101
|
Solechan S, Suprihanto A, Widyanto SA, Triyono J, Fitriyana DF, Siregar JP, Cionita T. Investigating the Effect of PCL Concentrations on the Characterization of PLA Polymeric Blends for Biomaterial Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7396. [PMID: 36295464 PMCID: PMC9609349 DOI: 10.3390/ma15207396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Polylactic acid (PLA) and polycaprolactone (PCL) are synthetic polymers that are extensively used in biomedical applications. However, the PLA/PCL blend produced by ball milling, followed by pressure compaction and sintering, has not been extensively explored. The goal of this research is to investigate the effect of the composition of biomaterials derived from PLA and PCL prepared by ball milling, followed by pressure compaction and sintering, on mechanical and physical properties. PCL and PLA with various concentrations were blended utilizing a ball milling machine for 2 h at an 80-rpm rotation speed. The obtained mixture was placed in a stainless steel 304 mold for the compacting process, which uses a pressure of 30 MPa to create a green body. The sintering procedure was carried out on the green body created at 150 °C for 2 h using a digital oven. The obtained PLA/PCL blend was tested using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Scanning electron microscopy (SEM), density, porosity, and three-point bending. Following the interaction between PCL and PLA in the PLA/PCL blend, the FTIR spectra and XRD diffractograms obtained in this work revealed a number of modifications in the functional groups and crystal phase. The 90PLA specimen had the best mechanical properties, with a maximum force and displacement of 51.13 N and 7.21 mm, respectively. The porosity of the PLA/PCL blend decreased with increasing PLA concentration so that the density and flexural properties of the PLA/PCL blend increased. The higher PCL content decreased the stiffness of the PLA molecular chain, consequently reducing its flexural properties.
Collapse
Affiliation(s)
- Solechan Solechan
- Department of Mechanical Engineering, Faculty of Engineering, Diponegoro University, Semarang 50275, Indonesia
- Department of Mechanical Engineering, Universitas Muhammadiyah Semarang, Kampus Kedungmundu, Semarang 50254, Indonesia
| | - Agus Suprihanto
- Department of Mechanical Engineering, Faculty of Engineering, Diponegoro University, Semarang 50275, Indonesia
| | - Susilo Adi Widyanto
- Department of Mechanical Engineering, Faculty of Engineering, Diponegoro University, Semarang 50275, Indonesia
| | - Joko Triyono
- Department of Mechanical Engineering, Sebelas Maret University, Surakarta 57126, Indonesia
| | - Deni Fajar Fitriyana
- Department of Mechanical Engineering, Universitas Negeri Semarang, Kampus Sekaran, Gunungpati, Semarang 50229, Indonesia
| | - Januar Parlaungan Siregar
- Faculty of Mechanical & Automotive Engineering Technology, Universiti Malaysia Pahang, Pekan 26600, Malaysia
| | - Tezara Cionita
- Faculty of Engineering and Quantity Surveying, INTI International University, Nilai 71800, Malaysia
| |
Collapse
|
102
|
Mercatali L, Vanni S, Miserocchi G, Liverani C, Spadazzi C, Cocchi C, Calabrese C, Gurrieri L, Fausti V, Riva N, Genovese D, Lucarelli E, Focarete ML, Ibrahim T, Calabrò L, De Vita A. The emerging role of cancer nanotechnology in the panorama of sarcoma. Front Bioeng Biotechnol 2022; 10:953555. [PMID: 36324885 PMCID: PMC9618700 DOI: 10.3389/fbioe.2022.953555] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022] Open
Abstract
In the field of nanomedicine a multitude of nanovectors have been developed for cancer application. In this regard, a less exploited target is represented by connective tissue. Sarcoma lesions encompass a wide range of rare entities of mesenchymal origin affecting connective tissues. The extraordinary diversity and rarity of these mesenchymal tumors is reflected in their classification, grading and management which are still challenging. Although they include more than 70 histologic subtypes, the first line-treatment for advanced and metastatic sarcoma has remained unchanged in the last fifty years, excluding specific histotypes in which targeted therapy has emerged. The role of chemotherapy has not been completely elucidated and the outcomes are still very limited. At the beginning of the century, nano-sized particles clinically approved for other solid lesions were tested in these neoplasms but the results were anecdotal and the clinical benefit was not substantial. Recently, a new nanosystem formulation NBTXR3 for the treatment of sarcoma has landed in a phase 2-3 trial. The preliminary results are encouraging and could open new avenues for research in nanotechnology. This review provides an update on the recent advancements in the field of nanomedicine for sarcoma. In this regard, preclinical evidence especially focusing on the development of smart materials and drug delivery systems will be summarized. Moreover, the sarcoma patient management exploiting nanotechnology products will be summed up. Finally, an overlook on future perspectives will be provided.
