101
|
Bolomsky A, Vogler M, Köse MC, Heckman CA, Ehx G, Ludwig H, Caers J. MCL-1 inhibitors, fast-lane development of a new class of anti-cancer agents. J Hematol Oncol 2020; 13:173. [PMID: 33308268 PMCID: PMC7731749 DOI: 10.1186/s13045-020-01007-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/22/2020] [Indexed: 12/24/2022] Open
Abstract
Cell death escape is one of the most prominent features of tumor cells and closely linked to the dysregulation of members of the Bcl-2 family of proteins. Among those, the anti-apoptotic family member myeloid cell leukemia-1 (MCL-1) acts as a master regulator of apoptosis in various human malignancies. Irrespective of its unfavorable structure profile, independent research efforts recently led to the generation of highly potent MCL-1 inhibitors that are currently evaluated in clinical trials. This offers new perspectives to target a so far undruggable cancer cell dependency. However, a detailed understanding about the tumor and tissue type specific implications of MCL-1 are a prerequisite for the optimal (i.e., precision medicine guided) use of this novel drug class. In this review, we summarize the major functions of MCL-1 with a special focus on cancer, provide insights into its different roles in solid vs. hematological tumors and give an update about the (pre)clinical development program of state-of-the-art MCL-1 targeting compounds. We aim to raise the awareness about the heterogeneous role of MCL-1 as drug target between, but also within tumor entities and to highlight the importance of rationale treatment decisions on a case by case basis.
Collapse
Affiliation(s)
- Arnold Bolomsky
- Wilhelminen Cancer Research Institute, Wilhelminenspital, Vienna, Austria
| | - Meike Vogler
- Department of Clinical Hematology, GIGA-I3, University of Liège, CHU De Liège, 35, Dom Univ Sart Tilman B, 4000, Liège, Belgium
| | - Murat Cem Köse
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
| | - Caroline A Heckman
- Institute for Molecular Medicine Finland-FIMM, HiLIFE-Helsinki Institute of Life Science, iCAN Digital Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Grégory Ehx
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
| | - Heinz Ludwig
- Wilhelminen Cancer Research Institute, Wilhelminenspital, Vienna, Austria
| | - Jo Caers
- Department of Clinical Hematology, GIGA-I3, University of Liège, CHU De Liège, 35, Dom Univ Sart Tilman B, 4000, Liège, Belgium.
| |
Collapse
|
102
|
Tognon CE, Sears RC, Mills GB, Gray JW, Tyner JW. Ex Vivo Analysis of Primary Tumor Specimens for Evaluation of Cancer Therapeutics. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2020; 5:39-57. [PMID: 34222745 DOI: 10.1146/annurev-cancerbio-043020-125955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The use of ex vivo drug sensitivity testing to predict drug activity in individual patients has been actively explored for almost 50 years without delivering a generally useful predictive capability. However, extended failure should not be an indicator of futility. This is especially true in cancer research where ultimate success is often preceded by less successful attempts. For example, both immune- and genetic-based targeted therapies for cancer underwent numerous failed attempts before biological understanding, improved targets, and optimized drug development matured to facilitate an arsenal of transformational drugs. Similarly, the concept of directly assessing drug sensitivity of primary tumor biopsies-and the use of this information to help direct therapeutic approaches-has a long history with a definitive learning curve. In this review, we will survey the history of ex vivo testing as well as the current state of the art for this field. We will present an update on methodologies and approaches, describe the use of these technologies to test cutting-edge drug classes, and describe an increasingly nuanced understanding of tumor types and models for which this strategy is most likely to succeed. We will consider the relative strengths and weaknesses of predicting drug activity across the broad biological context of cancer patients and tumor types. This will include an analysis of the potential for ex vivo drug sensitivity testing to accurately predict drug activity within each of the biological hallmarks of cancer pathogenesis.
