Tumor angiogenesis revisited: Regulators and clinical implications. Med Res Rev 2017. [PMID: 28643862 DOI: 10.1002/med.21452] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since Judah Folkman hypothesized in 1971 that angiogenesis is required for solid tumor growth, numerous studies have been conducted to unravel the angiogenesis process, analyze its role in primary tumor growth, metastasis and angiogenic diseases, and to develop inhibitors of proangiogenic factors. These studies have led in 2004 to the approval of the first antiangiogenic agent (bevacizumab, a humanized antibody targeting vascular endothelial growth factor) for the treatment of patients with metastatic colorectal cancer. This approval launched great expectations for the use of antiangiogenic therapy for malignant diseases. However, these expectations have not been met and, as knowledge of blood vessel formation accumulates, many of the original paradigms no longer hold. Therefore, the regulators and clinical implications of angiogenesis need to be revisited. In this review, we discuss recently identified angiogenesis mediators and pathways, new concepts that have emerged over the past 10 years, tumor resistance and toxicity associated with the use of currently available antiangiogenic treatment and potentially new targets and/or approaches for malignant and nonmalignant neovascular diseases.
Collapse
Affiliation(s)
- Roberto Ronca
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mohammed Benkheil
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | - Stefania Mitola
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - Sandra Liekens
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| |
Collapse
|
105
|
Ha XQ, Song YJ, Zhao HB, Ta WW, Gao HW, Feng QS, Dong JZ, Deng ZY, Fan HY, Peng JH, Yang ZH, Zhao Y. Endothelial progenitor cells in peripheral blood may serve as a biological marker to predict severe acute pancreatitis. World J Gastroenterol 2017; 23:2592-2600. [PMID: 28465644 PMCID: PMC5394523 DOI: 10.3748/wjg.v23.i14.2592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/03/2017] [Accepted: 01/18/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the significance of endothelial progenitor cells (EPCs) in predicting severe acute pancreatitis (SAP).
METHODS We recruited 71 patients with acute pancreatitis (AP) and excluded 11 of them; finally, cases of mild acute pancreatitis (MAP) (n = 30) and SAP (n = 30), and healthy volunteers (n = 20) were internalized to investigate levels of EPCs, C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), fibrinogen (FIB) and white blood cells (WBC) in peripheral blood.
RESULTS The levels of TNF-α, WBC, FIB and CRP were higher both in SAP and MAP cases than in healthy volunteers (P < 0.05, all). Interestingly, the level of EPCs was higher in SAP than MAP (1.63% ± 1.47% vs 6.61% ± 4.28%, P < 0.01), but there was no significant difference between the MAP cases and healthy volunteers (1.63% ± 1.47% vs 0.55% ± 0.54%, P > 0.05). Receiver operating characteristics curve (ROC) showed that EPCs, TNF-α, CRP and FIB were significantly associated with SAP, especially EPCs and CRP were optimal predictive markers of SAP. When the cut-off point for EPCs and CRP were 2.26% and 5.94 mg/dL, the sensitivities were 90.0% and 73.3%, and the specificities were 83.3% and 96.7%. Although, CRP had the highest specificity, and EPCs had the highest sensitivity and highest area under the curve value (0.93).
CONCLUSION Data suggest that EPCs may be a new biological marker in predicting SAP.
Collapse
|
106
|
CD24+ tumor-initiating cells from oral squamous cell carcinoma induce initial angiogenesis in vivo. Microvasc Res 2017; 112:101-108. [PMID: 28344048 DOI: 10.1016/j.mvr.2017.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 03/22/2017] [Accepted: 03/22/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND In oral squamous cell carcinoma (OSCC), a minor subset of cancer stem cells has been identified using the surface marker CD24. The CD24+ cell population is involved in initiating, maintaining, and expanding tumor growth, but has not been reported to be involved in angiogenesis to date. METHODS NOD/SCID mice were equipped with dorsal skinfold chambers and gelatin sponges seeded with CD24+, CD24-, and unsorted cancer cells suspended in Matrigel® were implanted. Following intravital fluorescence microscopy, specimens were examined by immunohistology. RESULTS Sponges seeded with CD24+ cells showed a significantly higher functional capillary density than those seeded with CD24- cells. The presence of endothelial cells was confirmed by immunohistochemistry for CD31. CONCLUSION For the first time, CD24+ tumorigenic cells with angiogenic potential, which were isolated from OSCC, were characterized. Our findings provide a promising in vivo model to facilitate the development of therapeutic agents against cancer stem cells and their angiogenic pathways.
Collapse
|
107
|
Turrini R, Pabois A, Xenarios I, Coukos G, Delaloye JF, Doucey MA. TIE-2 expressing monocytes in human cancers. Oncoimmunology 2017; 6:e1303585. [PMID: 28507810 PMCID: PMC5414874 DOI: 10.1080/2162402x.2017.1303585] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 12/13/2022] Open
Abstract
Tumor-associated macrophages (TAM) are well known as a key player in the tumor microenvironment, which support cancer progression. More recently, a lineage of monocytes characterized by the expression of the TIE-2/Tek angiopoietin receptor identified a subset of circulating and tumor-associated monocytes endowed with proangiogenic activity. TIE-2 expressing monocytes (TEM) were found both in humans and mice. Here, we review the phenotypes and functions of TEM reported so far in human cancer and their potential use as markers of cancer progression and metastasis. Finally, we discuss the therapeutic approaches currently used or proposed to target TEM.
Collapse
Affiliation(s)
- Riccardo Turrini
- Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Angélique Pabois
- Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Ioannis Xenarios
- Vital-IT, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | | | - Marie-Agnès Doucey
- Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
108
|
Bridgeman VL, Vermeulen PB, Foo S, Bilecz A, Daley F, Kostaras E, Nathan MR, Wan E, Frentzas S, Schweiger T, Hegedus B, Hoetzenecker K, Renyi‐Vamos F, Kuczynski EA, Vasudev NS, Larkin J, Gore M, Dvorak HF, Paku S, Kerbel RS, Dome B, Reynolds AR. Vessel co-option is common in human lung metastases and mediates resistance to anti-angiogenic therapy in preclinical lung metastasis models. J Pathol 2017; 241:362-374. [PMID: 27859259 PMCID: PMC5248628 DOI: 10.1002/path.4845] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/20/2016] [Accepted: 10/18/2016] [Indexed: 12/21/2022]
Abstract
Anti-angiogenic therapies have shown limited efficacy in the clinical management of metastatic disease, including lung metastases. Moreover, the mechanisms via which tumours resist anti-angiogenic therapies are poorly understood. Importantly, rather than utilizing angiogenesis, some metastases may instead incorporate pre-existing vessels from surrounding tissue (vessel co-option). As anti-angiogenic therapies were designed to target only new blood vessel growth, vessel co-option has been proposed as a mechanism that could drive resistance to anti-angiogenic therapy. However, vessel co-option has not been extensively studied in lung metastases, and its potential to mediate resistance to anti-angiogenic therapy in lung metastases is not established. Here, we examined the mechanism of tumour vascularization in 164 human lung metastasis specimens (composed of breast, colorectal and renal cancer lung metastasis cases). We identified four distinct histopathological growth patterns (HGPs) of lung metastasis (alveolar, interstitial, perivascular cuffing, and pushing), each of which vascularized via a different mechanism. In the alveolar HGP, cancer cells invaded the alveolar air spaces, facilitating the co-option of alveolar capillaries. In the interstitial HGP, cancer cells invaded the alveolar walls to co-opt alveolar capillaries. In the perivascular cuffing HGP, cancer cells grew by co-opting larger vessels of the lung. Only in the pushing HGP did the tumours vascularize by angiogenesis. Importantly, vessel co-option occurred with high frequency, being present in >80% of the cases examined. Moreover, we provide evidence that vessel co-option mediates resistance to the anti-angiogenic drug sunitinib in preclinical lung metastasis models. Assuming that our interpretation of the data is correct, we conclude that vessel co-option in lung metastases occurs through at least three distinct mechanisms, that vessel co-option occurs frequently in lung metastases, and that vessel co-option could mediate resistance to anti-angiogenic therapy in lung metastases. Novel therapies designed to target both angiogenesis and vessel co-option are therefore warranted. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Victoria L Bridgeman
- Tumour Biology Team, The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Peter B Vermeulen
- Tumour Biology Team, The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
- Translational Cancer Research Unit (TCRU)GZA Hospitals St AugustinusAntwerpBelgium
| | - Shane Foo
- Tumour Biology Team, The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Agnes Bilecz
- 2nd Institute of PathologySemmelweis UniversityBudapestHungary
| | - Frances Daley
- Breast Cancer Now Histopathology Core Facility, The Royal MarsdenLondonUK
| | - Eleftherios Kostaras
- Tumour Biology Team, The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Mark R Nathan
- Tumour Biology Team, The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Elaine Wan
- Tumour Biology Team, The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
- The Royal MarsdenLondonUK
| | - Sophia Frentzas
- Tumour Biology Team, The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
- The Royal MarsdenLondonUK
| | - Thomas Schweiger
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
| | - Balazs Hegedus
- Department of Thoracic Surgery, Ruhrlandklinik EssenUniversity Hospital of University Duisburg‐EssenGermany
- MTA‐SE Molecular Oncology Research GroupHungarian Academy of SciencesBudapestHungary
| | | | - Ferenc Renyi‐Vamos
- Department of Thoracic SurgerySemmelweis University–National Institute of OncologyBudapestHungary
| | | | - Naveen S Vasudev
- Tumour Biology Team, The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
- The Royal MarsdenLondonUK
- Cancer Research UK Centre, Leeds Institute of Cancer and PathologySt James's University HospitalLeedsUK
| | | | | | | | - Sandor Paku
- 1st Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
- Tumour Progression Research GroupHungarian Academy of Sciences–Semmelweis UniversityBudapestHungary
| | - Robert S Kerbel
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
- Biological Sciences Platform, Sunnybrook Research InstituteTorontoCanada
| | - Balazs Dome
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
- Department of Thoracic SurgerySemmelweis University–National Institute of OncologyBudapestHungary
- National Koranyi Institute of PulmonologyBudapestHungary
- Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaAustria
| | - Andrew R Reynolds
- Tumour Biology Team, The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| |
Collapse
|
109
|
Torok S, Rezeli M, Kelemen O, Vegvari A, Watanabe K, Sugihara Y, Tisza A, Marton T, Kovacs I, Tovari J, Laszlo V, Helbich TH, Hegedus B, Klikovits T, Hoda MA, Klepetko W, Paku S, Marko-Varga G, Dome B. Limited Tumor Tissue Drug Penetration Contributes to Primary Resistance against Angiogenesis Inhibitors. Am J Cancer Res 2017; 7:400-412. [PMID: 28042343 PMCID: PMC5197073 DOI: 10.7150/thno.16767] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/07/2016] [Indexed: 01/25/2023] Open
Abstract
Resistance mechanisms against antiangiogenic drugs are unclear. Here, we correlated the antitumor and antivascular properties of five different antiangiogenic receptor tyrosine kinase inhibitors (RTKIs) (motesanib, pazopanib, sorafenib, sunitinib, vatalanib) with their intratumoral distribution data obtained by matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI). In the first mouse model, only sunitinib exhibited broad-spectrum antivascular and antitumor activities by simultaneously suppressing vascular endothelial growth factor receptor-2 (VEGFR2) and desmin expression, and by increasing intratumoral hypoxia and inhibiting both tumor growth and vascularisation significantly. Importantly, the highest and most homogeneous intratumoral drug concentrations have been found in sunitinib-treated animals. In another animal model, where - in contrast to the first model - vatalanib was detectable at homogeneously high intratumoral concentrations, the drug significantly reduced tumor growth and angiogenesis. In conclusion, the tumor tissue penetration and thus the antiangiogenic and antitumor potential of antiangiogenic RTKIs vary among the tumor models and our study demonstrates the potential of MALDI-MSI to predict the efficacy of unlabelled small molecule antiangiogenic drugs in malignant tissue. Our approach is thus a major technical and preclinical advance demonstrating that primary resistance to angiogenesis inhibitors involves limited tumor tissue drug penetration. We also conclude that MALDI-MSI may significantly contribute to the improvement of antivascular cancer therapies.