Collapse
Affiliation(s)
- Laura Mercatali
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Silvia Vanni
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Giacomo Miserocchi
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Chiara Liverani
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Chiara Spadazzi
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Claudia Cocchi
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Chiara Calabrese
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Lorena Gurrieri
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Valentina Fausti
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Nada Riva
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Damiano Genovese
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Bologna, Italy
| | - Enrico Lucarelli
- Osteoncologia, Sarcomi dell’osso e dei tessuti molli, e Terapie Innovative, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Toni Ibrahim
- Osteoncologia, Sarcomi dell’osso e dei tessuti molli, e Terapie Innovative, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Luana Calabrò
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Alessandro De Vita
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- *Correspondence: Alessandro De Vita,
| |
Collapse
|
103
|
Klimek K, Palka K, Truszkiewicz W, Douglas TEL, Nurzynska A, Ginalska G. Could Curdlan/Whey Protein Isolate/Hydroxyapatite Biomaterials Be Considered as Promising Bone Scaffolds?-Fabrication, Characterization, and Evaluation of Cytocompatibility towards Osteoblast Cells In Vitro. Cells 2022; 11:cells11203251. [PMID: 36291119 PMCID: PMC9600130 DOI: 10.3390/cells11203251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
The number of bone fractures and cracks requiring surgical interventions increases every year; hence, there is a huge need to develop new potential bone scaffolds for bone regeneration. The goal of this study was to gain knowledge about the basic properties of novel curdlan/whey protein isolate/hydroxyapatite biomaterials in the context of their use in bone tissue engineering. The purpose of this research was also to determine whether the concentration of whey protein isolate in scaffolds has an influence on their properties. Thus, two biomaterials differing in the concentration of whey protein isolate (i.e., 25 wt.% and 35 wt.%; hereafter called Cur_WPI25_HAp and Cur_WPI35_HAp, respectively) were fabricated and subjected to evaluation of porosity, mechanical properties, swelling ability, protein release capacity, enzymatic biodegradability, bioactivity, and cytocompatibility towards osteoblasts in vitro. It was found that both biomaterials fulfilled a number of requirements for bone scaffolds, as they demonstrated limited swelling and the ability to undergo controllable enzymatic biodegradation, to form apatite layers on their surfaces and to support the viability, growth, proliferation, and differentiation of osteoblasts. On the other hand, the biomaterials were characterized by low open porosity, which may hinder the penetration of cells though their structure. Moreover, they had low mechanical properties compared to natural bone, which limits their use to filling of bone defects in non-load bearing implantation areas, e.g., in the craniofacial area, but then they will be additionally supported by application of mechanically strong materials such as titanium plates. Thus, this preliminary in vitro research indicates that biomaterials composed of curdlan, whey protein isolate, and hydroxyapatite seem promising for bone tissue engineering applications, but their porosity and mechanical properties should be improved. This will be the subject of our further work.
