101
|
Felici R, Lapucci A, Cavone L, Pratesi S, Berlinguer-Palmini R, Chiarugi A. Pharmacological NAD-Boosting Strategies Improve Mitochondrial Homeostasis in Human Complex I-Mutant Fibroblasts. Mol Pharmacol 2015; 87:965-71. [PMID: 25788480 DOI: 10.1124/mol.114.097204] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/18/2015] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial disorders are devastating genetic diseases for which efficacious therapies are still an unmet need. Recent studies report that increased availability of intracellular NAD obtained by inhibition of the NAD-consuming enzyme poly(ADP-ribose) polymerase (PARP)-1 or supplementation with the NAD-precursor nicotinamide riboside (NR) ameliorates energetic derangement and symptoms in mouse models of mitochondrial disorders. Whether these pharmacological approaches also improve bioenergetics of human cells harboring mitochondrial defects is unknown. It is also unclear whether the same signaling cascade is prompted by PARP-1 inhibitors and NR supplementation to improve mitochondrial homeostasis. Here, we show that human fibroblasts mutant for the NADH dehydrogenase (ubiquinone) Fe-S protein 1 (NDUFS1) subunit of respiratory complex I have similar ATP, NAD, and mitochondrial content compared with control cells, but show reduced mitochondrial membrane potential. Interestingly, mutant cells also show increased transcript levels of mitochondrial DNA but not nuclear DNA respiratory complex subunits, suggesting activation of a compensatory response. At variance with prior work in mice, however, NR supplementation, but not PARP-1 inhibition, increased intracellular NAD content in NDUFS1 mutant human fibroblasts. Conversely, PARP-1 inhibitors, but not NR supplementation, increased transcription of mitochondrial transcription factor A and mitochondrial DNA-encoded respiratory complexes constitutively induced in mutant cells. Still, both NR and PARP-1 inhibitors restored mitochondrial membrane potential and increased organelle content as well as oxidative activity of NDUFS1-deficient fibroblasts. Overall, data provide the first evidence that in human cells harboring a mitochondrial respiratory defect exposure to NR or PARP-1, inhibitors activate different signaling pathways that are not invariantly prompted by NAD increases, but equally able to improve energetic derangement.
Collapse
Affiliation(s)
- Roberta Felici
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy (R.F., A.L., L.C., A.C.), Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy (S.P.), and School of Electric and Electronic Engineering, Institute of Neuroscience, Newcastle University, Newcastle, United Kingdom (R.B.-P.)
| | - Andrea Lapucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy (R.F., A.L., L.C., A.C.), Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy (S.P.), and School of Electric and Electronic Engineering, Institute of Neuroscience, Newcastle University, Newcastle, United Kingdom (R.B.-P.)
| | - Leonardo Cavone
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy (R.F., A.L., L.C., A.C.), Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy (S.P.), and School of Electric and Electronic Engineering, Institute of Neuroscience, Newcastle University, Newcastle, United Kingdom (R.B.-P.)
| | - Sara Pratesi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy (R.F., A.L., L.C., A.C.), Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy (S.P.), and School of Electric and Electronic Engineering, Institute of Neuroscience, Newcastle University, Newcastle, United Kingdom (R.B.-P.)
| | - Rolando Berlinguer-Palmini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy (R.F., A.L., L.C., A.C.), Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy (S.P.), and School of Electric and Electronic Engineering, Institute of Neuroscience, Newcastle University, Newcastle, United Kingdom (R.B.-P.)
| | - Alberto Chiarugi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy (R.F., A.L., L.C., A.C.), Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy (S.P.), and School of Electric and Electronic Engineering, Institute of Neuroscience, Newcastle University, Newcastle, United Kingdom (R.B.-P.)
| |
Collapse
|
102
|
Younis S, Javed Q, Blumenberg M. Transcriptional changes associated with resistance to inhibitors of epidermal growth factor receptor revealed using metaanalysis. BMC Cancer 2015; 15:369. [PMID: 25948104 PMCID: PMC4430867 DOI: 10.1186/s12885-015-1337-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/22/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND EGFR is important in maintaining metabolic homeostasis in healthy cells, but in tumors it activates downstream signaling pathways, causing proliferation, angiogenesis, invasion and metastasis. Consequently, EGFR is targeted in cancers using reversible, irreversible or antibody inhibitors. Unfortunately, tumors develop inhibitor resistance by mutations or overexpressing EGFR, or its ligand, or activating secondary, EGFR-independent pathways. METHODS Here we present a global metaanalysis comparing transcriptional profiles from matched pairs of EGFR inhibitor-sensitive vs. -resistant cell lines, using 15 datasets comprising 274 microarrays. We also analyzed separately pairs of cell lines derived using reversible, irreversible or antibody inhibitors. RESULTS The metaanalysis identifies commonalities in cell lines resistant to EGFR inhibitors: in sensitive cell lines, the ontological categories involving the ErbB receptors pathways, cell adhesion and lipid metabolism are overexpressed; however, resistance to EGFR inhibitors is associated with overexpression of genes for ErbB receptors-independent oncogenic pathways, regulation of cell motility, energy metabolism, immunity especially inflammatory cytokines biosynthesis, cell cycle and responses to exogenous and endogenous stimuli. Specifically in Gefitinib-resistant cell lines, the immunity-associated genes are overexpressed, whereas in Erlotinib-resistant ones so are the mitochondrial genes and processes. Unexpectedly, lines selected using EGFR-targeting antibodies overexpress different gene ontologies from ones selected using kinase inhibitors. Specifically, they have reduced expression of genes for proliferation, chemotaxis, immunity and angiogenesis. CONCLUSIONS This metaanalysis suggests that 'combination therapies' can improve cancer treatment outcomes. Potentially, use of mitochondrial blockers with Erlotinib, immunity blockers with Gefitinib, tyrosine kinase inhibitors with antibody inhibitors, may have better chance of avoiding development of resistance.
Collapse
Affiliation(s)
- Sidra Younis
- The R.O.Perelman Department of Dermatology, New York, USA. .,Department of Biochemistry and Molecular Pharmacology, New York, USA. .,NYU Cancer Institute, NYU Langone Medical Center, New York, USA. .,Department of Biochemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Qamar Javed
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Miroslav Blumenberg
- The R.O.Perelman Department of Dermatology, New York, USA. .,Department of Biochemistry and Molecular Pharmacology, New York, USA. .,NYU Cancer Institute, NYU Langone Medical Center, New York, USA. .,NYU School of Medicine, 455 First Avenue, New York, 10016, USA.
| |
Collapse
|
103
|
Abstract
In order to maintain genomic stability, cells have developed sophisticated signalling pathways to enable DNA damage or DNA replication stress to be resolved. Key mediators of this DNA damage response (DDR) are the ATM and ATR kinases, which induce cell cycle arrest and facilitate DNA repair via their downstream targets. Inhibiting the DDR has become an attractive therapeutic concept in cancer therapy, since (i) resistance to genotoxic therapies has been associated with increased DDR signalling, and (ii) many cancers have defects in certain components of the DDR rendering them highly dependent on the remaining DDR pathways for survival. ATM and ATR act as the apical regulators of the response to DNA double strand breaks and replication stress, respectively, with overlapping but non-redundant activities. Highly selective small molecule inhibitors of ATM and ATR are currently in preclinical and clinical development, respectively. Preclinical data have provided a strong rationale for clinical testing of these compounds both in combination with radio- or chemotherapy, and in synthetic lethal approaches to treat tumours with deficiencies in certain DDR components. Whole genome sequencing studies have reported that mutations in DDR genes occur with a high frequency in many common tumour types, suggesting that a synthetic lethal approach with ATM or ATR inhibitors could have widespread utility, providing that appropriate biomarkers are developed.
Collapse
Affiliation(s)
- Anika Maria Weber
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, The Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Anderson Joseph Ryan
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, The Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
104
|
Ko AH. Progress in the treatment of metastatic pancreatic cancer and the search for next opportunities. J Clin Oncol 2015; 33:1779-86. [PMID: 25918299 DOI: 10.1200/jco.2014.59.7625] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A growing number of therapeutic options are now available for patients with metastatic pancreatic cancer, informed by positive results from recently completed phase III clinical trials. These have led to modest, if not necessarily transformative, improvements in clinical outcomes. Although the standard of care for metastatic disease remains cytotoxic therapy, a variety of novel therapeutic approaches are currently under active investigation, several of which have already demonstrated encouraging results in phase I/II studies. The following three broad categories (with significant overlap among them) are highlighted here: stromal-depleting agents, immunotherapies, and signal transduction inhibitors. The mechanistic rationale, limitations, and promise of each of these strategies specific to pancreatic cancer are discussed, as are the aspects of this disease and this patient population that pose ongoing challenges in terms of both therapeutic management and biomarker-driven trial design.
Collapse
Affiliation(s)
- Andrew H Ko
- From the University of California San Francisco Comprehensive Cancer Center, San Francisco, CA.
| |
Collapse
|
105
|
Scott CL, Swisher EM, Kaufmann SH. Poly (ADP-ribose) polymerase inhibitors: recent advances and future development. J Clin Oncol 2015; 33:1397-406. [PMID: 25779564 PMCID: PMC4517072 DOI: 10.1200/jco.2014.58.8848] [Citation(s) in RCA: 289] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors have shown promising activity in epithelial ovarian cancers, especially relapsed platinum-sensitive high-grade serous disease. Consistent with preclinical studies, ovarian cancers and a number of other solid tumor types occurring in patients with deleterious germline mutations in BRCA1 or BRCA2 seem to be particularly sensitive. However, it is also becoming clear that germline BRCA1/2 mutations are neither necessary nor sufficient for patients to derive benefit from PARP inhibitors. We provide an update on PARP inhibitor clinical development, describe recent advances in our understanding of PARP inhibitor mechanism of action, and discuss current issues in the development of these agents.
