101
|
Sword J, Masuda T, Croom D, Kirov SA. Evolution of neuronal and astroglial disruption in the peri-contusional cortex of mice revealed by in vivo two-photon imaging. Brain 2013; 136:1446-61. [PMID: 23466395 PMCID: PMC3634194 DOI: 10.1093/brain/awt026] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 12/08/2012] [Accepted: 12/27/2012] [Indexed: 12/14/2022] Open
Abstract
In traumatic brain injury mechanical forces applied to the cranium and brain cause irreversible primary neuronal and astroglial damage associated with terminal dendritic beading and spine loss representing acute damage to synaptic circuitry. Oedema develops quickly after trauma, raising intracranial pressure that results in a decrease of blood flow and consequently in cerebral ischaemia, which can cause secondary injury in the peri-contusional cortex. Spreading depolarizations have also been shown to occur after traumatic brain injury in humans and in animal models and are thought to accelerate and exacerbate secondary tissue injury in at-risk cortical territory. Yet, the mechanisms of acute secondary injury to fine synaptic circuitry within the peri-contusional cortex after mild traumatic brain injury remain unknown. A mild focal cortical contusion model in adult mouse sensory-motor cortex was implemented by the controlled cortical impact injury device. In vivo two-photon microscopy in the peri-contusional cortex was used to monitor via optical window yellow fluorescent protein expressing neurons, enhanced green fluorescent protein expressing astrocytes and capillary blood flow. Dendritic beading in the peri-contusional cortex developed slowly and the loss of capillary blood flow preceded terminal dendritic injury. Astrocytes were swollen indicating oedema and remained swollen during the next 24 h throughout the imaging session. There were no recurrent spontaneous spreading depolarizations in this mild traumatic brain injury model; however, when spreading depolarizations were repeatedly induced outside the peri-contusional cortex by pressure-injecting KCl, dendrites undergo rapid beading and recovery coinciding with passage of spreading depolarizations, as was confirmed with electrophysiological recordings in the vicinity of imaged dendrites. Yet, accumulating metabolic stress resulting from as few as four rounds of spreading depolarization significantly added to the fraction of beaded dendrites that were incapable to recover during repolarization, thus facilitating terminal injury. In contrast, similarly induced four rounds of spreading depolarization in another set of control healthy mice caused no accumulating dendritic injury as dendrites fully recovered from beading during repolarization. Taken together, our data suggest that in the mild traumatic brain injury the acute dendritic injury in the peri-contusional cortex is gated by the decline in the local blood flow, most probably as a result of developing oedema. Furthermore, spreading depolarization is a specific mechanism that could accelerate injury to synaptic circuitry in the metabolically compromised peri-contusional cortex, worsening secondary damage following traumatic brain injury.
Collapse
Affiliation(s)
- Jeremy Sword
- 1 Graduate Program in Neuroscience, Georgia Health Sciences University, Augusta, Georgia 30912, USA
| | - Tadashi Masuda
- 2 Brain and Behaviour Discovery Institute, Georgia Health Sciences University, Augusta, Georgia 30912, USA
| | - Deborah Croom
- 3 Department of Neurosurgery, Georgia Health Sciences University, Augusta, Georgia 30912, USA
| | - Sergei A. Kirov
- 2 Brain and Behaviour Discovery Institute, Georgia Health Sciences University, Augusta, Georgia 30912, USA
- 3 Department of Neurosurgery, Georgia Health Sciences University, Augusta, Georgia 30912, USA
| |
Collapse
|
102
|
Chang WTW, Nyquist PA. Strategies for the use of mechanical ventilation in the neurologic intensive care unit. Neurosurg Clin N Am 2013; 24:407-16. [PMID: 23809034 DOI: 10.1016/j.nec.2013.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mechanical ventilation in neurologically injured patients presents unique challenges. Patients with acute neurologic injuries may require mechanical ventilation for reasons beyond respiratory failure. There is also a subset of pulmonary pathologic abnormality directly associated with neurologic injuries. Balancing the need to maintain brain oxygenation, cerebral perfusion, and control of intracranial pressure can be in conflict with concurrent ventilator strategies aimed at lung protection. Weaning and liberation from mechanical ventilation also require special considerations. These issues are examined in the ventilator management of the neurologically injured patient.
Collapse
Affiliation(s)
- Wan-Tsu W Chang
- Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
103
|
Rockswold SB, Rockswold GL, Zaun DA, Liu J. A prospective, randomized Phase II clinical trial to evaluate the effect of combined hyperbaric and normobaric hyperoxia on cerebral metabolism, intracranial pressure, oxygen toxicity, and clinical outcome in severe traumatic brain injury. J Neurosurg 2013; 118:1317-28. [PMID: 23510092 DOI: 10.3171/2013.2.jns121468] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECT Preclinical and clinical investigations indicate that the positive effect of hyperbaric oxygen (HBO2) for severe traumatic brain injury (TBI) occurs after rather than during treatment. The brain appears better able to use baseline O2 levels following HBO2 treatments. In this study, the authors evaluate the combination of HBO2 and normobaric hyperoxia (NBH) as a single treatment. METHODS Forty-two patients who sustained severe TBI (mean Glasgow Coma Scale [GCS] score 5.7) were prospectively randomized within 24 hours of injury to either: 1) combined HBO2/NBH (60 minutes of HBO2 at 1.5 atmospheres absolute [ATA] followed by NBH, 3 hours of 100% fraction of inspired oxygen [FiO2] at 1.0 ATA) or 2) control, standard care. Treatments occurred once every 24 hours for 3 consecutive days. Intracranial pressure, surrogate markers for cerebral metabolism, and O2 toxicity were monitored. Clinical outcome was assessed at 6 months using the sliding dichotomized Glasgow Outcome Scale (GOS) score. Mixed-effects linear modeling was used to statistically test differences between the treatment and control groups. Functional outcome and mortality rates were compared using chi-square tests. RESULTS There were no significant differences in demographic characteristics between the 2 groups. In comparison with values in the control group, brain tissue partial pressure of O2 (PO2) levels were significantly increased during and following combined HBO2/NBH treatments in both the noninjured and pericontusional brain (p < 0.0001). Microdialysate lactate/pyruvate ratios were significantly decreased in the noninjured brain in the combined HBO2/NBH group as compared with controls (p < 0.0078). The combined HBO2/NBH group's intracranial pressure values were significantly lower than those of the control group during treatment, and the improvement continued until the next treatment session (p < 0.0006). The combined HBO2/NBH group's levels of microdialysate glycerol were significantly lower than those of the control group in both noninjured and pericontusional brain (p < 0.001). The combined HBO2/NBH group's level of CSF F2-isoprostane was decreased at 6 hours after treatment as compared with that of controls, but the difference did not quite reach statistical significance (p = 0.0692). There was an absolute 26% reduction in mortality for the combined HBO2/NBH group (p = 0.048) and an absolute 36% improvement in favorable outcome using the sliding dichotomized GOS (p = 0.024) as compared with the control group. CONCLUSIONS In this Phase II clinical trial, in comparison with standard care (control treatment) combined HBO2/NBH treatments significantly improved markers of oxidative metabolism in relatively uninjured brain as well as pericontusional tissue, reduced intracranial hypertension, and demonstrated improvement in markers of cerebral toxicity. There was significant reduction in mortality and improved favorable outcome as measured by GOS. The combination of HBO2 and NBH therapy appears to have potential therapeutic efficacy as compared with the 2 treatments in isolation. CLINICAL TRIAL REGISTRATION NO.: NCT00170352 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Sarah B Rockswold
- Department of Physical Medicine and Rehabilitation, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | |
Collapse
|
104
|
NIELSEN TH, BINDSLEV TT, PEDERSEN SM, TOFT P, OLSEN NV, NORDSTRÖM CH. Cerebral energy metabolism during induced mitochondrial dysfunction. Acta Anaesthesiol Scand 2013; 57:229-35. [PMID: 23017022 DOI: 10.1111/j.1399-6576.2012.02783.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND In patients with traumatic brain injury as well as stroke, impaired cerebral oxidative energy metabolism may be an important factor contributing to the ultimate degree of tissue damage. We hypothesize that mitochondrial dysfunction can be diagnosed bedside by comparing the simultaneous changes in brain tissue oxygen tension (PbtO(2)) and cerebral cytoplasmatic redox state. The study describes cerebral energy metabolism during mitochondrial dysfunction induced by sevoflurane in piglets. METHODS Ten piglets were included, seven in the experimental group (anesthetized with sevoflurane) and three in the control group (anesthetized with midazolam). PbtO(2) and cerebral levels of glucose, lactate, and pyruvate were monitored bilaterally. The biochemical variables were obtained by intracerebral microdialysis. RESULTS All global variables were within normal range and did not differ significantly between the groups except for blood lactate that was slightly higher in the experimental group. Mitochondrial dysfunction was observed in the group of animals initially anesthetized with sevoflurane. Cerebral glucose was significantly lower in the experimental group than in the control group whereas lactate and lactate/pyruvate ratio were significantly higher. Pyruvate and tissue oxygen tension remained within normal range in both groups. Changes of intracerebral variables indicating mitochondrial dysfunction were present already from the very start of the monitoring period. CONCLUSION Intracerebral microdialysis revealed mitochondrial dysfunction by marked increases in cerebral lactate and lactate/pyruvate ratio simultaneously with normal levels of pyruvate and a normal PbtO(2). This metabolic pattern is distinctively different from cerebral ischemia, which is characterized by simultaneous decreases in PbtO(2) and intracerebral pyruvate.