Collapse
Affiliation(s)
- Katarzyna Klimek
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
- Correspondence: ; Tel.: +48-448-70-28
| | - Krzysztof Palka
- Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 26 Street, 20-618 Lublin, Poland
| | - Wieslaw Truszkiewicz
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
| | - Timothy E. L. Douglas
- School of Engineering, Lancaster University, Gillow Avenue, Lancaster LA1 4YW, UK
- Materials Science Institute (MSI), Lancaster University, Lancaster LA1 4YW, UK
| | - Aleksandra Nurzynska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
| | - Grazyna Ginalska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
| |
Collapse
|
104
|
Paladini F, Pollini M. Novel Approaches and Biomaterials for Bone Tissue Engineering: A Focus on Silk Fibroin. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6952. [PMID: 36234293 PMCID: PMC9572978 DOI: 10.3390/ma15196952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 05/16/2023]
Abstract
Bone tissue engineering (BTE) represents a multidisciplinary research field involving many aspects of biology, engineering, material science, clinical medicine and genetics to create biological substitutes to promote bone regeneration. The definition of the most appropriate biomaterials and structures for BTE is still a challenge for researchers, aiming at simultaneously combining different features such as tissue generation properties, biocompatibility, porosity and mechanical strength. In this scenario, among the biomaterials for BTE, silk fibroin represents a valuable option for the development of functional devices because of its unique biological properties and the multiple chances of processing. This review article aims at providing the reader with a general overview of the most recent progresses in bone tissue engineering in terms of approaches and materials with a special focus on silk fibroin and the related mechanisms involved in bone regeneration, and presenting interesting results obtained by different research groups, which assessed the great potential of this protein for bone tissue engineering.
Collapse
Affiliation(s)
- Federica Paladini
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Caresilk S.r.l.s., Via Monteroni c/o Technological District DHITECH, 73100 Lecce, Italy
| | - Mauro Pollini
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Caresilk S.r.l.s., Via Monteroni c/o Technological District DHITECH, 73100 Lecce, Italy
| |
Collapse
|
105
|
Ganguly P, Jones E, Panagiotopoulou V, Jha A, Blanchy M, Antimisiaris S, Anton M, Dhuiège B, Marotta M, Marjanovic N, Panagiotopoulos E, Giannoudis PV. Electrospun and 3D printed polymeric materials for one-stage critical-size long bone defect regeneration inspired by the Masquelet technique: Recent Advances. Injury 2022; 53 Suppl 2:S2-S12. [PMID: 35305805 DOI: 10.1016/j.injury.2022.02.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/02/2023]
Abstract
Critical-size long bone defects represent one of the major causes of fracture non-union and remain a significant challenge in orthopaedic surgery. Two-stage procedures such as a Masquelet technique demonstrate high level of success however their main disadvantage is the need for a second surgery, which is required to remove the non-resorbable cement spacer and to place the bone graft into the biological chamber formed by the 'induced membrane'. Recent research efforts have therefore been dedicated towards the design, fabrication and testing of resorbable implants that could mimic the biological functions of the cement spacer and the induced membrane. Amongst the various manufacturing techniques used to fabricate these implants, three-dimensional (3D) printing and electrospinning methods have gained a significant momentum due their high-level controllability, scalable processing and relatively low cost. This review aims to present recent advances in the evaluation of electrospun and 3D printed polymeric materials for critical-size, long bone defect reconstruction, emphasizing both their beneficial properties and current limitations. Furthermore, we present and discuss current state-of-the art techniques required for characterisation of the materials' physical, mechanical and biological characteristics. These represent the essential first steps towards the development of personalised implants for single-surgery, large defect reconstruction in weight-bearing bones.
Collapse
Affiliation(s)
- Payal Ganguly
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | | | - Animesh Jha
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| | - Marilys Blanchy
- RESCOLL, Allée Geoffroy Saint-Hilaire 8, 33600 Pessac, France
| | - Sophia Antimisiaris
- Panepistimio Patron (UPAT), University Campus Rio Patras, Rio Patras 265 04, Greece
| | - Martina Anton
- Klinikum Rechts Der Isar Der Technischen Universitat Munchen (TUM-MED), Ismaninger Strasse 22, Muenchen 81675, Germany
| | - Benjamin Dhuiège
- Genes'ink (GENE), 39 Avenue Gaston Imbert Zi De Rousset, Rousset 13790, France
| | - Mario Marotta
- Acondicionamiento tarrasense associacion (LEITAT), Carrer de la Innovacio 2, Terrassa 08225, Spain
| | - Nenad Marjanovic
- CSEM Centre Suisse D'electronique et de Microtechnique Sa - Recherche et Developpement (CSEM), Rue Jaquet Droz 1, Neuchatel 2000, Switzerland
| | | | - Peter V Giannoudis
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK; Leeds General Infirmary, Department of Trauma and Orthopaedic Surgery, University of Leeds, Leeds, UK.