Collapse
Affiliation(s)
- Clare L Scott
- Clare L. Scott, Walter and Eliza Hall Institute of Medical Research and Royal Melbourne Hospital, Parkville, Victoria, Australia; Elizabeth M. Swisher, University of Washington, Seattle, WA; and Scott H. Kaufmann, Mayo Clinic, Rochester, MN
| | - Elizabeth M Swisher
- Clare L. Scott, Walter and Eliza Hall Institute of Medical Research and Royal Melbourne Hospital, Parkville, Victoria, Australia; Elizabeth M. Swisher, University of Washington, Seattle, WA; and Scott H. Kaufmann, Mayo Clinic, Rochester, MN
| | - Scott H Kaufmann
- Clare L. Scott, Walter and Eliza Hall Institute of Medical Research and Royal Melbourne Hospital, Parkville, Victoria, Australia; Elizabeth M. Swisher, University of Washington, Seattle, WA; and Scott H. Kaufmann, Mayo Clinic, Rochester, MN.
| |
Collapse
|
106
|
African flora has the potential to fight multidrug resistance of cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:914813. [PMID: 25961047 PMCID: PMC4413252 DOI: 10.1155/2015/914813] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/18/2015] [Indexed: 11/18/2022]
Abstract
Background. Continuous efforts from scientists of diverse fields are necessary not only to better understand the mechanism by which multidrug-resistant (MDR) cancer cells occur, but also to boost the discovery of new cytotoxic compounds to fight MDR phenotypes. Objectives. The present review reports on the contribution of African flora in the discovery of potential cytotoxic phytochemicals against MDR cancer cells. Methodology. Scientific databases such as PubMed, ScienceDirect, Scopus, Google Scholar, and Web of Knowledge were used to retrieve publications related to African plants, isolated compounds, and drug resistant cancer cells. The data were analyzed to highlight cytotoxicity and the modes of actions of extracts and compounds of the most prominent African plants. Also, thresholds and cutoff points for the cytotoxicity and modes of action of phytochemicals have been provided. Results. Most published data related to the antiproliferative potential of African medicinal plants were from Cameroon, Egypt, Nigeria, or Madagascar. The cytotoxicity of phenolic compounds isolated in African plants was generally much better documented than that of terpenoids and alkaloids. Conclusion. African flora represents an enormous resource for novel cytotoxic compounds. To unravel the full potential, efforts should be strengthened throughout the continent, to meet the challenge of a successful fight against MDR cancers.
Collapse
|
107
|
Ferraldeschi R, Welti J, Luo J, Attard G, de Bono JS. Targeting the androgen receptor pathway in castration-resistant prostate cancer: progresses and prospects. Oncogene 2015; 34:1745-57. [PMID: 24837363 PMCID: PMC4333106 DOI: 10.1038/onc.2014.115] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/24/2014] [Accepted: 03/24/2014] [Indexed: 12/11/2022]
Abstract
Androgen receptor (AR) signaling is a critical pathway for prostate cancer cells, and androgen-deprivation therapy (ADT) remains the principal treatment for patients with locally advanced and metastatic disease. However, over time, most tumors become resistant to ADT. The view of castration-resistant prostate cancer (CRPC) has changed dramatically in the last several years. Progress in understanding the disease biology and mechanisms of castration resistance led to significant advancements and to paradigm shift in the treatment. Accumulating evidence showed that prostate cancers develop adaptive mechanisms for maintaining AR signaling to allow for survival and further evolution. The aim of this review is to summarize molecular mechanisms of castration resistance and provide an update in the development of novel agents and strategies to more effectively target the AR signaling pathway.
Collapse
Affiliation(s)
- R Ferraldeschi
- Prostate Cancer Targeted Therapy Group, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Surrey, UK
| | - J Welti
- Prostate Cancer Targeted Therapy Group, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Surrey, UK
| | - J Luo
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - G Attard
- Prostate Cancer Targeted Therapy Group, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Surrey, UK
| | - JS de Bono
- Prostate Cancer Targeted Therapy Group, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Surrey, UK
| |
Collapse
|
108
|
Min A, Im SA, Kim DK, Song SH, Kim HJ, Lee KH, Kim TY, Han SW, Oh DY, Kim TY, O'Connor MJ, Bang YJ. Histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), enhances anti-tumor effects of the poly (ADP-ribose) polymerase (PARP) inhibitor olaparib in triple-negative breast cancer cells. Breast Cancer Res 2015; 17:33. [PMID: 25888415 PMCID: PMC4425881 DOI: 10.1186/s13058-015-0534-y] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 02/10/2015] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Olaparib, a poly (ADP-ribose) polymerase (PARP) inhibitor, has been found to have therapeutic potential for treating cancers associated with impaired DNA repair capabilities, particularly those with deficiencies in the homologous recombination repair (HRR) pathway. Histone deacetylases (HDACs) are important for enabling functional HRR of DNA by regulating the expression of HRR-related genes and promoting the accurate assembly of HRR-directed sub-nuclear foci. Thus, HDAC inhibitors have recently emerged as a therapeutic agent for treating cancer by inhibiting DNA repair. Based on this, HDAC inhibition could be predicted to enhance the anti-tumor effect of PARP inhibitors in cancer cells by blocking the HRR pathway. METHODS We determined whether suberoylanilide hydroxamic acid (SAHA), a HDAC inhibitor, could enhance the anti-tumor effects of olaparib on breast cancer cell lines using a cytotoxic assay, cell cycle analysis, and Western blotting. We evaluated how exposure to SAHA affects the expression of HRR-associated genes. The accumulation of DNA double strand breaks (DSBs) induced by combination treatment was assessed. Induction of autophagy was monitored by imaging green fluorescent protein-tagged microtubule-associated protein 1A/1B-light chain 3 (LC3) expression following co-treatment with olaparib and SAHA. These in vitro data were validated in vivo using a human breast cancer xenograft model. RESULTS Triple-negative breast cancer cell (TNBC) lines showed heterogeneous responses to the PARP and HDAC inhibitors. Co-administration of olaparib and SAHA synergistically inhibited the growth of TNBC cells that expressed functional Phosphatase and tensin homolog (PTEN). This effect was associated with down-regulation of the proliferative signaling pathway, increased apoptotic and autophagic cell death, and accumulation of DNA damage. The combined anti-tumor effect of olaparib and SAHA was also observed in a xenograft model. These data suggest that PTEN expression in TNBC cells can sensitize the cell response to simultaneous inhibition of PARP and HDAC both in vitro and in vivo. CONCLUSION Our findings suggest that expression of functional PTEN may serve as a biomarker for selecting TNBC patients that would favorably respond to a combination of olaparib with SAHA. This provides a strong rationale for treating TNBC patients with PTEN expression with a combination therapy consisting of olaparib and SAHA.
Collapse
Affiliation(s)
- Ahrum Min
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 110-799, Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 110-799, Korea.
| | - Seock-Ah Im
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 110-799, Korea.
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 110-799, Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 110-799, Korea.
| | | | - Sang-Hyun Song
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 110-799, Korea.
| | - Hee-Jun Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 110-799, Korea.
- Department of Internal Medicine, Chung Ang University College of Medicine, Seoul, 156-755, Korea.
| | - Kyung-Hun Lee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 110-799, Korea.
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 110-799, Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 110-799, Korea.
| | - Tae-Yong Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 110-799, Korea.
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 110-799, Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 110-799, Korea.
| | - Sae-Won Han
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 110-799, Korea.
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 110-799, Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 110-799, Korea.
| | - Do-Youn Oh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 110-799, Korea.
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 110-799, Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 110-799, Korea.
| | - Tae-You Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 110-799, Korea.
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 110-799, Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 110-799, Korea.
| | | | - Yung-Jue Bang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 110-799, Korea.
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 110-799, Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 110-799, Korea.
| |
Collapse
|
109
|
Ahn DH, Ko AH, Meropol NJ, Bekaii-Saab TS. Making sense of current and emerging therapies in pancreatic cancer: balancing benefit and value. Am Soc Clin Oncol Educ Book 2015:e222-e227. [PMID: 25993177 PMCID: PMC4964785 DOI: 10.14694/edbook_am.2015.35.e222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pancreatic cancer remains the fourth leading cause of cancer deaths in the United States with a dismal prognosis and a 5-year survival of less than 5% across all stages.(1) In 2014, there were approximately 46,420 new cases of pancreatic cancer with only 9% of patients having localized disease.(2) Given that the vast majority of patients present with advanced disease, much of the focus for drug development has been in the metastatic setting, which is evident with the advent of two combination chemotherapy regimens for this indication. Although conventional cytotoxic chemotherapy remains the standard of care, an ongoing search for novel therapeutic approaches continues. We will highlight several new approaches here, with a particular emphasis on immunotherapeutic strategies. We will also introduce concepts regarding the potential economic effects associated with the development and implementation of new treatments in pancreatic cancer.