Collapse
Affiliation(s)
- T. H. NIELSEN
- Departments of Anaesthesiology and Neurosurgery; Odense University Hospital; Odense C; Denmark
| | - T. T. BINDSLEV
- Departments of Anaesthesiology and Neurosurgery; Odense University Hospital; Odense C; Denmark
| | - S. M. PEDERSEN
- Departments of Anaesthesiology and Neurosurgery; Odense University Hospital; Odense C; Denmark
| | - P. TOFT
- Departments of Anaesthesiology and Neurosurgery; Odense University Hospital; Odense C; Denmark
| | - N. V. OLSEN
- Departments of Anaesthesiology and Neurosurgery; Odense University Hospital; Odense C; Denmark
| | - C. H. NORDSTRÖM
- Departments of Anaesthesiology and Neurosurgery; Odense University Hospital; Odense C; Denmark
| |
Collapse
|
105
|
Abstract
Traumatic brain injury (TBI) is the most common cause of acquired disability in children. Metabolic defects, and in particular mitochondrial dysfunction, are important contributors to brain injury after TBI. Studies of metabolic dysfunction are limited, but magnetic resonance methods suitable for use in children are overcoming this limitation. We performed noninvasive measurements of cerebral blood flow and oxygen metabolic index (OMI) to assess metabolic dysfunction in children with severe TBI. Cerebral blood flow is variable after TBI but hypoperfusion and low OMI are predominant, supporting metabolic dysfunction. This finding is consistent with preclinical and adult clinical studies of brain metabolism and mitochondrial dysfunction after TBI.
Collapse
|
106
|
Effects of trauma, hemorrhage and resuscitation in aged rats. Brain Res 2012; 1496:28-35. [PMID: 23274538 DOI: 10.1016/j.brainres.2012.12.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 01/06/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of death in the elderly and the incidence of mortality and morbidity increases with age. This study tested the hypothesis that, after TBI followed by hemorrhagic hypotension (HH) and resuscitation, cerebral blood flow (CBF) would decrease more in aged compared with young rats. Young adult (4-6 months) and aged (20-24 months) male Sprague-Dawley rats were anesthetized with isoflurane, prepared for parasagittal fluid percussion injury (FPI) and randomly assigned to receive either moderate FPI (2.0 atm) only, moderate FPI+severe HH (40 mm Hg for 45 min) followed by return of shed blood, or sham FPI. Intracranial pressure (ICP), CBF, and mean arterial pressure (MAP) were measured and, after twenty-four hours survival, the rats were euthanized and their brains were sectioned and stained with Fluoro-Jade (FJ), a dye that stains injured neurons. After moderate FPI, severe HH and reinfusion of shed blood, MAP and CBF were significantly reduced in the aged group, compared to the young group. Both FPI and FPI+HH groups significantly increased the numbers of FJ-positive neurons in hippocampal cell layers CA1, CA2 and CA3 (p<0.05 vs Sham) in young and aged rats. Despite differences in post-resuscitation MAP and CBF, there were no differences in the numbers of FJ-positive neurons in aged compared to young rats after FPI, HH and blood resuscitation. Although cerebral hypoperfusion in the aged rats was not associated with increased hippocampal cell injury, the trauma-induced reductions in CBF and post-resuscitation blood pressure may have resulted in damage to brain regions that were not examined or neurological or behavioral impairments that were not assessed in this study. Therefore, the maintenance of normal blood pressure and cerebral perfusion would be advisable in the treatment of elderly patients after TBI.
Collapse
|
107
|
Balancing the Potential Risks and Benefits of Out-of-Hospital Intubation in Traumatic Brain Injury: The Intubation/Hyperventilation Effect. Ann Emerg Med 2012; 60:732-6. [DOI: 10.1016/j.annemergmed.2012.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 06/11/2012] [Accepted: 06/25/2012] [Indexed: 11/20/2022]
|
108
|
The frequency of cerebral ischemia/hypoxia in pediatric severe traumatic brain injury. Childs Nerv Syst 2012; 28:1911-8. [PMID: 22706985 DOI: 10.1007/s00381-012-1837-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 06/04/2012] [Indexed: 10/28/2022]
Abstract
INTRODUCTION The frequency of adverse events, such as cerebral ischemia, following traumatic brain injury (TBI) is often debated. Point-in-time monitoring modalities provide important information, but have limited temporal resolution. PURPOSE This study examines the frequency of an adverse event as a point prevalence at 24 and 72 h post-injury, compared with the cumulative burden measured as a frequency of the event over the full duration of monitoring. METHODS Reduced brain tissue oxygenation (PbtO(2) < 10 mmHg) was the adverse event chosen for examination. Data from 100 consecutive children with severe TBI who received PbtO(2) monitoring were retrospectively examined, with data from 87 children found suitable for analysis. Hourly recordings were used to identify episodes of PbtO(2) less than 10 mmHg, at 24 and 72 h post-injury, and for the full duration of monitoring. RESULTS Reduced PbtO(2) was more common early than late after injury. The point prevalence of reduced PbtO(2) at the selected time points was relatively low (10 % of patients at 24 h and no patients at the 72-h mark post-injury). The cumulative burden of these events over the full duration of monitoring was relatively high: 50 % of patients had episodes of PbtO(2) less than 10 mmHg and 88 % had PbtO(2) less than 20 mmHg. CONCLUSION Point-in-time monitoring in a dynamic condition like TBI may underestimate the overall frequency of adverse events, like reduced PbtO(2), particularly when compared with continuous monitoring, which also has limitations, but provides a dynamic assessment over a longer time period.
Collapse
|
109
|
Berry C, Ley EJ, Bukur M, Malinoski D, Margulies DR, Mirocha J, Salim A. Redefining hypotension in traumatic brain injury. Injury 2012; 43:1833-7. [PMID: 21939970 DOI: 10.1016/j.injury.2011.08.014] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 08/02/2011] [Accepted: 08/02/2011] [Indexed: 02/02/2023]
Abstract
BACKGROUND Systemic hypotension is a well documented predictor of increased mortality following traumatic brain injury (TBI). Hypotension is traditionally defined as systolic blood pressure (SBP)<90 mmHg. Recent evidence defines hypotension by a higher SBP in injured (non-TBI) trauma patients. We hypothesize that hypotension threshold requires a higher SBP in isolated moderate to severe TBI. PATIENTS AND METHODS A retrospective database review of all adults (≥ 15 years) with isolated moderate to severe TBI (head abbreviated injury score (AIS)≥ 3, all other AIS ≤ 3), admitted from five Level I and eight Level II trauma centres (Los Angeles County), between 1998 and 2005. Several fit statistic analyses were performed for each admission SBP from 60 to 180 mmHg to identify the model that most accurately defined hypotension for three age groups: 15-49 years, 50-69 years, and ≥ 70 years. The main outcome variable was mortality, and the optimal definition of hypotension for each group was determined from the best fit model. Adjusted odds ratios (AOR) were then calculated to determine increased odds in mortality for the defined optimal SBP within each age group. RESULTS A total of 15,733 patients were analysed. The optimal threshold of hypotension according to the best fit model was SBP of 110 mmHg for patients 15-49 years (AOR 1.98, CI 1.65-2.39, p<0.0001), 100 mmHg for patients 50-69 years (AOR 2.20, CI 1.46-3.31, p=0.0002), and 110 mmHg for patients ≥ 70 years (AOR 1.92, CI 1.35-2.74, p=0.0003). CONCLUSIONS Patients with isolated moderate to severe TBI should be considered hypotensive for SBP<110 mmHg. Further research should confirm this new definition of hypotension by correlation with indices of perfusion.
Collapse
Affiliation(s)
- Cherisse Berry
- Department of Surgery, Division of Trauma and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | | | | | | | | | | | | |
Collapse
|
110
|
Abstract
OBJECTIVES We have sought to develop an automated methodology for the continuous updating of optimal cerebral perfusion pressure (CPPopt) for patients after severe traumatic head injury, using continuous monitoring of cerebrovascular pressure reactivity. We then validated the CPPopt algorithm by determining the association between outcome and the deviation of actual CPP from CPPopt. DESIGN Retrospective analysis of prospectively collected data. SETTING Neurosciences critical care unit of a university hospital. PATIENTS A total of 327 traumatic head-injury patients admitted between 2003 and 2009 with continuous monitoring of arterial blood pressure and intracranial pressure. MEASUREMENTS AND MAIN RESULTS Arterial blood pressure, intracranial pressure, and CPP were continuously recorded, and pressure reactivity index was calculated online. Outcome was assessed at 6 months. An automated curve fitting method was applied to determine CPP at the minimum value for pressure reactivity index (CPPopt). A time trend of CPPopt was created using a moving 4-hr window, updated every minute. Identification of CPPopt was, on average, feasible during 55% of the whole recording period. Patient outcome correlated with the continuously updated difference between median CPP and CPPopt (chi-square=45, p<.001; outcome dichotomized into fatal and nonfatal). Mortality was associated with relative "hypoperfusion" (CPP<CPPopt), severe disability with "hyperperfusion" (CPP>CPPopt), and favorable outcome was associated with smaller deviations of CPP from the individualized CPPopt. While deviations from global target CPP values of 60 mm Hg and 70 mm Hg were also related to outcome, these relationships were less robust. CONCLUSIONS Real-time CPPopt could be identified during the recording time of majority of the patients. Patients with a median CPP close to CPPopt were more likely to have a favorable outcome than those in whom median CPP was widely different from CPPopt. Deviations from individualized CPPopt were more predictive of outcome than deviations from a common target CPP. CPP management to optimize cerebrovascular pressure reactivity should be the subject of future clinical trial in severe traumatic head-injury patients.
