101
|
Richter's syndrome: Novel and promising therapeutic alternatives. Best Pract Res Clin Haematol 2016; 29:30-39. [DOI: 10.1016/j.beha.2016.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 06/29/2016] [Accepted: 08/04/2016] [Indexed: 12/20/2022]
|
102
|
Abstract
Richter syndrome (RS) is the development of an aggressive lymphoma in patients with a previous or concomitant diagnosis of chronic lymphocytic leukemia (CLL). The incidence rate RS is ~0.5% per year of observation. Two biomarkers (NOTCH1 mutations and subset 8 configuration of the B-cell receptor) may help identifying CLL patients at risk of RS to be considered for close monitoring and a careful biopsy policy. In the presence of clinical features suspicious of RS, diagnosis of transformation and choice of the site of biopsy may take advantage of fluorine 18 fluorodeoxyglucose ((18)FDG) positron emission tomography (PET)/computed tomography (CT). Molecular lesions of regulators of tumor suppression (TP53), cell cycle (CDKN2A), and cell proliferation (NOTCH1, MYC) overall account for ~90% of RS and may be responsible for the aggressive clinical phenotype observed in this disease because of the combined effect of chemoresistance and rapid disease kinetics. The prognosis of RS is generally highly unfavorable. However, the pattern of survival is not homogeneous and the most important prognostic factor is the clonal relationship between the CLL and the aggressive lymphoma clones. Rituximab-containing polychemotherapy represents the backbone for induction treatment in RS. Younger patients who respond to induction therapy should be offered stem cell transplant (SCT) to prolong survival.
Collapse
Affiliation(s)
- Davide Rossi
- Division of Hematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy.
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| |
Collapse
|
103
|
FU CHUNLING, GONG YANQING, SHI XUANXUAN, SHI HENGLIANG, WAN YAN, WU QINGYUN, XU KAILIN. Expression and regulation of COP1 in chronic lymphocytic leukemia cells for promotion of cell proliferation and tumorigenicity. Oncol Rep 2015; 35:1493-500. [DOI: 10.3892/or.2015.4526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 11/18/2015] [Indexed: 11/06/2022] Open
|
104
|
Oldreive CE, Skowronska A, Davies NJ, Parry H, Agathanggelou A, Krysov S, Packham G, Rudzki Z, Cronin L, Vrzalikova K, Murray P, Odintsova E, Pratt G, Taylor AMR, Moss P, Stankovic T. T-cell number and subtype influence the disease course of primary chronic lymphocytic leukaemia xenografts in alymphoid mice. Dis Model Mech 2015; 8:1401-12. [PMID: 26398941 PMCID: PMC4631786 DOI: 10.1242/dmm.021147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/10/2015] [Indexed: 01/28/2023] Open
Abstract
Chronic lymphocytic leukaemia (CLL) cells require microenvironmental support for their proliferation. This can be recapitulated in highly immunocompromised hosts in the presence of T cells and other supporting cells. Current primary CLL xenograft models suffer from limited duration of tumour cell engraftment coupled with gradual T-cell outgrowth. Thus, a greater understanding of the interaction between CLL and T cells could improve their utility. In this study, using two distinct mouse xenograft models, we investigated whether xenografts recapitulate CLL biology, including natural environmental interactions with B-cell receptors and T cells, and whether manipulation of autologous T cells can expand the duration of CLL engraftment. We observed that primary CLL xenografts recapitulated both the tumour phenotype and T-cell repertoire observed in patients and that engraftment was significantly shorter for progressive tumours. A reduction in the number of patient T cells that were injected into the mice to 2-5% of the initial number or specific depletion of CD8(+) cells extended the limited xenograft duration of progressive cases to that characteristic of indolent disease. We conclude that manipulation of T cells can enhance current CLL xenograft models and thus expand their utility for investigation of tumour biology and pre-clinical drug assessment.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Cell Proliferation
- Cell Survival
- Cells, Cultured
- Coculture Techniques
- Cytotoxicity, Immunologic
- Graft Survival
- Heterografts
- Humans
- Immunocompromised Host
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphocyte Activation
- Lymphocyte Depletion
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/pathology
- Mice, Inbred NOD
- Mice, SCID
- Neoplasm Transplantation
- Phenotype
- Spleen/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/pathology
- Time Factors
- Tumor Microenvironment
Collapse
Affiliation(s)
- Ceri E Oldreive
- School of Cancer Sciences, Department of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Anna Skowronska
- School of Cancer Sciences, Department of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Nicholas J Davies
- School of Cancer Sciences, Department of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Helen Parry
- School of Cancer Sciences, Department of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Angelo Agathanggelou
- School of Cancer Sciences, Department of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Sergey Krysov
- CRUK Centre, Cancer Sciences Unit, University of Southampton, Southampton, SO16 6YD, UK
| | - Graham Packham
- CRUK Centre, Cancer Sciences Unit, University of Southampton, Southampton, SO16 6YD, UK
| | - Zbigniew Rudzki
- Department of Pathology, Heart of England Hospital, Birmingham, B9 5SS, UK
| | - Laura Cronin
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Katerina Vrzalikova
- School of Cancer Sciences, Department of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Paul Murray
- School of Cancer Sciences, Department of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Elena Odintsova
- School of Cancer Sciences, Department of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Guy Pratt
- School of Cancer Sciences, Department of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - A Malcolm R Taylor
- School of Cancer Sciences, Department of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Paul Moss
- School of Cancer Sciences, Department of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Tatjana Stankovic
- School of Cancer Sciences, Department of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
105
|
Hartmann EM, Rudelius M, Burger JA, Rosenwald A. CCL3 chemokine expression by chronic lymphocytic leukemia cells orchestrates the composition of the microenvironment in lymph node infiltrates. Leuk Lymphoma 2015; 57:563-71. [PMID: 26458057 PMCID: PMC6699159 DOI: 10.3109/10428194.2015.1068308] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Previous experiments demonstrated that survival and proliferation of chronic lymphocytic leukemia (CLL) cells depends upon complex cross-talk between CLL cells and accessory cells in the tissue microenvironment. To further dissect these interactions in situ, we analyzed lymph nodes from 43 different patients infiltrated by CLL cells for expression of the chemokine CCL3, Ki-67, macrophages, and T cell subsets by immunohistochemistry. CCL3 expression was detected in 24 of 43 cases (56%), particularly in prolymphocytes and paraimmunoblasts within the proliferation centers. Significantly higher numbers of CD3+ T cells and CD57+ cells were noticed in CCL3 positive cases. Furthermore, denser infiltration of CLL lymph node tissues by CD57+ cells correlated with higher proliferation rates of the CLL cells. In conclusion, we demonstrate an association of CCL3 expression by CLL cells with increased numbers of CD3+ T cells and CD57+ cells in the lymph node microenvironment, which may promote CLL cell survival and proliferation.