Collapse
Affiliation(s)
- Daniel H Ahn
- From the The Ohio State University Wexner Medical Center, Columbus, OH; UCSF Helen Diller Comprehensive Cancer Center, San Francisco, CA; University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Case Western University, Cleveland, OH
| | - Andrew H Ko
- From the The Ohio State University Wexner Medical Center, Columbus, OH; UCSF Helen Diller Comprehensive Cancer Center, San Francisco, CA; University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Case Western University, Cleveland, OH
| | - Neal J Meropol
- From the The Ohio State University Wexner Medical Center, Columbus, OH; UCSF Helen Diller Comprehensive Cancer Center, San Francisco, CA; University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Case Western University, Cleveland, OH
| | - Tanios S Bekaii-Saab
- From the The Ohio State University Wexner Medical Center, Columbus, OH; UCSF Helen Diller Comprehensive Cancer Center, San Francisco, CA; University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Case Western University, Cleveland, OH
| |
Collapse
|
110
|
Zhang J. Poly (ADP-ribose) polymerase inhibitor: an evolving paradigm in the treatment of prostate cancer. Asian J Androl 2014; 16:401-6. [PMID: 24589464 PMCID: PMC4023365 DOI: 10.4103/1008-682x.123684] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Recent phase I studies have reported single-agent activities of poly (ADP-ribose) polymerase (PARP) inhibitor in sporadic and in BRCA-mutant prostate cancers. Two of the most common genetic alterations in prostate cancer, ETS gene rearrangement and loss of PTEN, have been linked to increased sensitivity to PARP inhibitor in preclinical models. Emerging evidence also suggests that PARP1 plays an important role in mediating the transcriptional activities of androgen receptor (AR) and ETS gene rearrangement. In this article, the preclinical work and early-phase clinical trials in developing PARP inhibitor-based therapy as a new treatment paradigm for metastatic prostate cancer are reviewed.
Collapse
Affiliation(s)
- Jingsong Zhang
- Department of Genitourinary Oncology and Department of Cancer Imaging and Metabolism, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
111
|
Cavone L, Peruzzi B, Caporale R, Chiarugi A. Long-term suppression of EAE relapses by pharmacological impairment of epitope spreading. Br J Pharmacol 2014; 171:1501-9. [PMID: 24730062 DOI: 10.1111/bph.12525] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Immune events sustaining dendritic cell (DC)-dependent epitope spreading (ES) are of key relevance to the development of relapses during multiple sclerosis (MS). Although no drugs are currently available to target ES, its inhibition would represent a major advancement in MS therapy. Inhibitors of the enzyme PARP-1 afford protection in animal models of MS, such as experimental autoimmune encephalomyelitis (EAE). These drugs epigenetically impair antigen presentation by DCs, but whether these drugs affect ES is unknown. Here, we investigated whether short-term treatments with these compounds would impair ES, thereby preventing EAE relapses. EXPERIMENTAL APPROACH We used a model of relapsing EAE in SJL mice and also adopted in vivo and ex vivo models of DC-dependent T-cell polarization. The effect of PARP-1 inhibitors on ES was evaluated at the humoral and cellular level. KEY RESULTS Short-term treatments with PARP-1 inhibitors during the acute phase of relapsing EAE of mice induced, at later times, more tolerogenic DCs, increased numbers of Treg cells and impairment of ES at the humoral and cellular level. These effects are followed by long-lasting reduction of relapse severity and incidence, although drug treatment had been discontinued for several weeks. PARP-1 inhibitors also induced tolerogenic DCs and increased Treg cells number and function in a model of ovalbumin immunization. CONCLUSIONS AND IMPLICATIONS Our data emphasize the therapeutic potential of PARP-1 inhibitors in the treatment of relapsing-remitting MS and additional ES-driven autoimmune disorders.
Collapse
|
112
|
Abdel-Fatah TM, Arora A, Alsubhi N, Agarwal D, Moseley PM, Perry C, Doherty R, Chan SY, Green AR, Rakha E, Ball G, Ellis IO, Madhusudan S. Clinicopathological significance of ATM-Chk2 expression in sporadic breast cancers: a comprehensive analysis in large cohorts. Neoplasia 2014; 16:982-91. [PMID: 25425972 PMCID: PMC4240925 DOI: 10.1016/j.neo.2014.09.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 12/28/2022]
Abstract
ATM-Chk2 network is critical for genomic stability, and its deregulation may influence breast cancer pathogenesis. We investigated ATM and Chk2 protein levels in two cohorts [cohort 1 (n = 1650) and cohort 2 (n = 252)]. ATM and Chk2 mRNA expression was evaluated in the Molecular Taxonomy of Breast Cancer International Consortium cohort (n = 1950). Low nuclear ATM protein level was significantly associated with aggressive breast cancer including larger tumors, higher tumor grade, higher mitotic index, pleomorphism, tumor type, lymphovascular invasion, estrogen receptor (ER)-, PR -, AR -, triple-negative, and basal-like phenotypes (Ps < .05). Breast cancer 1, early onset negative, low XRCC1, low SMUG1, high FEN1, high MIB1, p53 mutants, low MDM2, low Bcl-2, low p21, low Bax, high CDK1, and low Chk2 were also more frequent in tumors with low nuclear ATM level (Ps < .05). Low ATM protein level was significantly associated with poor survival including in patients with ER-negative tumors who received adjuvant anthracycline or cyclophosphamide, methotrexate, and 5-fluorouracil-based adjuvant chemotherapy (Ps < .05). Low nuclear Chk2 protein was likely in ER -/PR -/AR -; HER-2 positive; breast cancer 1, early onset negative; low XRCC1; low SMUG1; low APE1; low polβ; low DNA-PKcs; low ATM; low Bcl-2; and low TOPO2A tumors (P < .05). In patients with ER + tumors who received endocrine therapy or ER-negative tumors who received chemotherapy, nuclear Chk2 levels did not significantly influence survival. In p53 mutant tumors, low ATM (P < .000001) or high Chk2 (P < .01) was associated with poor survival. When investigated together, low-ATM/high-Chk2 tumors have the worst survival (P = .0033). Our data suggest that ATM-Chk2 levels in sporadic breast cancer may have prognostic and predictive significance.
Collapse
Affiliation(s)
| | - Arvind Arora
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG5 1 PB, UK
| | - Nouf Alsubhi
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG5 1 PB, UK
| | - Devika Agarwal
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, UK
| | - Paul M. Moseley
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG5 1 PB, UK
| | - Christina Perry
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG5 1 PB, UK
| | - Rachel Doherty
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG5 1 PB, UK
| | - Stephen Y.T. Chan
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG5 1 PB, UK
| | - Andrew R. Green
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG5 1 PB, UK
| | - Emad Rakha
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG5 1 PB, UK
| | - Graham Ball
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, UK
| | - Ian O. Ellis
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG5 1 PB, UK
| | - Srinivasan Madhusudan
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1 PB, UK
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham NG5 1 PB, UK
| |
Collapse
|
113
|
Luvero D, Milani A, Ledermann JA. Treatment options in recurrent ovarian cancer: latest evidence and clinical potential. Ther Adv Med Oncol 2014; 6:229-39. [PMID: 25342990 DOI: 10.1177/1758834014544121] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ovarian cancer (OC) is the fifth most common cause of cancer death in women. Although significant progress has been made in the treatment of OC, the majority of patients experience disease recurrence and receive second-line and sometimes several lines of treatment. Here we review the options available for the treatment of recurrent disease and discuss how different agents are selected, combined and offered in a rationale sequence in the context of multidisciplinary care. We reviewed published work between 1990 and 2013 and meeting abstracts related to the use of chemotherapy and surgery in patients with recurrent ovarian cancer. We discuss treatment regimens, efficacy endpoints and safety profiles of the different therapies. Platinum-based drugs are the most active agents and are selected on the basis of a probability of response to retreatment. Nonplatinum-based chemotherapy regimens are usually given in the 'platinum-resistant' setting and have a modest effect on outcome. Molecular targeted therapy of ovarian cancer given alone or integrated with chemotherapy is showing promising results. Many patients are now receiving more than one line of therapy for recurrent disease, usually platinum based until platinum resistance emerges. The sequential use of chemotherapy regimens and the incorporation of molecularly targeted treatments, either alone or in combination with chemotherapy, have over the last decade significantly extended the median survival of patients with ovarian cancer.
Collapse
Affiliation(s)
- Daniela Luvero
- UCL Hospitals London and Department of Obstetrics and Gynecology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Andrea Milani
- UCL Hospitals London and FPO, IRCCS, Candiolo Cancer Institute and Department of Oncology, University of Turin, Turin, Italy
| | - Jonathan A Ledermann
- UCL Cancer Institute, Cancer Research UK & UCL Cancer Trials Centre, 90 Tottenham Court Road, London W1T 4TJ, UK
| |
Collapse
|
114
|
Adenanthin targets peroxiredoxin I/II to kill hepatocellular carcinoma cells. Cell Death Dis 2014; 5:e1400. [PMID: 25188510 PMCID: PMC4540188 DOI: 10.1038/cddis.2014.345] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 06/01/2014] [Accepted: 07/10/2014] [Indexed: 12/19/2022]
Abstract
Adenanthin, a natural diterpenoid isolated from the leaves of Isodon adenanthus, has recently been reported to induce leukemic cell differentiation by targeting peroxiredoxins (Prx) I and II. On the other hand, increasing lines of evidence propose that these Prx proteins would become potential targets to screen drugs for the prevention and treatment of solid tumors. Therefore, it is of significance to explore the potential activities of adenanthin on solid tumor cells. Here, we demonstrate that Prx I protein is essential for the survival of hepatocellular carcinoma (HCC) cells, and adenanthin can kill these malignant liver cells in vitro and xenografts. We also show that the cell death-inducing activity of adenanthin on HCC cells is mediated by the increased reactive oxygen species (ROS) levels. Furthermore, the silencing of Prx I or Prx II significantly enhances the cytotoxic activity of adenanthin on HCC, whereas the ectopic expression of Prx I and Prx II but not their mutants of adenanthin-bound cysteines can rescue adenanthin-induced cytotoxicity in Prxs-silenced HCC cells. Taken together, our results propose that adenanthin targets Prx I/II to kill HCC cells and its therapeutic significance warrants to be further explored in HCC patients.