Collapse
|
111
|
Budohoski KP, Czosnyka M, de Riva N, Smielewski P, Pickard JD, Menon DK, Kirkpatrick PJ, Lavinio A. The relationship between cerebral blood flow autoregulation and cerebrovascular pressure reactivity after traumatic brain injury. Neurosurgery 2012; 71:652-60; discussion 660-1. [PMID: 22653390 DOI: 10.1227/neu.0b013e318260feb1] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Cerebrovascular pressure reactivity is the principal mechanism of cerebral autoregulation. Assessment of cerebral autoregulation can be performed by using the mean flow index (Mx) based on transcranial Doppler ultrasonography. Cerebrovascular pressure reactivity can be monitored by using the pressure reactivity index (PRx), which is based on intracranial pressure monitoring. From a practical point of view, PRx can be monitored continuously, whereas Mx can only be monitored in short periods when transcranial Doppler probes can be applied. OBJECTIVE To assess to what degree impairment in pressure reactivity (PRx) is associated with impairment in cerebral autoregulation (Mx). METHODS A database of 345 patients with traumatic brain injury was screened for data availability including simultaneous Mx and PRx monitoring. Absolute differences, temporal changes, and association with outcome of the 2 indices were analyzed. RESULTS A total of 486 recording sessions obtained from 201 patients were available for analysis. Overall a moderate correlation between Mx and PRx was found (r = 0.58; P < .001). The area under the receiver operator characteristic curve designed to detect the ability of PRx to predict impaired cerebral autoregulation was 0.700 (95% confidence interval: 0.607-0.880). Discrepancies between Mx and PRx were most pronounced at an intracranial pressure of 30 mm Hg and they were significantly larger for patients who died (P = .026). Both Mx and PRx were significantly lower at day 1 postadmission in patients who survived than in those who died (P < .01). CONCLUSION There is moderate agreement between Mx and PRx. Discrepancies between Mx and PRx are particularly significant in patients with sustained intracranial hypertension. However, for clinical purposes, there is only limited interchangeability between indices.
Collapse
Affiliation(s)
- Karol P Budohoski
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Kim J, Whyte J, Patel S, Europa E, Slattery J, Coslett HB, Detre JA. A perfusion fMRI study of the neural correlates of sustained-attention and working-memory deficits in chronic traumatic brain injury. Neurorehabil Neural Repair 2012; 26:870-80. [PMID: 22357634 PMCID: PMC5650500 DOI: 10.1177/1545968311434553] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Given that traumatic brain injury (TBI) results in chronic alteration of baseline cerebral perfusion, a perfusion functional MRI (fMRI) method that dissociates resting- and task-related cerebral blood flow (CBF) changes can be useful in noninvasively investigating the neural correlates of cognitive dysfunction and recovery in TBI. OBJECTIVE The authors used continuous arterial spin-labeled (ASL) perfusion fMRI to characterize CBF at rest and during sustained-attention and working-memory tasks. METHODS A total of 18 to 21 individuals with moderate to severe TBI and 14 to 18 demographically matched healthy controls completed 3 continuous 6-minute perfusion fMRI scans (resting, visual sustained attention, and 2-back working memory). RESULTS For both tasks, TBI participants showed worse behavioral performance than controls. Voxelwise neuroimaging analysis of the 2-back task found that group differences in task-induced CBF changes were localized to bilateral superior occipital cortices and the left superior temporal cortex. Whereas controls deactivated these areas during task performance, TBI participants tended to activate these same areas. These regions were among those found to be disproportionately hypoperfused at rest after TBI. For both tasks, the control and TBI groups showed different patterns of correlation between performance and task-related CBF changes. CONCLUSIONS ASL perfusion fMRI demonstrated differences between individuals with TBI and healthy controls in resting perfusion and in task-evoked CBF changes as well as different patterns of performance-activation correlation. These results are consistent with the notion that sensory/attentional modulation deficits contribute to higher cognitive dysfunction in TBI.
Collapse
Affiliation(s)
- Junghoon Kim
- Moss Rehabilitation Research Institute, Albert Einstein Healthcare Network, Elkins Park, PA 19027, USA.
| | | | | | | | | | | | | |
Collapse
|
113
|
Kaloostian P, Robertson C, Gopinath SP, Stippler M, King CC, Qualls C, Yonas H, Nemoto EM. Outcome prediction within twelve hours after severe traumatic brain injury by quantitative cerebral blood flow. J Neurotrauma 2012; 29:727-34. [PMID: 22111910 DOI: 10.1089/neu.2011.2147] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We measured quantitative cortical mantle cerebral blood flow (CBF) by stable xenon computed tomography (CT) within the first 12 h after severe traumatic brain injury (TBI) to determine whether neurologic outcome can be predicted by CBF stratification early after injury. Stable xenon CT was used for quantitative measurement of CBF (mL/100 g/min) in 22 cortical mantle regions stratified as follows: low (0-8), intermediate (9-30), normal (31-70), and hyperemic (>70) in 120 patients suffering severe (Glasgow Coma Scale [GCS] score ≤8) TBI. For each of these CBF strata, percentages of total cortical mantle volume were calculated. Outcomes were assessed by Glasgow Outcome Scale (GOS) score at discharge (DC), and 1, 3, and 6 months after discharge. Quantitative cortical mantle CBF differentiated GOS 1 and GOS 2 (dead or vegetative state) from GOS 3-5 (severely disabled to good recovery; p<0.001). Receiver operating characteristic (ROC) curve analysis for percent total normal plus hyperemic flow volume (TNHV) predicting GOS 3-5 outcome at 6 months for CBF measured <6 and <12 h after injury showed ROC area under the curve (AUC) cut-scores of 0.92 and 0.77, respectively. In multivariate analysis, percent TNHV is an independent predictor of GOS 3-5, with an odds ratio of 1.460 per 10 percentage point increase, as is initial GCS score (OR=1.090). The binary version of the Marshall CT score was an independent predictor of 6-month outcome, whereas age was not. These results suggest that quantitative cerebral cortical CBF measured within the first 6 and 12 h after TBI predicts 6-month outcome, which may be useful in guiding patient care and identifying patients for randomized clinical trials. A larger multicenter randomized clinical trial is indicated.
Collapse
Affiliation(s)
- Paul Kaloostian
- Department of Neurosurgery, University of New Mexico, Albuquerque, New Mexico 87131-0001, USA
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Relationship between systemic glucose and cerebral glucose is preserved in patients with severe traumatic brain injury, but glucose delivery to the brain may become limited when oxidative metabolism is impaired: implications for glycemic control. Crit Care Med 2012; 40:1785-91. [PMID: 22610183 DOI: 10.1097/ccm.0b013e318246bd45] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To clarify the dynamics of glucose delivery to the brain and the effects of changes in blood glucose after severe traumatic brain injury. DESIGN Retrospective analysis of a prospective observational cohort study. SETTING Neurosurgical intensive care unit of a university hospital. PATIENTS Seventeen patients with acute traumatic brain injury monitored with cerebral and subcutaneous microdialysis. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS For continuous, accurate systemic monitoring, glucose was measured in the interstitial space of subcutaneous adipose tissue using microdialysis, and 39 specific episodes of spontaneous rises in glucose were identified. During these episodes, there was a significant positive linear relationship between systemic glucose levels and brain glucose concentrations measured by microdialysis (p < .0001). The basal lactate/pyruvate ratio, with a threshold of 25, was adopted to distinguish between disturbed and presumably preserved cerebral oxidative metabolism. Using normal vs. elevated lactate/pyruvate ratio as variable factor, the relationship between brain and systemic glucose during the episodes could be described by two significantly distinct parallel lines (p = .0001), which indicates a strong additive effect of subcutaneous glucose and lactate/pyruvate ratio in determining brain glucose. The line describing the relationship under disturbed metabolic conditions was lower than in presumably intact metabolic conditions, with a significant difference of 0.648 ± 0.192 mM (p = .002). This let us to accurately predict that in this situation systemic glucose concentrations in the lower range of normality would result in critical brain glucose levels. CONCLUSIONS The linear relationship between systemic and brain glucose in healthy subjects is preserved in traumatic brain-injured patients. As a consequence, in brain tissue where oxidative metabolism is disturbed, brain glucose concentrations might possibly drop below the critical threshold of 0.8 mM to 1.0 mM when there is a reduction in systemic glucose toward the lower limits of the "normal" range.