Collapse
Affiliation(s)
- Elena M. Hartmann
- Institute of Pathology, University of Würzburg, Würzburg and Comprehensive Cancer Center (CCC) Mainfranken, Germany
| | - Martina Rudelius
- Institute of Pathology, University of Würzburg, Würzburg and Comprehensive Cancer Center (CCC) Mainfranken, Germany
| | - Jan A. Burger
- Department of Leukemia, MD Anderson Cancer Center, Houston, Texas, USA
| | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg, Würzburg and Comprehensive Cancer Center (CCC) Mainfranken, Germany
| |
Collapse
|
106
|
The many faces of small B cell lymphomas with plasmacytic differentiation and the contribution of MYD88 testing. Virchows Arch 2015; 468:259-75. [PMID: 26454445 DOI: 10.1007/s00428-015-1858-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/23/2015] [Indexed: 12/11/2022]
Abstract
Plasmacytic differentiation may occur in almost all small B cell lymphomas (SBLs), although it varies from being uniformly present (as in lymphoplasmacytic lymphoma (LPL)) to very uncommon (as in mantle cell lymphomas (MCLs)). The discovery of MYD88 L265P mutations in the vast majority of LPLs has had a major impact on the study of these lymphomas. Review of the cases contributed to the 2014 European Association for Haematopathology/Society for Hematopathology slide workshop illustrated how mutational testing has helped refine the diagnostic criteria for LPL, emphasizing the importance of identifying a clonal monotonous lymphoplasmacytic population and highlighting how LPL can still be diagnosed with extensive nodal architectural effacement, very subtle plasmacytic differentiation, follicular colonization, or uncommon phenotypes such as CD5 or CD10 expression. MYD88 L265P mutations were found in 11/11 LPL cases versus only 2 of 28 other SBLs included in its differential diagnosis. Mutational testing also helped to exclude other cases that would have been considered LPL in the past. The workshop also highlighted how plasmacytic differentiation can occur in chronic lymphocytic leukemia/small lymphocytic lymphoma, follicular lymphoma, SOX11 negative MCL, and particularly in marginal zone lymphomas, all of which can cause diagnostic confusion with LPL. The cases also highlighted the difficulty in distinguishing lymphomas with marked plasmacytic differentiation from plasma cell neoplasms. Some SBLs with plasmacytic differentiation can be associated with amyloid, other immunoglobulin deposition, or crystal-storing histiocytosis, which may obscure the underlying neoplasm. Finally, although generally indolent, LPL may transform, with the workshop cases suggesting a role for TP53 abnormalities.
Collapse
|
107
|
Mauro FR, Chauvie S, Paoloni F, Biggi A, Cimino G, Rago A, Gentile M, Morabito F, Coscia M, Bellò M, Sacchetti GM, Rossi D, Laurenti L, Autore F, Campanelli M, Trastulli F, Nicolai E, Riminucci M, Gaidano G, Guarini A, Gallamini A, Foà R. Diagnostic and prognostic role of PET/CT in patients with chronic lymphocytic leukemia and progressive disease. Leukemia 2015; 29:1360-5. [DOI: 10.1038/leu.2015.21] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/25/2014] [Accepted: 12/10/2014] [Indexed: 11/09/2022]
|
108
|
Ortiz-Maldonado V, García-Morillo M, Delgado J. The biology behind PI3K inhibition in chronic lymphocytic leukaemia. Ther Adv Hematol 2015; 6:25-36. [PMID: 25642313 DOI: 10.1177/2040620714561581] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phosphoinositide 3'-kinase (PI3K) is a key component of both chronic active and tonic B-cell receptor-signalling pathways. As such, PI3K inhibitors have emerged as promising therapeutic agents for diverse lymphoid malignancies, particularly chronic lymphocytic leukaemia. Multiple in vitro experiments and clinical trials have shown efficacy of these agents across all prognostic subgroups with a favourable toxicity profile. Moreover, in vitro studies suggest that combinations with monoclonal antibodies and/or other immune strategies could enhance the effect of PI3K inhibition.
Collapse
Affiliation(s)
| | - Marcial García-Morillo
- Hospital Clínic, Department of Medical Oncology Calle Villarroel, 170 08036 Barcelona, Spain
| | - Julio Delgado
- Hospital Clínic, Department of Haematology Calle Villarroel, 170 08036 Barcelona, Spain
| |
Collapse
|
109
|
Filip AA, Ciseł B, Wąsik-Szczepanek E. Guilty bystanders: nurse-like cells as a model of microenvironmental support for leukemic lymphocytes. Clin Exp Med 2015; 15:73-83. [PMID: 24337970 PMCID: PMC4308641 DOI: 10.1007/s10238-013-0268-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 11/29/2013] [Indexed: 12/03/2022]
Abstract
B-cell chronic lymphocytic leukemia (B-CLL) is one of the most common leukemias among the elderly and, despite many efforts, still stays incurable. Recent studies point to the microenvironment as the critical factor providing leukemic lymphocytes with pro-survival signals. Thus, the neighboring cells appear to be a perfect target for antileukemic therapy. Nurse-like cells (NLCs) largely contribute to CLL microenvironmental support. We developed the CLL lymphocyte/NLC co-culture model for the investigation of microenvironmental interactions. Viability and apoptosis were investigated in CLL lymphocytes treated with dexamethasone (DEX) and chlorambucil (CLB), with and without NLCs' support. For the first time, the capacity of DEX and CLB to affect NLCs viability was also evaluated. Apoptosis-associated gene expression profiles of leukemic lymphocytes ex vivo and cultured with NLCs were assessed by expression arrays. CLL lymphocytes escaped spontaneous apoptosis for several months when cultured with NLCs. The presence of NLCs significantly reduced apoptosis induced with DEX and CLB (p < 0.001; p = 0.012, respectively), and their protective effect was more evident than the effect of recombinant SDF1. Both DEX and CLB also decreased NLCs viability, but to a lesser extent (mean viability in DEX-treated cultures was 37.79% in NLCs compared to 29.24% in lymphocytes). NLCs induced the expression of important anti-apoptotic genes in cultured CLL lymphocytes; median expression of BCL2, SURVIVIN, BCL2A1, and XIAP was significantly higher as compared to ex vivo status. The CLL lymphocyte/NLC co-culture makes up the convenient and close to the natural-state model for studying the relationship between leukemic cells and the microenvironment. Direct cell-to-cell contact with NLCs increases the expression of anti-apoptotic genes in CLL lymphocytes, thus protecting them against induced apoptosis. As the effect of antileukemic drugs is not so apparent in NLCs, the combined therapy targeted at both lymphocytes and the microenvironment should be considered for CLL patients. Simultaneous aiming at the disruption of several different signaling pathways and/or anti-apoptotic proteins may further improve treatment efficiency.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Apoptosis/drug effects
- B-Lymphocytes/drug effects
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Bystander Effect/genetics
- Cell Survival/drug effects
- Chemokine CXCL12/genetics
- Chemokine CXCL12/metabolism
- Chlorambucil/pharmacology
- Coculture Techniques
- Dexamethasone/pharmacology
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Middle Aged
- Minor Histocompatibility Antigens
- Monocytes/drug effects
- Monocytes/metabolism
- Monocytes/pathology
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Signal Transduction
- Tumor Cells, Cultured
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- X-Linked Inhibitor of Apoptosis Protein/genetics
- X-Linked Inhibitor of Apoptosis Protein/metabolism
Collapse
Affiliation(s)
- Agata A Filip
- Department of Cancer Genetics, Medical University of Lublin, Radziwillowska 11, 20-080, Lublin, Poland,
| | | | | |
Collapse
|
110
|
Heinig K, Gätjen M, Grau M, Stache V, Anagnostopoulos I, Gerlach K, Niesner RA, Cseresnyes Z, Hauser AE, Lenz P, Hehlgans T, Brink R, Westermann J, Dörken B, Lipp M, Lenz G, Rehm A, Höpken UE. Access to follicular dendritic cells is a pivotal step in murine chronic lymphocytic leukemia B-cell activation and proliferation. Cancer Discov 2014; 4:1448-65. [PMID: 25252690 DOI: 10.1158/2159-8290.cd-14-0096] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED In human chronic lymphocytic leukemia (CLL) pathogenesis, B-cell antigen receptor signaling seems important for leukemia B-cell ontogeny, whereas the microenvironment influences B-cell activation, tumor cell lodging, and provision of antigenic stimuli. Using the murine Eμ-Tcl1 CLL model, we demonstrate that CXCR5-controlled access to follicular dendritic cells confers proliferative stimuli to leukemia B cells. Intravital imaging revealed a marginal zone B cell-like leukemia cell trafficking route. Murine and human CLL cells reciprocally stimulated resident mesenchymal stromal cells through lymphotoxin-β-receptor activation, resulting in CXCL13 secretion and stromal compartment remodeling. Inhibition of lymphotoxin/lymphotoxin-β-receptor signaling or of CXCR5 signaling retards leukemia progression. Thus, CXCR5 activity links tumor cell homing, shaping a survival niche, and access to localized proliferation stimuli. SIGNIFICANCE CLL and other indolent lymphoma are not curable and usually relapse after treatment, a process in which the tumor microenvironment plays a pivotal role. We dissect the consecutive steps of CXCR5-dependent tumor cell lodging and LTβR-dependent stroma-leukemia cell interaction; moreover, we provide therapeutic solutions to interfere with this reciprocal tumor-stroma cross-talk.