Collapse
|
115
|
DNA damage response and prostate cancer: defects, regulation and therapeutic implications. Oncogene 2014; 34:2815-22. [PMID: 25132269 PMCID: PMC4333141 DOI: 10.1038/onc.2014.238] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/25/2014] [Accepted: 06/25/2014] [Indexed: 02/07/2023]
Abstract
DNA damage response (DDR) includes the activation of numerous cellular activities that prevent duplication of DNA lesions and maintain genomic integrity, which is critical for the survival of normal and cancer cells. Specific genes involved in the DDR such as BRCA1/2 and P53 are mutated during prostate cancer progression, while various oncogenic signaling such as Akt and c-Myc are activated, enhancing the replication stress and increasing the genomic instability of cancer cells. These events may render prostate cancer cells particularly sensitive to inhibition of specific DDR pathways, such as PARP in homologous recombination (HR) DNA repair and Chk1 in cell cycle checkpoint and DNA repair, creating opportunities for synthetic lethality or synergistic cytotoxicity. Recent reports highlight the critical role of androgen receptor (AR) as a regulator of DDR genes, providing a rationale for combining DNA-damaging agents or targeted DDR inhibitors with hormonal manipulation or AR inhibition as treatment for aggressive disease. The aims of this review are to discuss specific DDR defects in prostate cancer that occur during disease progression, to summarize recent advances in understanding the regulation of DDR in prostate cancer, and to present potential therapeutic opportunities through combinational targeting of the intact components of DDR signaling pathways.
Collapse
|
116
|
Lupo B, Trusolino L. Inhibition of poly(ADP-ribosyl)ation in cancer: old and new paradigms revisited. Biochim Biophys Acta Rev Cancer 2014; 1846:201-15. [PMID: 25026313 DOI: 10.1016/j.bbcan.2014.07.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/02/2014] [Accepted: 07/08/2014] [Indexed: 01/31/2023]
Abstract
Inhibitors of poly(ADP-ribose) polymerases actualized the biological concept of synthetic lethality in the clinical practice, yielding a paradigmatic example of translational medicine. The profound sensitivity of tumors with germline BRCA mutations to PARP1/2 blockade owes to inherent defects of the BRCA-dependent homologous recombination machinery, which are unleashed by interruption of PARP DNA repair activity and lead to DNA damage overload and cell death. Conversely, aspirant BRCA-like tumors harboring somatic DNA repair dysfunctions (a vast entity of genetic and epigenetic defects known as "BRCAness") not always align with the familial counterpart and appear not to be equally sensitive to PARP inhibition. The acquisition of secondary resistance in initially responsive patients and the lack of standardized biomarkers to identify "BRCAness" pose serious threats to the clinical advance of PARP inhibitors; a feeling is also emerging that a BRCA-centered perspective might have missed the influence of additional, not negligible and DNA repair-independent PARP contributions onto therapy outcome. While regulatory approval for PARP1/2 inhibitors is still pending, novel therapeutic opportunities are sprouting from different branches of the PARP family, although they remain immature for clinical extrapolation. This review is an endeavor to provide a comprehensive appraisal of the multifaceted biology of PARPs and their evolving impact on cancer therapeutics.
Collapse
Affiliation(s)
- Barbara Lupo
- Department of Oncology, University of Torino Medical School, 10060 Candiolo, Torino, Italy; Laboratory of Molecular Pharmacology, Candiolo Cancer Institute, FPO IRCCS, 10060 Candiolo, Torino, Italy
| | - Livio Trusolino
- Department of Oncology, University of Torino Medical School, 10060 Candiolo, Torino, Italy; Laboratory of Molecular Pharmacology, Candiolo Cancer Institute, FPO IRCCS, 10060 Candiolo, Torino, Italy.
| |
Collapse
|
117
|
Wu M, Wang X, McGregor N, Pienta KJ, Zhang J. Dynamic regulation of Rad51 by E2F1 and p53 in prostate cancer cells upon drug-induced DNA damage under hypoxia. Mol Pharmacol 2014; 85:866-76. [PMID: 24627085 PMCID: PMC4014666 DOI: 10.1124/mol.113.090688] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 03/13/2014] [Indexed: 01/06/2023] Open
Abstract
Intratumoral hypoxia has been proposed to create a "mutator" phenotype through downregulation of DNA repair, leading to increased genomic instability and drug resistance. Such downregulation of DNA repair has been proposed to sensitize hypoxic cancer cells to DNA-damaging agents and inhibitors of DNA repair. Here, we showed that prostate cancer cells with mutant p53 were resistant to the poly(ADP-ribose) polymerase inhibitor, veliparib (2-[(2R)-2-methylpyrrolidin-2-yl]-1H-benzimidazole-4-carboxamide, dihydrochloride; Abbott Laboratories, Abbott Park, IL), and the DNA-damaging topoisomerase I inhibitor camptothecin-11 (CPT-11) or SN38 (7-ethyl-10-hydroxycamptothecin) under hypoxia. Upregulation of Rad51 by E2F1 upon DNA damage under hypoxia contributed to such resistance, which was reversed by either inhibiting RAD51 transcription with small interfering RNA or by expressing wild-type p53 in the p53 null prostate cancer line. Accumulation of endogenous p53 but not E2F1 and suppressed RAD51 transcription was observed in prostate cancer line with wild-type p53 after DNA damage under hypoxia. Combining veliparib with CPT-11 significantly enhanced DNA damage and apoptosis under both hypoxic and normoxic culture conditions. Such enhanced DNA damage and antitumor activities were seen in the presence of Rad51 upregulation and confirmed in vivo with PC3 mouse xenografts. These data illustrate a dynamic regulation of Rad51 by E2F1 and p53 in prostate cancer cells' response to hypoxia and DNA damage. The veliparib and CPT-11 combination can be further explored as a treatment of metastatic castration-resistant prostate cancers that have frequent p53 mutations and enriched genomic instability.
Collapse
Affiliation(s)
- Minghui Wu
- Department of Genitourinary Oncology and Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida (M.W., X.W., J.Z.); and University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan (N.M., K.J.P.)
| | | | | | | | | |
Collapse
|
118
|
First international consensus guidelines for breast cancer in young women (BCY1). Breast 2014; 23:209-20. [PMID: 24767882 DOI: 10.1016/j.breast.2014.03.011] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 03/25/2014] [Accepted: 03/25/2014] [Indexed: 01/23/2023] Open
Abstract
The 1st International Consensus Conference for Breast Cancer in Young Women (BCY1) took place in November 2012, in Dublin, Ireland organized by the European School of Oncology (ESO). Consensus recommendations for management of breast cancer in young women were developed and areas of research priorities were identified. This manuscript summarizes these international consensus recommendations, which are also endorsed by the European Society of Breast Specialists (EUSOMA).
Collapse
|
119
|
O’Sullivan CC, Moon DH, Kohn EC, Lee JM. Beyond Breast and Ovarian Cancers: PARP Inhibitors for BRCA Mutation-Associated and BRCA-Like Solid Tumors. Front Oncol 2014; 4:42. [PMID: 24616882 PMCID: PMC3937815 DOI: 10.3389/fonc.2014.00042] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 02/18/2014] [Indexed: 12/14/2022] Open
Abstract
Poly(ADP-ribose) polymerase inhibitors (PARPi) have shown clinical activity in patients with germline BRCA1/2 mutation (gBRCAm)-associated breast and ovarian cancers. Accumulating evidence suggests that PARPi may have a wider application in the treatment of cancers defective in DNA damage repair pathways, such as prostate, lung, endometrial, and pancreatic cancers. Several PARPi are currently in phase I/II clinical investigation, as single-agents and/or combination therapy in these solid tumors. Understanding more about the molecular abnormalities involved in BRCA-like phenotype in solid tumors beyond breast and ovarian cancers, exploring novel therapeutic trial strategies and drug combinations, and defining potential predictive biomarkers are critical to expanding the scope of PARPi therapy. This will improve clinical outcome in advanced solid tumors. Here, we briefly review the preclinical data and clinical development of PARPi, and discuss its future development in solid tumors beyond gBRCAm-associated breast and ovarian cancers.
Collapse
Affiliation(s)
- Ciara C. O’Sullivan
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Dominic H. Moon
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Medical Research Scholars Program, National Institutes of Health, Bethesda, MD, USA
| | - Elise C. Kohn
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jung-Min Lee
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
120
|
Pierce A, McGowan PM, Cotter M, Mullooly M, O'Donovan N, Rani S, O'Driscoll L, Crown J, Duffy MJ. Comparative antiproliferative effects of iniparib and olaparib on a panel of triple-negative and non-triple-negative breast cancer cell lines. Cancer Biol Ther 2014; 14:537-45. [PMID: 23760496 DOI: 10.4161/cbt.24349] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PARP inhibitors, both as monotherapy and in combination with cytotoxic drugs, are currently undergoing clinical trials in several different cancer types. In this investigation, we compared the antiproliferative activity of two PARP/putative PARP inhibitors, i.e., olaparib and iniparib, in a panel of 14 breast cancer cell lines (seven tripe-negative and seven non-triple-negative). In almost all cell lines investigated, olaparib was a more potent inhibitor of cell growth than iniparib. Inhibition by both drugs was cell line-dependent and independent of the molecular subtype status of the cells, i.e., whether cells were triple-negative or non-triple negative. Although the primary target of PARP inhibitors is PARP1, no significant association was found between baseline levels of PARP1 activity and inhibition with either agent. Similarly, no significant correlation was evident between sensitivity and levels of CDK1, BRCA1 or miR-182. Combined addition of olaparib and either the CDK1 inhibitor, RO-3306 or a pan HER inhibitor (neratinib, afatinib) resulted in superior growth inhibition to that obtained with olaparib alone. We conclude that olaparib, in contrast to iniparib, is a strong inhibitor of breast cancer cell growth and may have efficacy in breast cancer irrespective of its molecular subtype, i.e., whether HER2-positive, estrogen receptor (ER)-positive or triple-negative. Olaparib, in combination with a selective CDK1 inhibitor or a pan HER inhibitor, is a potential new approach for treating breast cancer.