Collapse
|
115
|
Solano C. ME, Castillo B. I, Niño de Mejía MC. Hypocapnia in Neuroanesthesia: Current Situation. COLOMBIAN JOURNAL OF ANESTHESIOLOGY 2012. [DOI: 10.1016/s2256-2087(12)70029-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
116
|
Harris NG, Mironova YA, Chen SF, Richards HK, Pickard JD. Preventing flow-metabolism uncoupling acutely reduces axonal injury after traumatic brain injury. J Neurotrauma 2012; 29:1469-82. [PMID: 22321027 PMCID: PMC3335110 DOI: 10.1089/neu.2011.2161] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have previously presented evidence that the development of secondary traumatic axonal injury is related to the degree of local cerebral blood flow (LCBF) and flow-metabolism uncoupling. We have now tested the hypothesis that augmenting LCBF in the acute stages after brain injury prevents further axonal injury. Data were acquired from rats with or without acetazolamide (ACZ) that was administered immediately following controlled cortical impact injury to increase cortical LCBF. Local cerebral metabolic rate for glucose (LCMRglc) and LCBF measurements were obtained 3 h post-trauma in the same rat via ¹⁸F-fluorodeoxyglucose and ¹⁴C-iodoantipyrine co-registered autoradiographic images, and compared to the density of damaged axonal profiles in adjacent sections, and in additional groups at 24 h used to assess different populations of injured axons stereologically. ACZ treatment significantly and globally elevated LCBF twofold above untreated-injured rats at 3 h (p<0.05), but did not significantly affect LCMRglc. As a result, ipsilateral LCMRglc:LCBF ratios were reduced by twofold to sham-control levels, and the density of β-APP-stained axons at 24 h was significantly reduced in most brain regions compared to the untreated-injured group (p<0.01). Furthermore, early LCBF augmentation prevented the injury-associated increase in the number of stained axons from 3-24 h. Additional robust stereological analysis of impaired axonal transport and neurofilament compaction in the corpus callosum and cingulum underlying the injury core confirmed the amelioration of β-APP axon density, and showed a trend, but no significant effect, on RMO14-positive axons. These data underline the importance of maintaining flow-metabolism coupling immediately after injury in order to prevent further axonal injury, in at least one population of injured axons.
Collapse
Affiliation(s)
- Neil G Harris
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Box 957039, Los Angeles, CA 90095-7039, USA.
| | | | | | | | | |
Collapse
|
117
|
Solano C. ME, Castillo B. I, Niño De Mejía MC. Hipocapnia en neuroanestesia: estado actual. COLOMBIAN JOURNAL OF ANESTHESIOLOGY 2012. [DOI: 10.1016/s0120-3347(12)70029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
118
|
Ragan DK, McKinstry R, Benzinger T, Leonard J, Pineda JA. Depression of whole-brain oxygen extraction fraction is associated with poor outcome in pediatric traumatic brain injury. Pediatr Res 2012; 71:199-204. [PMID: 22258132 PMCID: PMC3593145 DOI: 10.1038/pr.2011.31] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a leading cause of death and disability in children. Metabolic failure is an integral component of the pathological aftermath of TBI. The oxygen extraction fraction (OEF) is a valuable parameter for characterization and description of metabolic abnormalities; however, OEF measurement has required either invasive procedures or the use of ionizing radiation, which significantly limits its use in pediatric research. RESULTS Patients with TBI had depressed OEF levels that correlated with the severity of injury. In addition, the OEF measured within 2 weeks of injury was predictive of patient outcome at 3 mo after injury. In pediatric TBI patients, low OEF-a marker of metabolic dysfunction-correlates with the severity of injury and outcome. DISCUSSION Our findings support previous literature on the role of metabolic dysfunction after TBI. METHODS Using a recently developed magnetic resonance (MR) technique for the measurement of oxygen saturation, we determined the whole-brain OEF in both pediatric TBI patients and in healthy controls. Injury and outcome were classified using pediatric versions of the Glasgow Coma Scale (GCS) and Glasgow Outcome Scale-Extended (GOS-E), respectively.
Collapse
Affiliation(s)
- Dustin K. Ragan
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri
| | - Robert McKinstry
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri
| | - Tammie Benzinger
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri
| | - Jeffrey Leonard
- Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri
| | - Jose A. Pineda
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri,()
| |
Collapse
|
119
|
Hypocapnia in Neuroanesthesia: Current Situation. COLOMBIAN JOURNAL OF ANESTHESIOLOGY 2012. [DOI: 10.1097/01819236-201240020-00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
120
|
Scalfani MT, Dhar R, Zazulia AR, Videen TO, Diringer MN. Effect of osmotic agents on regional cerebral blood flow in traumatic brain injury. J Crit Care 2011; 27:526.e7-12. [PMID: 22176808 DOI: 10.1016/j.jcrc.2011.10.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 10/21/2011] [Indexed: 11/16/2022]
Abstract
PURPOSE Cerebral blood flow (CBF) is reduced after severe traumatic brain injury (TBI) with considerable regional variation. Osmotic agents are used to reduce elevated intracranial pressure (ICP), improve cerebral perfusion pressure, and presumably improve CBF. Yet, osmotic agents have other physiologic effects that can influence CBF. We sought to determine the regional effect of osmotic agents on CBF when administered to treat intracranial hypertension. MATERIALS AND METHODS In 8 patients with acute TBI, we measured regional CBF with positron emission tomography before and 1 hour after administration of equi-osmolar 20% mannitol (1 g/kg) or 23.4% hypertonic saline (0.686 mL/kg) in regions with focal injury and baseline hypoperfusion (CBF <25 mL per 100 g/min). RESULTS The ICP fell (22.4 ± 5.1 to 15.7 ± 7.2 mm Hg, P = .007), and cerebral perfusion pressure rose (75.7 ± 5.9 to 81.9 ± 10.3 mm Hg, P = .03). Global CBF tended to rise (30.9 ± 3.7 to 33.1 ± 4.2 mL per 100 g/min, P = .07). In regions with focal injury, baseline flow was 25.7 ± 9.1 mL per 100 g/min and was unchanged; in hypoperfused regions (15% of regions), flow rose from 18.6 ± 5.0 to 22.4 ± 6.4 mL per 100 g/min (P < .001). Osmotic therapy reduced the number of hypoperfused brain regions by 40% (P < .001). CONCLUSION Osmotic agents, in addition to lowering ICP, improve CBF to hypoperfused brain regions in patients with intracranial hypertension after TBI.
Collapse
Affiliation(s)
- Michael T Scalfani
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
121
|
Silva S, Geeraerts T. Pourquoi et comment contrôler les agressions cérébrales secondaires en urgence lors d’une d’une agression cérébrale. MEDECINE INTENSIVE REANIMATION 2011. [DOI: 10.1007/s13546-011-0326-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
122
|
Diringer MN, Zazulia AR, Powers WJ. Does Ischemia Contribute to Energy Failure in Severe TBI? Transl Stroke Res 2011; 2:517-23. [DOI: 10.1007/s12975-011-0119-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 10/12/2011] [Accepted: 10/14/2011] [Indexed: 12/12/2022]
|
123
|
Cottenceau V, Masson F, Mahamid E, Petit L, Shik V, Sztark F, Zaaroor M, Soustiel JF. Comparison of Effects of Equiosmolar Doses of Mannitol and Hypertonic Saline on Cerebral Blood Flow and Metabolism in Traumatic Brain Injury. J Neurotrauma 2011; 28:2003-12. [DOI: 10.1089/neu.2011.1929] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Vincent Cottenceau
- Service d'Anesthésie Réanimation 1, Hôpital Pellegrin, CHU de Bordeaux, France
| | - Francoise Masson
- Service d'Anesthésie Réanimation 1, Hôpital Pellegrin, CHU de Bordeaux, France
| | - Eugenia Mahamid
- Department of Neurosurgery, Rambam Medical Center, Faculty of Medicine, Technion, Haifa, Israel
| | - Laurent Petit
- Service d'Anesthésie Réanimation 1, Hôpital Pellegrin, CHU de Bordeaux, France
| | - Venyamin Shik
- Department of Neurosurgery, Rambam Medical Center, Faculty of Medicine, Technion, Haifa, Israel
| | - Francois Sztark
- Service d'Anesthésie Réanimation 1, Hôpital Pellegrin, CHU de Bordeaux, France
| | - Menashe Zaaroor
- Department of Neurosurgery, Rambam Medical Center, Faculty of Medicine, Technion, Haifa, Israel
| | - Jean Francois Soustiel
- Department of Neurosurgery, Rambam Medical Center, Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
124
|
Sozda CN, Larson MJ, Kaufman DA, Schmalfuss IM, Perlstein WM. Error-related processing following severe traumatic brain injury: an event-related functional magnetic resonance imaging (fMRI) study. Int J Psychophysiol 2011; 82:97-106. [PMID: 21756946 PMCID: PMC3199028 DOI: 10.1016/j.ijpsycho.2011.06.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/10/2011] [Accepted: 06/27/2011] [Indexed: 11/24/2022]
Abstract
Continuous monitoring of one's performance is invaluable for guiding behavior towards successful goal attainment by identifying deficits and strategically adjusting responses when performance is inadequate. In the present study, we exploited the advantages of event-related functional magnetic resonance imaging (fMRI) to examine brain activity associated with error-related processing after severe traumatic brain injury (sTBI). fMRI and behavioral data were acquired while 10 sTBI participants and 12 neurologically-healthy controls performed a task-switching cued-Stroop task. fMRI data were analyzed using a random-effects whole-brain voxel-wise general linear model and planned linear contrasts. Behaviorally, sTBI patients showed greater error-rate interference than neurologically-normal controls. fMRI data revealed that, compared to controls, sTBI patients showed greater magnitude error-related activation in the anterior cingulate cortex (ACC) and an increase in the overall spatial extent of error-related activation across cortical and subcortical regions. Implications for future research and potential limitations in conducting fMRI research in neurologically-impaired populations are discussed, as well as some potential benefits of employing multimodal imaging (e.g., fMRI and event-related potentials) of cognitive control processes in TBI.