| |
Collapse
|
106
|
Extracellular matrix-mimicking nanofibrous chitosan microspheres as cell micro-ark for tissue engineering. Carbohydr Polym 2022; 292:119693. [PMID: 35725181 DOI: 10.1016/j.carbpol.2022.119693] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 11/20/2022]
Abstract
In the present study, extracellular matrix (ECM)-mimicking nanofibrous chitosan microspheres (NCM) were developed via thermal induction of chitosan molecular chain from alkaline/urea aqueous solution. The regeneration of NCM from chitosan was proved to be physical process. The morphology of NCM could be precisely controlled by adjusting the initial solution concentration and the reaction temperature. The NCM possessed desirable in vitro/vivo biocompatibility and biodegradability. The excellent cell adhesion capability of NCM facilitated the formation of large-sized 3D geometric constructs in vitro. The NCM promoted in vitro osteogenic differentiation of rat bone marrow stem cells (rMSCs). Finally, pre-differentiated rMSCs-NCM constructs obviously enhanced in vivo bone healing of rat calvarial defects. This work opened up a new avenue for the construction of chitosan microspheres with ECM-like nanofibrous structure, indicated the great potential of the NCM as micro-Noah's Ark for stem cells to anchor, proliferate, and pre-differentiate for tissue engineering.
Collapse
|
107
|
Alkhursani SA, Ghobashy MM, Al-Gahtany SA, Meganid AS, Abd El-Halim SM, Ahmad Z, Khan FS, Atia GAN, Cavalu S. Application of Nano-Inspired Scaffolds-Based Biopolymer Hydrogel for Bone and Periodontal Tissue Regeneration. Polymers (Basel) 2022; 14:3791. [PMID: 36145936 PMCID: PMC9504130 DOI: 10.3390/polym14183791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
This review's objectives are to provide an overview of the various kinds of biopolymer hydrogels that are currently used for bone tissue and periodontal tissue regeneration, to list the advantages and disadvantages of using them, to assess how well they might be used for nanoscale fabrication and biofunctionalization, and to describe their production processes and processes for functionalization with active biomolecules. They are applied in conjunction with other materials (such as microparticles (MPs) and nanoparticles (NPs)) and other novel techniques to replicate physiological bone generation more faithfully. Enhancing the biocompatibility of hydrogels created from blends of natural and synthetic biopolymers can result in the creation of the best scaffold match to the extracellular matrix (ECM) for bone and periodontal tissue regeneration. Additionally, adding various nanoparticles can increase the scaffold hydrogel stability and provide a number of biological effects. In this review, the research study of polysaccharide hydrogel as a scaffold will be critical in creating valuable materials for effective bone tissue regeneration, with a future impact predicted in repairing bone defects.
Collapse
Affiliation(s)
- Sheikha A. Alkhursani
- Faculty of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University, Jubail 31441, Saudi Arabia
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo 11787, Egypt
| | | | - Abeer S. Meganid
- Faculty of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University, Jubail 31441, Saudi Arabia
| | - Shady M. Abd El-Halim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza 12585, Egypt
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, Abha 61413, Saudi Arabia
| | - Farhat S. Khan
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, Abha 61413, Saudi Arabia
| | - Gamal Abdel Nasser Atia
- Department of Oral Medicine, Periodontology and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia 41522, Egypt
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
108
|