Collapse
Affiliation(s)
- Cristina E Tognon
- Division of Hematology & Medical Oncology, Oregon Health & Science University.,Knight Cancer Institute, Oregon Health & Science University
| | - Rosalie C Sears
- Knight Cancer Institute, Oregon Health & Science University.,Department of Molecular and Medical Genetics, Oregon Health and Science University.,Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University
| | - Gordon B Mills
- Knight Cancer Institute, Oregon Health & Science University.,Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University.,Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University
| | - Joe W Gray
- Knight Cancer Institute, Oregon Health & Science University.,Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University.,Department of Biomedical Engineering, Oregon Health & Science University.,Center for Spatial Systems Biomedicine, Oregon Health & Science University
| | - Jeffrey W Tyner
- Division of Hematology & Medical Oncology, Oregon Health & Science University.,Knight Cancer Institute, Oregon Health & Science University.,Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University
| |
Collapse
|
103
|
Wei Y, Cao Y, Sun R, Cheng L, Xiong X, Jin X, He X, Lu W, Zhao M. Targeting Bcl-2 Proteins in Acute Myeloid Leukemia. Front Oncol 2020; 10:584974. [PMID: 33251145 PMCID: PMC7674767 DOI: 10.3389/fonc.2020.584974] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022] Open
Abstract
B cell lymphoma 2 (BCL-2) family proteins play an important role in intrinsic apoptosis. Overexpression of BCL-2 proteins in acute myeloid leukemia can circumvent resistance to apoptosis and chemotherapy. Considering this effect, the exploration of anti-apoptotic BCL-2 inhibitors is considered to have tremendous potential for the discovery of novel pharmacological modulators in cancer. This review outlines the impact of BCL-2 family proteins on intrinsic apoptosis and the development of acute myeloid leukemia (AML). Furthermore, we will also review the new combination therapy with venetoclax that overcomes resistance to venetoclax and discuss biomarkers of treatment response identified in early-phase clinical trials.
Collapse
Affiliation(s)
- Yunxiong Wei
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Yaqing Cao
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Rui Sun
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Lin Cheng
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Xia Xiong
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Xin Jin
- Nankai University School of Medicine, Tianjin, China
| | - Xiaoyuan He
- Nankai University School of Medicine, Tianjin, China
| | - Wenyi Lu
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
104
|
Buschner G, Feuerecker B, Spinner S, Seidl C, Essler M. Differentiation of acute myeloid leukemia (AML) cells with ATRA reduces 18F-FDG uptake and increases sensitivity towards ABT-737-induced apoptosis. Leuk Lymphoma 2020; 62:630-639. [PMID: 33140666 DOI: 10.1080/10428194.2020.1839648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Acute myeloid leukemia (AML) is a malignant disease of the bone marrow, comprising various subtypes. We have investigated seven different AML cell lines that showed different sensitivities toward the inducer of apoptosis ABT-737, with IC50 concentrations ranging from 9.9 nM to 1.8 µM. Besides, the AML cell lines revealed distinct differences in 18F-FDG uptake ranging from 4.1 to 11.0%. Moreover, the Pearson coefficient (0.363) suggests a moderate correlation between 18F-FDG uptake and the IC50 values of ABT-737. Differentiation of the AML cell lines NB-4 and AML-193 with all-trans-retinoic-acid (ATRA) induced a significant increase in sensitivity towards ABT-737 along with a reduced uptake of 18F-FDG. Therefore, 18F-FDG uptake could be predictive on sensitivity to treatment with ABT-737. Furthermore, because differentiation treatment of AML cells using ATRA reduced 18F-FDG uptake and increased sensitivity towards ABT-737, a combined treatment regimen with ATRA and ABT-737 might be a promising therapeutic option in the future.
Collapse
Affiliation(s)
- Gabriel Buschner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Benedikt Feuerecker
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sabine Spinner
- Department of Hematology and Oncology, Internal Medicine III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christof Seidl
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Markus Essler
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Nuclear Medicine, Universitätsklinikum Bonn, Bonn, Germany
| |
Collapse
|
105
|
Stevens BM, Jones CL, Pollyea DA, Culp-Hill R, D'Alessandro A, Winters A, Krug A, Abbott D, Goosman M, Pei S, Ye H, Gillen AE, Becker MW, Savona MR, Smith C, Jordan CT. Fatty acid metabolism underlies venetoclax resistance in acute myeloid leukemia stem cells. ACTA ACUST UNITED AC 2020; 1:1176-1187. [PMID: 33884374 DOI: 10.1038/s43018-020-00126-z] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Venetoclax with azacitidine (ven/aza) has emerged as a promising regimen for acute myeloid leukemia (AML), with a high percentage of clinical remissions in newly diagnosed patients. However, approximately 30% of newly diagnosed and the majority of relapsed patients do not achieve remission with ven/aza. We previously reported that ven/aza efficacy is based on eradication of AML stem cells through a mechanism involving inhibition of amino acid metabolism, a process which is required in primitive AML cells to drive oxidative phosphorylation. Herein we demonstrate that resistance to ven/aza occurs via up-regulation of fatty acid oxidation (FAO), which occurs due to RAS pathway mutations, or as a compensatory adaptation in relapsed disease. Utilization of FAO obviates the need for amino acid metabolism, thereby rendering ven/aza ineffective. Pharmacological inhibition of FAO restores sensitivity to ven/aza in drug resistant AML cells. We propose inhibition of FAO as a therapeutic strategy to address ven/aza resistance.