Collapse
Affiliation(s)
- Christopher N. Sozda
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida
| | - Michael J. Larson
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida
- Departments of Psychology and Neuroscience, Brigham Young University, Provo, Utah
| | | | - Ilona M. Schmalfuss
- Department of Medicine, University of Florida, Gainesville, Florida
- North Florida/South Georgia Veterans Administration Hospital, Gainesville, Florida
| | - William M. Perlstein
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida
- Department of Psychiatry, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
125
|
Adelson PD, Srinivas R, Chang Y, Bell M, Kochanek PM. Cerebrovascular response in children following severe traumatic brain injury. Childs Nerv Syst 2011; 27:1465-76. [PMID: 21559825 DOI: 10.1007/s00381-011-1476-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 04/28/2011] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To describe the pathophysiologic response in cerebral blood flow (CBF) and autoregulation after severe traumatic brain injury (TBI), Glasgow Coma Score (GCS) ≤8 on admission, in children, defining a baseline for future studies. METHODS Retrospective chart review of 95 patients following TBI, ages 0.1-18.4 years (<5 years (n = 44), <2 years (n = 17)) for CBF using Xenon Computerized Tomography (XeCT) over a 10-year period and 6-month Glasgow Outcome Scores (GOS). A total of 140 CBF studies were performed variably from admission up to post injury day (PID) 9; 27 patients underwent repeat CBF study after PaCO(2) was manipulated to determine CO(2) vasoreactivity (CO(2)VR). RESULTS Mean CBF on admission (PID 0, n = 26) was 32.05 ± 21.45 ml/100 g/min (mean ± SEM) and was ≤20 ml/100 g/min in eight patients. At PID 1-2, mean CBF increased to 55.36 ± 23.11 ml/100 g/min. There was significant differences in mean CBF of "favorable" outcomes (GOS ≥ 4) versus "unfavorable" outcome (GOS ≤ 3) (61.74 ± 18.27 vs. 46.54 ± 26.26, respectively (P = 0.01)). "Unfavorable" outcomes were seen in all patients with CBF ≤20 ml/100 mg/min during PID 0-2 and in 76.5% of children <2 years. CO(2)VR <2%/Torr PaCO(2) within PID 0-2 was significantly associated with "unfavorable" outcome (P = 0.029). CONCLUSION Younger age, early or later low CBF, and CO(2)VR <2%/Torr PaCO(2) were correlated with poorer outcomes in children. This represents the largest experience with XeCT CBF in children and confirms our preliminary report of low early CBF after TBI in children, disturbed CO(2)VR, and relationship of low CBF and unfavorable outcome.
Collapse
Affiliation(s)
- P David Adelson
- Phoenix Children's Neuroscience Institute and Pediatric Neurosurgery, AZ 85016, USA.
| | | | | | | | | |
Collapse
|
126
|
Vilalta A, Sahuquillo J, Merino MA, Poca MA, Garnacho A, Martínez-Valverde T, Dronavalli M. Normobaric hyperoxia in traumatic brain injury: does brain metabolic state influence the response to hyperoxic challenge? J Neurotrauma 2011; 28:1139-48. [PMID: 21534719 DOI: 10.1089/neu.2010.1720] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study sought to investigate whether normobaric hyperoxia (NH) improves brain oxygenation and brain metabolism in the early phase of severe and moderate traumatic brain injury (TBI) and whether this effect occurs uniformly in all TBI patients. Thirty patients (9 women and 21 men) with a median initial Glasgow Coma Score (GCS) of 6 (range, 3-12) were monitored using a brain microdialysis (MD) catheter with a brain tissue oxygen sensor (PtiO(2)) placed in the least-injured hemisphere. The inspired oxygen fraction was increased to 100% for 2 h. Patients were divided into two groups: Group 1: patients with baseline brain lactate ≤3 mmol/L and Group 2: patients with baseline brain lactate >3 mmol/L, and therefore increased anaerobic metabolism in the brain. In Group 1, no significant changes in brain metabolic parameters were found after hyperoxic challenge, whereas a significant increase in glucose and a decrease in the lactate-pyruvate ratio (LPR) were found in Group 2. In this latter group of patients, brain glucose increased on average by 17.9% (95% CI, +9.2% to +26.6%, p<0.001) and LPR decreased by 11.6% (95% CI, -16.2% to -6.9%, p<0.001). The results of our study show that moderate and severe TBI may induce metabolic alterations in the brain, even in macroscopically normal brain tissue. We observed that NH increased PaO(2) and PtiO(2) and significantly decreased LPR in patients in whom baseline brain lactate levels were increased, suggesting that NH improved the brain redox state. In patients with normal baseline brain lactate levels, we did not find any significant changes in the metabolic variables after NH. This suggests that the baseline metabolic state should be taken into account when applying NH to patients with TBI. This maneuver may only be effective in a specific group of patients.
Collapse
Affiliation(s)
- Anna Vilalta
- Neurotraumatology and Neurosurgery Research Unit, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Paseo Vall d'Hebron 119-129, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
127
|
De Fazio M, Rammo R, O'Phelan K, Bullock MR. Alterations in cerebral oxidative metabolism following traumatic brain injury. Neurocrit Care 2011; 14:91-6. [PMID: 21207188 DOI: 10.1007/s12028-010-9494-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) generates regional alterations in cerebral metabolism, leading to the potential evolution of persistent metabolic dysfunction. In the case of penetrating, firearm-related TBI, the pathophysiological mechanisms underlying these acute-phase metabolic derangements are not entirely understood-hindering the potential effectiveness of therapeutic intervention. The use of cerebral microdialysis to monitor biochemical alterations that occur, post-TBI, provides critical insight into the events that perpetuate neurological deterioration. METHODS Cerebral microdialysis was used to monitor alterations in the brain tissue chemistry of a 22-year-old female patient who sustained a penetrating gunshot wound to the head. Extracellular glucose, lactate, pyruvate, and lactate pyruvate ratio (LPR) were monitored over the course of the first-week post-injury. RESULTS Analysis of the microdialysate revealed sustained elevations in LPR with peaks in excess of those seen in patients who have sustained permanent ischemic injury. This interval of persistently elevated LPR was followed by a spontaneous reduction of values, to levels below the defined threshold for metabolic crisis, over a period of several days. CONCLUSIONS Microdialysis studies may significantly improve the understanding of the metabolic alterations that occur in patients who sustain a variety of forms of neurotrauma. Ultimately, monitoring these variations in brain tissue chemistry will improve the insight into the neuropathological mechanisms underlying penetrating traumatic brain injury, and enhance the therapeutic approach of these patients.
Collapse
Affiliation(s)
- Michael De Fazio
- University of Miami, Miller School of Medicine, Miami, Florida, USA
| | | | | | | |
Collapse
|
128
|
Dumont TM, Visioni AJ, Rughani AI, Tranmer BI, Crookes B. Inappropriate prehospital ventilation in severe traumatic brain injury increases in-hospital mortality. J Neurotrauma 2011; 27:1233-41. [PMID: 20373856 DOI: 10.1089/neu.2009.1216] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In the setting of acute brainstem herniation in traumatic brain injury (TBI), the use of hyperventilation to reduce intracranial pressure may be life-saving. However, undue use of hyperventilation is thought to increase the incidence of secondary brain injury through direct reduction of cerebral blood flow. This is a retrospective review determining the effect of prehospital hyperventilation on in-hospital mortality following severe TBI. All trauma patients admitted directly to a single level 1 trauma center from January 2000 to January 2007 with an initial Glasgow Coma Scale (GCS) score <or=8 were included in the study (n = 77). Patients without documented or with late (>20 min) arterial blood gas at presentation (n = 12) were excluded from the study. The remaining population (n = 65) was sorted into three groups based on the initial partial pressure of carbon dioxide: hypocarbic (Pco(2) < 35 mm Hg), normocarbic (Pco(2) 35-45 mm Hg), and hypercarbic (Pco(2) > 45 mm Hg). Outcome was based on mortality during hospital admission. Survival was found to be related to admission Pco(2) in head trauma patients requiring intubation (p = 0.045). Patients with normocarbia on presenting arterial blood gas testing had in-hospital mortality of 15%, significantly improved over patients presenting with hypocarbia (in-hospital mortality 77%) or hypercarbia (in-hospital mortality 61%). Although there are many reports of the negative impact of prophylactic hyperventilation following severe TBI, this modality is frequently utilized in the prehospital setting. Our results suggest that abnormal Pco(2) on presentation after severe head trauma is correlated with increased in-hospital mortality. We advocate normoventilation in the prehospital setting.
Collapse
Affiliation(s)
- Travis M Dumont
- Division of Neurosurgery, University of Vermont College of Medicine, Burlington, Vermont 05401, USA.
| | | | | | | | | |
Collapse
|
129
|
Metting Z, Rödiger LA, de Jong BM, Stewart RE, Kremer BP, van der Naalt J. Acute cerebral perfusion CT abnormalities associated with posttraumatic amnesia in mild head injury. J Neurotrauma 2011; 27:2183-9. [PMID: 20939700 DOI: 10.1089/neu.2010.1395] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Posttraumatic amnesia (PTA) is a common symptom following traumatic brain injury. Although this transient memory deficit implies specific impairment of higher brain function, the actual pathophysiology of PTA is not well understood. The aim of this study was to assess regional cerebral hemodynamics with perfusion computed tomography (CT) in patients during PTA following mild head injury compared to patients with resolved PTA. A total of 74 patients with mild head injury without structural abnormalities on a non-contrast CT scan were included and compared to 25 healthy controls. Two patient groups were defined: (1) a PTA group that was scanned during the episode of PTA (n = 34), and (2) a post-PTA group scanned after resolution of PTA (n = 40). The PTA group had significantly reduced cerebral blood flow (CBF) in the frontal grey matter (41.78 [SD 7.4] versus 44.44 [SD 6.2] mL • 100 g⁻¹ • min⁻¹, p = 0.023), and caudate nucleus (44.59 [SD 6.2] versus 47.85 [SD 7.7] mL • 100 g⁻¹ • min⁻¹, p = 0.021), compared to the post-PTA group. Thus in patients with mild head injury, PTA is associated with cerebral perfusion abnormalities in specific cortical and subcortical regions.