Collapse
|
110
|
Angara K, Rashid MH, Shankar A, Ara R, Iskander A, Borin TF, Jain M, Achyut BR, Arbab AS. Vascular mimicry in glioblastoma following anti-angiogenic and anti-20-HETE therapies. Histol Histopathol 2016; 32:917-928. [PMID: 27990624 DOI: 10.14670/hh-11-856] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glioblastoma (GBM) is one hypervascular and hypoxic tumor known among solid tumors. Antiangiogenic therapeutics (AATs) have been tested as an adjuvant to normalize blood vessels and control abnormal vasculature. Evidence of relapse exemplified in the progressive tumor growth following AAT reflects development of resistance to AATs. Here, we identified that GBM following AAT (Vatalanib) acquired an alternate mechanism to support tumor growth, called vascular mimicry (VM). We observed that Vatalanib induced VM vessels are positive for periodic acid-Schiff (PAS) matrix but devoid of any endothelium on the inner side and lined by tumor cells on the outer-side. The PAS+ matrix is positive for basal laminae (laminin) indicating vascular structures. Vatalanib treated GBM displayed various stages of VM such as initiation (mosaic), sustenance, and full-blown VM. Mature VM structures contain red blood cells (RBC) and bear semblance to the functional blood vessel-like structures, which provide all growth factors to favor tumor growth. Vatalanib treatment significantly increased VM especially in the core of the tumor, where HIF-1α was highly expressed in tumor cells. VM vessels correlate with hypoxia and are characterized by co-localized MHC-1+ tumor and HIF-1α expression. Interestingly, 20-HETE synthesis inhibitor HET0016 significantly decreased GBM tumors through decreasing VM structures both at the core and at periphery of the tumors. In summary, AAT induced resistance characterized by VM is an alternative mechanism adopted by tumors to make functional vessels by transdifferentiation of tumor cells into endothelial-like cells to supply nutrients in the event of hypoxia. AAT induced VM is a potential therapeutic target of the novel formulation of HET0016. Our present study suggests that HET0016 has a potential to target therapeutic resistance and can be combined with other antitumor agents in preclinical and clinical trials.
Collapse
Affiliation(s)
- Kartik Angara
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Mohammad H Rashid
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Adarsh Shankar
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Roxan Ara
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Asm Iskander
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Thaiz F Borin
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Meenu Jain
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Bhagelu R Achyut
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Ali S Arbab
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA.
| |
Collapse
|
111
|
Frentzas S, Simoneau E, Bridgeman VL, Vermeulen PB, Foo S, Kostaras E, Nathan M, Wotherspoon A, Gao ZH, Shi Y, Van den Eynden G, Daley F, Peckitt C, Tan X, Salman A, Lazaris A, Gazinska P, Berg TJ, Eltahir Z, Ritsma L, Van Rheenen J, Khashper A, Brown G, Nystrom H, Sund M, Van Laere S, Loyer E, Dirix L, Cunningham D, Metrakos P, Reynolds AR. Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases. Nat Med 2016; 22:1294-1302. [PMID: 27748747 PMCID: PMC5104270 DOI: 10.1038/nm.4197] [Citation(s) in RCA: 321] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/09/2016] [Indexed: 02/06/2023]
Abstract
The efficacy of angiogenesis inhibitors in cancer is limited by resistance mechanisms that are poorly understood. Notably, instead of through the induction of angiogenesis, tumor vascularization can occur through the nonangiogenic mechanism of vessel co-option. Here we show that vessel co-option is associated with a poor response to the anti-angiogenic agent bevacizumab in patients with colorectal cancer liver metastases. Moreover, we find that vessel co-option is also prevalent in human breast cancer liver metastases, a setting in which results with anti-angiogenic therapy have been disappointing. In preclinical mechanistic studies, we found that cancer cell motility mediated by the actin-related protein 2/3 complex (Arp2/3) is required for vessel co-option in liver metastases in vivo and that, in this setting, combined inhibition of angiogenesis and vessel co-option is more effective than the inhibition of angiogenesis alone. Vessel co-option is therefore a clinically relevant mechanism of resistance to anti-angiogenic therapy and combined inhibition of angiogenesis and vessel co-option might be a warranted therapeutic strategy.
Collapse
Affiliation(s)
- Sophia Frentzas
- Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
- The Royal Marsden, London, UK
| | - Eve Simoneau
- McGill University Health Centre, Royal Victoria Hospital - Glen Site, Montreal, Quebec, Canada
| | - Victoria L. Bridgeman
- Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Peter B. Vermeulen
- Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
- Translational Cancer Research Unit, Gasthuis Zusters Antwerpen Hospitals St. Augustinus, Antwerp, Belgium
| | - Shane Foo
- Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Eleftherios Kostaras
- Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Mark Nathan
- Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | | | - Zu-hua Gao
- McGill University Health Centre, Royal Victoria Hospital - Glen Site, Montreal, Quebec, Canada
| | - Yu Shi
- McGill University Health Centre, Royal Victoria Hospital - Glen Site, Montreal, Quebec, Canada
| | - Gert Van den Eynden
- Translational Cancer Research Unit, Gasthuis Zusters Antwerpen Hospitals St. Augustinus, Antwerp, Belgium
| | - Frances Daley
- Breast Cancer Now Histopathology Core Facility, The Royal Marsden, London, UK
| | | | - Xianming Tan
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Ayat Salman
- McGill University Health Centre, Royal Victoria Hospital - Glen Site, Montreal, Quebec, Canada
| | - Anthoula Lazaris
- McGill University Health Centre, Royal Victoria Hospital - Glen Site, Montreal, Quebec, Canada
| | - Patrycja Gazinska
- Breast Cancer Now Unit, Guy's Hospital, King's College London School of Medicine, London, UK
| | - Tracy J. Berg
- Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | | | - Laila Ritsma
- Cancer Genomics Center-Hubrecht Institute-Royal Netherlands Academy of Arts and Sciences & University Medical Centre Utrecht, Uppsalalaan 8, Utrecht 3584CT, Netherlands
| | - Jacco Van Rheenen
- Cancer Genomics Center-Hubrecht Institute-Royal Netherlands Academy of Arts and Sciences & University Medical Centre Utrecht, Uppsalalaan 8, Utrecht 3584CT, Netherlands
| | - Alla Khashper
- McGill University Health Centre, Royal Victoria Hospital - Glen Site, Montreal, Quebec, Canada
| | | | - Hanna Nystrom
- Department of Surgical and Perioperative Sciences, Umeå University, Umea, Sweden
| | - Malin Sund
- Department of Surgical and Perioperative Sciences, Umeå University, Umea, Sweden
| | - Steven Van Laere
- Translational Cancer Research Unit, Gasthuis Zusters Antwerpen Hospitals St. Augustinus, Antwerp, Belgium
| | - Evelyne Loyer
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luc Dirix
- Translational Cancer Research Unit, Gasthuis Zusters Antwerpen Hospitals St. Augustinus, Antwerp, Belgium
| | | | - Peter Metrakos
- McGill University Health Centre, Royal Victoria Hospital - Glen Site, Montreal, Quebec, Canada
| | - Andrew R. Reynolds
- Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| |
Collapse
|
112
|
Brodt P. Role of the Microenvironment in Liver Metastasis: From Pre- to Prometastatic Niches. Clin Cancer Res 2016; 22:5971-5982. [PMID: 27797969 DOI: 10.1158/1078-0432.ccr-16-0460] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 09/19/2016] [Accepted: 09/22/2016] [Indexed: 01/14/2023]
Abstract
Liver metastases remain a major barrier to successful management of malignant disease, particularly for cancers of the gastrointestinal tract but also for other malignancies, such as breast carcinoma and melanoma. The ability of metastatic cells to survive and proliferate in the liver is determined by the outcome of complex, reciprocal interactions between tumor cells and different local resident subpopulations, including the sinusoidal endothelium, stellate, Kupffer, and inflammatory cells that are mediated through cell-cell and cell-extracellular matrix adhesion and the release of soluble factors. Cross-communication between different hepatic resident cells in response to local tissue damage and inflammation and the recruitment of bone marrow cells further enhance this intercellular communication network. Both resident and recruited cells can play opposing roles in the progression of metastasis, and the balance of these divergent effects determines whether the tumor cells will die, proliferate, and colonize the new site or enter a state of dormancy. Moreover, this delicate balance can be tilted in favor of metastasis, if factors produced by the primary tumor precondition the microenvironment to form niches of activated resident cells that promote tumor expansion. This review aims to summarize current knowledge on these diverse interactions and the impact they can have on the clinical management of hepatic metastases. Clin Cancer Res; 22(24); 5971-82. ©2016 AACR.