Collapse
Affiliation(s)
- Kristina Heinig
- Department of Tumor Genetics and Immunogenetics, Max-Delbrück-Center for Molecular Medicine, MDC, Berlin, Germany
| | - Marcel Gätjen
- Department of Hematology, Oncology and Tumorimmunology, Max-Delbrück-Center for Molecular Medicine, MDC, Berlin, Germany
| | - Michael Grau
- Department of Physics, Philipps-University Marburg, Marburg, Germany
| | - Vanessa Stache
- Department of Tumor Genetics and Immunogenetics, Max-Delbrück-Center for Molecular Medicine, MDC, Berlin, Germany
| | | | - Kerstin Gerlach
- Department of Hematology, Oncology and Tumorimmunology, Max-Delbrück-Center for Molecular Medicine, MDC, Berlin, Germany
| | | | - Zoltan Cseresnyes
- Deutsches Rheumaforschungszentrum, DRFZ, Berlin, Germany. Confocal and 2-Photon Microscopy Core Facility, Max-Delbrück-Center for Molecular Medicine, MDC, Berlin, Germany
| | - Anja E Hauser
- Deutsches Rheumaforschungszentrum, DRFZ, Berlin, Germany. Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Lenz
- Department of Physics, Philipps-University Marburg, Marburg, Germany
| | - Thomas Hehlgans
- Institute for Immunology, University Regensburg, Regensburg, Germany
| | - Robert Brink
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Jörg Westermann
- Department of Hematology, Oncology and Tumorimmunology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Bernd Dörken
- Department of Hematology, Oncology and Tumorimmunology, Max-Delbrück-Center for Molecular Medicine, MDC, Berlin, Germany. Department of Hematology, Oncology and Tumorimmunology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Martin Lipp
- Department of Tumor Genetics and Immunogenetics, Max-Delbrück-Center for Molecular Medicine, MDC, Berlin, Germany
| | - Georg Lenz
- Department of Hematology, Oncology and Tumorimmunology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Armin Rehm
- Department of Hematology, Oncology and Tumorimmunology, Max-Delbrück-Center for Molecular Medicine, MDC, Berlin, Germany. Department of Hematology, Oncology and Tumorimmunology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.
| | - Uta E Höpken
- Department of Tumor Genetics and Immunogenetics, Max-Delbrück-Center for Molecular Medicine, MDC, Berlin, Germany.
| |
Collapse
|
111
|
DeVito N, Mui K, Jassam Y, Taylor L, Pilichowska M, Cossor F. Small Lymphocytic Lymphoma Presenting As a Paraneoplastic Syndrome With Acute Central Nervous System Demyelination. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2014; 14:e131-5. [DOI: 10.1016/j.clml.2014.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/30/2014] [Accepted: 02/11/2014] [Indexed: 12/19/2022]
|
112
|
Abstract
In this issue of Blood, Falchi et al present their experience with 2-deoxy-2-[18F] fluoroglucose/positron emission tomography (FDG/PET) in the management of patients with chronic lymphocytic leukemia (CLL) or Richter syndrome (RS) over a 10-year period at a referral center. The results of this study shed light on the potential role of FDG/PET in CLL.
Collapse
|
113
|
Targeting the proliferative and chemoresistant compartment in chronic lymphocytic leukemia by inhibiting survivin protein. Leukemia 2014; 28:1993-2004. [PMID: 24618734 DOI: 10.1038/leu.2014.96] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/20/2014] [Accepted: 03/04/2014] [Indexed: 12/19/2022]
Abstract
Chronic lymphocytic leukemia (CLL) cells located in proliferation centers are constantly stimulated by accessory cells, which provide them with survival and proliferative signals and mediate chemotherapy resistance. Herein, we designed an experimental strategy with the aim of mimicking the microenvironment found in the proliferative centers to specifically target actively proliferating CLL cells. For this, we co-cultured CLL cells and bone marrow stromal cells with concomitant CD40 and Toll-like receptor 9 stimulation. This co-culture system induced proliferation, cell-cycle entry and marked resistance to treatment with fludarabine and bendamustine. Proliferating CLL cells clustered together showed a typical morphology of activated B cells and expressed survivin protein, a member of the inhibitor of apoptosis family that is mainly expressed by CLL cells in the proliferation centers. With the aim of specifically targeting actively proliferating and chemoresistant CLL cells, we investigated the effects of treatment with YM155, a small-molecule survivin inhibitor. YM155 treatment suppressed the co-culture-induced survivin expression and that was sufficient to inhibit proliferation and effectively induce apoptosis particularly in the proliferative subset of CLL cells. Interestingly, sensitivity to YM155 was independent from common prognostic markers, including 17p13.1 deletion. Altogether, these findings provide a rationale for clinical development of YM155 in CLL.
Collapse
|
114
|
Correlation between FDG/PET, histology, characteristics, and survival in 332 patients with chronic lymphoid leukemia. Blood 2014; 123:2783-90. [PMID: 24615780 DOI: 10.1182/blood-2013-11-536169] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Richter syndrome (RS) is associated with poor outcome. The prognosis of patients with histologically aggressive chronic lymphocytic leukemia (CLL), or HAC, has not been studied. We aimed to correlate 2-deoxy-2-[(18)F]fluoroglucose/positron emission tomography (FDG/PET) data, histological diagnosis, clinical characteristics, and survival in patients with CLL. A total of 332 patients with CLL were histologically classified as: 95 RS, 117 HAC, and 120 histologically indolent CLL (HIC). HAC and RS patients had higher maximum standardized uptake value (SUVmax), more frequent constitutional symptoms, poorer performance status (PS), lower hemoglobin and platelets, and higher lactate dehydrogenase and β-2-microglobulin. An SUVmax ≥10 strongly correlated with mortality (overall survival [OS], 56.7 vs 6.9 months in patients with SUVmax <10 vs ≥10). Survival of patients with RS and HAC was similar among patients with SUVmax <10 or ≥10. SUVmax ≥10, PS ≥2, bulky disease, and age ≥65 were independently associated with shorter OS. In patients undergoing both fine-needle aspiration and biopsy, the former proved diagnostically inadequate in 23%, 29%, and 53% of HIC, HAC, and RS, respectively. FDG/PET is a useful diagnostic tool in patients with CLL and suspected transformation. Patients with HAC show different characteristics and worse prognosis compared with those with HIC. Patients with different CLL phases, but similar SUVmax have similar outcome. Tissue biopsy should be preferred for diagnosing RS.