Collapse
Affiliation(s)
- Zwany Metting
- Department of Neurology, University Medical Center Groningen, Groningen, the Netherlands.
| | | | | | | | | | | |
Collapse
|
130
|
Hayward NMEA, Tuunanen PI, Immonen R, Ndode-Ekane XE, Pitkänen A, Gröhn O. Magnetic resonance imaging of regional hemodynamic and cerebrovascular recovery after lateral fluid-percussion brain injury in rats. J Cereb Blood Flow Metab 2011; 31:166-77. [PMID: 20485295 PMCID: PMC3049481 DOI: 10.1038/jcbfm.2010.67] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hemodynamic and cerebrovascular factors are crucially involved in secondary damage after traumatic brain injury (TBI). With magnetic resonance imaging, this study aimed to quantify regional cerebral blood flow (CBF) by arterial spin labeling and cerebral blood volume by using an intravascular contrast agent, during 14 days after lateral fluid-percussion injury (LFPI) in rats. Immunohistochemical analysis of vessel density was used to evaluate the contribution of vascular damage. Results show widespread ipsilateral and contralateral hypoperfusion, including both the cortex and the hippocampus bilaterally, as well as the ipsilateral thalamus. Hemodynamic unrest may partly be explained by an increase in blood vessel density over a period of 2 weeks in the ipsilateral hippocampus and perilesional cortex. Furthermore, three phases of perilesional alterations in CBF, progressing from hypoperfusion to normal and back to hypoperfusion within 2 weeks were shown for the first time in a rat TBI model. These three phases were similar to hemodynamic fluctuations reported in TBI patients. This makes it feasible to use LFPI in rats to study mechanisms behind hemodynamic changes and to explore novel therapeutic approaches for secondary brain damage after TBI.
Collapse
Affiliation(s)
- Nick Mark Edward Alexander Hayward
- Biomedical Imaging Unit, Department of Neurobiology, A I Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
131
|
Schwarzmaier SM, Kim SW, Trabold R, Plesnila N. Temporal profile of thrombogenesis in the cerebral microcirculation after traumatic brain injury in mice. J Neurotrauma 2010; 27:121-30. [PMID: 19803784 DOI: 10.1089/neu.2009.1114] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) is associated with an almost immediate reduction in cerebral blood flow (CBF). Because cerebral perfusion pressure is often normal under these circumstances it was hypothesized that the reduction of post-traumatic CBF has to occur at the level of the microcirculation. The aim of the current study was to investigate whether cerebral microvessels are involved in the development of blood flow disturbances following experimental TBI. C57/BL6 mice (n = 12) were intubated and ventilated under control of end-tidal Pco(2) ((ET)P(CO2)). After preparation of a cranial window and baseline recordings, the animals were subjected to experimental TBI by controlled cortical impact (CCI; 6 m/sec, 0.5 mm). Vessel lumina and intravascular cells were visualized by in vivo fluorescence microscopy (IVM) using the fluorescent dyes FITC-dextran and rhodamine 6G, respectively. Vessel diameter, cell-endothelial interactions, and thrombus formation were quantified within the traumatic penumbra by IVM up to 2 h after CCI. Arteriolar diameters increased after CCI by 26.2 +/- 2.5% (mean +/- SEM, p < 0.01 versus baseline), and remained at this level until the end of the observation period. Rolling of leukocytes on the cerebrovascular endothelium was observed both in arterioles and venules, while leukocyte-platelet aggregates were found only in venules. Microthrombi occluded up to 70% of venules and 33% of arterioles. The current data suggest that the immediate post-traumatic decrease in peri-contusional blood flow is not caused by arteriolar vasoconstriction, but by platelet activation and the subsequent formation of thrombi in the cerebral microcirculation.
Collapse
Affiliation(s)
- Susanne M Schwarzmaier
- Institute for Surgical Research in the Walter Brendel Center for Experimental Medicine, Department of Neurosurgery, University of Munich Medical Center-Grosshadern, Ludwig-Maximilians University, Munich, Germany
| | | | | | | |
Collapse
|
132
|
|
133
|
Rockswold SB, Rockswold GL, Zaun DA, Zhang X, Cerra CE, Bergman TA, Liu J. A prospective, randomized clinical trial to compare the effect of hyperbaric to normobaric hyperoxia on cerebral metabolism, intracranial pressure, and oxygen toxicity in severe traumatic brain injury. J Neurosurg 2010; 112:1080-94. [DOI: 10.3171/2009.7.jns09363] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Object
Oxygen delivered in supraphysiological amounts is currently under investigation as a therapy for severe traumatic brain injury (TBI). Hyperoxia can be delivered to the brain under normobaric as well as hyperbaric conditions. In this study the authors directly compare hyperbaric oxygen (HBO2) and normobaric hyperoxia (NBH) treatment effects.
Methods
Sixty-nine patients who had sustained severe TBIs (mean Glasgow Coma Scale Score 5.8) were prospectively randomized to 1 of 3 groups within 24 hours of injury: 1) HBO2, 60 minutes of HBO2 at 1.5 ATA; 2) NBH, 3 hours of 100% fraction of inspired oxygen at 1 ATA; and 3) control, standard care. Treatments occurred once every 24 hours for 3 consecutive days. Brain tissue PO2, microdialysis, and intracranial pressure were continuously monitored. Cerebral blood flow (CBF), arteriovenous differences in oxygen, cerebral metabolic rate of oxygen (CMRO2), CSF lactate and F2-isoprostane concentrations, and bronchial alveolar lavage (BAL) fluid interleukin (IL)–8 and IL-6 assays were obtained pretreatment and 1 and 6 hours posttreatment. Mixed-effects linear modeling was used to statistically test differences among the treatment arms as well as changes from pretreatment to posttreatment.
Results
In comparison with values in the control group, the brain tissue PO2 levels were significantly increased during treatment in both the HBO2 (mean ± SEM, 223 ± 29 mm Hg) and NBH (86 ± 12 mm Hg) groups (p < 0.0001) and following HBO2 until the next treatment session (p = 0.003). Hyperbaric O2 significantly increased CBF and CMRO2 for 6 hours (p ≤ 0.01). Cerebrospinal fluid lactate concentrations decreased posttreatment in both the HBO2 and NBH groups (p < 0.05). The dialysate lactate levels in patients who had received HBO2 decreased for 5 hours posttreatment (p = 0.017). Microdialysis lactate/pyruvate (L/P) ratios were significantly decreased posttreatment in both HBO2 and NBH groups (p < 0.05). Cerebral blood flow, CMRO2, microdialysate lactate, and the L/P ratio had significantly greater improvement when a brain tissue PO2 ≥ 200 mm Hg was achieved during treatment (p < 0.01). Intracranial pressure was significantly lower after HBO2 until the next treatment session (p < 0.001) in comparison with levels in the control group. The treatment effect persisted over all 3 days. No increase was seen in the CSF F2-isoprostane levels, microdialysate glycerol, and BAL inflammatory markers, which were used to monitor potential O2 toxicity.
Conclusions
Hyperbaric O2 has a more robust posttreatment effect than NBH on oxidative cerebral metabolism related to its ability to produce a brain tissue PO2 ≥ 200 mm Hg. However, it appears that O2 treatment for severe TBI is not an all or nothing phenomenon but represents a graduated effect. No signs of pulmonary or cerebral O2 toxicity were present.
Collapse
Affiliation(s)
- Sarah B. Rockswold
- 1Department of Physical Medicine and Rehabilitation
- 2Division of Neurosurgery, Department of Surgery, Hennepin County Medical Center
| | - Gaylan L. Rockswold
- 2Division of Neurosurgery, Department of Surgery, Hennepin County Medical Center
- 3Department of Neurosurgery, University of Minnesota; and
| | - David A. Zaun
- 4Analytical Services, Chronic Disease Research Group, Minneapolis Medical Research Foundation, Minneapolis, Minnesota
| | - Xuewei Zhang
- 2Division of Neurosurgery, Department of Surgery, Hennepin County Medical Center
| | - Carla E. Cerra
- 2Division of Neurosurgery, Department of Surgery, Hennepin County Medical Center
| | - Thomas A. Bergman
- 2Division of Neurosurgery, Department of Surgery, Hennepin County Medical Center
- 3Department of Neurosurgery, University of Minnesota; and
| | - Jiannong Liu
- 4Analytical Services, Chronic Disease Research Group, Minneapolis Medical Research Foundation, Minneapolis, Minnesota
| |
Collapse
|
134
|
Figaji AA. Practical aspects of bedside cerebral hemodynamics monitoring in pediatric TBI. Childs Nerv Syst 2010; 26:431-9. [PMID: 19937247 DOI: 10.1007/s00381-009-1036-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Disturbances in cerebral hemodynamics may have a profound influence on secondary injury after traumatic brain injury (TBI), and many therapies in the neurocritical care unit may adversely affect cerebral blood flow. However, the clinician is often unaware of this when it occurs because practical methods for monitoring cerebral hemodynamics by the bedside have been lacking. Current imaging studies only provide a snapshot of the brain at one point in time, giving limited information about a dynamic condition. DISCUSSION This review will focus on key pathophysiological concepts required to understand changes in cerebral hemodynamics after TBI and the principles, potential benefits, and limitations of currently available bedside monitoring techniques, including transcranial Doppler, autoregulation, and local/regional cerebral blood flow.