Collapse
Affiliation(s)
- Pnina Brodt
- Departments of Surgery, Medicine, and Oncology, McGill University and the McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
113
|
Chia PL, Russell PA, Scott AM, John T. Targeting the vasculature: anti-angiogenic agents for malignant mesothelioma. Expert Rev Anticancer Ther 2016; 16:1235-1245. [DOI: 10.1080/14737140.2016.1244008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Puey Ling Chia
- Department of Medical Oncology, Austin Health, Melbourne, Australia
- Olivia-Newton John Cancer Research Institute, Austin Health, Melbourne, Australia
| | - Prudence A. Russell
- Department of Anatomical Pathology, St. Vincent’s Hospital, University of Melbourne, Melbourne, Australia
| | - Andrew M Scott
- Olivia-Newton John Cancer Research Institute, Austin Health, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
- Faculty of Medicine, University of Melbourne, Melbourne, Australia
| | - Thomas John
- Department of Medical Oncology, Austin Health, Melbourne, Australia
- Olivia-Newton John Cancer Research Institute, Austin Health, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
| |
Collapse
|
114
|
Shao R, Taylor SL, Oh DS, Schwartz LM. Vascular heterogeneity and targeting: the role of YKL-40 in glioblastoma vascularization. Oncotarget 2016; 6:40507-18. [PMID: 26439689 PMCID: PMC4747349 DOI: 10.18632/oncotarget.5943] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/14/2015] [Indexed: 01/02/2023] Open
Abstract
Malignant glioblastomas (GBM) are highly malignant brain tumors that have extensive and aberrant tumor vasculature, including multiple types of vessels. This review focuses on recent discoveries that the angiogenic factor YKL-40 (CHI3L1) acts on glioblastoma-stem like cells (GSCs) to drive the formation of two major forms of tumor vascularization: angiogenesis and vasculogenic mimicry (VM). GSCs possess multipotent cells able to transdifferentiate into vascular pericytes or smooth muscle cells (PC/SMCs) that either coordinate with endothelial cells (ECs) to facilitate angiogenesis or assemble in the absence of ECs to form blood-perfused channels via VM. GBMs express high levels of YKL-40 that drives the divergent signaling cascades to mediate the formation of these distinct microvascular circulations. Although a variety of anti-tumor agents that target angiogenesis have demonstrated transient benefits for patients, they often fail to restrict tumor growth, which underscores the need for additional therapeutic tools. We propose that targeting YKL-40 may compliment conventional anti-angiogenic therapies to provide a substantial clinical benefit to patients with GBM and several other types of solid tumors.
Collapse
Affiliation(s)
- Rong Shao
- Department of Biology, University of Massachusetts, Amherst, MA, USA.,Molecular and Cellular Biology Program, Morrill Science Center, University of Massachusetts, Amherst, MA, USA
| | - Sherry L Taylor
- Department of Neurosurgery, Tufts University, Boston, MA, USA
| | - Dennis S Oh
- Department of Surgery, Baystate Medical Center, Tufts University, Springfield, MA, USA
| | - Lawrence M Schwartz
- Department of Biology, University of Massachusetts, Amherst, MA, USA.,Molecular and Cellular Biology Program, Morrill Science Center, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
115
|
Karimi K, Lindgren TH, Koch CA, Brodell RT. Obesity as a risk factor for malignant melanoma and non-melanoma skin cancer. Rev Endocr Metab Disord 2016; 17:389-403. [PMID: 27832418 DOI: 10.1007/s11154-016-9393-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The dramatic increases in incidence of both obesity and many cancers including skin cancer emphasize the need to better understand the pathophysiology of both conditions and their connections. Melanoma is considered the fastest growing cancer and rates of non-melanoma skin cancer have also increased over the last decade. The molecular mechanisms underlying the association between obesity and skin cancer are not clearly understood but emerging evidence points to changes in the tumor microenvironment including aberrant cell signaling and genomic instability in the chronic inflammatory state many obese individuals experience. This article reviews the literature linking obesity to melanoma and non-melanoma skin cancer.
Collapse
Affiliation(s)
- K Karimi
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - T H Lindgren
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - C A Koch
- Division of Endocrinology, University of Mississippi Medical Center, Jackson, MS, USA
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS, USA
| | - Robert T Brodell
- Department of Dermatology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA.
- Department of Dermatology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
116
|
De Paepe ME, Chu S, Hall SJ, McDonnell-Clark E, Heger NE, Schorl C, Mao Q, Boekelheide K. Intussusceptive-like angiogenesis in human fetal lung xenografts: Link with bronchopulmonary dysplasia-associated microvascular dysangiogenesis? Exp Lung Res 2016; 41:477-88. [PMID: 26495956 DOI: 10.3109/01902148.2015.1080321] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Human fetal lung xenografts display an unusual pattern of non-sprouting, plexus-forming angiogenesis that is reminiscent of the dysmorphic angioarchitecture described in bronchopulmonary dysplasia (BPD). The aim of this study was to determine the clinicopathological correlates, growth characteristics and molecular regulation of this aberrant form of graft angiogenesis. METHODS Fetal lung xenografts, derived from 12 previable fetuses (15 to 22 weeks' gestation) and engrafted in the renal subcapsular space of SCID-beige mice, were analyzed 4 weeks posttransplantation for morphology, vascularization, proliferative activity and gene expression. RESULTS Focal plexus-forming angiogenesis (PFA) was observed in 60/230 (26%) of xenografts. PFA was characterized by a complex network of tortuous nonsprouting vascular structures with low endothelial proliferative activity, suggestive of intussusceptive-type angiogenesis. There was no correlation between the occurrence of PFA and gestational age or time interval between delivery and engraftment. PFA was preferentially localized in the relatively hypoxic central subcapsular area. Microarray analysis suggested altered expression of 15 genes in graft regions with PFA, of which 7 are known angiogenic/lymphangiogenic regulators and 5 are known hypoxia-inducible genes. qRT-PCR analysis confirmed significant upregulation of SULF2, IGF2, and HMOX1 in graft regions with PFA. CONCLUSION These observations in human fetal lungs ex vivo suggest that postcanalicular lungs can switch from sprouting angiogenesis to an aberrant intussusceptive-type of angiogenesis that is highly reminiscent of BPD-associated dysangiogenesis. While circumstantial evidence suggests hypoxia may be implicated, the exact triggering mechanisms, molecular regulation and clinical implications of this angiogenic switch in preterm lungs in vivo remain to be determined.
Collapse
Affiliation(s)
- Monique E De Paepe
- a Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University , Providence , Rhode Island , USA.,b Department of Pathology, Women and Infants Hospital , Providence , Rhode Island , USA
| | - Sharon Chu
- b Department of Pathology, Women and Infants Hospital , Providence , Rhode Island , USA
| | - Susan J Hall
- a Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University , Providence , Rhode Island , USA
| | - Elizabeth McDonnell-Clark
- a Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University , Providence , Rhode Island , USA
| | - Nicholas E Heger
- a Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University , Providence , Rhode Island , USA
| | - Christoph Schorl
- c Department of Molecular Biology, Cell Biology and Biochemistry, Alpert Medical School of Brown University , Providence , Rhode Island , USA
| | - Quanfu Mao
- a Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University , Providence , Rhode Island , USA.,b Department of Pathology, Women and Infants Hospital , Providence , Rhode Island , USA
| | - Kim Boekelheide
- a Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University , Providence , Rhode Island , USA
| |
Collapse
|
117
|
Zhao X, Sun B, Li Y, Liu Y, Zhang D, Wang X, Gu Q, Zhao J, Dong X, Liu Z, Che N. Dual effects of collagenase-3 on melanoma: metastasis promotion and disruption of vasculogenic mimicry. Oncotarget 2016; 6:8890-9. [PMID: 25749207 PMCID: PMC4496190 DOI: 10.18632/oncotarget.3189] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 01/23/2015] [Indexed: 12/18/2022] Open
Abstract
Vasculogenic mimicry (VM) is a functional microcirculation formed by tumor cells. Matrix metalloproteinases (MMPs), especially MMP-2 and MMP-9, promote VM formation. Another specific MMP, collagenase-3 (MMP-13), has broad substrate specificity and potentially affects tumor metastasis and invasion. Here we found that MMP-13 was associated with metastasis and poor survival in 79 patients with melanoma. MMP-13 expression was inversely correlated with VM. These results were confirmed in human and mouse melanoma cell lines. We found that MMP-13 cleaves laminin-5 (Ln-5) into small fragments to accelerate tumor metastasis. Degradation of Ln-5 and VE-cadherin by MMP-13 inhibited VM formation. In conclusion, MMP-13 has a dual effect in melanoma, as it promotes invasion and metastasis but disrupts VM formation.
Collapse
Affiliation(s)
- Xiulan Zhao
- Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China.,Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Baocun Sun
- Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China.,Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin, China
| | - Yanlei Li
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Yanrong Liu
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Danfang Zhang
- Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China.,Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Xudong Wang
- Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin, China
| | - Qiang Gu
- Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China.,Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Jianmin Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Xueyi Dong
- Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China.,Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Zhiyong Liu
- Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin, China
| | - Na Che
- Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China.,Department of Pathology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
118
|
Cai Y, Wu J, Li Z, Long Q. Mathematical Modelling of a Brain Tumour Initiation and Early Development: A Coupled Model of Glioblastoma Growth, Pre-Existing Vessel Co-Option, Angiogenesis and Blood Perfusion. PLoS One 2016; 11:e0150296. [PMID: 26934465 PMCID: PMC4774981 DOI: 10.1371/journal.pone.0150296] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/11/2016] [Indexed: 01/12/2023] Open
Abstract
We propose a coupled mathematical modelling system to investigate glioblastoma growth in response to dynamic changes in chemical and haemodynamic microenvironments caused by pre-existing vessel co-option, remodelling, collapse and angiogenesis. A typical tree-like architecture network with different orders for vessel diameter is designed to model pre-existing vasculature in host tissue. The chemical substances including oxygen, vascular endothelial growth factor, extra-cellular matrix and matrix degradation enzymes are calculated based on the haemodynamic environment which is obtained by coupled modelling of intravascular blood flow with interstitial fluid flow. The haemodynamic changes, including vessel diameter and permeability, are introduced to reflect a series of pathological characteristics of abnormal tumour vessels including vessel dilation, leakage, angiogenesis, regression and collapse. Migrating cells are included as a new phenotype to describe the migration behaviour of malignant tumour cells. The simulation focuses on the avascular phase of tumour development and stops at an early phase of angiogenesis. The model is able to demonstrate the main features of glioblastoma growth in this phase such as the formation of pseudopalisades, cell migration along the host vessels, the pre-existing vasculature co-option, angiogenesis and remodelling. The model also enables us to examine the influence of initial conditions and local environment on the early phase of glioblastoma growth.
Collapse
Affiliation(s)
- Yan Cai
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- * E-mail:
| | - Jie Wu
- School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Zhiyong Li
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Quan Long
- Brunel Institute for Bioengineering, School of Engineering and Design, Brunel University, Uxbridge, Middlesex, United Kingdom
- * E-mail:
| |
Collapse
|
119
|
Hendrix MJC, Seftor EA, Seftor REB, Chao JT, Chien DS, Chu YW. Tumor cell vascular mimicry: Novel targeting opportunity in melanoma. Pharmacol Ther 2016; 159:83-92. [PMID: 26808163 PMCID: PMC4779708 DOI: 10.1016/j.pharmthera.2016.01.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In 1999, the American Journal of Pathology published an article, entitled "Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry" by Maniotis and colleagues, which ignited a spirited debate for several years and earned the journal's distinction of a "citation classic" (Maniotis et al., 1999). Tumor cell vasculogenic mimicry (VM), also known as vascular mimicry, describes the plasticity of aggressive cancer cells forming de novo vascular networks and is associated with the malignant phenotype and poor clinical outcome. The tumor cells capable of VM share the commonality of a stem cell-like, transendothelial phenotype, which may be induced by hypoxia. Since its introduction as a novel paradigm for melanoma tumor perfusion, many studies have contributed new findings illuminating the underlying molecular pathways supporting VM in a variety of tumors, including carcinomas, sarcomas, glioblastomas, astrocytomas, and melanomas. Of special significance is the lack of effectiveness of angiogenesis inhibitors on tumor cell VM, suggesting a selective resistance by this phenotype to conventional therapy. Facilitating the functional plasticity of tumor cell VM are key proteins associated with vascular, stem cell, extracellular matrix, and hypoxia-related signaling pathways--each deserving serious consideration as potential therapeutic targets and diagnostic indicators of the aggressive, metastatic phenotype. This review highlights seminal findings pertinent to VM, including the effects of a novel, small molecular compound, CVM-1118, currently under clinical development to target VM, and illuminates important molecular pathways involved in the suppression of this plastic, aggressive phenotype, using melanoma as a model.