Collapse
|
115
|
|
116
|
Conte MJ, Bowen DA, Wiseman GA, Rabe KG, Slager SL, Schwager SM, Call TG, Viswanatha DS, Zent CS. Use of positron emission tomography-computed tomography in the management of patients with chronic lymphocytic leukemia/small lymphocytic lymphoma. Leuk Lymphoma 2014; 55:2079-84. [PMID: 24286263 DOI: 10.3109/10428194.2013.869801] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL) cells typically have low 2-deoxy-2-[(18)F]fluoro-d-glucose (FDG) avidity, and patients with CLL have an increased risk of developing FDG-avid aggressive lymphomas, second malignancies and infections. We hypothesized that FDG positron emission tomography-computed tomography (PET-CT) of the trunk is a sensitive method of detecting these complications in patients with CLL. Of the of 2299 patients with CLL seen in the Division of Hematology at Mayo Clinic Rochester between 1 January 2006 and 31 December 2011, 272 (11.8%) had 526 PET-CT scans and 472 (89.7%) of these were reported as abnormal. Among the 293 (55.7%) PET-CT scans used for routine evaluation of CLL, the PET component was of clinical value in only one instance. In contrast, in 83 (30.5%) patients, PET-CT scans used to evaluate new clinical complications localized high FDG-avidity lesions for biopsies. This resulted in clinically relevant new diagnoses in 32 patients, including those with more aggressive lymphoma (n = 16), non-hematological malignancies (n = 8) and opportunistic infections (n = 3). Twenty-seven patients had high FDG-avidity CLL, which was associated with prominent lymph node proliferation centers, an increased frequency of poor prognostic factors (17p13 deletion, unmutated immunoglobulin heavy chain variable gene [IGHV], expression of ZAP-70 and CD38) and a shorter overall survival. We conclude that FDG PET scans should not be used for routine surveillance of patients with CLL. However PET-CT scans are sensitive, but not specific, for detection of aggressive lymphomas, other cancers and systemic infections in patients with CLL.
Collapse
|
117
|
Abstract
A landmark study has delineated and identified the genetic pathways that drive the natural course of chronic lymphocytic leukaemia (CLL) B cells into Richter’s transformation. CLL-related Richter’s transformation is a distinct lymphoma, and poses various questions about B-cell ontogeny and relevance of B cell receptor signalling inhibitors.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Pre-B Cell Receptors/antagonists & inhibitors
- Receptors, Antigen, B-Cell/antagonists & inhibitors
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Preetesh Jain
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, USA
| | - Ken H Young
- Department of Haematopathology, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, USA
| |
Collapse
|
118
|
Rossi M, Fuligni F, Ciccone M, Agostinelli C, Righi S, Luciani M, Laginestra MA, Rigolin GM, Sapienza MR, Gazzola A, Mannu C, Cuneo A, Pileri S, Piccaluga PP. Hsa-miR-15a and Hsa-miR-16-1 expression is not related to proliferation centers abundance and other prognostic factors in chronic lymphocytic leukemia. BIOMED RESEARCH INTERNATIONAL 2013; 2013:715391. [PMID: 24392455 PMCID: PMC3874364 DOI: 10.1155/2013/715391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/04/2013] [Indexed: 12/04/2022]
Abstract
Chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL) is the commonest leukemia in adults. Here, we aimed to evaluate hsa-miR-15a/hsa-miR-16-1 expression in CLL tissues by qPCR and correlate it with the other clinicopathological features and clinical outcome. 40 formalin-fixed paraffin-embedded (FFPE) lymph node samples obtained from CLL/SLL patients were classified into two categories, "PCs rich" and "typical." We found a significant common expression level of 4 miRNAs; however, we did not find any significant relationship between PCs presence and miRNAs expression. Moreover, neither the presence of 13q deletion nor the percentage of cells carrying the deletion strictly correlated with miRNAs expression levels, although a significant number of patients with 13q deletion presented hsa-miR-16-1-3p levels below the median value in normal samples (P < 0.05). Finally, although no correlation was found between the expression of each miRNA and other clinicopathological features (Ki67, CD38, ZAP70, and IGVH@ hypermutations), the OS curves showed a positive trend in patients with miRNAs downregulation, though not statistically significant. In conclusion, we showed for the first time that all miRNAs can be successfully studied in FFPE CLL tissues and that del13q and PCs richness do not strictly correspond to miRNAs downregulation; therefore, a specific evaluation may be envisaged at least in patients enrolled in clinical trials.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Cell Proliferation
- Chromosome Deletion
- Chromosome Disorders/genetics
- Chromosomes, Human, Pair 13/genetics
- Female
- Gene Expression Regulation, Leukemic/genetics
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymph Nodes/metabolism
- Male
- MicroRNAs/biosynthesis
- MicroRNAs/genetics
- Middle Aged
- Paraffin Embedding
Collapse
Affiliation(s)
- Maura Rossi
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School, Unit of Hematopathology, S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138 Bologna, Italy
| | - Fabio Fuligni
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School, Unit of Hematopathology, S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138 Bologna, Italy
| | - Maria Ciccone
- Department of Biomedical Sciences, Hematology Section, S. Anna Hospital, University of Ferrara, Via Aldo Moro 8, Cona, 44124 Ferrara, Italy
| | - Claudio Agostinelli
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School, Unit of Hematopathology, S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138 Bologna, Italy
| | - Simona Righi
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School, Unit of Hematopathology, S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138 Bologna, Italy
| | - Marco Luciani
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School, Unit of Hematopathology, S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138 Bologna, Italy
| | - Maria Antonella Laginestra
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School, Unit of Hematopathology, S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138 Bologna, Italy
| | - Gian Matteo Rigolin
- Department of Biomedical Sciences, Hematology Section, S. Anna Hospital, University of Ferrara, Via Aldo Moro 8, Cona, 44124 Ferrara, Italy
| | - Maria Rosaria Sapienza
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School, Unit of Hematopathology, S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138 Bologna, Italy
| | - Anna Gazzola
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School, Unit of Hematopathology, S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138 Bologna, Italy
| | - Claudia Mannu
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School, Unit of Hematopathology, S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138 Bologna, Italy
| | - Antonio Cuneo
- Department of Biomedical Sciences, Hematology Section, S. Anna Hospital, University of Ferrara, Via Aldo Moro 8, Cona, 44124 Ferrara, Italy
| | - Stefano Pileri
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School, Unit of Hematopathology, S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138 Bologna, Italy
| | - Pier Paolo Piccaluga
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University Medical School, Unit of Hematopathology, S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138 Bologna, Italy
| |
Collapse
|
119
|
Calpe E, Purroy N, Carpio C, Abrisqueta P, Carabia J, Palacio C, Castellví J, Crespo M, Bosch F. ZAP-70 promotes the infiltration of malignant B-lymphocytes into the bone marrow by enhancing signaling and migration after CXCR4 stimulation. PLoS One 2013; 8:e81221. [PMID: 24312539 PMCID: PMC3849145 DOI: 10.1371/journal.pone.0081221] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/09/2013] [Indexed: 12/30/2022] Open
Abstract
ZAP-70 in chronic lymphocytic leukemia (CLL) is associated with enhanced response to microenvironmental stimuli. We analyzed the functional consequences of ZAP-70 ectopic expression in malignant B-cells in a xenograft mouse model of disseminated B-cell leukemia. Mice injected with B-cells expressing ZAP-70 showed a prominently higher infiltration of the bone marrow. In vitro analysis of the response of malignant B-cells to CXCL12, the main attracting chemokine regulating trafficking of lymphocytes to the bone marrow, or to bone marrow stromal cells, revealed that ZAP-70 induces an increased response in terms of signaling and migration. These effects are probably mediated by direct participation of ZAP-70 in CXCL12-CXCR4 signaling since CXCR4 stimulation led to activation of ZAP-70 and downstream signaling pathways, such as MAPK and Akt, whereas ZAP-70 did not alter the expression of the CXCR4 receptor. In addition, subclones of primary CLL cells with high expression of ZAP-70 also showed increased migrative capacity toward CXCL12. Neutralization of CXCR4 with a monoclonal antibody resulted in impaired in vitro responses to CXCL12 and bone marrow stromal cells. We conclude that ZAP-70 enhances the migration of malignant B-cells into the supportive microenvironment found in the bone marrow mainly by enhancing signaling and migration after CXCR4 stimulation.