Collapse
Affiliation(s)
- Brett M Stevens
- Division of Hematology, University of Colorado Denver, Aurora, CO 80045
| | - Courtney L Jones
- Division of Hematology, University of Colorado Denver, Aurora, CO 80045
| | - Daniel A Pollyea
- Division of Hematology, University of Colorado Denver, Aurora, CO 80045
| | - Rachel Culp-Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045
| | - Angelo D'Alessandro
- Division of Hematology, University of Colorado Denver, Aurora, CO 80045.,Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045
| | - Amanda Winters
- Divsion of Pediatric Hematology and Oncology, University of Colorado Denver, Aurora, CO 80045
| | - Anna Krug
- Division of Hematology, University of Colorado Denver, Aurora, CO 80045
| | - Diana Abbott
- Department of Biostatistics and Informatics, University of Colorado Denver, Aurora, CO 80045
| | - Madeline Goosman
- Division of Hematology, University of Colorado Denver, Aurora, CO 80045
| | - Shanshan Pei
- Division of Hematology, University of Colorado Denver, Aurora, CO 80045
| | - Haobin Ye
- Division of Hematology, University of Colorado Denver, Aurora, CO 80045
| | - Austin E Gillen
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA
| | - Michael W Becker
- Department of Medicine, James P. Wilmot Cancer Center, Rochester, NY, USA
| | - Michael R Savona
- Department of Internal Medicine, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Clayton Smith
- Division of Hematology, University of Colorado Denver, Aurora, CO 80045
| | - Craig T Jordan
- Division of Hematology, University of Colorado Denver, Aurora, CO 80045
| |
Collapse
|
106
|
Cucchi DGJ, Groen RWJ, Janssen JJWM, Cloos J. Ex vivo cultures and drug testing of primary acute myeloid leukemia samples: Current techniques and implications for experimental design and outcome. Drug Resist Updat 2020; 53:100730. [PMID: 33096284 DOI: 10.1016/j.drup.2020.100730] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/03/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
New treatment options of acute myeloid leukemia (AML) are rapidly emerging. Pre-clinical models such as ex vivo cultures are extensively used towards the development of novel drugs and to study synergistic drug combinations, as well as to discover biomarkers for both drug response and anti-cancer drug resistance. Although these approaches empower efficient investigation of multiple drugs in a multitude of primary AML samples, their translational value and reproducibility are hampered by the lack of standardized methodologies and by culture system-specific behavior of AML cells and chemotherapeutic drugs. Moreover, distinct research questions require specific methods which rely on specific technical knowledge and skills. To address these aspects, we herein review commonly used culture techniques in light of diverse research questions. In addition, culture-dependent effects on drug resistance towards commonly used drugs in the treatment of AML are summarized including several pitfalls that may arise because of culture technique artifacts. The primary aim of the current review is to provide practical guidelines for ex vivo primary AML culture experimental design.
Collapse
Affiliation(s)
- D G J Cucchi
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - R W J Groen
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - J J W M Janssen
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - J Cloos
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands.
| |
Collapse
|
107
|
Winters AC, Maloney KW, Treece AL, Gore L, Franklin AK. Single-center pediatric experience with venetoclax and azacitidine as treatment for myelodysplastic syndrome and acute myeloid leukemia. Pediatr Blood Cancer 2020; 67:e28398. [PMID: 32735397 DOI: 10.1002/pbc.28398] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The BCL-2 inhibitor venetoclax (ven) has revolutionized the treatment of acute myeloid leukemia (AML) in elderly adults, leading to its recent FDA approval for this population in combination regimens. Although extensive data exist for adult myeloid malignancies, there are limited preclinical data on the efficacy and/or dosing of venetoclax for pediatric myelodysplastic syndrome (MDS) or AML and thus little information to guide use of this regimen in pediatric patients. Our objective was to describe our single-center experience with venetoclax in combination with the hypomethylating agent 5-azacitidine (aza) in pediatric patients with MDS or AML. PROCEDURE We conducted a retrospective chart review of patients treated at Children's Hospital Colorado prior to March 2020 with at least one cycle of ven/aza. Patients were included if between the ages of 1 and 25 years with a diagnosis of high-grade MDS or AML. AML patients had relapsed or primary refractory disease or were deemed poor candidates for standard chemotherapy. RESULTS Eight patients received ven/aza, two for high-grade MDS and six for AML. Ven/aza was well tolerated by all patients. The most common adverse events seen with this regimen were gastrointestinal and hematologic. Morphologic responses were seen in six patients including both patients with MDS. All four AML responders became minimal residual disease negative. Three responders have thus far proceeded to allogeneic hematopoietic stem cell transplant following ven/aza. CONCLUSIONS Our clinical experience suggests that ven/aza is a safe and promising regimen that should be further explored with late-phase clinical trials.