Sun Q, Yu L, Zhang Z, Qian C, Fang H, Wang J, Wu P, Zhu X, Zhang J, Zhong L, He R. A novel gelatin/carboxymethyl chitosan/nano-hydroxyapatite/β-tricalcium phosphate biomimetic nanocomposite scaffold for bone tissue engineering applications. Front Chem 2022; 10:958420. [PMID: 36157039 PMCID: PMC9493496 DOI: 10.3389/fchem.2022.958420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Hydroxyapatite (HA) and tricalcium phosphate (TCP) constitute 60% of the content of the bone, and their combination has a better effect on bone tissue engineering than either single element. This study demonstrates a new degradable gelatin/carboxymethyl chitosan (CMC) bone scaffold loaded with both nano-HA and β-TCP (hereinafter referred to as HCP), and freeze drying combined with stir foaming was used to obtain highly connected macropores. Only a few studies have used these components to synthesize a four-component osteogenic scaffold. The aim of this study was to comprehensively assess the biocompatibility and osteoinductivity of the nanocomposites. Three HCP/CMC/gelatin scaffolds were made with different HCP contents: group A (10 wt% HCP), group B (30 wt% HCP), and group C (50 wt% HCP) (the ratio of nano-HA and β-TCP was fixed at 3:2). The scaffolds were macroporous with a high porosity and pore connectivity, as observed by morphological analysis by scanning electron microscopy. Additionally, the pore size of groups A and B was more homogeneous than that of group C. There were no significant differences in physicochemical characterization among the three groups. The Fourier-transform infrared (FTIR) spectroscopy test indicated that the scaffold contained active groups, such as hydroxyl, amino, or peptide bonds, corresponding to gelatin and CMC. The XRD results showed that the phase structures of HA and β-TCP did not change in the nanocomposite. The scaffolds had biodegradation potential and an appreciable swelling ratio, as demonstrated with the in vitro test. The scaffolds were cultured in vitro with MC3T3-E1 cells, showing that osteoinduction and osteoconduction increased with the HCP content. None of the scaffolds showed cytotoxicity. However, cell adhesion and growth in group B were better than those in group A and group C. Therefore, freeze drying combined with a stir foaming method may have a solid component limit. This study demonstrates a novel four-component scaffold via a simple manufacturing process. Group B (30% HCP) had the best characteristics for bone scaffold materials.
Collapse
Affiliation(s)
- Qiushuo Sun
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Lu Yu
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Zhuocheng Zhang
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Cheng Qian
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Hongzhe Fang
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Jintao Wang
- Center of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Peipei Wu
- Center of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xiaojing Zhu
- Institute of Life Sciences, College of Life and Environmental Sciences, Key Laboratory of Mammalian Organogenesis and Regeneration, Hangzhou Normal University, Hangzhou, China
| | - Jian Zhang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Liangjun Zhong
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
- Center of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Rui He
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
- Center of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- *Correspondence: Rui He,
| |
Collapse
|
109
|
Pazhouhnia Z, Beheshtizadeh N, Namini MS, Lotfibakhshaiesh N. Portable hand-held bioprinters promote in situ tissue regeneration. Bioeng Transl Med 2022; 7:e10307. [PMID: 36176625 PMCID: PMC9472017 DOI: 10.1002/btm2.10307] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 12/17/2022] Open
Abstract
Three-dimensional bioprinting, as a novel technique of fabricating engineered tissues, is positively correlated with the ultimate goal of regenerative medicine, which is the restoration, reconstruction, and repair of lost and/or damaged tissue function. The progressive trend of this technology resulted in developing the portable hand-held bioprinters, which could be used quite easily by surgeons and physicians. With the advent of portable hand-held bioprinters, the obstacles and challenges of utilizing statistical bioprinters could be resolved. This review attempts to discuss the advantages and challenges of portable hand-held bioprinters via in situ tissue regeneration. All the tissues that have been investigated by this approach were reviewed, including skin, cartilage, bone, dental, and skeletal muscle regeneration, while the tissues that could be regenerated via this approach are targeted in the authors' perspective. The design and applications of hand-held bioprinters were discussed widely, and the marketed printers were introduced. It has been prospected that these facilities could ameliorate translating the regenerative medicine science from the bench to the bedside actively.