Collapse
Affiliation(s)
- Eva Calpe
- Laboratory of Experimental Hematology, Department of Hematology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Noelia Purroy
- Laboratory of Experimental Hematology, Department of Hematology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cecilia Carpio
- Laboratory of Experimental Hematology, Department of Hematology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pau Abrisqueta
- Laboratory of Experimental Hematology, Department of Hematology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Júlia Carabia
- Laboratory of Experimental Hematology, Department of Hematology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carles Palacio
- Laboratory of Experimental Hematology, Department of Hematology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Castellví
- Department of Pathology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Crespo
- Laboratory of Experimental Hematology, Department of Hematology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francesc Bosch
- Laboratory of Experimental Hematology, Department of Hematology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
120
|
Jain P, Le X, Young KH, Patel KP, Wang S, Pei L, Barron LL, Abruzzo L, O'Brien S. Sequential lymphomas or clonally unrelated richter syndrome of chronic lymphocytic leukemia into mantle cell lymphoma. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2013; 13:606-609. [PMID: 23763914 DOI: 10.1016/j.clml.2013.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 02/03/2023]
MESH Headings
- Bone Marrow/pathology
- Cell Transformation, Neoplastic
- Disease Progression
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymph Nodes/pathology
- Lymphoma, Mantle-Cell/diagnosis
- Lymphoma, Mantle-Cell/pathology
- Male
- Middle Aged
Collapse
Affiliation(s)
- Preetesh Jain
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, TX
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Sachanas S, Levidou G, Angelopoulou MK, Moschogiannis M, Yiakoumis X, Kalpadakis C, Vassilakopoulos TP, Kontopidou F, Tsirkinidis P, Dimitrakopoulou A, Kokoris S, Dimitriadou E, Kyrtsonis MC, Panayiotidis P, Papadaki H, Patsouris E, Korkolopoulou P, Pangalis GA. Apoptotic and proliferative characteristics of proliferation centers in lymph node sections of patients with chronic lymphocytic leukemia. Leuk Lymphoma 2013; 55:571-82. [PMID: 23697878 DOI: 10.3109/10428194.2013.806802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We have analyzed the immunohistochemical expression of a wide range of molecules along with the proliferation rate separately in the proliferation centers (PCs) and in the rest of the tumor area, in lymph node or spleen sections of patients with chronic lymphocytic leukemia (CLL). Fas, FasL and c-FLIP were observed both within and outside the PCs in all cases. However, only the difference in FasL expression between the PCs and the non-PC areas attained statistical significance. Median survivin expression in the PCs was higher compared to the non-PC areas. Cleaved caspase 3 was expressed at very low levels both within and outside PCs, while BCL-2 protein was expressed at high levels in all cases in both tumor compartments. Multivariate analysis demonstrated that concurrent overexpression of Fas/FasL/c-FLIP in the PCs was correlated with worse outcome for progression-free survival as well as for overall survival.
Collapse
|
122
|
Valera A, López-Guillermo A, Cardesa-Salzmann T, Climent F, González-Barca E, Mercadal S, Espinosa I, Novelli S, Briones J, Mate JL, Salamero O, Sancho JM, Arenillas L, Serrano S, Erill N, Martínez D, Castillo P, Rovira J, Martínez A, Campo E, Colomo L. MYC protein expression and genetic alterations have prognostic impact in patients with diffuse large B-cell lymphoma treated with immunochemotherapy. Haematologica 2013; 98:1554-62. [PMID: 23716551 DOI: 10.3324/haematol.2013.086173] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MYC alterations influence the survival of patients with diffuse large B-cell lymphoma. Most studies have focused on MYC translocations but there is little information regarding the impact of numerical alterations and protein expression. We analyzed the genetic alterations and protein expression of MYC, BCL2, BCL6, and MALT1 in 219 cases of diffuse large B-cell lymphoma. MYC rearrangement occurred as the sole abnormality (MYC single-hit) in 3% of cases, MYC and concurrent BCL2 and/or BCL6 rearrangements (MYC double/triple-hit) in 4%, MYC amplifications in 2% and MYC gains in 19%. MYC single-hit, MYC double/triple-hit and MYC amplifications, but not MYC gains or other gene rearrangements, were associated with unfavorable progression-free survival and overall survival. MYC protein expression, evaluated using computerized image analysis, captured the unfavorable prognosis of MYC translocations/amplifications and identified an additional subset of patients without gene alterations but with similar poor prognosis. Patients with tumors expressing both MYC/BCL2 had the worst prognosis, whereas those with double-negative tumors had the best outcome. High MYC expression was associated with shorter overall survival irrespectively of the International Prognostic Index and BCL2 expression. In conclusion, MYC protein expression identifies a subset of diffuse large B-cell lymphoma with very poor prognosis independently of gene alterations and other prognostic parameters.
Collapse
|
123
|
Modeling tumor-host interactions of chronic lymphocytic leukemia in xenografted mice to study tumor biology and evaluate targeted therapy. Leukemia 2013; 27:2311-21. [PMID: 23619564 PMCID: PMC4126654 DOI: 10.1038/leu.2013.131] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 01/06/2023]
Abstract
Chronic lymphocytic leukemia (CLL) cells depend on microenvironmental factors for proliferation and survival. In particular, the B-cell receptor (BCR) and NF-κB pathways are activated in the lymph node microenvironment. Thus, model systems mimicking tumor-host interactions are important tools to study CLL biology and pathogenesis. We investigated whether the recently established NOD/scid/γcnull (NSG) mouse xenograft model can recapitulate the effects of the human microenvironment. We assessed, therefore, tumor characteristics previously defined in lymph node-resident CLL cells, including proliferation, and activation of the BCR and NF-κB pathways. We found that the murine spleen microenvironment supported CLL cell proliferation and activation to a similar degree than the human lymph node, including induction of BCR and NF-κB signaling in the xenografted cells. Next, we used this model to study ibrutinib, a Bruton's tyrosine kinase inhibitor in clinical development. Ibrutinib inhibited BCR and NF-κB signaling induced by the microenvironment, decreased proliferation, induced apoptosis, and reduced the tumor burden in vivo. Thus, our data demonstrate that the spleen of xenografted NSG mice can, in part, recapitulate the role of the human lymph node for CLL cells. In addition, we show that ibrutinib effectively disrupts tumor-host interactions essential for CLL cell proliferation and survival in vivo.