Collapse
Affiliation(s)
- Mary J C Hendrix
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60614, United States; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States.
| | - Elisabeth A Seftor
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60614, United States
| | - Richard E B Seftor
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60614, United States; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | | | | | | |
Collapse
|
120
|
Achyut BR, Shankar A, Iskander ASM, Ara R, Knight RA, Scicli AG, Arbab AS. Chimeric Mouse model to track the migration of bone marrow derived cells in glioblastoma following anti-angiogenic treatments. Cancer Biol Ther 2016; 17:280-90. [PMID: 26797476 DOI: 10.1080/15384047.2016.1139243] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Bone marrow derived cells (BMDCs) have been shown to contribute in the tumor development. In vivo animal models to investigate the role of BMDCs in tumor development are poorly explored. We established a novel chimeric mouse model using as low as 5 × 10(6) GFP+ BM cells in athymic nude mice, which resulted in >70% engraftment within 14 d. In addition, chimera was established in NOD-SCID mice, which displayed >70% with in 28 d. Since anti-angiogenic therapies (AAT) were used as an adjuvant against VEGF-VEGFR pathway to normalize blood vessels in glioblastoma (GBM), which resulted into marked hypoxia and recruited BMDCs to the tumor microenvironment (TME). We exploited chimeric mice in athymic nude background to develop orthotopic U251 tumor and tested receptor tyrosine kinase inhibitors and CXCR4 antagonist against GBM. We were able to track GFP+ BMDCs in the tumor brain using highly sensitive multispectral optical imaging instrument. Increased tumor growth associated with the infiltration of GFP+ BMDCs acquiring suppressive myeloid and endothelial phenotypes was seen in TME following treatments. Immunofluorescence study showed GFP+ cells accumulated at the site of VEGF, SDF1 and PDGF expression, and at the periphery of the tumors following treatments. In conclusion, we developed a preclinical chimeric model of GBM and phenotypes of tumor infiltrated BMDCs were investigated in context of AATs. Chimeric mouse model could be used to study detailed cellular and molecular mechanisms of interaction of BMDCs and TME in cancer.
Collapse
Affiliation(s)
- B R Achyut
- a Tumor Angiogenesis Laboratory, Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University , Augusta , GA , USA
| | - Adarsh Shankar
- a Tumor Angiogenesis Laboratory, Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University , Augusta , GA , USA
| | - A S M Iskander
- a Tumor Angiogenesis Laboratory, Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University , Augusta , GA , USA
| | - Roxan Ara
- a Tumor Angiogenesis Laboratory, Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University , Augusta , GA , USA
| | | | - Alfonso G Scicli
- c Cellular and Molecular Imaging Laboratory, Henry Ford Health System , Detroit , MI , USA
| | - Ali S Arbab
- a Tumor Angiogenesis Laboratory, Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University , Augusta , GA , USA
| |
Collapse
|
121
|
Eccles SA, Court W, Patterson L. In Vitro Assays for Endothelial Cell Functions Required for Angiogenesis: Proliferation, Motility, Tubular Differentiation, and Matrix Proteolysis. Methods Mol Biol 2016; 1430:121-147. [PMID: 27172950 DOI: 10.1007/978-1-4939-3628-1_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This chapter deconstructs the process of angiogenesis into its component parts in order to provide simple assays to measure discrete endothelial cell functions. The techniques described will be suitable for studying stimulators and/or inhibitors of angiogenesis and determining which aspect of the process is modulated. The assays are designed to be robust and straightforward, using human umbilical vein endothelial cells, but with an option to use other sources such as microvascular endothelial cells from various tissues or lymphatic endothelial cells. It must be appreciated that such reductionist approaches cannot cover the complexity of the angiogenic process as a whole, incorporating as it does a myriad of positive and negative signals, three-dimensional interactions with host tissues and many accessory cells including fibroblasts, macrophages, pericytes and platelets. The extent to which in vitro assays predict physiological or pathological processes in vivo (e.g., wound healing, tumor angiogenesis) or surrogate techniques such as the use of Matrigel™ plugs, sponge implants, corneal assays etc remains to be determined.
Collapse
Affiliation(s)
- Suzanne A Eccles
- Cancer Research UK Cancer Therapeutics Unit, Centre for Cancer Imaging, The Institute of Cancer Research, Cotswold Rd., Sutton, Surrey, SM2 5NG, UK.
| | - William Court
- Cancer Research UK Cancer Therapeutics Unit, Centre for Cancer Imaging, The Institute of Cancer Research, Cotswold Rd., Sutton, Surrey, SM2 5NG, UK
| | - Lisa Patterson
- Cancer Research UK Cancer Therapeutics Unit, Centre for Cancer Imaging, The Institute of Cancer Research, Cotswold Rd., Sutton, Surrey, SM2 5NG, UK
| |
Collapse
|
122
|
Computer Simulations of the Tumor Vasculature: Applications to Interstitial Fluid Flow, Drug Delivery, and Oxygen Supply. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 936:31-72. [PMID: 27739042 DOI: 10.1007/978-3-319-42023-3_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tumor vasculature, the blood vessel network supplying a growing tumor with nutrients such as oxygen or glucose, is in many respects different from the hierarchically organized arterio-venous blood vessel network in normal tissues. Angiogenesis (the formation of new blood vessels), vessel cooption (the integration of existing blood vessels into the tumor vasculature), and vessel regression remodel the healthy vascular network into a tumor-specific vasculature. Integrative models, based on detailed experimental data and physical laws, implement, in silico, the complex interplay of molecular pathways, cell proliferation, migration, and death, tissue microenvironment, mechanical and hydrodynamic forces, and the fine structure of the host tissue vasculature. With the help of computer simulations high-precision information about blood flow patterns, interstitial fluid flow, drug distribution, oxygen and nutrient distribution can be obtained and a plethora of therapeutic protocols can be tested before clinical trials. This chapter provides an overview over the current status of computer simulations of vascular remodeling during tumor growth including interstitial fluid flow, drug delivery, and oxygen supply within the tumor. The model predictions are compared with experimental and clinical data and a number of longstanding physiological paradigms about tumor vasculature and intratumoral solute transport are critically scrutinized.
Collapse
|
123
|
Pezzella F, Harris AL, Tavassoli M, Gatter KC. Blood vessels and cancer much more than just angiogenesis. Cell Death Discov 2015; 1:15064. [PMID: 27551488 PMCID: PMC4979496 DOI: 10.1038/cddiscovery.2015.64] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- F Pezzella
- Radcliffe Department of Medicine, Nuffield Division of Clinical Laboratory Science, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - A L Harris
- Molecular Oncology Laboratories, Department of Medical Oncology, Wheatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - M Tavassoli
- Department of Molecular Oncology, King’s College London, London, UK
| | - K C Gatter
- Radcliffe Department of Medicine, Nuffield Division of Clinical Laboratory Science, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
124
|
Parris GE. A Hypothesis Concerning the Biphasic Dose-response of Tumors to Angiostatin and Endostatin. Dose Response 2015; 13:10.2203_dose-response.14-020.Parris. [PMID: 26675544 PMCID: PMC4674172 DOI: 10.2203/dose-response.14-020.parris] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This manuscript proposes a hypothesis to explain the U-shaped dose-response observed for angiostatin and other high-molecular-weight drugs in various anti-cancer bio-assays. The dose-response curves for angiostatin and endostatin (measured as suppression of tumor growth) go through an optimum (i.e., minimum tumor growth) and then becomes less effective at higher doses. The literature suggests that at lower doses the primary action of these high-molecular-weight drugs is to counteract the angiogenic effects of vascular endothelial growth factor (VEGF). To do this, the drugs must pass out of the blood vessel and enter the extra-cellular matrix (ECM) where VEGF induces the growth and fusion of tip cells. Ironically, VEGF actually facilitates access of the drugs to the ECM by making the vascular endothelium leaky. At higher doses, the high-molecular-weight drugs seem to reverse VEGF-induced permeability of the endothelium. Thus, at high dose rates, it is hypothesized that the drugs are not able to enter the ECM and block the angiogenic effects of VEGF there. As a result, high doses of the drugs do not suppress vascularization of the tumor or tumor growth. Moreover, if the permeability of the vessels is suppressed, the VEGF released by the stroma is concentrated in the ECM where it amplifies the angiogenic activity around the tumor.
Collapse
Affiliation(s)
- George E Parris
- Montgomery College, Department of Chemistry, Rockville, MD, USA
| |
Collapse
|
125
|
Zimmerer RM, Matthiesen P, Kreher F, Kampmann A, Spalthoff S, Jehn P, Bittermann G, Gellrich NC, Tavassol F. Putative CD133+ melanoma cancer stem cells induce initial angiogenesis in vivo. Microvasc Res 2015; 104:46-54. [PMID: 26656667 DOI: 10.1016/j.mvr.2015.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/24/2015] [Accepted: 12/01/2015] [Indexed: 12/17/2022]
Abstract
Tumor angiogenesis is essential for tumor growth and metastasis, and is regulated by a complex network of various types of cells, chemokines, and stimulating factors. In contrast to sprouting angiogenesis, tumor angiogenesis is also influenced by hypoxia, inflammation, and the attraction of bone-marrow-derived cells. Recently, cancer stem cells have been reported to mimic vascularization by differentiating into endothelial cells and inducing vessel formation. In this study, the influence of cancer stem cells on initial angiogenesis was evaluated for the metastatic melanoma cell line D10. Following flow cytometry, CD133+ and CD133- cells were isolated using magnetic cell separation and different cell fractions were transferred to porcine gelatin sponges, which were implanted into the dorsal skinfold chamber of immunocompromised mice. Angiogenesis was analyzed based on microvessel density over a 10-day period using in vivo fluorescence microscopy, and the results were verified using immunohistology. CD133+ D10 cells showed a significant induction of early angiogenesis in vivo, contrary to CD133- D10 cells, unsorted D10 cells, and negative control. Neovascularization was confirmed by visualizing endothelial cells by immunohistology using an anti-CD31 antibody. Because CD133+ cells are rare in clinical specimens and hardly amenable to functional assays, the D10 cell line provides a suitable model to study the angiogenic potential of putative cancer stem cells and the leukocyte-endothelial cell interaction in the dorsal skinfold chamber in vivo. This cancer stem cell model might be useful in the development and evaluation of therapeutic agents targeting tumors.