Collapse
Affiliation(s)
- Aisling Pierce
- Education and Research Centre, St. Vincent's University Hospital, Dublin, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Sun Y, Ding H, Liu X, Li X, Li L. INPP4B overexpression enhances the antitumor efficacy of PARP inhibitor AG014699 in MDA-MB-231 triple-negative breast cancer cells. Tumour Biol 2014; 35:4469-77. [DOI: 10.1007/s13277-013-1589-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 12/19/2013] [Indexed: 12/21/2022] Open
|
122
|
A short review on the implications of base excision repair pathway for neurons: relevance to neurodegenerative diseases. Mitochondrion 2013; 16:38-49. [PMID: 24220222 DOI: 10.1016/j.mito.2013.10.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/31/2013] [Accepted: 10/31/2013] [Indexed: 12/13/2022]
Abstract
Oxidative DNA damage results from the attack by reactive oxygen and nitrogen species (ROS/RNS) on human genome. This includes base modifications such as oxidized bases, abasic (AP) sites, and single-strand breaks (SSBs), all of which are repaired by the base excision repair (BER) pathway, one among the six known repair pathways. BER-pathway in mammalian cells involves several evolutionarily conserved proteins and is also linked to genome replication and transcription. The BER-pathway enzymes, namely, DNA glycosylases (DGs) and the end-processing proteins such as abasic endonuclease (APE1), form complexes with downstream repair enzymes via protein-protein and DNA-protein interactions. An emerging concept for BER proteins is their involvement in non-canonical functions associated to RNA metabolism, which is opening new interesting perspectives. Various mechanisms that are underlined in maintaining neuronal cell genome integrity are identified, but are inconclusive in providing protection against oxidative damage in neurodegenerative disorders, main emphasis is given towards the role played by the proteins of BER-pathway that is discussed. In addition, mechanisms of action of BER-pathway in nuclear vs. mitochondria as well as the non-canonical functions are discussed in connection to human neurodegenerative diseases.
Collapse
|
123
|
De Lorenzo SB, Patel AG, Hurley RM, Kaufmann SH. The Elephant and the Blind Men: Making Sense of PARP Inhibitors in Homologous Recombination Deficient Tumor Cells. Front Oncol 2013; 3:228. [PMID: 24062981 PMCID: PMC3769628 DOI: 10.3389/fonc.2013.00228] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/21/2013] [Indexed: 12/31/2022] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) is an important component of the base excision repair (BER) pathway as well as a regulator of homologous recombination (HR) and non-homologous end-joining (NHEJ). Previous studies have demonstrated that treatment of HR-deficient cells with PARP inhibitors results in stalled and collapsed replication forks. Consequently, HR-deficient cells are extremely sensitive to PARP inhibitors. Several explanations have been advanced to explain this so-called synthetic lethality between HR deficiency and PARP inhibition: (i) reduction of BER activity leading to enhanced DNA double-strand breaks, which accumulate in the absence of HR; (ii) trapping of inhibited PARP1 at sites of DNA damage, which prevents access of other repair proteins; (iii) failure to initiate HR by poly(ADP-ribose) polymer-dependent BRCA1 recruitment; and (iv) activation of the NHEJ pathway, which selectively induces error-prone repair in HR-deficient cells. Here we review evidence regarding these various explanations for the ability of PARP inhibitors to selectively kill HR-deficient cancer cells and discuss their potential implications.
Collapse
|
124
|
Petanidis S, Anestakis D, Argyraki M, Hadzopoulou-Cladaras M, Salifoglou A. Differential expression of IL-17, 22 and 23 in the progression of colorectal cancer in patients with K-ras mutation: Ras signal inhibition and crosstalk with GM-CSF and IFN-γ. PLoS One 2013; 8:e73616. [PMID: 24040001 PMCID: PMC3765247 DOI: 10.1371/journal.pone.0073616] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 07/23/2013] [Indexed: 12/13/2022] Open
Abstract
Recent studies have suggested that aberrant K-ras signaling is responsible for triggering immunological responses and inflammation-driven tumorigenesis. Interleukins IL-17, IL-22, and IL-23 have been reported in various types of malignancies, but the exact mechanistic role of these molecules remains to be elucidated. Given the role of K-ras and the involvement of interleukins in colorectal tumorigenesis, research efforts are reported for the first time, showing that differentially expressed interleukin IL-17, IL-22, and IL-23 levels are associated with K-ras in a stage-specific fashion along colorectal cancer progression. Specifically, a) the effect of K-ras signaling was investigated in the overall expression of interleukins in patients with colorectal cancer and healthy controls, and b) an association was established between mutant K-ras and cytokines GM-CSF and IFN-γ. The results indicate that specific interleukins are differentially expressed in K-ras positive patients and the use of K-ras inhibitor Manumycin A decreases both interleukin levels and apoptosis in Caco-2 cells by inhibiting cell viability. Finally, inflammation-driven GM-CSF and IFN-γ levels are modulated through interleukin expression in tumor patients, with interleukin expression in the intestinal lumen and cancerous tissue mediated by aberrant K-ras signaling. Collectively, the findings a) indicate that interleukin expression is influenced by ras signaling and specific interleukins play an oncogenic promoter role in colorectal cancer, highlighting the molecular link between inflammation and tumorigenesis, and b) accentuate the interwoven molecular correlations as leads to new therapeutic approaches in the future.
Collapse
Affiliation(s)
- Savvas Petanidis
- Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Doxakis Anestakis
- Laboratory of General Biology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Argyraki
- Laboratory of General Biology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Margarita Hadzopoulou-Cladaras
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Salifoglou
- Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
125
|
Rescigno P, Cerillo I, Ruocco R, Condello C, De Placido S, Pensabene M. New hypothesis on pathogenesis of ovarian cancer lead to future tailored approaches. BIOMED RESEARCH INTERNATIONAL 2013; 2013:852839. [PMID: 24063014 PMCID: PMC3766984 DOI: 10.1155/2013/852839] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/14/2013] [Indexed: 11/17/2022]
Abstract
In the last decades, management of epithelial ovarian cancer (EOC) has been based on the staging system of the International Federation of Gynecology and Obstetrics (FIGO), and different classifications have been proposed for EOC that take account of grade of differentiation, histological subtype, and clinical features. However, despite taxonomic efforts, EOC appears to be not a unique disease; its subtypes differ for epidemiological and genetic risk factors, precursor lesions, patterns of spread, response to chemotherapy, and prognosis. Nevertheless, carboplatin plus paclitaxel combination represents the only standard treatment in adjuvant and advanced settings. This paper summarizes theories about the classification and origin of EOC and classical and new prognostic factors. It presents data about standard treatment and novel agents. We speculate about the possibility to create tailored therapy based on specific mutations in ovarian cancer and to personalize prevention.
Collapse
Affiliation(s)
- P. Rescigno
- Department of Clinical Medicine and Surgery, University Hospital and University Federico II, via Pansini 5, 80131 Naples, Italy
| | - I. Cerillo
- Department of Clinical Medicine and Surgery, University Hospital and University Federico II, via Pansini 5, 80131 Naples, Italy
| | - R. Ruocco
- Department of Clinical Medicine and Surgery, University Hospital and University Federico II, via Pansini 5, 80131 Naples, Italy
| | - C. Condello
- Department of Clinical Medicine and Surgery, University Hospital and University Federico II, via Pansini 5, 80131 Naples, Italy
| | - S. De Placido
- Department of Clinical Medicine and Surgery, University Hospital and University Federico II, via Pansini 5, 80131 Naples, Italy
| | - M. Pensabene
- Department of Clinical Medicine and Surgery, University Hospital and University Federico II, via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
126
|
Personalized synthetic lethality induced by targeting RAD52 in leukemias identified by gene mutation and expression profile. Blood 2013; 122:1293-304. [PMID: 23836560 DOI: 10.1182/blood-2013-05-501072] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Homologous recombination repair (HRR) protects cells from the lethal effect of spontaneous and therapy-induced DNA double-stand breaks. HRR usually depends on BRCA1/2-RAD51, and RAD52-RAD51 serves as back-up. To target HRR in tumor cells, a phenomenon called "synthetic lethality" was applied, which relies on the addiction of cancer cells to a single DNA repair pathway, whereas normal cells operate 2 or more mechanisms. Using mutagenesis and a peptide aptamer approach, we pinpointed phenylalanine 79 in RAD52 DNA binding domain I (RAD52-phenylalanine 79 [F79]) as a valid target to induce synthetic lethality in BRCA1- and/or BRCA2-deficient leukemias and carcinomas without affecting normal cells and tissues. Targeting RAD52-F79 disrupts the RAD52-DNA interaction, resulting in the accumulation of toxic DNA double-stand breaks in malignant cells, but not in normal counterparts. In addition, abrogation of RAD52-DNA interaction enhanced the antileukemia effect of already-approved drugs. BRCA-deficient status predisposing to RAD52-dependent synthetic lethality could be predicted by genetic abnormalities such as oncogenes BCR-ABL1 and PML-RAR, mutations in BRCA1 and/or BRCA2 genes, and gene expression profiles identifying leukemias displaying low levels of BRCA1 and/or BRCA2. We believe this work may initiate a personalized therapeutic approach in numerous patients with tumors displaying encoded and functional BRCA deficiency.