Collapse
|
124
|
|
125
|
Filip AA, Ciseł B, Koczkodaj D, Wąsik-Szczepanek E, Piersiak T, Dmoszyńska A. Circulating microenvironment of CLL: are nurse-like cells related to tumor-associated macrophages? Blood Cells Mol Dis 2013; 50:263-70. [PMID: 23313631 DOI: 10.1016/j.bcmd.2012.12.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/12/2012] [Indexed: 11/28/2022]
Abstract
B-cell chronic lymphocytic leukemia (B-CLL) is one of the most common hematologic malignancies in Western countries. Accumulation of leukemic lymphocytes in peripheral blood, bone marrow and secondary lymphatic organs of CLL patients is due to decreased apoptosis rather than to increased proliferation. The former is driven by signals from a specific microenvironment, created by stromal cells of mesenchymal origin, follicular dendritic cells, T lymphocytes and others. Nurse-like cells (NLCs) were first described to differentiate from peripheral blood mononuclear cells of CLL patients in vitro, then they have been also found in proliferation centers of their lymphatic tissues. Like tumor-associated macrophages (TAMs) in solid tumors, nurse-like cells promote survival of CLL lymphocytes. NLC gene expression patterns suggest their similarity to TAMs and differ between patients depending on ZAP70 protein expression status. NLC number in vitro corresponds with CD14 expressing cell count and beta-2-microglobulin serum level, and positively correlates with leukemic lymphocyte viability. As NLCs strongly express genes for adhesion molecules and secrete chemokines of antiapoptotic activity, they should be considered as a target for anti-microenvironment therapy of this incurable disease.
Collapse
Affiliation(s)
- Agata A Filip
- Department of Cancer Genetics, Medical University of Lublin, Radziwillowska 11, 20-080 Lublin, Poland.
| | | | | | | | | | | |
Collapse
|
126
|
Abstract
The small B-cell neoplasms represent some of the most frequently encountered lymphoproliferative disorders in routine surgical pathology practice. This report reviews the current diagnostic criteria for classifying small B-cell neoplasms and distinguishing them from newly recognized precursor conditions that do not appear to represent overt lymphomas. Newly available immunohistochemical stains and molecular studies that may assist in the diagnosis and classification of these neoplasms are also discussed.
Collapse
Affiliation(s)
- James R Cook
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, USA.
| |
Collapse
|
127
|
Zenz T, Mertens D, Stilgenbauer S. Biological diversity and risk-adapted treatment of chronic lymphocytic leukemia. Haematologica 2012; 95:1441-3. [PMID: 20807983 DOI: 10.3324/haematol.2010.027151] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
128
|
Gradowski JF, Sargent RL, Craig FE, Cieply K, Fuhrer K, Sherer C, Swerdlow SH. Chronic lymphocytic leukemia/small lymphocytic lymphoma with cyclin D1 positive proliferation centers do not have CCND1 translocations or gains and lack SOX11 expression. Am J Clin Pathol 2012; 138:132-9. [PMID: 22706868 DOI: 10.1309/ajcpivkzrmpf93et] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cyclin D1 expression, usually absent in chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL), has been described in the proliferation centers (PC) of some CLL/SLL. The prevalence of this finding is uncertain, as is the explanation for its occurrence and whether these cases have any other unique features. Cyclin D1 immunohistochemical staining was therefore investigated in 57 extramedullary CLL/SLL biopsies. In 6 cases, cyclin D1 immunofluorescence followed by CCND1 fluorescence in situ hybridization (FISH) and PC targeted analysis was performed using a Bioview Duet system. Excluding the prospectively selected cases that had the targeted FISH studies, cyclin D1+ PC were identified in 20% of cases. The cyclin D1+ CLL did not appear pathologically or phenotypically distinctive, though 46% had an interfollicular growth pattern. The cyclin D1+ PCs were SOX11- and lacked CCND1 translocations and gains in 5 of 5 informative cases. The recognition of cyclin D1 expression in PC of a significant minority of CLL/SLL can be a diagnostic aid and should not lead to the diagnosis of focal mantle cell lymphoma.
Collapse
|
129
|
Ciccone M, Agostinelli C, Rigolin GM, Piccaluga PP, Cavazzini F, Righi S, Sista MT, Sofritti O, Rizzotto L, Sabattini E, Fioritoni G, Falorio S, Stelitano C, Olivieri A, Attolico I, Brugiatelli M, Zinzani PL, Saccenti E, Capello D, Negrini M, Cuneo A, Pileri S. Proliferation centers in chronic lymphocytic leukemia: correlation with cytogenetic and clinicobiological features in consecutive patients analyzed on tissue microarrays. Leukemia 2012; 26:499-508. [PMID: 21941366 DOI: 10.1038/leu.2011.247] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 07/12/2011] [Accepted: 08/08/2011] [Indexed: 11/08/2022]
Abstract
To better define the significance of proliferation centers (PCs), the morphological hallmark of chronic lymphocytic leukemia (CLL), lymph node biopsies taken from 183 patients were submitted to histopathologic and fluorescence in situ hybridization (FISH) studies using a 5-probe panel on tissue microarrays. Seventy-five cases (40.9%) with confluent PCs were classified as 'PCs-rich' and 108 cases (59.1%) with scattered PCs were classified as 'typical'. Complete FISH data were obtained in 101 cases (55.1%), 79 of which (78.2%) displayed at least one chromosomal aberration. The incidence of each aberration was: 13q- 36,7%, 14q32 translocations 30.8%, 11q- 24.7%, trisomy 12 19.5% and 17p- 15.6%. Five cases showed extra copies of the 14q32 region. The 'PCs-rich' group was associated with 17p-, 14q32/IgH translocation, +12, Ki-67>30%. The median survival from the time of tissue biopsy for PCs-rich and typical groups was 11 and 64 months, respectively (P=0.00001). The PCs-rich pattern was the only predictive factor of an inferior survival at multivariate analysis (P=0.022). These findings establish an association between cytogenetic profile and the amount of PC in CLL, and show that this histopathologic characteristic is of value for risk assessment in patients with clinically significant adenopathy.