Collapse
Affiliation(s)
- Zahra Pazhouhnia
- Department of Tissue EngineeringSchool of Advanced Technologies in Medicine, Tehran University of Medical SciencesTehranIran
- Regenerative Medicine group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Nima Beheshtizadeh
- Department of Tissue EngineeringSchool of Advanced Technologies in Medicine, Tehran University of Medical SciencesTehranIran
- Regenerative Medicine group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Mojdeh Salehi Namini
- Department of Tissue EngineeringSchool of Advanced Technologies in Medicine, Tehran University of Medical SciencesTehranIran
- Regenerative Medicine group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Nasrin Lotfibakhshaiesh
- Department of Tissue EngineeringSchool of Advanced Technologies in Medicine, Tehran University of Medical SciencesTehranIran
- Regenerative Medicine group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
| |
Collapse
|
110
|
Abstract
The next robotics frontier will be led by biohybrids. Capable biohybrid robots require microfluidics to sustain, improve, and scale the architectural complexity of their core ingredient: biological tissues. Advances in microfluidics have already revolutionized disease modeling and drug development, and are positioned to impact regenerative medicine but have yet to apply to biohybrids. Fusing microfluidics with living materials will improve tissue perfusion and maturation, and enable precise patterning of sensing, processing, and control elements. This perspective suggests future developments in advanced biohybrids.
Collapse
|
111
|
Anjum S, Rahman F, Pandey P, Arya DK, Alam M, Rajinikanth PS, Ao Q. Electrospun Biomimetic Nanofibrous Scaffolds: A Promising Prospect for Bone Tissue Engineering and Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23169206. [PMID: 36012473 PMCID: PMC9408902 DOI: 10.3390/ijms23169206] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Skeletal-related disorders such as arthritis, bone cancer, osteosarcoma, and osteoarthritis are among the most common reasons for mortality in humans at present. Nanostructured scaffolds have been discovered to be more efficient for bone regeneration than macro/micro-sized scaffolds because they sufficiently permit cell adhesion, proliferation, and chemical transformation. Nanofibrous scaffolds mimicking artificial extracellular matrices provide a natural environment for tissue regeneration owing to their large surface area, high porosity, and appreciable drug loading capacity. Here, we review recent progress and possible future prospective electrospun nanofibrous scaffolds for bone tissue engineering. Electrospun nanofibrous scaffolds have demonstrated promising potential in bone tissue regeneration using a variety of nanomaterials. This review focused on the crucial role of electrospun nanofibrous scaffolds in biological applications, including drug/growth factor delivery to bone tissue regeneration. Natural and synthetic polymeric nanofibrous scaffolds are extensively inspected to regenerate bone tissue. We focused mainly on the significant impact of nanofibrous composite scaffolds on cell adhesion and function, and different composites of organic/inorganic nanoparticles with nanofiber scaffolds. This analysis provides an overview of nanofibrous scaffold-based bone regeneration strategies; however, the same concepts can be applied to other organ and tissue regeneration tactics.
Collapse
Affiliation(s)
- Shabnam Anjum
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang 110122, China
| | - Farheen Rahman
- Department of Applied Chemistry, Zakir Husain College of Engineering & Technology, Aligarh Muslim University, Aligarh 202002, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Mahmood Alam
- Department of Clinical Medicine, China Medical University, Shenyang 110122, China
| | - Paruvathanahalli Siddalingam Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
- Correspondence: (P.S.R.); (Q.A.)
| | - Qiang Ao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang 110122, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- Correspondence: (P.S.R.); (Q.A.)
| |
Collapse
|
112
|
The Effect of PCL Addition on 3D-Printable PLA/HA Composite Filaments for the Treatment of Bone Defects. Polymers (Basel) 2022; 14:polym14163305. [PMID: 36015563 PMCID: PMC9416491 DOI: 10.3390/polym14163305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
The still-growing field of additive manufacturing (AM), which includes 3D printing, has enabled manufacturing of patient-specific medical devices with high geometrical accuracy in a relatively quick manner. However, the development of materials with specific properties is still ongoing, including those for enhanced bone-repair applications. Such applications seek materials with tailored mechanical properties close to bone tissue and, importantly, that can serve as temporary supports, allowing for new bone ingrowth while the material is resorbed. Thus, controlling the resorption rate of materials for bone applications can support bone healing by balancing new tissue formation and implant resorption. In this regard, this work aimed to study the combination of polylactic acid (PLA), polycaprolactone (PCL) and hydroxyapatite (HA) to develop customized biocompatible and bioresorbable polymer-based composite filaments, through extrusion, for fused filament fabrication (FFF) printing. PLA and PCL were used as supporting polymer matrices while HA was added to enhance the biological activity. The materials were characterized in terms of mechanical properties, thermal stability, chemical composition and morphology. An accelerated degradation study was executed to investigate the impact of degradation on the above-mentioned properties. The results showed that the materials' chemical compositions were not affected by the extrusion nor the printing process. All materials exhibited higher mechanical properties than human trabecular bone, even after degradation with a mass loss of around 30% for the polymer blends and 60% for the composites. It was also apparent that the mineral accelerated the polymer degradation significantly, which can be advantageous for a faster healing time, where support is required only for a shorter time period.