Collapse
Affiliation(s)
- Anthony A Figaji
- Division of Neurosurgery, School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
135
|
Bao YH, Liang YM, Gao GY, Jiang JY. Lack of Effect of Moderate Hypothermia on Brain Tissue Oxygenation after Acute Intracranial Hypertension in Pigs. J Neurotrauma 2010; 27:433-8. [PMID: 20132049 DOI: 10.1089/neu.2007.0433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ying-Hui Bao
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People's Republic of China
| | - Yu-Min Liang
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People's Republic of China
| | - Guo-Yi Gao
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People's Republic of China
| | - Ji-Yao Jiang
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
136
|
Rickels E. Neurotraumatologie. NeuroRehabilitation 2010. [DOI: 10.1007/978-3-642-12915-5_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
137
|
Sen AP, Gulati A. Use of magnesium in traumatic brain injury. Neurotherapeutics 2010; 7:91-9. [PMID: 20129501 PMCID: PMC5084116 DOI: 10.1016/j.nurt.2009.10.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 10/23/2009] [Accepted: 10/26/2009] [Indexed: 11/30/2022] Open
Abstract
Depletion of magnesium is observed in animal brain and in human blood after brain injury. Treatment with magnesium attenuates the pathological and behavioral changes in rats with brain injury; however, the therapeutic effect of magnesium has not been consistently observed in humans with traumatic brain injury (TBI). Secondary brain insults are observed in patients with brain injury, which adversely affect clinical outcome. Systemic administration studies in rats have shown that magnesium enters the brain; however, inducing hypermagnesemia in humans did not concomitantly increase magnesium levels in the CSF. We hypothesize that the neuroprotective effects of magnesium in TBI patients could be observed by increasing its brain bioavailability with mannitol. Here, we review the role of magnesium in brain injury, preclinical studies in brain injury, clinical safety and efficacy studies in TBI patients, brain bioavailability studies in rat, and pharmacokinetic studies in humans with brain injury. Neurodegeneration after brain injury involves multiple biochemical pathways. Treatment with a single agent has often resulted in poor efficacy at a safe dose or toxicity at a therapeutic dose. A successful neuroprotective therapy needs to be aimed at homeostatic control of these pathways with multiple agents. Other pharmacological agents, such as dexanabinol and progesterone, and physiological interventions, with hypothermia and hyperoxia, have been studied for the treatment of brain injury. Treatment with magnesium and hypothermia has shown favorable outcome in rats with cerebral ischemia. We conclude that coadministration of magnesium and mannitol with pharmacological and physiological agents could be an effective neuroprotective regimen for the treatment of TBI.
Collapse
|
138
|
|
139
|
Schlosser HG, Lindemann JN, Vajkoczy P, Clarke AH. Vestibulo-ocular monitoring as a predictor of outcome after severe traumatic brain injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2009; 13:R192. [PMID: 19948056 PMCID: PMC2811919 DOI: 10.1186/cc8187] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Revised: 09/23/2009] [Accepted: 11/30/2009] [Indexed: 11/22/2022]
Abstract
Introduction Based on the knowledge that traumatic brainstem damage often leads to alteration in brainstem functions, including the vestibulo-ocular reflex, the present study is designed to determine whether prediction of outcome in the early phase after severe traumatic brain injury is possible by means of vestibulo-ocular monitoring. Methods Vestibulo-ocular monitoring is based on video-oculographic recording of eye movements during galvanic labyrinth polarization. The integrity of vestibulo-ocular reflex is determined from the eye movement response during vestibular galvanic labyrinth polarization stimulation. Vestibulo-ocular monitoring is performed within three days after traumatic brain injury and the oculomotor response compared to outcome after six months (Glasgow Outcome Score). Results Twenty-seven patients underwent vestibulo-ocular monitoring within three days after severe traumatic brain injury. One patient was excluded from the study. In 16 patients oculomotor response was induced, in the remaining 11 patients no oculomotor response was observed. The patients' outcome was classified as Glasgow Outcome Score 1-2 or as Glasgow Outcome Score 3 to 5. Statistical testing supported the hypothesis that those patients with oculomotor response tended to recover (exact two-sided Fisher-Test (P < 10-3)). Conclusions The results indicate that vestibulo-ocular monitoring with galvanic labyrinth polarization performed during the first days after traumatic brain injury helps to predict favourable or unfavourable outcome. As an indicator of brainstem function, vestibulo-ocular monitoring provides a useful, complementary approach to the identification of brainstem lesions by imaging techniques.
Collapse
Affiliation(s)
- Hans-Georg Schlosser
- Department of Neurosurgery, Universitätsmedizin Berlin, Charité - Campus Virchow Klinikum, Berlin 13353, Germany.
| | | | | | | |
Collapse
|
140
|
DeWitt DS, Prough DS. Blast-induced brain injury and posttraumatic hypotension and hypoxemia. J Neurotrauma 2009; 26:877-87. [PMID: 18447627 DOI: 10.1089/neu.2007.0439] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Explosive munitions account for more than 50% of all wounds sustained in military combat, and the proportion of civilian casualties due to explosives is increasing as well. But there has been only limited research on the pathophysiology of blast-induced brain injury, and the contributions of alterations in cerebral blood flow (CBF) or cerebral vascular reactivity to blast-induced brain injury have not been investigated. Although secondary hypotension and hypoxemia are associated with increased mortality and morbidity after closed head injury, the effects of secondary insults on outcome after blast injury are unknown. Hemorrhage accounted for approximately 50% of combat deaths, and the lungs are one of the primary organs damaged by blast overpressure. Thus, it is likely that blast-induced lung injury and/or hemorrhage leads to hypotensive and hypoxemic secondary injury in a significant number of combatants exposed to blast overpressure injury. Although the effects of blast injury on CBF and cerebral vascular reactivity are unknown, blast injury may be associated with impaired cerebral vascular function. Reactive oxygen species (ROS) such as the superoxide anion radical and other ROS, likely major contributors to traumatic cerebral vascular injury, are produced by traumatic brain injury (TBI). Superoxide radicals combine with nitric oxide (NO), another ROS produced by blast injury as well as other types of TBI, to form peroxynitrite, a powerful oxidant that impairs cerebral vascular responses to reduced intravascular pressure and other cerebral vascular responses. While current research suggests that blast injury impairs cerebral vascular compensatory responses, thereby leaving the brain vulnerable to secondary insults, the effects of blast injury on the cerebral vascular reactivity have not been investigated. It is clear that further research is necessary to address these critical concerns.
Collapse
Affiliation(s)
- Douglas S DeWitt
- Moody Center for Traumatic Brain & Spinal Cord Injury Research, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0830, USA.
| | | |
Collapse
|
141
|
Marklund N, Sihver S, Hovda DA, Långström B, Watanabe Y, Ronquist G, Bergström M, Hillered L. Increased Cerebral Uptake of [18F]Fluoro-Deoxyglucose but not [1-14C]Glucose Early following Traumatic Brain Injury in Rats. J Neurotrauma 2009; 26:1281-93. [DOI: 10.1089/neu.2008.0827] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Niklas Marklund
- Department of Neuroscience, Unit of Neurosurgery, Uppsala University CSO, Imanet, and Uppsala Applied Science Laboratory, Uppsala, Sweden
| | - Sven Sihver
- Department of Neuroscience, Unit of Pharmacology, Uppsala University CSO, Imanet, and Uppsala Applied Science Laboratory, Uppsala, Sweden
| | - David A. Hovda
- UCLA Brain Injury Research Center, Departments of Neurosurgery and Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California–Los Angeles, Los Angeles, California
| | - Bengt Långström
- Department of Biochemistry and Organic Chemistry, Uppsala University CSO, Imanet, and Uppsala Applied Science Laboratory, Uppsala, Sweden
| | - Yasuyoshi Watanabe
- Department of Neuroscience, Osaka Bioscience Institute, Osaka, Japan
- Department of Physiology, Osaka City University, Osaka, Japan
| | - Gunnar Ronquist
- Department of Medical Sciences, Biochemical Structure And Function, Uppsala University CSO, Imanet, and Uppsala Applied Science Laboratory, Uppsala, Sweden
| | - Mats Bergström
- Department of Biochemistry and Organic Chemistry, Uppsala University CSO, Imanet, and Uppsala Applied Science Laboratory, Uppsala, Sweden
| | - Lars Hillered
- Department of Neuroscience, Unit of Neurosurgery, Uppsala University CSO, Imanet, and Uppsala Applied Science Laboratory, Uppsala, Sweden
| |
Collapse
|
142
|
Vajramani GV, Chandramouli BA, Jayakumar PN, Kolluri S. Evaluation of posttraumatic vasospasm, hyperaemia, and autoregulation by transcranial colour-coded duplex sonography. Br J Neurosurg 2009. [DOI: 10.1080/02688699908540620] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
143
|
Assessment of mitochondrial impairment and cerebral blood flow in severe brain injured patients. ACTA NEUROCHIRURGICA. SUPPLEMENT 2009. [PMID: 19388289 DOI: 10.1007/978-3-211-85578-2_12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
BACKGROUND We believe that in traumatic brain injury (TBI), the reduction of N-acetyl aspartate (NAA) occurs in the presence of adequate cerebral blood flow (CBF) which would lend support to the concept of mitochondrial impairment. The objective of this study was to test this hypothesis in severely injured patients (GCS 8 or less) by obtaining simultaneous measures of CBF and NAA. METHODS Fourteen patients were studied of which six patients presented as diffuse injury at admission CT, while focal lesions were present in eight patients. CBF using stable xenon method was measured at the same time that NAA was measured by magnetic resonance proton spectroscopy (1HMRS) in the MR suite. Additionally, diffusion weighted imaging (DWI) and maps of the apparent diffusion coefficient (ADC) were assessed. FINDINGS In diffuse injury, NAA/Cr reduction occurred uniformly throughout the brain where the values of CBF in all patients were well above ischemic threshold. In focal injury, we observed ischemic CBF values in the core of the lesions. However, in areas other than the core, CBF was above ischemic levels and NAA/Cr levels were decreased. CONCLUSIONS Considering the direct link between energy metabolism and NAA synthesis in the mitochondria, this study showed that in the absence of an ischemic insult, reductions in NAA concentration reflects mitochondrial dysfunction.