Collapse
|
127
|
The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase 1 dose-escalation trial. Lancet Oncol 2013; 14:882-92. [PMID: 23810788 DOI: 10.1016/s1470-2045(13)70240-7] [Citation(s) in RCA: 435] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Poly(ADP-ribose) polymerase (PARP) is implicated in DNA repair and transcription regulation. Niraparib (MK4827) is an oral potent, selective PARP-1 and PARP-2 inhibitor that induces synthetic lethality in preclinical tumour models with loss of BRCA and PTEN function. We investigated the safety, tolerability, maximum tolerated dose, pharmacokinetic and pharmacodynamic profiles, and preliminary antitumour activity of niraparib. METHODS In a phase 1 dose-escalation study, we enrolled patients with advanced solid tumours at one site in the UK and two sites in the USA. Eligible patients were aged at least 18 years; had a life expectancy of at least 12 weeks; had an Eastern Cooperative Oncology Group performance status of 2 or less; had assessable disease; were not suitable to receive any established treatments; had adequate organ function; and had discontinued any previous anticancer treatments at least 4 weeks previously. In part A, cohorts of three to six patients, enriched for BRCA1 and BRCA2 mutation carriers, received niraparib daily at ten escalating doses from 30 mg to 400 mg in a 21-day cycle to establish the maximum tolerated dose. Dose expansion at the maximum tolerated dose was pursued in 15 patients to confirm tolerability. In part B, we further investigated the maximum tolerated dose in patients with sporadic platinum-resistant high-grade serous ovarian cancer and sporadic prostate cancer. We obtained blood, circulating tumour cells, and optional paired tumour biopsies for pharmacokinetic and pharmacodynamic assessments. Toxic effects were assessed by common toxicity criteria and tumour responses ascribed by Response Evaluation Criteria in Solid Tumors (RECIST). Circulating tumour cells and archival tumour tissue in prostate patients were analysed for exploratory putative predictive biomarkers, such as loss of PTEN expression and ETS rearrangements. This trial is registered with ClinicalTrials.gov, NCT00749502. FINDINGS Between Sept 15, 2008, and Jan 14, 2011, we enrolled 100 patients: 60 in part A and 40 in part B. 300 mg/day was established as the maximum tolerated dose. Dose-limiting toxic effects reported in the first cycle were grade 3 fatigue (one patient given 30 mg/day), grade 3 pneumonitis (one given 60 mg/day), and grade 4 thrombocytopenia (two given 400 mg/day). Common treatment-related toxic effects were anaemia (48 patients [48%]), nausea (42 [42%]), fatigue (42 [42%]), thrombocytopenia (35 [35%]), anorexia (26 [26%]), neutropenia (24 [24%]), constipation (23 [23%]), and vomiting (20 [20%]), and were predominantly grade 1 or 2. Pharmacokinetics were dose proportional and the mean terminal elimination half-life was 36·4 h (range 32·8-46·0). Pharmacodynamic analyses confirmed PARP inhibition exceeded 50% at doses greater than 80 mg/day and antitumour activity was documented beyond doses of 60 mg/day. Eight (40% [95% CI 19-64]) of 20 BRCA1 or BRCA2 mutation carriers with ovarian cancer had RECIST partial responses, as did two (50% [7-93]) of four mutation carriers with breast cancer. Antitumour activity was also reported in sporadic high-grade serous ovarian cancer, non-small-cell lung cancer, and prostate cancer. We recorded no correlation between loss of PTEN expression or ETS rearrangements and measures of antitumour activity in patients with prostate cancer. INTERPRETATION A recommended phase 2 dose of 300 mg/day niraparib is well tolerated. Niraparib should be further assessed in inherited and sporadic cancers with homologous recombination DNA repair defects and to target PARP-mediated transcription in cancer. FUNDING Merck Sharp and Dohme.
Collapse
|
128
|
Klarenbeek S, van Miltenburg MH, Jonkers J. Genetically engineered mouse models of PI3K signaling in breast cancer. Mol Oncol 2013; 7:146-64. [PMID: 23478237 DOI: 10.1016/j.molonc.2013.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 02/11/2013] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most common type of cancer in women. A substantial fraction of breast cancers have acquired mutations that lead to activation of the phosphoinositide 3-kinase (PI3K) signaling pathway, which plays a central role in cellular processes that are essential in cancer, such as cell survival, growth, division and motility. Oncogenic mutations in the PI3K pathway generally involve either activating mutation of the gene encoding PI3K (PIK3CA) or AKT (AKT1), or loss or reduced expression of PTEN. Several kinases involved in PI3K signaling are being explored as a therapeutic targets for pharmacological inhibition. Despite the availability of a range of inhibitors, acquired resistance may limit the efficacy of single-agent therapy. In this review we discuss the role of PI3K pathway mutations in human breast cancer and relevant genetically engineered mouse models (GEMMs), with special attention to the role of PI3K signaling in oncogenesis, in therapeutic response, and in resistance to therapy. Several sophisticated GEMMs have revealed the cause-and-effect relationships between PI3K pathway mutations and mammary oncogenesis. These GEMMs enable us to study the biology of tumors induced by activated PI3K signaling, as well as preclinical response and resistance to PI3K pathway inhibitors.
Collapse
Affiliation(s)
- Sjoerd Klarenbeek
- Division of Molecular Pathology, Cancer Genomics Centre Netherlands and Cancer Systems Biology Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
129
|
Legrand AJ, Choul-Li S, Spriet C, Idziorek T, Vicogne D, Drobecq H, Dantzer F, Villeret V, Aumercier M. The level of Ets-1 protein is regulated by poly(ADP-ribose) polymerase-1 (PARP-1) in cancer cells to prevent DNA damage. PLoS One 2013; 8:e55883. [PMID: 23405229 PMCID: PMC3566071 DOI: 10.1371/journal.pone.0055883] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/03/2013] [Indexed: 12/24/2022] Open
Abstract
Ets-1 is a transcription factor that regulates many genes involved in cancer progression and in tumour invasion. It is a poor prognostic marker for breast, lung, colorectal and ovary carcinomas. Here, we identified poly(ADP-ribose) polymerase-1 (PARP-1) as a novel interaction partner of Ets-1. We show that Ets-1 activates, by direct interaction, the catalytic activity of PARP-1 and is then poly(ADP-ribosyl)ated in a DNA-independent manner. The catalytic inhibition of PARP-1 enhanced Ets-1 transcriptional activity and caused its massive accumulation in cell nuclei. Ets-1 expression was correlated with an increase in DNA damage when PARP-1 was inhibited, leading to cancer cell death. Moreover, PARP-1 inhibitors caused only Ets-1-expressing cells to accumulate DNA damage. These results provide new insight into Ets-1 regulation in cancer cells and its link with DNA repair proteins. Furthermore, our findings suggest that PARP-1 inhibitors would be useful in a new therapeutic strategy that specifically targets Ets-1-expressing tumours.
Collapse
Affiliation(s)
- Arnaud J Legrand
- CNRS USR 3078, Institut de Recherche Interdisciplinaire, Campus CNRS de la Haute Borne, Université Lille Nord de France, IFR 147, BP 70478, Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Basu B, Sandhu SK, de Bono JS. PARP inhibitors: mechanism of action and their potential role in the prevention and treatment of cancer. Drugs 2012; 72:1579-90. [PMID: 22834679 DOI: 10.2165/11635510-000000000-00000] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The use of poly(ADP-ribose) polymerase (PARP) inhibitors provided proof-of-concept for a synthetic lethal anti-cancer strategy as a result of their efficacy and favourable toxicity profile in BRCA1/2 mutation carriers. Efforts are underway to identify a broader group of patients with genomic susceptibility that may benefit from these agents. In an endeavour to enhance anti-tumour effects, PARP inhibitors have been combined with traditional cytotoxic therapy and radiotherapy; however, optimization of dosing schedules for these combination regimens remains key to maximizing benefit whilst mitigating the potential for increased toxicity. With ongoing clinical experience of PARP inhibition, mechanisms of resistance to these therapies are being elucidated and specific challenges to long-term administration of these drugs will need to be addressed. Development of robust predictive biomarkers of response for optimal patient selection and rational combination strategies must be pursued if the full potential of these agents is to be realized.
Collapse
Affiliation(s)
- Bristi Basu
- Drug Development Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK
| | | | | |
Collapse
|
131
|
Lee MH, Na H, Kim EJ, Lee HW, Lee MO. Poly(ADP-ribosyl)ation of p53 induces gene-specific transcriptional repression of MTA1. Oncogene 2012; 31:5099-107. [PMID: 22286760 DOI: 10.1038/onc.2012.2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 12/22/2011] [Accepted: 12/22/2011] [Indexed: 12/12/2022]
Abstract
The metastasis-associated protein 1 (MTA1) is overexpressed in various human cancers and is closely connected with aggressive phenotypes; however, little is known about the transcriptional regulation of the MTA1 gene. This study identified the MTA1 gene as a target of p53-mediated transrepression. The MTA1 promoter contains two putative p53 response elements (p53REs), which were repressed by the p53-inducing drug 5-fluorouracil (5-FU). Notably, 5-FU treatment decreased MTA1 expression only in p53 wild-type cells. p53 and histone deacetylases 1/2 were recruited, and acetylation of H3K9 was decreased on the promoter region including the p53REs after 5-FU treatment. Proteomics analysis of the p53 repressor complex, which was pulled down by the MTA1 promoter, revealed that the poly(ADP-ribose) polymerase 1 (PARP-1) was part of the complex. Interestingly, p53 was poly(ADP-ribose)ylated by PARP-1, and the p53-mediated transrepression of the MTA1 gene required poly(ADP-ribose)ylation of p53. In summary, we report a novel function for poly(ADP-ribose)ylation of p53 in the gene-specific regulation of the transcriptional mode of p53 on the promoter of MTA1.