Collapse
Affiliation(s)
- Rüdiger M Zimmerer
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Peter Matthiesen
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Fritjof Kreher
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Andreas Kampmann
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Simon Spalthoff
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Philipp Jehn
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Gido Bittermann
- Department of Oral and Maxillofacial Surgery, University of Freiburg Medical School, Hugstetter Str. 53, 70164 Freiburg, Germany.
| | - Nils-Claudius Gellrich
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Frank Tavassol
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
126
|
Venza M, Visalli M, Biondo C, Oteri R, Agliano F, Morabito S, Teti D, Venza I. Epigenetic marks responsible for cadmium-induced melanoma cell overgrowth. Toxicol In Vitro 2015; 29:242-50. [PMID: 25448810 DOI: 10.1016/j.tiv.2014.10.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 01/28/2023]
Abstract
Cadmium (Cd) is a human carcinogen that likely acts via epigenetic mechanisms. However, the precise role of Cd in melanoma remains to be defined. The goals of this study are to: (i) examine the effect of Cd on the proliferation rate of cutaneous and uveal melanoma cells; (ii) identify the genes affected by Cd exposure; (iii) understand whether epigenetic changes are involved in the response to Cd. The cell growth capacity increased at 48 h after Cd treatment at doses ranging from 0.5 to 10 μM. The research on the key genes regulating proliferation has shown that aberrant methylation is responsible for silencing of p16(INK4A) and caspase 8 in uveal and cutaneous melanoma cells, respectively. The methylation and expression patterns of p14(ARF), death receptors 4/5, and E-cadherin remained unmodified after Cd treatment in all the cell lines analyzed. Ectopic expression of p16(INK4A) abolished the overgrowth of uveal melanoma cells in response to Cd and the overexpression of caspase 8 drastically increased the apoptotic rate of Cd-treated cutaneous melanoma cells. In conclusion, our data suggest that hypermethylation of p16(INK4A) and caspase 8 represents the most common event linked to Cd-induced stimulation of cell growth and inhibition of cell death pathway in melanoma.
Collapse
Affiliation(s)
- Mario Venza
- Department of Experimental Specialized Medical and Surgical and Odontostomatology Sciences, University of Messina, Messina, Italy
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Murrell DH, Hamilton AM, Mallett CL, van Gorkum R, Chambers AF, Foster PJ. Understanding Heterogeneity and Permeability of Brain Metastases in Murine Models of HER2-Positive Breast Cancer Through Magnetic Resonance Imaging: Implications for Detection and Therapy. Transl Oncol 2015; 8:176-84. [PMID: 26055175 PMCID: PMC4487267 DOI: 10.1016/j.tranon.2015.03.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/20/2015] [Accepted: 03/24/2015] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES: Brain metastases due to breast cancer are increasing, and the prognosis is poor. Lack of effective therapy is attributed to heterogeneity of breast cancers and their resulting metastases, as well as impermeability of the blood–brain barrier (BBB), which hinders delivery of therapeutics to the brain. This work investigates three experimental models of HER2 + breast cancer brain metastasis to better understand the inherent heterogeneity of the disease. We use magnetic resonance imaging (MRI) to quantify brain metastatic growth and explore its relationship with BBB permeability. DESIGN: Brain metastases due to breast cancer cells (SUM190-BR3, JIMT-1-BR3, or MDA-MB-231-BR-HER2) were imaged at 3 T using balanced steady-state free precession and contrast-enhanced T1-weighted spin echo sequences. The histology and immunohistochemistry corresponding to MRI were also analyzed. RESULTS: There were differences in metastatic tumor appearance by MRI, histology, and immunohistochemistry (Ki67, CD31, CD105) across the three models. The mean volume of an MDA-MB-231-BR-HER2 tumor was significantly larger compared to other models (F2,12 = 5.845, P < .05); interestingly, this model also had a significantly higher proportion of Gd-impermeable tumors (F2,12 = 22.18, P < .0001). Ki67 staining indicated that Gd-impermeable tumors had significantly more proliferative nuclei compared to Gd-permeable tumors (t[24] = 2.389, P < .05) in the MDA-MB-231-BR-HER2 model. CD31 and CD105 staining suggested no difference in new vasculature patterns between permeable and impermeable tumors in any model. CONCLUSION: Significant heterogeneity is present in these models of brain metastases from HER2 + breast cancer. Understanding this heterogeneity, especially as it relates to BBB permeability, is important for improvement in brain metastasis detection and treatment delivery.
Collapse
Affiliation(s)
- Donna H Murrell
- Imaging, Robarts Research Institute, London, Ontario, Canada; Medical Biophysics, Western University, London, Ontario, Canada.
| | | | | | | | - Ann F Chambers
- Medical Biophysics, Western University, London, Ontario, Canada; London Regional Cancer Program, London, Ontario, Canada
| | - Paula J Foster
- Imaging, Robarts Research Institute, London, Ontario, Canada; Medical Biophysics, Western University, London, Ontario, Canada
| |
Collapse
|
128
|
Rieger H, Welter M. Integrative models of vascular remodeling during tumor growth. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2015; 7:113-29. [PMID: 25808551 PMCID: PMC4406149 DOI: 10.1002/wsbm.1295] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/05/2015] [Accepted: 02/19/2015] [Indexed: 02/02/2023]
Abstract
UNLABELLED Malignant solid tumors recruit the blood vessel network of the host tissue for nutrient supply, continuous growth, and gain of metastatic potential. Angiogenesis (the formation of new blood vessels), vessel cooption (the integration of existing blood vessels into the tumor vasculature), and vessel regression remodel the healthy vascular network into a tumor-specific vasculature that is in many respects different from the hierarchically organized arterio-venous blood vessel network of the host tissues. Integrative models based on detailed experimental data and physical laws implement in silico the complex interplay of molecular pathways, cell proliferation, migration, and death, tissue microenvironment, mechanical and hydrodynamic forces, and the fine structure of the host tissue vasculature. With the help of computer simulations high-precision information about blood flow patterns, interstitial fluid flow, drug distribution, oxygen and nutrient distribution can be obtained and a plethora of therapeutic protocols can be tested before clinical trials. In this review, we give an overview over the current status of integrative models describing tumor growth, vascular remodeling, blood and interstitial fluid flow, drug delivery, and concomitant transformations of the microenvironment. WIREs Syst Biol Med 2015, 7:113-129. doi: 10.1002/wsbm.1295 For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Heiko Rieger
- Department of Theoretical Physics, Saarland UniversitySaarbrücken, Germany
| | - Michael Welter
- Department of Theoretical Physics, Saarland UniversitySaarbrücken, Germany
| |
Collapse
|
129
|
|
130
|
Li Y, Sun B, Zhao X, Zhang D, Wang X, Zhu D, Yang Z, Qiu Z, Ban X. Subpopulations of uPAR+ contribute to vasculogenic mimicry and metastasis in large cell lung cancer. Exp Mol Pathol 2015; 98:136-44. [PMID: 25661888 DOI: 10.1016/j.yexmp.2015.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 02/03/2015] [Indexed: 01/29/2023]
Abstract
The urokinase plasminogen activator receptor (uPAR) is closely associated with poor prognosis in various aggressive cancers including large-cell lung cancer (LCLC). Vasculogenic mimicry (VM) refers to the unique capability of aggressive tumor cells to mimic the pattern of embryonic vasculogenic networks involving the blood supply in early tumor formation. We demonstrate the statistically positive correlation of uPAR expression with VM formation, metastasis, and poor prognosis of LCLC patients. uPAR(+) cells sorted from the LCLC H460 cell line show higher invasion, migration capacity, and tube structure formation capability on Matrigel compared with uPAR(-) cells. uPAR(+) tumor cells highly expressed vimentin and VE-cadherin; the epithelial marker E-cadherin was low expressed. Higher EMT-regulated protein twist and snail expressions were also observed in these cells. uPAR(+) cells injected subcutaneously into nude mice markedly increased tumor growth, induced VM formation and liver metastasis; by contrast, uPAR(-) cells did not. The data suggest that uPAR expression may predict VM formation, tumor metastasis and poorer prognosis of LCLC patients. The uPAR gene may be used as a novel therapeutic target for inhibiting angiogenesis and metastasis in LCLC.
Collapse
Affiliation(s)
- Yanlei Li
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China.
| | - Baocun Sun
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin 300060, China; Department of Pathology, Tianjin General Hospital, Tianjin Medical University, Tianjin 300052, China.
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, Tianjin General Hospital, Tianjin Medical University, Tianjin 300052, China.
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, Tianjin General Hospital, Tianjin Medical University, Tianjin 300052, China.
| | - Xudong Wang
- Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin 300060, China.
| | - Dongwang Zhu
- Stomatology Hospital of Tianjin Medical University, Tianjin, China.
| | - Zhihong Yang
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China.
| | - Zhiqiang Qiu
- Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin 300060, China.
| | - Xinchao Ban
- Department of Pathology, Tianjin Hospital, Tianjin, China.
| |
Collapse
|
131
|
Venza M, Visalli M, Biondo C, Oteri R, Agliano F, Morabito S, Caruso G, Caffo M, Teti D, Venza I. Epigenetic effects of cadmium in cancer: focus on melanoma. Curr Genomics 2015; 15:420-35. [PMID: 25646071 PMCID: PMC4311387 DOI: 10.2174/138920291506150106145932] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/07/2014] [Accepted: 11/17/2014] [Indexed: 01/01/2023] Open
Abstract
Cadmium is a highly toxic heavy metal, which has a destroying impact on organs. Exposure to cadmium causes severe health problems to human beings due to its ubiquitous environmental presence and features of the pathologies associated with pro-longed exposure. Cadmium is a well-established carcinogen, although the underlying mechanisms have not been fully under-stood yet. Recently, there has been considerable interest in the impact of this environmental pollutant on the epigenome. Be-cause of the role of epigenetic alterations in regulating gene expression, there is a potential for the integration of cadmium-induced epigenetic alterations as critical elements in the cancer risk assessment process. Here, after a brief review of the ma-jor diseases related to cadmium exposure, we focus our interest on the carcinogenic potential of this heavy metal. Among the several proposed pathogenetic mechanisms, particular attention is given to epigenetic alterations, including changes in DNA methylation, histone modifications and non-coding RNA expression. We review evidence for a link between cadmium-induced epigenetic changes and cell transformation, with special emphasis on melanoma. DNA methylation, with reduced expression of key genes that regulate cell proliferation and apoptosis, has emerged as a possible cadmium-induced epigenetic mechanism in melanoma. A wider comprehension of mechanisms related to this common environmental contaminant would allow a better cancer risk evaluation.