Collapse
MESH Headings
- Chromosome Aberrations
- Female
- Humans
- Immunoglobulin Heavy Chains/genetics
- In Situ Hybridization, Fluorescence
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Mutation
- Prognosis
- Risk Factors
- Tissue Array Analysis
Collapse
Affiliation(s)
- M Ciccone
- Department of Biomedical Sciences, Hematology Section, S.Anna Hospital, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Dietrich S, Krämer OH, Hahn E, Schäfer C, Giese T, Hess M, Tretter T, Rieger M, Hüllein J, Zenz T, Ho AD, Dreger P, Luft T. Leflunomide induces apoptosis in fludarabine-resistant and clinically refractory CLL cells. Clin Cancer Res 2011; 18:417-31. [PMID: 22072733 DOI: 10.1158/1078-0432.ccr-11-1049] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Environmental conditions in lymph node proliferation centers protect chronic lymphocytic leukemia (CLL) cells from apoptotic triggers. This situation can be mimicked by in vitro stimulation with CD40 ligand (CD40L) and interleukin 4 (IL-4). Our study investigates the impact of the drug leflunomide to overcome apoptosis resistance of CLL cells. EXPERIMENTAL DESIGN CLL cells were stimulated with CD40L and IL-4 and treated with fludarabine and the leflunomide metabolite A771726. RESULTS Resistance to fludarabine-mediated apoptosis was induced by CD40 activation alone stimulating high levels of BCL-XL and MCL1 protein expression. Apoptosis resistance was further enhanced by a complementary Janus-activated kinase (JAK)/STAT signal induced by IL-4. In contrast, CLL proliferation required both a CD40 and a JAK/STAT signal and could be completely blocked by pan-JAK inhibition. Leflunomide (A771726) antagonized CD40L/IL-4-induced proliferation at very low concentrations (3 μg/mL) reported to inhibit dihydroorotate dehydrogenase. At a concentration of 10 μg/mL, A771726 additionally attenuated STAT3/6 phosphorylation, whereas apoptosis of CD40L/IL-4-activated ("resistant") CLL cells was achieved with higher concentrations (IC(50): 80 μg/mL). Apoptosis was also effectively induced by A771726 in clinically refractory CLL cells with and without a defective p53 pathway. Induction of apoptosis involved inhibition of NF-κB activity and loss of BCL-XL and MCL1 expression. In combination with fludarabine, A771726 synergistically induced apoptosis (IC(50): 56 μg/mL). CONCLUSION We thus show that A771726 overcomes CD40L/IL-4-mediated resistance to fludarabine in CLL cells of untreated as well as clinically refractory CLL cells. We present a possible novel therapeutic principle for attacking chemoresistant CLL cells.
Collapse
Affiliation(s)
- Sascha Dietrich
- Department of Medicine V, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Hammadi M, Youinou P, Tempescul A, Tobón G, Berthou C, Bordron A, Pers JO. Membrane microdomain sphingolipids are required for anti-CD20-induced death of chronic lymphocytic leukemia B cells. Haematologica 2011; 97:288-96. [PMID: 22058197 DOI: 10.3324/haematol.2011.051938] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Chronic lymphocytic leukemia remains incurable, despite the addition of rituximab to chemotherapy as an available means of treatment. The resistance of certain patients to this monoclonal antibody prompted us to set up in vitro studies of another CD20-specific monoclonal antibody, B1 (later termed tositumomab). We hypothesized that the membrane lipid organization of leukemic B cells might be instrumental in the cells' sensitivity to the B1 monoclonal antibody. DESIGN AND METHODS B lymphocytes from 36 patients with chronic lymphocytic leukemia and 13 patients with non-Hodgkin's lymphoma were investigated for B1-triggered cell death. Membrane components, such as sphingomyelin and ganglioside M1, were investigated by flow cytometry, immunofluorescence and co-immunoprecipitation, together with the Csk-binding protein. RESULTS Chronic lymphocytic leukemia patients segregated into two groups: B cells from one group were sensitive to B1, whereas those from the second group were not. Further results ascribed the resistance of these latter cases to a defective recruitment of Csk-binding protein, resulting in a lack of sphingomyelin and ganglioside M1 at the outer leaflet of the plasma membrane of their malignant B cells. Sphingolipids were indeed retained in the cytoplasm, because of lowered activity of P-glycoprotein. Supporting this mechanism, rifampicin, an inducer of P-glycoprotein, improved the activity of this transmembrane efflux pump, normalized the quantity of sphingomyelin within the membrane, and thereby restored the efficacy of the B1 monoclonal antibody in the formerly B1-resistant cases of chronic lymphocytic leukemia. CONCLUSIONS The lipid organization of membranes of B cells from patients with chronic lymphocytic leukemia differs from one patient to another. In practice, given the relevance of the membrane lipid distribution to the efficacy of biotherapies, this observation is of potential importance.
Collapse
Affiliation(s)
- Mariam Hammadi
- EA2216 Immunology & Pathology, and IFR 148 ScInBioS, European University of Brittany, France
| | | | | | | | | | | | | |
Collapse
|
132
|
Igawa T, Sato Y, Takata K, Fushimi S, Tamura M, Nakamura N, Maeda Y, Orita Y, Tanimoto M, Yoshino T. Cyclin D2 is overexpressed in proliferation centers of chronic lymphocytic leukemia/small lymphocytic lymphoma. Cancer Sci 2011; 102:2103-7. [PMID: 21790895 PMCID: PMC11158365 DOI: 10.1111/j.1349-7006.2011.02046.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The D cyclins are important cell cycle regulatory proteins involved in the pathogenesis of some lymphomas. Cyclin D1 overexpression is a hallmark of mantle cell lymphoma, whereas cyclins D2 and D3 have not been shown to be closely associated with any particular subtype of lymphoma. In the present study, we found that cyclin D2 was specifically overexpressed in the proliferation centers (PC) of all cases of chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) examined (19/19). To examine the molecular mechanisms underlying this overexpression, we immunohistochemically examined the expression of nuclear factor (NF)-κB, p15, p16, p18, and p27 in the PC of six patients. Five cases showed upregulation of NF-κB expression, which is known to directly induce cyclin D2 by binding to the promoter region of CCND2. All six PC examined demonstrated downregulation of p27 expression. In contrast, upregulation of p15 expression was detected in five of six PC examined. This discrepancy suggests that unknown cell cycle regulatory mechanisms involving NF-κB-related pathways are also involved, because NF-κB upregulates cyclin D2 not only directly, but also indirectly through c-Myc, which is believed to downregulate both p27 and p15. In conclusion, cyclin D2 is overexpressed in the PC of CLL/SLL and this overexpression is due, in part, to the upregulation of NF-κB-related pathways.
Collapse
Affiliation(s)
- Takuro Igawa
- Department of Pathology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Bockorny B, Codreanu I, Dasanu CA. Hodgkin lymphoma as Richter transformation in chronic lymphocytic leukaemia: a retrospective analysis of world literature. Br J Haematol 2011; 156:50-66. [DOI: 10.1111/j.1365-2141.2011.08907.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
134
|
Ponzoni M, Doglioni C, Caligaris-Cappio F. Chronic lymphocytic leukemia: the pathologist's view of lymph node microenvironment. Semin Diagn Pathol 2011; 28:161-6. [PMID: 21842701 DOI: 10.1053/j.semdp.2011.02.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chronic lymphocytic leukemia (CLL), an indolent B-cell malignancy frequently diagnosed in the elderly, is characterized by the relentless accumulation of CD5+ monoclonal B cells that proliferate in the appropriate tissue microenvironments. Despite many advances achieved by molecular and functional studies, our knowledge of the reciprocal relationship between the CLL cell and its microenvironment at the tissue level is still largely incomplete. In this review we present the relevant current information on the tissue microenvironmental features of CLL, focusing on the events that appear to occur in the lymph node. Special attention is devoted to analyzing the properties of both neoplastic and nonneoplastic bystander cells within proliferation centers, the mysterious structures that likely represent the actual proliferative compartment.