Collapse
Affiliation(s)
- M-H Lee
- College of Pharmacy and Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
132
|
Zhu Y, Li G, Dong Y, Zhou HH, Kong B, Aleksunes LM, Richardson JR, Li F, Guo GL. Modulation of farnesoid X receptor results in post-translational modification of poly (ADP-ribose) polymerase 1 in the liver. Toxicol Appl Pharmacol 2012. [PMID: 23178280 DOI: 10.1016/j.taap.2012.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The farnesoid X receptor (FXR) is a bile acid-activated transcription factor belonging to the nuclear receptor superfamily. FXR deficiency in mice results in cholestasis, metabolic disorders, and tumorigenesis in liver and intestine. FXR is known to contribute to pathogenesis by regulating gene transcription; however, changes in the post-transcriptional modification of proteins associated with FXR modulation have not been determined. In the current study, proteomic analysis of the livers of wild-type (WT) and FXR knockout (FXR-KO) mice treated with a FXR synthetic ligand or vehicle was performed. The results identified five proteins as novel FXR targets. Since FXR deficiency in mice leads to liver tumorigenesis, poly (ADP-ribose) polymerase family, member 1 (Parp1) that is important for DNA repair, was validated in the current study by quantitative real-time PCR, and 1- and 2-dimensional gel electrophoresis/western blot. The results showed that Parp1 mRNA levels were not altered by FXR genetic status or by agonist treatment. However, total Parp1 protein levels were increased in FXR-KO mice as early as 3 month old. Interestingly, total Parp1 protein levels were increased in WT mice in an age-dependent manner (from 3 to 18 months), but not in FXR-KO mice. Finally, activation of FXR in WT mice resulted in reduction of phosporylated Parp1 protein in the liver without affecting total Parp1 protein levels. In conclusion, this study reveals that FXR genetic status and agonist treatment affects basal levels and phosphorylation state of Parp1, respectively. These alterations, in turn, may be associated with the hepatobiliary alterations observed in FXR-KO mice and participate in FXR agonist-induced protection in the liver.
Collapse
Affiliation(s)
- Yan Zhu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
The growing complexity of HIF-1α’s role in tumorigenesis: DNA repair and beyond. Oncogene 2012; 32:3569-76. [DOI: 10.1038/onc.2012.510] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 09/28/2012] [Accepted: 09/27/2012] [Indexed: 12/13/2022]
|
134
|
G-Protein-Coupled Receptor (GPCR)-Dependent ADAM-17 Regulated Ectodomain Shedding. Cancer Biomark 2012. [DOI: 10.1201/b14318-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
135
|
Sultana R, McNeill DR, Abbotts R, Mohammed MZ, Zdzienicka MZ, Qutob H, Seedhouse C, Laughton CA, Fischer PM, Patel PM, Wilson DM, Madhusudan S. Synthetic lethal targeting of DNA double-strand break repair deficient cells by human apurinic/apyrimidinic endonuclease inhibitors. Int J Cancer 2012; 131:2433-44. [PMID: 22377908 PMCID: PMC3742328 DOI: 10.1002/ijc.27512] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 02/13/2012] [Indexed: 02/07/2023]
Abstract
An apurinic/apyrimidinic (AP) site is an obligatory cytotoxic intermediate in DNA Base Excision Repair (BER) that is processed by human AP endonuclease 1 (APE1). APE1 is essential for BER and an emerging drug target in cancer. We have isolated novel small molecule inhibitors of APE1. In this study, we have investigated the ability of APE1 inhibitors to induce synthetic lethality (SL) in a panel of DNA double-strand break (DSB) repair deficient and proficient cells; i) Chinese hamster (CH) cells: BRCA2 deficient (V-C8), ATM deficient (V-E5), wild type (V79) and BRCA2 revertant [V-C8(Rev1)]. ii) Human cancer cells: BRCA1 deficient (MDA-MB-436), BRCA1 proficient (MCF-7), BRCA2 deficient (CAPAN-1 and HeLa SilenciX cells), BRCA2 proficient (PANC1 and control SilenciX cells). We also tested SL in CH ovary cells expressing a dominant-negative form of APE1 (E8 cells) using ATM inhibitors and DNA-PKcs inhibitors (DSB inhibitors). APE1 inhibitors are synthetically lethal in BRCA and ATM deficient cells. APE1 inhibition resulted in accumulation of DNA DSBs and G2/M cell cycle arrest. SL was also demonstrated in CH cells expressing a dominant-negative form of APE1 treated with ATM or DNA-PKcs inhibitors. We conclude that APE1 is a promising SL target in cancer.
Collapse
Affiliation(s)
- Rebeka Sultana
- Laboratory of Molecular Oncology, Academic Unit of Oncology, School
of Molecular Medical Sciences, Nottingham University Hospitals, University of
Nottingham, Nottingham, NG51PB, U.K
| | - Daniel R. McNeill
- Laboratory of Molecular Gerontology, Biomedical Research Center,
National Institute on Aging, NIH, Baltimore, MD 21224-6825, USA
| | - Rachel Abbotts
- Laboratory of Molecular Oncology, Academic Unit of Oncology, School
of Molecular Medical Sciences, Nottingham University Hospitals, University of
Nottingham, Nottingham, NG51PB, U.K
| | - Mohammed Z. Mohammed
- Laboratory of Molecular Oncology, Academic Unit of Oncology, School
of Molecular Medical Sciences, Nottingham University Hospitals, University of
Nottingham, Nottingham, NG51PB, U.K
| | - Małgorzata Z. Zdzienicka
- Department of Molecular Cell Genetics, Collegium Medicum in
Bydgoszcz, Nicolaus-Copernicus University in Torun, Bydgoszcz 85-094, Poland
| | - Haitham Qutob
- Department of Academic Haematology, School of Molecular Medical
Sciences, Nottingham University Hospitals, University of Nottingham, Nottingham,
NG51PB, U.K
| | - Claire Seedhouse
- Department of Academic Haematology, School of Molecular Medical
Sciences, Nottingham University Hospitals, University of Nottingham, Nottingham,
NG51PB, U.K
| | - Charles A. Laughton
- School of Pharmacy and Centre for Biomolecular Sciences, University
of Nottingham, Nottingham, NG72RD, UK
| | - Peter M. Fischer
- School of Pharmacy and Centre for Biomolecular Sciences, University
of Nottingham, Nottingham, NG72RD, UK
| | - Poulam M. Patel
- Laboratory of Molecular Oncology, Academic Unit of Oncology, School
of Molecular Medical Sciences, Nottingham University Hospitals, University of
Nottingham, Nottingham, NG51PB, U.K
| | - David M. Wilson
- Laboratory of Molecular Gerontology, Biomedical Research Center,
National Institute on Aging, NIH, Baltimore, MD 21224-6825, USA
| | - Srinivasan Madhusudan
- Laboratory of Molecular Oncology, Academic Unit of Oncology, School
of Molecular Medical Sciences, Nottingham University Hospitals, University of
Nottingham, Nottingham, NG51PB, U.K
| |
Collapse
|
136
|
A zinc finger nuclease assay to rapidly quantitate homologous recombination proficiency in human cell lines. Anal Biochem 2012; 434:96-8. [PMID: 23149234 DOI: 10.1016/j.ab.2012.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 11/01/2012] [Accepted: 11/02/2012] [Indexed: 12/12/2022]
Abstract
Homologous recombination (HR) is a cellular mechanism for accurate repair of double-strand DNA breaks, often deregulated in cancer. Development of novel cancer therapeutics targeting HR pathways would benefit from a quantitative and rapid means of measuring HR. Here, we describe a zinc finger nuclease (ZFN) assay that can quantify HR. Knockdown of BRCA1 or inactivation of BRCA2 decreased HR activity in cells, whereas gene restoration induced activity 8-fold. HR activity was also reflective of BRCA1/2 status in cells with known endogenous mutations.
Collapse
|
137
|
Abstract
NAD is a vital molecule in all organisms. It is a key component of both energy and signal transduction--processes that undergo crucial changes in cancer cells. NAD(+)-dependent signalling pathways are many and varied, and they regulate fundamental events such as transcription, DNA repair, cell cycle progression, apoptosis and metabolism. Many of these processes have been linked to cancer development. Given that NAD(+)-dependent signalling reactions involve the degradation of the molecule, permanent nucleotide resynthesis through different biosynthetic pathways is crucial for incessant cancer cell proliferation. This necessity supports the targeting of NAD metabolism as a new therapeutic concept for cancer treatment.
Collapse
Affiliation(s)
- Alberto Chiarugi
- Department of Preclinical and Clinical Pharmacology, University of Firenze, 50139, Italy
| | | | | | | |
Collapse
|
138
|
Small-molecule inhibitors of DNA damage-repair pathways: an approach to overcome tumor resistance to alkylating anticancer drugs. Future Med Chem 2012; 4:1093-111. [PMID: 22709253 DOI: 10.4155/fmc.12.58] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A major challenge in the future development of cancer therapeutics is the identification of biological targets and pathways, and the subsequent design of molecules to combat the drug-resistant cells hiding in virtually all cancers. This therapeutic approach is justified based upon the limited advances in cancer cures over the past 30 years, despite the development of many novel chemotherapies and earlier detection, which often fail due to drug resistance. Among the various targets to overcome tumor resistance are the DNA repair systems that can reverse the cytotoxicity of many clinically used DNA-damaging agents. Some progress has already been made but much remains to be done. We explore some components of the DNA-repair process, which are involved in repair of alkylation damage of DNA, as targets for the development of novel and effective molecules designed to improve the efficacy of existing anticancer drugs.