Collapse
Affiliation(s)
- Amanda C Winters
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, Colorado
| | - Kelly W Maloney
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, Colorado
| | - Amy L Treece
- Department of Pathology, Children's Hospital Colorado, Aurora, Colorado
| | - Lia Gore
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, Colorado
| | - Anna K Franklin
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, Colorado
| |
Collapse
|
108
|
Absence of BCL-2 Expression Identifies a Subgroup of AML with Distinct Phenotypic, Molecular, and Clinical Characteristics. J Clin Med 2020; 9:jcm9103090. [PMID: 32992732 PMCID: PMC7599534 DOI: 10.3390/jcm9103090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/09/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Acute myeloid leukemia (AML) is a hematologic malignancy characterized by the rapid and uncontrolled clonal growth of myeloid lineage cells in the bone marrow. The advent of oral, selective inhibitors of the B-cell leukemia/lymphoma-2 (BCL-2) apoptosis pathway, such as venetoclax, will likely induce a paradigm shift in the treatment of AML. However, the high cost of this treatment and the risk of additive toxicity when used in combination with standard chemotherapy represent limitations to its use and underscore the need to identify which patients are most—and least—likely to benefit from incorporation of venetoclax into the treatment regimen. Bone marrow specimens from 93 newly diagnosed AML patients were collected in this study and evaluated for BCL-2 protein expression by immunohistochemistry. Using this low-cost, easily, and readily applicable analysis method, we found that 1 in 5 AML patients can be considered as BCL-2−. In addition to a lower bone marrow blast percentage, this group exhibited a favorable molecular profile characterized by lower WT1 expression and underrepresentation of FLT3 mutations. As compared to their BCL-2+ counterparts, the absence of BCL-2 expression was associated with a favorable response to standard chemotherapy and overall survival, thus potentially precluding the necessity for venetoclax add-on.
Collapse
|
109
|
Zhang H, Nakauchi Y, Köhnke T, Stafford M, Bottomly D, Thomas R, Wilmot B, McWeeney SK, Majeti R, Tyner JW. Integrated analysis of patient samples identifies biomarkers for venetoclax efficacy and combination strategies in acute myeloid leukemia. NATURE CANCER 2020; 1:826-839. [PMID: 33123685 PMCID: PMC7591155 DOI: 10.1038/s43018-020-0103-x] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 07/17/2020] [Indexed: 01/05/2023]
Abstract
Deregulation of the BCL2 gene family plays an important role in the pathogenesis of acute myeloid leukemia (AML). The BCL2 inhibitor, venetoclax, has received FDA approval for the treatment of AML. However, upfront and acquired drug resistance ensues due, in part, to the clinical and genetic heterogeneity of AML, highlighting the importance of identifying biomarkers to stratify patients onto the most effective therapies. By integrating clinical characteristics, exome and RNA sequencing, and inhibitor data from primary AML patient samples, we determined that myelomonocytic leukemia, upregulation of BCL2A1 and CLEC7A, as well as mutations of PTPN11 and KRAS conferred resistance to venetoclax and multiple venetoclax combinations. Venetoclax in combination with an MCL1 inhibitor AZD5991 induced synthetic lethality and circumvented venetoclax resistance.
Collapse
Affiliation(s)
- Haijiao Zhang
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University Knight Cancer Institute, Portland, OR
| | - Yusuke Nakauchi
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Thomas Köhnke
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Melissa Stafford
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Daniel Bottomly
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University Knight Cancer Institute, Portland, OR
| | - Rozario Thomas
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Beth Wilmot
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University Knight Cancer Institute, Portland, OR
| | - Shannon K. McWeeney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University Knight Cancer Institute, Portland, OR
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Jeffrey W. Tyner
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University Knight Cancer Institute, Portland, OR
| |
Collapse
|
110
|
Kurtz SE, Tyner JW. Keys to drug sensitivity from updated functional work flows. Haematologica 2020; 105:1468-1470. [PMID: 32482750 DOI: 10.3324/haematol.2020.250662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
| | - Jeffrey W Tyner
- Division of Hematology and Medical Oncology .,Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
111
|
Frisch A, Rowe JM, Ofran Y. How we treat older patients with acute myeloid leukaemia. Br J Haematol 2020; 191:682-691. [PMID: 32352169 DOI: 10.1111/bjh.16701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
After decades when intensive chemotherapy remained the only effective anti-acute myeloid leukaemia (AML) treatment, a torrent of novel, less toxic agents are about to revolutionise AML therapy. Prolonged remissions with good quality of life become achievable for many patients previously considered only for palliative care because they could not tolerate intensive therapy. As treatment options multiply, the importance of genetic profile is recognised, even for advanced-age patients for whom cure is unlikely. With lack of randomised comparative trials for most treatment regimens, one can only extrapolate data from existing studies to make evidence-based decisions. We herein present seven common clinical scenarios illustrating the complexity of treating older AML patients and describe our approach to their management. In each case, up-to-date data on relevant agents to be offered to a particular patient are discussed. The current review is limited to the drugs, available and approved in the Western world and many promising agents, still under investigation, are not discussed.