Collapse
Affiliation(s)
- Maurilio Ponzoni
- Pathology Unit, Department of Oncology, University Scientific Institute San Raffaele, Milan, Italy.
| | | | | |
Collapse
|
135
|
Abrisqueta P, Crespo M, Bosch F. Personalizing treatment for chronic lymphocytic leukemia. Expert Rev Hematol 2011; 4:27-35. [PMID: 21322776 DOI: 10.1586/ehm.10.84] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Over the past few years, more effective therapies have emerged in the treatment of chronic lymphocytic leukemia (CLL); these are mainly combinations of immunotherapy with fludarabine-based regimens. Despite the higher response rates obtained with these more intensive treatments, they may not always be applicable. Patients with several comorbidities have an increased toxicity with these newer therapies. Effective tools to distinguish between fit and nonfit patients and new therapeutic approaches suitable for fragile patients with CLL are therefore necessary. Moreover, there is still a subset of patients who are refractory to standard fludarabine-based treatments who continue to have very poor survival. Efforts to understand the mechanisms of resistance to treatment in order to develop new therapeutic agents for those patients are mandatory. Finally, advances in the knowledge of the pathogenesis of CLL are promoting the emergence of drugs directed to new biological targets of this disease. Consequently, trials exploring the toxicity profile and efficacy of these new therapeutic agents, alone or in combination with standard treatments, are warranted.
Collapse
Affiliation(s)
- Pau Abrisqueta
- Department of Hematology, University Hospital of Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | | | | |
Collapse
|
136
|
Gibson SE, Swerdlow SH, Ferry JA, Surti U, Dal Cin P, Harris NL, Hasserjian RP. Reassessment of small lymphocytic lymphoma in the era of monoclonal B-cell lymphocytosis. Haematologica 2011; 96:1144-52. [PMID: 21546505 DOI: 10.3324/haematol.2011.042333] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In the 2008 World Health Organization classification, small lymphocytic lymphoma is defined as a neoplasm with the tissue morphology and immunophenotype of chronic lymphocytic leukemia, but with absence of leukemia. Minimal criteria of tissue involvement to separate small lymphocytic lymphoma from monoclonal B-cell lymphocytosis have not been defined. DESIGN AND METHODS We reviewed the clinicopathological features of 36 patients with extramedullary tissue biopsies containing chronic lymphocytic leukemia-type cells and less than 5×10(9)/L peripheral blood monoclonal B cells. Pathological features (extent and patterns of involvement, architectural preservation, presence of proliferation centers) as well as cytogenetic and radiological findings were examined in relation to clinical outcome. RESULTS The biopsies were performed to evaluate lymphadenopathy in 20 patients and for other reasons (most frequently staging of a non-hematologic neoplasm) in 16 patients. At latest follow-up (median 23 months), 21 untreated patients had no or stable lymphadenopathy, 3 had regressed lymphadenopathy, and 12 had developed progressive lymphadenopathy and/or received therapy for chronic lymphocytic leukemia/small lymphocytic lymphoma. Features associated with progression/treatment included lymph nodes 1.5 cm or greater on imaging studies (P=0.01) and presence of proliferation centers in the biopsied tissue (P=0.004). Neither the size nor extent of involvement of the excised lymph node correlated with progression/treatment. CONCLUSIONS Our findings suggest that biopsies containing chronic lymphocytic leukemia-type cells, but lacking proliferation centers and with non-enlarged or only slightly enlarged lymph nodes on imaging, represent a very indolent disease that may best be considered a tissue equivalent of monoclonal B-cell lymphocytosis rather than overt small lymphocytic lymphoma. We propose that such cases be designated as tissue involvement by chronic lymphocytic leukemia/small lymphocytic lymphoma-like cells of uncertain significance.
Collapse
Affiliation(s)
- Sarah E Gibson
- Department of Pathology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
137
|
Zent CS, Polliack A, Tadmor T. FISHing for answers in proliferation centers of chronic lymphocytic leukemia lymph nodes. Leuk Lymphoma 2011; 52:946-7. [PMID: 21534869 DOI: 10.3109/10428194.2011.565099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Clive S Zent
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
138
|
Rossi D, Spina V, Deambrogi C, Rasi S, Laurenti L, Stamatopoulos K, Arcaini L, Lucioni M, Rocque GB, Xu-Monette ZY, Visco C, Chang J, Chigrinova E, Forconi F, Marasca R, Besson C, Papadaki T, Paulli M, Larocca LM, Pileri SA, Gattei V, Bertoni F, Foà R, Young KH, Gaidano G. The genetics of Richter syndrome reveals disease heterogeneity and predicts survival after transformation. Blood 2011; 117:3391-3401. [PMID: 21266718 DOI: 10.1182/blood-2010-09-302174] [Citation(s) in RCA: 298] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Richter syndrome (RS) represents the development of diffuse large B-cell lymphoma in the context of chronic lymphocytic leukemia. The scarcity of biologic information about RS has hampered the identification of molecular predictors of RS outcome. We addressed this issue by performing a comprehensive molecular characterization of 86 pathologically proven RS. TP53 disruption (47.1%) and c-MYC abnormalities (26.2%) were the most frequent alterations, whereas common genetic lesions of de novo diffuse large B-cell lymphoma were rare or absent. By multivariate analysis, lack of TP53 disruption (hazard ratio, 0.43; P = .003) translated into significant survival advantage with 57% reduction in risk of death. An algorithm based on TP53 disruption, response to RS treatment, and Eastern Cooperative Oncology Group performance status had 80.9% probability of correctly discriminating RS survival (c-index = .809). RS that were clonally unrelated to the paired chronic lymphocytic leukemia phase were clinically and biologically different from clonally related RS because of significantly longer survival (median, 62.5 months vs 14.2 months; P = .017) and lower prevalence of TP53 disruption (23.1% vs 60.0%; P = .018) and B-cell receptor stereotypy (7.6% vs 50.0%; P = .009). The molecular dissection of RS into biologically distinct categories highlights the genetic heterogeneity of this disorder and provides clinically relevant information for refining the prognostic stratification of patients.
Collapse
Affiliation(s)
- Davide Rossi
- Division of Hematology, Department of Clinical and Experimental Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood 2011; 117:6287-96. [PMID: 21422473 DOI: 10.1182/blood-2011-01-328484] [Citation(s) in RCA: 644] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
B-cell receptor (BCR) signaling is aberrantly activated in chronic lymphocytic leukemia (CLL). Bruton tyrosine kinase (BTK) is essential to BCR signaling and in knockout mouse models its mutation has a relatively B cell-specific phenotype. Herein, we demonstrate that BTK protein and mRNA are significantly over expressed in CLL compared with normal B cells. Although BTK is not always constitutively active in CLL cells, BCR or CD40 signaling is accompanied by effective activation of this pathway. Using the irreversible BTK inhibitor PCI-32765, we demonstrate modest apoptosis in CLL cells that is greater than that observed in normal B cells. No influence of PCI-32765 on T-cell survival is observed. Treatment of CD40 or BCR activated CLL cells with PCI-32765 results in inhibition of BTK tyrosine phosphorylation and also effectively abrogates downstream survival pathways activated by this kinase including ERK1/2, PI3K, and NF-κB. In addition, PCI-32765 inhibits activation-induced proliferation of CLL cells in vitro, and effectively blocks survival signals provided externally to CLL cells from the microenvironment including soluble factors (CD40L, BAFF, IL-6, IL-4, and TNF-α), fibronectin engagement, and stromal cell contact. Based on these collective data, future efforts targeting BTK with the irreversible inhibitor PCI-32765 in clinical trials of CLL patients is warranted.
Collapse
|
140
|
Balogh Z, Reiniger L, Rajnai H, Csomor J, Szepesi Á, Balogh A, Deák L, Gagyi É, Bödör C, Matolcsy A. High rate of neoplastic cells with genetic abnormalities in proliferation centers of chronic lymphocytic leukemia. Leuk Lymphoma 2011; 52:1080-4. [DOI: 10.3109/10428194.2011.555889] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|