Collapse
|
139
|
Schiewer MJ, Goodwin JF, Han S, Brenner JC, Augello MA, Dean JL, Liu F, Planck JL, Ravindranathan P, Chinnaiyan AM, McCue P, Gomella LG, Raj GV, Dicker AP, Brody JR, Pascal JM, Centenera MM, Butler LM, Tilley WD, Feng FY, Knudsen KE. Dual roles of PARP-1 promote cancer growth and progression. Cancer Discov 2012; 2:1134-49. [PMID: 22993403 DOI: 10.1158/2159-8290.cd-12-0120] [Citation(s) in RCA: 333] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
UNLABELLED PARP-1 is an abundant nuclear enzyme that modifies substrates by poly(ADP-ribose)-ylation. PARP-1 has well-described functions in DNA damage repair and also functions as a context-specific regulator of transcription factors. With multiple models, data show that PARP-1 elicits protumorigenic effects in androgen receptor (AR)-positive prostate cancer cells, in both the presence and absence of genotoxic insult. Mechanistically, PARP-1 is recruited to sites of AR function, therein promoting AR occupancy and AR function. It was further confirmed in genetically defined systems that PARP-1 supports AR transcriptional function, and that in models of advanced prostate cancer, PARP-1 enzymatic activity is enhanced, further linking PARP-1 to AR activity and disease progression. In vivo analyses show that PARP-1 activity is required for AR function in xenograft tumors, as well as tumor cell growth in vivo and generation and maintenance of castration resistance. Finally, in a novel explant system of primary human tumors, targeting PARP-1 potently suppresses tumor cell proliferation. Collectively, these studies identify novel functions of PARP-1 in promoting disease progression, and ultimately suggest that the dual functions of PARP-1 can be targeted in human prostate cancer to suppress tumor growth and progression to castration resistance. SIGNIFICANCE These studies introduce a paradigm shift with regard to PARP-1 function in human malignancy, and suggest that the dual functions of PARP-1 in DNA damage repair and transcription factor regulation can be leveraged to suppress pathways critical for promalignant phenotypes in prostate cancer cells by modulation of the DNA damage response and hormone signaling pathways. The combined studies highlight the importance of dual PARP-1 function in malignancy and provide the basis for therapeutic targeting.
Collapse
Affiliation(s)
- Matthew J Schiewer
- Departments of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Abstract
Ovarian cancer is the leading cause of death among gynecological cancers. It exhibits great heterogeneity in tumor biology and treatment response. Germline mutations of DNA repair genes BRCA1/2 are the fundamental defects in hereditary ovarian cancer that expresses a distinct phenotype of high response rates to platinum agents, improved disease-free intervals and survival rates, and high-grade serous histology. The term "BRCAness" describes the phenotypic traits that some sporadic ovarian tumors share with tumors in BRCA1/2 germline mutation carriers and reflects similar causative molecular abnormalities. BRCA pathway studies and molecular profiling reveal BRCA-related defects in almost half of the cases of ovarian cancer. BRCA-like tumors are particularly sensitive to DNA-damaging agents (e.g., platinum agents) because of inadequate BRCA-mediated DNA repair mechanisms, such as nucleotide-excision repair and homologous recombination (HR). Additional inhibition of other DNA repair pathways leads to synthetic lethality in HR-deficient cells; this has been employed in the treatment of BRCA-like ovarian tumors with poly(ADP-ribose) polymerase inhibitors with promising results. This article presents a comprehensive review of the relevant literature on the role of BRCAness in ovarian cancer with respect to BRCA function, methods of BRCA epigenetic defect detection and molecular profiling, and the implications of BRCA dysfunction in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Georgios Rigakos
- Third Department of Medical Oncology, Hygeia Hospital, Athens, Greece.
| | | |
Collapse
|
141
|
Kimbung S, Biskup E, Johansson I, Aaltonen K, Ottosson-Wadlund A, Gruvberger-Saal S, Cunliffe H, Fadeel B, Loman N, Berglund P, Hedenfalk I. Co-targeting of the PI3K pathway improves the response of BRCA1 deficient breast cancer cells to PARP1 inhibition. Cancer Lett 2012; 319:232-241. [DOI: 10.1016/j.canlet.2012.01.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 12/30/2011] [Accepted: 01/11/2012] [Indexed: 10/14/2022]
|
142
|
Extensive gene-specific translational reprogramming in a model of B cell differentiation and Abl-dependent transformation. PLoS One 2012; 7:e37108. [PMID: 22693568 PMCID: PMC3365017 DOI: 10.1371/journal.pone.0037108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/15/2012] [Indexed: 01/19/2023] Open
Abstract
To what extent might the regulation of translation contribute to differentiation programs, or to the molecular pathogenesis of cancer? Pre-B cells transformed with the viral oncogene v-Abl are suspended in an immortalized, cycling state that mimics leukemias with a BCR-ABL1 translocation, such as Chronic Myelogenous Leukemia (CML) and Acute Lymphoblastic Leukemia (ALL). Inhibition of the oncogenic Abl kinase with imatinib reverses transformation, allowing progression to the next stage of B cell development. We employed a genome-wide polysome profiling assay called Gradient Encoding to investigate the extent and potential contribution of translational regulation to transformation and differentiation in v-Abl-transformed pre-B cells. Over half of the significantly translationally regulated genes did not change significantly at the level of mRNA abundance, revealing biology that might have been missed by measuring changes in transcript abundance alone. We found extensive, gene-specific changes in translation affecting genes with known roles in B cell signaling and differentiation, cancerous transformation, and cytoskeletal reorganization potentially affecting adhesion. These results highlight a major role for gene-specific translational regulation in remodeling the gene expression program in differentiation and malignant transformation.
Collapse
|
143
|
Yap TA, Workman P. Exploiting the cancer genome: strategies for the discovery and clinical development of targeted molecular therapeutics. Annu Rev Pharmacol Toxicol 2012; 52:549-73. [PMID: 22235862 DOI: 10.1146/annurev-pharmtox-010611-134532] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our biological understanding of the molecular basis of cancer has benefited from advances in basic research, accelerated recently by cancer genome sequencing and other high-throughput, genome-wide profiling technologies. Given the diverse heterogeneity among tumors, the traditional cytotoxic chemotherapy and one-size-fits-all approaches to cancer discovery and development are not appropriate for molecularly targeted agents. Selection of new drug targets is based on achieving cancer selectivity through exploiting specific dependencies and vulnerabilities predicted from tumor genetics. Discovery of highly target-selective agents is enhanced by integrating multiple modern technologies, particularly structure-based design. Efficient clinical evaluation requires smart, hypothesis-testing studies using validated pharmacodynamic and predictive biomarkers. We discuss and exemplify biomarker-driven clinical development and the concept of the Pharmacologic Audit Trail. We detail the exciting approaches offered by drugging the cancer genome, focusing on blocking oncogene addiction, drugging the oncogenic lipid kinome, addressing nononcogene addiction, exploiting synthetic lethality, and overcoming apoptotic resistance, leading to personalized molecular medicine.
Collapse
Affiliation(s)
- Timothy A Yap
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, Sutton, Surrey SM2 5NG, United Kingdom
| | | |
Collapse
|
144
|
Current World Literature. Curr Opin Oncol 2012; 24:345-9. [DOI: 10.1097/cco.0b013e328352df9c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
145
|
|
146
|
Therapeutic intervention by the simultaneous inhibition of DNA repair and type I or type II DNA topoisomerases: one strategy, many outcomes. Future Med Chem 2012; 4:51-72. [PMID: 22168164 DOI: 10.4155/fmc.11.175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Many anticancer drugs reduce the integrity of DNA, forming strand breaks. This can cause mutations and cancer or cell death if the lesions are not repaired. Interestingly, DNA repair-deficient cancer cells (e.g., those with BRCA1/2 mutations) have been shown to exhibit increased sensitivity to chemotherapy. Based on this observation, a new therapeutic approach termed 'synthetic lethality' has been developed, in which radiation therapy or cytotoxic anticancer agents are employed in conjunction with selective inhibitors of poly(ADP-ribose)polymerase-1 (PARP-1). Such combinations can cause severe genomic instability in transformed cells resulting in cell death. The synergistic effects of combining PARP-1 inhibition with anticancer drugs have been demonstrated. However, the outcome of this therapeutic strategy varies significantly between cancer types, suggesting that synthetic lethality may be influenced by additional cellular factors. This review focuses on the outcomes of the combined action of PARP-1 inhibitors and agents that affect the activity of DNA topoisomerases.
Collapse
|
147
|
Cerbinskaite A, Mukhopadhyay A, Plummer E, Curtin N, Edmondson R. Defective homologous recombination in human cancers. Cancer Treat Rev 2012; 38:89-100. [DOI: 10.1016/j.ctrv.2011.04.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 04/19/2011] [Accepted: 04/26/2011] [Indexed: 12/21/2022]
|
148
|
Inhibiteurs de la poly(ADP-ribose) polymerase et cancer du sein : bilan et perspectives. Bull Cancer 2012; 99:441-51. [DOI: 10.1684/bdc.2012.1553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
149
|
Synthetic lethality of PARP inhibition in BRCA-network disrupted tumor cells is associated with interferon pathway activation and enhanced by interferon-γ. Apoptosis 2012; 17:691-701. [DOI: 10.1007/s10495-012-0707-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
150
|
Classification, molecular characterization, and the significance of pten alteration in leiomyosarcoma. Sarcoma 2012; 2012:380896. [PMID: 22448121 PMCID: PMC3289834 DOI: 10.1155/2012/380896] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 11/30/2011] [Indexed: 12/02/2022] Open
Abstract
Leiomyosarcoma is a malignant smooth muscle neoplasm with a complicated histopathologic classification scheme and marked differences in clinical behavior depending on the anatomic site of origin. Overlapping morphologic features of benign and borderline malignant smooth muscle neoplasms further complicate the diagnostic process. Likewise, deciphering the complex and heterogeneous patterns of genetic changes which occur in this cancer has been challenging. Preliminary studies suggest that reproducible molecular classification may be possible in the near future and new prognostic markers are emerging. Robust recapitulation of leiomyosarcoma in mice with conditional deletion of Pten in smooth muscle and the simultaneous discovery of a novel role for Pten in genomic stability provide a fresh perspective on the mechanism of leiomyosarcomagenesis and promise for therapeutic intervention.
Collapse
|