Collapse
Affiliation(s)
- Mario Venza
- Department of Experimental Specialistic Medical, Surgical and Odontostomatology Sciences, University of Messina, Messina, Italy
| | - Maria Visalli
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Carmelo Biondo
- Department of Pediatric, Gynecological, Microbiological and Biomedical Sciences, University of Messina, Messina, Italy
| | - Rosaria Oteri
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Federica Agliano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Silvia Morabito
- Department of Experimental Specialistic Medical, Surgical and Odontostomatology Sciences, University of Messina, Messina, Italy
| | - Gerardo Caruso
- Department of Neurosciences, University of Messina, Messina, Italy
| | - Maria Caffo
- Department of Neurosciences, University of Messina, Messina, Italy
| | - Diana Teti
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Isabella Venza
- Department of Experimental Specialistic Medical, Surgical and Odontostomatology Sciences, University of Messina, Messina, Italy
| |
Collapse
|
132
|
Oxygen transport in a three-dimensional microvascular network incorporated with early tumour growth and preexisting vessel cooption: numerical simulation study. BIOMED RESEARCH INTERNATIONAL 2015; 2015:476964. [PMID: 25695084 PMCID: PMC4324812 DOI: 10.1155/2015/476964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 11/17/2014] [Accepted: 11/17/2014] [Indexed: 02/03/2023]
Abstract
We propose a dynamic mathematical model of tissue oxygen transport by a preexisting three-dimensional microvascular network which provides nutrients for an in situ cancer at the very early stage of primary microtumour growth. The expanding tumour consumes oxygen during its invasion to the surrounding tissues and cooption of host vessels. The preexisting vessel cooption, remodelling and collapse are modelled by the changes of haemodynamic conditions due to the growing tumour. A detailed computational model of oxygen transport in tumour tissue is developed by considering (a) the time-varying oxygen advection diffusion equation within the microvessel segments, (b) the oxygen flux across the vessel walls, and (c) the oxygen diffusion and consumption within the tumour and surrounding healthy tissue. The results show the oxygen concentration distribution at different time points of early tumour growth. In addition, the influence of preexisting vessel density on the oxygen transport has been discussed. The proposed model not only provides a quantitative approach for investigating the interactions between tumour growth and oxygen delivery, but also is extendable to model other molecules or chemotherapeutic drug transport in the future study.
Collapse
|
133
|
Torok S, Vegvari A, Rezeli M, Fehniger TE, Tovari J, Paku S, Laszlo V, Hegedus B, Rozsas A, Dome B, Marko-Varga G. Localization of sunitinib, its metabolites and its target receptors in tumour-bearing mice: a MALDI-MS imaging study. Br J Pharmacol 2015; 172:1148-63. [PMID: 25363319 DOI: 10.1111/bph.12990] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/23/2014] [Accepted: 10/20/2014] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND PURPOSE The clinical effects of anti-angiogenic agents remain controversial. Therefore, elucidating the pharmacological properties of these compounds is a pivotal issue. EXPERIMENTAL APPROACH The effects of treatment with sunitinib on tumour and normal tissues of mice bearing C-26 adenocarcinoma cells were analysed by matrix-assisted laser desorption ionization MS imaging (MALDI-MSI). Expression of the key targets of sunitinib--angiogenic receptors--was studied by immunofluorescent labelling. KEY RESULTS MALDI-MS assays showed that sunitinib and its fragment ions were present throughout tumour and normal tissues. Major metabolites were identified in blood and solid tissues, while minor drug metabolites were detectable only in blood. Tumour growth and intratumour VEGF receptor-2 expressions were significantly reduced in sunitinib-treated mice, while the expression of the other targeted receptors, PDGF receptor -α or -β and fibroblast growth factor receptor-1, remained unaffected. Within tumour tissue, the close proximity of sunitinib metabolites to the precursor ion suggested in situ metabolism of the administered drug. There were intratumour areas where the signal intensity of sunitinib correlated with expression of VEGF receptor-2. CONCLUSIONS AND IMPLICATIONS This is the first study that demonstrates MALDI-MSI is a versatile platform to study the intratumour localization of an unlabelled anti-angiogenic drug. The combination of MALDI-MSI and immunofluorescence analysis can provide further insights into the molecular interaction of drug compounds and their targets within tumour tissue.
Collapse
Affiliation(s)
- S Torok
- Department of tumor Biology, National Korányi Institute of Pulmonology, Budapest, Hungary; Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Clinical Protein Science and Imaging, Biomedical Center, Department of Biomedical Engineering, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Szabo V, Bugyik E, Dezso K, Ecker N, Nagy P, Timar J, Tovari J, Laszlo V, Bridgeman VL, Wan E, Frentzas S, Vermeulen PB, Reynolds AR, Dome B, Paku S. Mechanism of tumour vascularization in experimental lung metastases. J Pathol 2014; 235:384-96. [DOI: 10.1002/path.4464] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/03/2014] [Accepted: 10/13/2014] [Indexed: 01/10/2023]
Affiliation(s)
- Vanessza Szabo
- 1st Department of Pathology and Experimental Cancer Research; Semmelweis University; Budapest Hungary
| | - Edina Bugyik
- 1st Department of Pathology and Experimental Cancer Research; Semmelweis University; Budapest Hungary
| | - Katalin Dezso
- 1st Department of Pathology and Experimental Cancer Research; Semmelweis University; Budapest Hungary
| | - Nora Ecker
- 1st Department of Pathology and Experimental Cancer Research; Semmelweis University; Budapest Hungary
| | - Peter Nagy
- 1st Department of Pathology and Experimental Cancer Research; Semmelweis University; Budapest Hungary
| | - Jozsef Timar
- Tumor Progression Research Group; Hungarian Academy of Sciences-Semmelweis University; Budapest Hungary
- 2nd Department of Pathology; Semmelweis University; Budapest Hungary
| | - Jozsef Tovari
- Department of Experimental Pharmacology; National Institute of Oncology; Budapest Hungary
- Department of Thoracic Surgery; Semmelweis University-National Institute of Oncology; Budapest Hungary
| | - Viktoria Laszlo
- Department of Thoracic Surgery; Medical University of Vienna; Austria
| | - Victoria L Bridgeman
- Tumour Biology Team, Breakthrough Breast Cancer Research Centre; The Institute of Cancer Research; London UK
| | - Elaine Wan
- Tumour Biology Team, Breakthrough Breast Cancer Research Centre; The Institute of Cancer Research; London UK
| | - Sophia Frentzas
- Tumour Biology Team, Breakthrough Breast Cancer Research Centre; The Institute of Cancer Research; London UK
| | - Peter B Vermeulen
- Tumour Biology Team, Breakthrough Breast Cancer Research Centre; The Institute of Cancer Research; London UK
- Translational Cancer Research Unit; GZA Hospitals Sint-Augustinus; Antwerp Belgium
| | - Andrew R Reynolds
- Tumour Biology Team, Breakthrough Breast Cancer Research Centre; The Institute of Cancer Research; London UK
| | - Balazs Dome
- Department of Thoracic Surgery; Semmelweis University-National Institute of Oncology; Budapest Hungary
- Department of Thoracic Surgery; Medical University of Vienna; Austria
- National Koranyi Institute of Pulmonology; Budapest Hungary
- Department of Biomedical Imaging and Image-guided Therapy; Medical University of Vienna; Austria
| | - Sandor Paku
- 1st Department of Pathology and Experimental Cancer Research; Semmelweis University; Budapest Hungary
- Tumor Progression Research Group; Hungarian Academy of Sciences-Semmelweis University; Budapest Hungary
| |
Collapse
|
135
|
Inhibition of metastasis of oral squamous cell carcinoma by anti-PLGF treatment. Tumour Biol 2014; 36:2695-701. [DOI: 10.1007/s13277-014-2892-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 11/21/2014] [Indexed: 12/11/2022] Open
|
136
|
Anti-tumor effect of a novel soluble recombinant human endostatin: administered as a single agent or in combination with chemotherapy agents in mouse tumor models. PLoS One 2014; 9:e107823. [PMID: 25229620 PMCID: PMC4168263 DOI: 10.1371/journal.pone.0107823] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 08/15/2014] [Indexed: 12/22/2022] Open
Abstract
Background Angiogenesis has become an attractive target in cancer treatment. Endostatin is one of the potent anti-angiogenesis agents. Its recombinant form expressed in the yeast system is currently under clinical trials. Endostatin suppresses tumor formation through the inhibition of blood vessel growth. It is anticipated that combined therapy using endostatin and cytotoxic compounds may exert an additive effect. In the present study, we expressed and purified recombinant human endostatin (rhEndostatin) that contained 3 additional amino acid residues (arginine, glycine, and serine) at the amino-terminus and 6 histidine residues in its carboxyl terminus. The recombinant protein was expressed in E. Coli and refolded into a soluble form in a large scale purification process. The protein exhibited a potent anti-tumor activity in bioassays. Furthermore, rhEndostatin showed an additive effect with chemotherapy agents including cyclophosphamide (CTX) and cisplatin (DDP). Methods rhEndostatin cDNA was cloned into PQE vector and expressed in E. Coli. The protein was refolded through dialysis with an optimized protocol. To establish tumor models, nude mice were subcutaneously injected with human cancer cells (lung carcinoma A549, hepatocellular carcinoma QGY-7703, or breast cancer Bcap37). rhEndostatin and/or DDP was administered peritumorally to evaluate the rate of growth inhibition of A549 tumors. For the tumor metastasis model, mice were injected intravenously with mouse melanoma B16 cells. One day after tumor cell injection, a single dose of rhEndostatin, or in combination with CTX, was administered intravenously or at a site close to the tumor. Results rhEndostatin reduced the growth of A549, QGY-7703, and Bcap37 xenograft tumors in a dose dependent manner. When it was administered peritumorally, rhEndostatin exhibited a more potent inhibitory activity. Furthermore, rhEndostatin displayed an additive effect with CTX or DDP on the inhibition of metastasis of B16 tumors or growth of A549 tumors. Conclusion Soluble rhEndostatin exhibits a potent anti-tumor activity in mouse xenograft models and it also has an additive effect with CTX and DDP, implying possible applications in clinical settings.
Collapse
|
137
|
Pili R, Carducci M, Brown P, Hurwitz H. An open-label study to determine the maximum tolerated dose of the multitargeted tyrosine kinase inhibitor CEP-11981 in patients with advanced cancer. Invest New Drugs 2014; 32:1258-68. [PMID: 25152243 PMCID: PMC4226840 DOI: 10.1007/s10637-014-0147-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/29/2014] [Indexed: 12/21/2022]
Abstract
Background This phase I study evaluated the pharmacokinetics and pharmacodynamics of CEP-11981, an oral vascular endothelial growth factor (VEGF) tyrosine kinase inhibitor, in patients with advanced, relapsed, or refractory solid tumors. Methods Oral CEP-11981 dose escalations followed a modified Fibonacci sequence (from 3.0 to 4.2, 5.9, 11.8, 19.7, 29.6, 41.4, 55.0, 73.0, 97.4, and 126.6 mg/m2). The maximum-tolerated dose (MTD), dose-limiting toxicities (DLTs), tumor response, and safety were evaluated. Results CEP-11981 was tolerated at doses between 3.0 and 97.4 mg/m2. The MTD of CEP-11981 was determined to be 97.4 mg/m2, with DLTs observed at the 126.6 mg/m2 dose. The DLTs were grade 4 neutropenia in 1 patient and grade 3 T-wave inversion with chest heaviness and fatigue in 1 patient. All 3 events resolved on stopping CEP-11981. The most frequently reported adverse events of any grade were fatigue, nausea, diarrhea, decreased appetite, abdominal pain, back pain, vomiting, constipation, headache, dizziness, and dyspnea. Treatment-related grade 3/4 neutropenia was observed in the highest-dose cohorts (2 patients at 97.4 mg/m2 and 1 patient at 126.6 mg/m2), indicating some off-target inhibition. VEGF inhibition was greatest in the higher-dose groups. Although no patient experienced complete or partial response, 44 % patients achieved stable disease when measured at ≥ 6 weeks, which occurred more frequently in cohorts receiving ≥ 73.0 mg/m2. Conclusions In patients with recurrent or refractory solid tumors, disease stabilization was achieved. Despite acceptable tolerability of CEP-11981 at the MTD, further development by the sponsor has ceased.