Collapse
|
144
|
Kirk D, Rainey T, Vail A, Childs C. Infra-red thermometry: the reliability of tympanic and temporal artery readings for predicting brain temperature after severe traumatic brain injury. Crit Care 2009; 13:R81. [PMID: 19473522 PMCID: PMC2717446 DOI: 10.1186/cc7898] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 05/08/2009] [Accepted: 05/27/2009] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION Temperature measurement is important during routine neurocritical care especially as differences between brain and systemic temperatures have been observed. The purpose of the study was to determine if infra-red temporal artery thermometry provides a better estimate of brain temperature than tympanic membrane temperature for patients with severe traumatic brain injury. METHODS Brain parenchyma, tympanic membrane and temporal artery temperatures were recorded every 15-30 min for five hours during the first seven days after admission. RESULTS Twenty patients aged 17-76 years were recruited. Brain and tympanic membrane temperature differences ranged from -0.8 degrees C to 2.5 degrees C (mean 0.9 degrees C). Brain and temporal artery temperature differences ranged from -0.7 degrees C to 1.5 degrees C (mean 0.3 degrees C). Tympanic membrane temperature differed from brain temperature by an average of 0.58 degrees C more than temporal artery temperature measurements (95% CI 0.31 degrees C to 0.85 degrees C, P < 0.0001). CONCLUSIONS At temperatures within the normal to febrile range, temporal artery temperature is closer to brain temperature than is tympanic membrane temperature.
Collapse
Affiliation(s)
- Danielle Kirk
- Brain Injury Research Group, School of Translational Medicine, University of Manchester, Salford Royal Foundation Trust, Stott Lane, Salford, M6 8HD UK
| | - Timothy Rainey
- Brain Injury Research Group, School of Translational Medicine, University of Manchester, Salford Royal Foundation Trust, Stott Lane, Salford, M6 8HD UK
| | - Andy Vail
- Biostatistics Group, University of Manchester, Salford Royal Foundation Trust, Stott Lane, Salford, M6 8HD UK
| | - Charmaine Childs
- Brain Injury Research Group, School of Translational Medicine, University of Manchester, Salford Royal Foundation Trust, Stott Lane, Salford, M6 8HD UK
| |
Collapse
|
145
|
Zhou C, Eucker SA, Durduran T, Yu G, Ralston J, Friess SH, Ichord RN, Margulies SS, Yodh AG. Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:034015. [PMID: 19566308 PMCID: PMC3169814 DOI: 10.1117/1.3146814] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We used a nonimpact inertial rotational model of a closed head injury in neonatal piglets to simulate the conditions following traumatic brain injury in infants. Diffuse optical techniques, including diffuse reflectance spectroscopy and diffuse correlation spectroscopy (DCS), were used to measure cerebral blood oxygenation and blood flow continuously and noninvasively before injury and up to 6 h after the injury. The DCS measurements of relative cerebral blood flow were validated against the fluorescent microsphere method. A strong linear correlation was observed between the two techniques (R=0.89, p<0.00001). Injury-induced cerebral hemodynamic changes were quantified, and significant changes were found in oxy- and deoxy-hemoglobin concentrations, total hemoglobin concentration, blood oxygen saturation, and cerebral blood flow after the injury. The diffuse optical measurements were robust and also correlated well with recordings of vital physiological parameters over the 6-h monitoring period, such as mean arterial blood pressure, arterial oxygen saturation, and heart rate. Finally, the diffuse optical techniques demonstrated sensitivity to dynamic physiological events, such as apnea, cardiac arrest, and hypertonic saline infusion. In total, the investigation corraborates potential of the optical methods for bedside monitoring of pediatric and adult human patients in the neurointensive care unit.
Collapse
Affiliation(s)
- Chao Zhou
- University of Pennsylvania, Department of Physics and Astronomy, 209 South 33rd Street, Philadelphia, Pennsylvania 19104
| | - Stephanie A. Eucker
- University of Pennsylvania, Department of Bioengineering, 3451 Walnut Street, Philadelphia, Pennsylvania 19104
| | - Turgut Durduran
- University of Pennsylvania, Department of Physics and Astronomy and Department of Radiology, 209 South 33rd Street, Philadelphia, Pennsylvania 19104 and ICFO–Institut de Ciencies Fotoniques, Mediterranean Technology Park, Castelldefels (Barcelona), Spain 08860
| | - Guoqiang Yu
- University of Pennsylvania, Department of Physics and Astronomy, 209 South 33rd Street, Philadelphia, Pennsylvania 19104 and University of Kentucky, Center for Biomedical Engineering, Wenner-Gren Research Laboratory, Lexington, Kentucky 40506
| | - Jill Ralston
- University of Pennsylvania, Department of Bioengineering, 3451 Walnut Street, Philadelphia, Pennsylvania 19104
| | - Stuart H. Friess
- University of Pennsylvania, Department of Bioengineering, 3451 Walnut Street, Philadelphia, Pennsylvania 19104
| | - Rebecca N. Ichord
- University of Pennsylvania School of Medicine, Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Susan S. Margulies
- University of Pennsylvania, Department of Bioengineering, 3451 Walnut Street, Philadelphia, Pennsylvania 19104
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, 209 South 33rd Street, Philadelphia, Pennsylvania 09104,
| |
Collapse
|
146
|
Besson VC. Drug targets for traumatic brain injury from poly(ADP-ribose)polymerase pathway modulation. Br J Pharmacol 2009; 157:695-704. [PMID: 19371326 DOI: 10.1111/j.1476-5381.2009.00229.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The deleterious pathophysiological cascade induced after traumatic brain injury (TBI) is initiated by an excitotoxic process triggered by excessive glutamate release. Activation of the glutamatergic N-methyl-D-aspartate receptor, by increasing calcium influx, activates nitric oxide (NO) synthases leading to a toxic production of NO. Moreover, after TBI, free radicals are highly produced and participate to a deleterious oxidative stress. Evidence has showed that the major toxic effect of NO comes from its combination with superoxide anion leading to peroxynitrite formation, a highly reactive and oxidant compound. Indeed, peroxynitrite mediates nitrosative stress and is a potent inducer of cell death through its reaction with lipids, proteins and DNA. Particularly DNA damage, caused by both oxidative and nitrosative stresses, results in activation of poly(ADP-ribose) polymerase (PARP), a nuclear enzyme implicated in DNA repair. In response to excessive DNA damage, massive PARP activation leads to energetic depletion and finally to cell death. Since 10 years, accumulating data have showed that inactivation of PARP, either pharmacologically or using PARP null mice, induces neuroprotection in experimental models of TBI. Thus TBI generating NO, oxidative and nitrosative stresses promotes PARP activation contributing in post-traumatic motor, cognitive and histological sequelae. The mechanisms by which PARP inhibitors provide protection might not entirely be related to the preservation of cellular energy stores, but might also include other PARP-mediated mechanisms that needed to be explored in a TBI context. Ten years of experimental research provided rational basis for the development of PARP inhibitors as treatment for TBI.
Collapse
Affiliation(s)
- Valerie C Besson
- Equipe de Recherche 'Pharmacologie de la Circulation Cérébrale' (EA 2510), Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France.
| |
Collapse
|
147
|
Marklund N, Sihver S, Hovda D, Långström B, Watanabe Y, Ronquist G, Bergström M, Hillered L. INCREASED CEREBRAL UPTAKE OF [18F]FLUORO-DEOXYGLUCOSE BUT NOT [1-14C]GLUCOSE EARLY FOLLOWING TRAUMATIC BRAIN INJURY IN RATS. J Neurotrauma 2009. [DOI: 10.1089/neu.2008-0827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
148
|
|
149
|
Abstract
Head injury remains a major cause of preventable death and serious morbidity in young adults. Based on the available evidence, it appears that a cerebral perfusion pressure of 50 to 70 mm Hg is generally adequate to ensure cerebral oxygen delivery and prevent ischemia. However, evidence suggests that perfusion requirements may not only vary across the injured brain but also differ depending on the time since injury. Such heterogeneity, both within and between subjects, suggests that individualized therapy may be an appropriate treatment strategy. Future studies should aim to assess which groups of patients, and what regional pathophysiological derangements, may benefit with improvements in functional outcome from therapeutic increases or decreases in cerebral perfusion pressure beyond these proposed limits. Such functional improvements may be of immense importance to patients and require formal neurocognitive assessments to discriminate improvements.
Collapse
Affiliation(s)
- Monica Trivedi
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | | |
Collapse
|
150
|
|