Collapse
|
113
|
Tuwalska A, Sionkowska A, Bryła A, Tylko G, Osyczka AM, Laus M, Vojtová L. A Biological Study of Composites Based on the Blends of Nanohydroxyapatite, Silk Fibroin and Chitosan. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15155444. [PMID: 35955380 PMCID: PMC9369940 DOI: 10.3390/ma15155444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 06/12/2023]
Abstract
In this work, the biological properties of three-dimensional scaffolds based on a blend of nanohydroxyapatite (nHA), silk fibroin (SF), and chitosan (CTS), were prepared using a lyophilization technique with various weight ratios: 10:45:45, 15:15:70, 15:70:15, 20:40:40, 40:30:30, and 70:15:15 nHA:SF:CTS, respectively. The basic 3D scaffolds were obtained from 5% (w/w) chitosan and 5% silk fibroin solutions and then nHA was added. The morphology and physicochemical properties of scaffolds were studied and compared. A biological test was performed to study the growth and osteogenic differentiation of human bone marrow mesenchymal stem cells (hMSCs). It was found that the addition of chitosan increases the resistance properties and extends the degradation time of materials. In vitro studies with human mesenchymal stem cells found a high degree of biotolerance for the materials produced, especially for the 20:40:40 and 15:70:15 (nHa:SF:CTS) ratios. The presence of silk fibroin and the elongated shape of the pores positively influenced the differentiation of cells into osteogenic cells. By taking advantage of the differentiation/proliferation cues offered by individual components, the composites based on the nanohydroxyapatite, silk fibroin, and chitosan scaffold may be suitable for bone tissue engineering, and possibly offer an alternative to the widespread use of collagen materials.
Collapse
Affiliation(s)
- Anna Tuwalska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Amadeusz Bryła
- Institute of Environmental Science, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Grzegorz Tylko
- Department of Biology and Cell Imaging, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Kraków, Poland
| | - Anna Maria Osyczka
- Department of Biology and Cell Imaging, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Kraków, Poland
| | - Michele Laus
- Department of Science and Technological Innovation, University of Eastern Piedmont “A. Avogadro”, 15121 Alessandria, Italy
| | - Lucy Vojtová
- CEITEC—Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic
| |
Collapse
|
114
|
Nanotechnology in the Diagnosis and Treatment of Osteomyelitis. Pharmaceutics 2022; 14:pharmaceutics14081563. [PMID: 36015188 PMCID: PMC9412360 DOI: 10.3390/pharmaceutics14081563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Infection remains one of the largest threats to global health. Among those infections that are especially troublesome, osteomyelitis, or inflammation of the bone, typically due to infection, is a particularly difficult condition to diagnose and treat. This difficulty stems not only from the biological complexities of opportunistic infections designed to avoid the onslaught of both the host immune system as well as exogenous antibiotics, but also from changes in the host vasculature and the heterogeneity of infectious presentations. While several groups have attempted to classify and stage osteomyelitis, controversy remains, often delaying diagnosis and treatment. Despite a host of preclinical treatment advances being incubated in academic and company research and development labs worldwide, clinical treatment strategies remain relatively stagnant, including surgical debridement and lengthy courses of intravenous antibiotics, both of which may compromise the overall health of the bone and the patient. This manuscript reviews the current methods for diagnosing and treating osteomyelitis and then contemplates the role that nanotechnology might play in the advancement of osteomyelitis treatment.