Collapse
Affiliation(s)
- Roberto Pili
- Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263, USA,
| | | | | | | |
Collapse
|
138
|
|
139
|
Cui G, Yang H, Zhao J, Yuan A, Florholmen J. Elevated proinflammatory cytokine IL-17A in the adjacent tissues along the adenoma-carcinoma sequence. Pathol Oncol Res 2014; 21:139-46. [PMID: 24859972 DOI: 10.1007/s12253-014-9799-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 05/16/2014] [Indexed: 02/06/2023]
Abstract
Considerable evidence has suggested that chronic inflammation is a causative factor in the development of human colorectal cancer (CRC). Interleukin (IL)-17A produced mainly by Th17 cells is a novel proinflammatory cytokine and increased IL-17A is associated with colorectal neoplastic transformation. In this study, we have evaluated the expression of IL-17A in the adjacent tissues along the colorectal adenoma-carcinoma sequence. The expression of IL-17A in the adjacent tissues of colorectal adenoma (adenoma-adjacent, n = 32) and sporadic CRC (CRC-adjacent, n = 45) was examined. In addition, the expression pattern of Th17 cell differentiation stimulators (IL-1β, IL-6 and IL-23A) in the adjacent tissues were also examined. The results showed that the expression level of IL-17A mRNA was non-statistically increased (4-fold higher) in the adenoma-adjacent tissues and it became significantly increased (9-fold higher) in the CRC-adjacent tissues as compared with the control. The expression level of IL-17A in the CRC-adjacent tissues was not associated with CRC clinicopathological parameters and overall survival. Immunohistochemistry confirmed an increased density of intraepithelial IL-17A expressing cells in the CRC-adjacent tissues. The Th17 cell differentiation simulators IL-1β and IL-6 were also shown in an increase trend from the adenoma-adjacent to CRC-adjacent tissues. These results provide evidence that IL-17A/Th17 response is enhanced in the adjacent tissues during the colorectal neoplastic transformation.
Collapse
Affiliation(s)
- Guanglin Cui
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,
| | | | | | | | | |
Collapse
|
140
|
Tang W, Yu F, Yao H, Cui X, Jiao Y, Lin L, Chen J, Yin D, Song E, Liu Q. miR-27a regulates endothelial differentiation of breast cancer stem like cells. Oncogene 2014; 33:2629-2638. [PMID: 23752185 DOI: 10.1038/onc.2013.214] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 12/27/2022]
Abstract
Recent studies suggested that cancer stem cells (CSCs) are capable of differentiating into endothelial cells and tumor endothelium may be derived from CSCs. But the mechanism remains unclear. We showed that vascular endothelial growth factor (VEGF) induced the expression of endothelial markers in breast cancer stem like cells (BCSLCs). In addition, the VEGF-treated BCSLCs formed capillary structure in matrigel and released vWF upon histamine treatment. The miR-27a expression was significantly increased in VEGF-treated BCSLCs. Antagonizing miR-27a by miR-27a anti-sense oligos (ASOs) in VEGF-treated BCSLCs led to decreased endothelial markers and function, while increasing miR-27a in BCSLCs resulted in enhanced endothelial properties. VEGF enhanced the transcription of miR-27a by increasing RUNX1 binding to miR-27a promoter. Increased miR-27a paralleled the reduced expression of ZBTB10, a known miR-27a target. Both expression of miR-27a and knockdown of ZBTB10 in BCSLCs promoted in vivo angiogenesis and tumor metastasis. Further, we demonstrated that VEGF-treated BCSLCs secreted more endogenous VEGF compared with undifferentiated BCSLCs. Thus, miR-27a promotes angiogenesis by mediating endothelial differentiation of BCSLCs and it may be a new target for anti-angiogenesis cancer therapy.
Collapse
Affiliation(s)
- W Tang
- Breast Tumor Center, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou, People's Republic of China
| | - F Yu
- Breast Tumor Center, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou, People's Republic of China
| | - H Yao
- Breast Tumor Center, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou, People's Republic of China
| | - X Cui
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Medical Research Center, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou, People's Republic of China
| | - Y Jiao
- School of Life Sciences, Sun-Yat-Sen University, Guangzhou, People's Republic of China
| | - L Lin
- Breast Tumor Center, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou, People's Republic of China
| | - J Chen
- Breast Tumor Center, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou, People's Republic of China
| | - D Yin
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Medical Research Center, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou, People's Republic of China
| | - E Song
- Breast Tumor Center, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou, People's Republic of China
| | - Q Liu
- Breast Tumor Center, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
141
|
Peroxisome proliferator-activated receptor γ ligands inhibit VEGF-mediated vasculogenic mimicry of prostate cancer through the AKT signaling pathway. Mol Med Rep 2014; 10:276-82. [DOI: 10.3892/mmr.2014.2198] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 03/12/2014] [Indexed: 11/05/2022] Open
|
142
|
Li Y, Cai W, Yi Q, Xie F, Liu Y, Du B, Feng L, Qiu L. Lipid droplets may lay a spacial foundation for vasculogenic mimicry formation in hepatocellular carcinoma. Med Hypotheses 2014; 83:56-9. [PMID: 24774719 DOI: 10.1016/j.mehy.2014.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/01/2014] [Indexed: 11/25/2022]
Abstract
Vasculogenic mimicry is a highly patterned vascular channel distinguished from the endothelium-dependent blood vessel. Vasculogenic mimicry is lined by highly aggressive tumor cells, and is associated with tumor grade, invasion and metastasis, and poor clinical prognosis. Much attention has been focused on the signaling pathways and the tumor microenvironment needed for vasculogenic mimicry formation, however, the studies on the spacial foundation for vasculogenic mimicry formation are limited. There are many lipid droplets in hepatocellular carcinoma due to steatosis, while increased numbers of lipid droplets also have been reported in many other neoplastic processes. The role of lipid droplets in tumor is still unclear. Based on the similar structural and morphological characteristics between vasculogenic mimicry and lipid droplet, we speculate that the lipid droplets may lay a spacial foundation for vasculogenic mimicry formation by a way of "space placeholder" in HCC. Experimental data and limited clinical literatures support the hypothesis to a certain degree. This hypothesis may provide a new idea for the study of vasculogenic mimicry and also provide a new direction for the functional study of lipid droplets in tumor.
Collapse
Affiliation(s)
- Yue Li
- Laboratory of Tumor Pharmacology, School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China
| | - Weiwei Cai
- Laboratory of Tumor Pharmacology, School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China
| | - Qingqing Yi
- Laboratory of Tumor Pharmacology, School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China
| | - Fengshan Xie
- Laboratory of Tumor Pharmacology, School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China
| | - Yanling Liu
- Laboratory of Tumor Pharmacology, School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China
| | - Bin Du
- Wuxi Medical School, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China
| | - Lei Feng
- Wuxi Medical School, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China
| | - Liying Qiu
- Wuxi Medical School, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China.
| |
Collapse
|
143
|
Mak AB, Schnegg C, Lai CY, Ghosh S, Yang MH, Moffat J, Hsu MY. CD133-targeted niche-dependent therapy in cancer: a multipronged approach. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1256-62. [PMID: 24589338 DOI: 10.1016/j.ajpath.2014.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/05/2014] [Accepted: 01/16/2014] [Indexed: 02/07/2023]
Abstract
Cancer treatment continues to be challenged by the development of therapeutic resistances and relapses in the clinical setting, which are largely attributed to tumor heterogeneity, particularly the existence of cancer stem cells (CSCs). Thus, targeting the CSC subpopulation may represent an effective therapeutic strategy. However, despite advances in identifying and characterizing CD133(+) CSCs in various human cancers, efforts to translate these experimental findings to clinical modalities have been slow in the making, especially in light of the growing awareness of CSC plasticity and the foreseeable pitfall of therapeutically targeting CSC base sorely on a surface marker. We, and others, have demonstrated that the CD133(+) CSCs reside in complex vascular niches, where reciprocal signaling between the CD133(+) CSCs and their microenvironment may govern niche morphogenesis and homeostasis. Herein, we discuss the multifaceted functional role of the CD133(+) cells in the context of their niche, and the potential of targeting CD133 as a niche-dependent approach in effective therapy.
Collapse
Affiliation(s)
- Anthony B Mak
- Department of Dermatology, Boston University Medical Center, Boston, Massachusetts; Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Caroline Schnegg
- Department of Dermatology, Boston University Medical Center, Boston, Massachusetts
| | - Chiou-Yan Lai
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Subrata Ghosh
- Department of Dermatology, Boston University Medical Center, Boston, Massachusetts
| | - Moon Hee Yang
- Department of Dermatology, Boston University Medical Center, Boston, Massachusetts
| | - Jason Moffat
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Mei-Yu Hsu
- Department of Dermatology, Boston University Medical Center, Boston, Massachusetts; Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts.
| |
Collapse
|
144
|
Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis 2014; 17:471-94. [PMID: 24482243 PMCID: PMC4061466 DOI: 10.1007/s10456-014-9420-y] [Citation(s) in RCA: 529] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 01/15/2014] [Indexed: 12/17/2022]
Abstract
Tumours require a vascular supply to grow and can achieve this via the expression of pro-angiogenic growth factors, including members of the vascular endothelial growth factor (VEGF) family of ligands. Since one or more of the VEGF ligand family is overexpressed in most solid cancers, there was great optimism that inhibition of the VEGF pathway would represent an effective anti-angiogenic therapy for most tumour types. Encouragingly, VEGF pathway targeted drugs such as bevacizumab, sunitinib and aflibercept have shown activity in certain settings. However, inhibition of VEGF signalling is not effective in all cancers, prompting the need to further understand how the vasculature can be effectively targeted in tumours. Here we present a succinct review of the progress with VEGF-targeted therapy and the unresolved questions that exist in the field: including its use in different disease stages (metastatic, adjuvant, neoadjuvant), interactions with chemotherapy, duration and scheduling of therapy, potential predictive biomarkers and proposed mechanisms of resistance, including paradoxical effects such as enhanced tumour aggressiveness. In terms of future directions, we discuss the need to delineate further the complexities of tumour vascularisation if we are to develop more effective and personalised anti-angiogenic therapies.