Collapse
Affiliation(s)
- Avraham Frisch
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel
| | - Jacob M Rowe
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel.,Department of Hematology, Shaare Zedek Medical Center, Jerusalem, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Yishai Ofran
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
112
|
Pei S, Pollyea DA, Gustafson A, Stevens BM, Minhajuddin M, Fu R, Riemondy KA, Gillen AE, Sheridan RM, Kim J, Costello JC, Amaya ML, Inguva A, Winters A, Ye H, Krug A, Jones CL, Adane B, Khan N, Ponder J, Schowinsky J, Abbott D, Hammes A, Myers JR, Ashton JM, Nemkov T, D'Alessandro A, Gutman JA, Ramsey HE, Savona MR, Smith CA, Jordan CT. Monocytic Subclones Confer Resistance to Venetoclax-Based Therapy in Patients with Acute Myeloid Leukemia. Cancer Discov 2020; 10:536-551. [PMID: 31974170 PMCID: PMC7124979 DOI: 10.1158/2159-8290.cd-19-0710] [Citation(s) in RCA: 309] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/03/2019] [Accepted: 01/17/2020] [Indexed: 12/12/2022]
Abstract
Venetoclax-based therapy can induce responses in approximately 70% of older previously untreated patients with acute myeloid leukemia (AML). However, up-front resistance as well as relapse following initial response demonstrates the need for a deeper understanding of resistance mechanisms. In the present study, we report that responses to venetoclax +azacitidine in patients with AML correlate closely with developmental stage, where phenotypically primitive AML is sensitive, but monocytic AML is more resistant. Mechanistically, resistant monocytic AML has a distinct transcriptomic profile, loses expression of venetoclax target BCL2, and relies on MCL1 to mediate oxidative phosphorylation and survival. This differential sensitivity drives a selective process in patients which favors the outgrowth of monocytic subpopulations at relapse. Based on these findings, we conclude that resistance to venetoclax + azacitidine can arise due to biological properties intrinsic to monocytic differentiation. We propose that optimal AML therapies should be designed so as to independently target AML subclones that may arise at differing stages of pathogenesis. SIGNIFICANCE: Identifying characteristics of patients who respond poorly to venetoclax-based therapy and devising alternative therapeutic strategies for such patients are important topics in AML. We show that venetoclax resistance can arise due to intrinsic molecular/metabolic properties of monocytic AML cells and that such properties can potentially be targeted with alternative strategies.
Collapse
Affiliation(s)
- Shanshan Pei
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado
| | - Daniel A Pollyea
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado
| | - Annika Gustafson
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado
| | - Brett M Stevens
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado
| | - Mohammad Minhajuddin
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado
| | - Rui Fu
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado
| | - Kent A Riemondy
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado
| | - Austin E Gillen
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado
| | - Ryan M Sheridan
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado
| | - Jihye Kim
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - James C Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Maria L Amaya
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Anagha Inguva
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado
| | - Amanda Winters
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Haobin Ye
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado
| | - Anna Krug
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado
| | - Courtney L Jones
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado
| | - Biniam Adane
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado
| | - Nabilah Khan
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado
| | - Jessica Ponder
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado
| | - Jeffrey Schowinsky
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado
| | - Diana Abbott
- Center for Innovative Design and Analysis, Colorado School of Public Health, Aurora, Colorado
| | - Andrew Hammes
- Center for Innovative Design and Analysis, Colorado School of Public Health, Aurora, Colorado
| | - Jason R Myers
- Genomics Research Center, University of Rochester, Rochester, New York
| | - John M Ashton
- Genomics Research Center, University of Rochester, Rochester, New York
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado
| | - Angelo D'Alessandro
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado
| | - Jonathan A Gutman
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado
| | - Haley E Ramsey
- Department of Internal Medicine, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Michael R Savona
- Department of Internal Medicine, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Clayton A Smith
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado
| | - Craig T Jordan
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado.
| |
Collapse
|