Collapse
|
145
|
Yamamoto J, Shimajiri S, Miyaoka R, Nishizawa S. Pitfalls of conservative treatments of multiple probable cerebral cavernous malformations (CCMs): clinicopathological features of CCMs coexisting with vasculogenic mimicry in an anaplastic oligodendroglioma. Brain Tumor Pathol 2013; 31:215-21. [DOI: 10.1007/s10014-013-0171-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/25/2013] [Indexed: 11/30/2022]
|
146
|
Qiu H, Cao L, Wang D, Xu H, Liang Z. High levels of circulating CD34+/VEGFR3+ lymphatic/vascular endothelial progenitor cells is correlated with lymph node metastasis in patients with epithelial ovarian cancer. J Obstet Gynaecol Res 2013; 39:1268-75. [PMID: 23803010 DOI: 10.1111/jog.12047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 12/12/2012] [Indexed: 11/28/2022]
Abstract
AIM Lymph node metastasis is one of the predictive factors associated with poor prognosis of epithelial ovarian cancer. To clarify the role of CD34 and vascular endothelial growth factor receptor-3-positive (CD34+/VEGFR3+) lymphatic/vascular endothelial progenitor cells (LVEPC) in patients with lymph node metastasis and epithelial ovarian cancer progression, the levels of circulating CD34+/VEGFR3+ LVEPC in epithelial ovarian cancer patients were detected. We also tested the plasma protein levels of VEGF and stromal cell-derived factor to find out their possible relationships with lymph node metastasis in our epithelial ovarian cancer cohort. MATERIAL AND METHODS Peripheral blood samples were collected from 54 patients diagnosed as epithelial ovarian cancer, and 31 normal samples as control. The circulating levels of LVEPC were carried out by flow cytometry, and blood protein levels of biomarkers were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS The level of circulating LVEPC was significantly higher in patients with ovarian cancer compared with that of healthy controls. There was also a statistically significant correlation between LVEPC levels and surgical staging of epithelial ovarian cancer (P < 0.01). CONCLUSION The circulating levels of bone marrow-derived LVEPC are significantly increased in epithelial ovarian cancer patients and these levels correlate with lymph node metastasis too.
Collapse
Affiliation(s)
- Huiling Qiu
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
147
|
Vempati P, Popel AS, Mac Gabhann F. Extracellular regulation of VEGF: isoforms, proteolysis, and vascular patterning. Cytokine Growth Factor Rev 2013; 25:1-19. [PMID: 24332926 DOI: 10.1016/j.cytogfr.2013.11.002] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/14/2013] [Accepted: 11/19/2013] [Indexed: 12/15/2022]
Abstract
The regulation of vascular endothelial growth factor A (VEGF) is critical to neovascularization in numerous tissues under physiological and pathological conditions. VEGF has multiple isoforms, created by alternative splicing or proteolytic cleavage, and characterized by different receptor-binding and matrix-binding properties. These isoforms are known to give rise to a spectrum of angiogenesis patterns marked by differences in branching, which has functional implications for tissues. In this review, we detail the extensive extracellular regulation of VEGF and the ability of VEGF to dictate the vascular phenotype. We explore the role of VEGF-releasing proteases and soluble carrier molecules on VEGF activity. While proteases such as MMP9 can 'release' matrix-bound VEGF and promote angiogenesis, for example as a key step in carcinogenesis, proteases can also suppress VEGF's angiogenic effects. We explore what dictates pro- or anti-angiogenic behavior. We also seek to understand the phenomenon of VEGF gradient formation. Strong VEGF gradients are thought to be due to decreased rates of diffusion from reversible matrix binding, however theoretical studies show that this scenario cannot give rise to lasting VEGF gradients in vivo. We propose that gradients are formed through degradation of sequestered VEGF. Finally, we review how different aspects of the VEGF signal, such as its concentration, gradient, matrix-binding, and NRP1-binding can differentially affect angiogenesis. We explore how this allows VEGF to regulate the formation of vascular networks across a spectrum of high to low branching densities, and from normal to pathological angiogenesis. A better understanding of the control of angiogenesis is necessary to improve upon limitations of current angiogenic therapies.
Collapse
Affiliation(s)
- Prakash Vempati
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Feilim Mac Gabhann
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
148
|
Grimaldi A, Balestrieri ML, D'Onofrio N, Di Domenico G, Nocera C, Lamberti M, Tonini G, Zoccoli A, Santini D, Caraglia M, Pantano F. The synergistic effect of everolimus and chloroquine on endothelial cell number reduction is paralleled by increased apoptosis and reduced autophagy occurrence. PLoS One 2013; 8:e79658. [PMID: 24244540 PMCID: PMC3823580 DOI: 10.1371/journal.pone.0079658] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/03/2013] [Indexed: 12/15/2022] Open
Abstract
Endothelial Progenitor Cells (EPCs), a minor subpopulation of the mononuclear cell fraction in peripheral blood, play a critical role in cancer development as they contribute to angiogenesis-mediated pathological neovascularization. In response to tumor cytokines, including VEGF, EPCs mobilize from the bone marrow into the peripheral circulation and move to the tumor bed where they incorporate into sprouting neovessels. In the present study, we evaluated the effects of everolimus (Afinitor, Novartis), a rapamycin analogue, alone or in combination with chloroquine, a 4-alkylamino substituted quinoline family member, one of the autophagy inhibitors, on EPCs biological functions. We found that either everolimus or chloroquine induce growth inhibition on EPCs in a dose-dependent manner after 72 h from the beginning of incubation. The combined administration of the two drugs to EPC was synergistic in inducing growth inhibition; in details, the maximal pharmacological synergism between everolimus and chloroquine in inducing growth inhibition on EPCs cells was recorded when chloroquine was administered 24 h before everolimus. Moreover, we have studied the mechanisms of cell death induced by the two agents alone or in combination on EPCs and we have found that the synergistic effect of combination on EPC growth inhibition was paralleled by increased apoptosis induction and reduced autophagy. These effects occurred together with biochemical features that are typical of reduced autophagic death such as increased co-immunoprecipitation between Beclin 1 and Bcl-2. Chloroquine antagonized the inhibition of the activity of Akt→4EBP1 axis mediated by everolimus and at the same time it blocked the feed-back activation of Erk-1/2 induced by RAD in EPCs. These data suggest a new strategy in order to block angiogenesis in tumours in which this process plays a key role in both the sustainment and spreading of cancer cells.
Collapse
Affiliation(s)
- Anna Grimaldi
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Maria Luisa Balestrieri
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Nunzia D'Onofrio
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Gilda Di Domenico
- Blood Transfusion Center, “S. Giovanni Bosco” of Naples, Naples, Italy
| | - Cosimo Nocera
- Blood Transfusion Center, “S. Giovanni Bosco” of Naples, Naples, Italy
| | - Monica Lamberti
- Department of Experimental Medicine, Section of Igiene, Medicina del lavoro e Medicina Legale, Second University of Naples, Naples, Italy
| | - Giuseppe Tonini
- Campus Bio-Medico University, Translational Oncology PRABB, Rome, Italy
| | - Alice Zoccoli
- Campus Bio-Medico University, Translational Oncology PRABB, Rome, Italy
| | - Daniele Santini
- Campus Bio-Medico University, Translational Oncology PRABB, Rome, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
- * E-mail:
| | - Francesco Pantano
- Campus Bio-Medico University, Translational Oncology PRABB, Rome, Italy
| |
Collapse
|
149
|
Virág J, Kenessey I, Haberler C, Piurkó V, Bálint K, Döme B, Tímár J, Garami M, Hegedűs B. Angiogenesis and angiogenic tyrosine kinase receptor expression in pediatric brain tumors. Pathol Oncol Res 2013; 20:417-26. [PMID: 24190638 DOI: 10.1007/s12253-013-9711-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 10/10/2013] [Indexed: 01/07/2023]
Abstract
Tumor angiogenesis and receptor tyrosine kinases (RTK) are major novel targets in anticancer molecular therapy. Accordingly, we characterized the vascular network and the expression pattern of angiogenic RTK in the most frequent pediatric brain tumors. In a retrospective collection of 44 cases (14 astrocytoma, 16 ependymoma and 14 medulloblastoma), immunohistochemistry for VEGFR1, VEGFR2, PDGFRα, PDGFRβ, and c-Kit as well as microvessel labeling with CD34 and SMA were conducted on surgical specimens. We found a significantly higher vascular density in ependymoma. Glomeruloid formations were abundant in medulloblastoma but rare or almost absent in astrocytoma and ependymoma, respectively. C-Kit and VEGFR2 labeled blood vessels were more abundant in ependymoma than in the other two types of tumors. In contrast, medulloblastoma contained higher number of PDGFRα expressing vessels. In tumor cells, we found no VEGFR2 but VEGFR1 expression in all three tumor types. PDGFRα was strongly expressed on the tumor cells in all three malignancies, while PDGFRβ tumor cell expression was present in the majority of medulloblastoma cases. Interestingly, small populations of c-Kit expressing cancer cells were found in a number of medulloblastoma and ependymoma cases. Our study suggests that different angiogenic mechanisms are present in ependymoma and medulloblastoma. Furthermore ependymoma patients may benefit from anti-angiogenic therapies based on the high vascularization as well as the endothelial expression of c-kit and VEGFR2. The expression pattern of the receptors on tumor cells also suggests the targeting of specific angiogenic tyrosine kinase receptors may have direct antitumor activity. Further preclinical and biomarker driven clinical investigations are needed to establish the application of tyrosine kinase inhibitors in the treatment of pediatric brain tumors.
Collapse
Affiliation(s)
- József Virág
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Han HJ, Kim HB, Cha J, Lee JK, Youn H, Chung JK, Kim S, Soh KS. Primo vessel as a novel cancer cell migration path from testis with nanoparticle-labeled and GFP expressing cancer cells. J Acupunct Meridian Stud 2013; 6:298-305. [PMID: 24290794 DOI: 10.1016/j.jams.2013.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/12/2013] [Accepted: 09/23/2013] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND/AIM Recently, a novel circulatory system, the primo vascular system (PVS), was found to be a potent metastatic route of cancer cells. The aim of the current work is to demonstrate that cancer cells injected into the testis migrate through the primo vessel (PV). MATERIALS AND METHODS NCI-H460 cells labeled with fluorescent nanoparticles (FNP) or green fluorescent protein (GFP) gene transfection were injected into testicular parenchyma in 24 rats. After 24 hours of injection, the abdominal cavity was investigated via a stereomicroscope, to detect the PVS, and the samples were analyzed histologically with 4',6-diamidino-2-phenylindole (DAPI) and hematoxylin and eosin. RESULTS Injected cancer cells were detected inside the PVS distributed on the abdominal organs. Some were detected inside intestinal parenchyma into which the attached primo vessels (PVs) entered. CONCLUSION The results supported the fact that the PVS may be a novel migration path of cancer cells, in addition to the lymphatic and hematogenous routes.
Collapse
Affiliation(s)
- Hyun-Jung Han
- Nano Primo Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, South Korea
| | | | | | | | | | | | | | | |
Collapse
|