Collapse
|
115
|
Ahmed Omar N, Amédée J, Letourneur D, Fricain JC, Fenelon M. Recent Advances of Pullulan and/or Dextran-Based Materials for Bone Tissue Engineering Strategies in Preclinical Studies: A Systematic Review. Front Bioeng Biotechnol 2022; 10:889481. [PMID: 35845411 PMCID: PMC9280711 DOI: 10.3389/fbioe.2022.889481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/23/2022] [Indexed: 12/09/2022] Open
Abstract
Bone tissue engineering (BTE) strategies are increasingly investigated to overcome the limitations of currently used bone substitutes and to improve the bone regeneration process. Among the natural polymers used for tissue engineering, dextran and pullulan appear as natural hydrophilic polysaccharides that became promising biomaterials for BTE. This systematic review aimed to present the different published applications of pullulan and dextran-based biomaterials for BTE. An electronic search in Pubmed, Scopus, and Web of Science databases was conducted. Selection of articles was performed following PRISMA guidelines. This systematic review led to the inclusion of 28 articles on the use of pullulan and/or dextran-based biomaterials to promote bone regeneration in preclinical models. Sixteen studies focused on dextran-based materials for bone regeneration, six on pullulan substitutes and six on the combination of pullulan and dextran. Several strategies have been developed to provide bone regeneration capacity, mainly through their fabrication processes (functionalization methods, cross-linking process), or the addition of bioactive elements. We have summarized here the strategies employed to use the polysaccharide scaffolds (fabrication process, composition, application usages, route of administration), and we highlighted their relevance and limitations for BTE applications.
Collapse
Affiliation(s)
| | - Joëlle Amédée
- Université de Bordeaux, INSERM U1026, BIOTIS, Bordeaux, France
| | - Didier Letourneur
- SILTISS, Saint-Viance, France
- Université Paris Cité, Université Sorbonne Paris Nord, INSERM U1148, LVTS, X Bichat Hospital, Université de Paris, Paris, France
| | - Jean-Christophe Fricain
- Université de Bordeaux, INSERM U1026, BIOTIS, Bordeaux, France
- Service de Chirurgie Orale, CHU Bordeaux, Bordeaux, France
| | - Mathilde Fenelon
- Université de Bordeaux, INSERM U1026, BIOTIS, Bordeaux, France
- Service de Chirurgie Orale, CHU Bordeaux, Bordeaux, France
- *Correspondence: Mathilde Fenelon,
| |
Collapse
|
116
|
Schirmer U, Ludolph J, Rothe H, Hauptmann N, Behrens C, Bittrich E, Schliephake H, Liefeith K. Tailored Polyelectrolyte Multilayer Systems by Variation of Polyelectrolyte Composition and EDC/NHS Cross-Linking: Physicochemical Characterization and In Vitro Evaluation. NANOMATERIALS 2022; 12:nano12122054. [PMID: 35745395 PMCID: PMC9228333 DOI: 10.3390/nano12122054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 12/17/2022]
Abstract
The layer-by-layer (LbL) self-assembly technique is an effective method to immobilize components of the extracellular matrix (ECM) such as collagen and heparin onto, e.g., implant surfaces/medical devices with the aim of forming polyelectrolyte multilayers (PEMs). Increasing evidence even suggests that cross-linking influences the physicochemical character of PEM films since mechanical cues inherent to the substrate may be as important as its chemical nature to influence the cellular behavior. In this study, for the first-time different collagen/heparin films have been prepared and cross-linked with EDC/NHS chemistry. Quartz crystal microbalance, zeta potential analyzer, diffuse reflectance Fourier transform infrared spectroscopy, atomic force microscopy and ellipsometry were used to characterize film growth, stiffness, and topography of different film systems. The analysis of all data proves a nearly linear film growth for all PEM systems, the efficacy of cross-linking and the corresponding changes in the film rigidity after cross-linking and an appropriate surface topography. Furthermore, preliminary cell culture experiments illustrated those cellular processes correlate roughly with the quantity of newly created covalent amide bonds. This allows a precise adjustment of the physicochemical properties of the selected film architecture regarding the desired application and target cells. It could be shown that collagen improves the biocompatibility of heparin containing PEMs and due to their ECM-analogue nature both molecules are ideal candidates intended to be used for any biomedical application with a certain preference to improve the performance of bone implants or bone augmentation strategies.
Collapse
Affiliation(s)
- Uwe Schirmer
- Institute for Bioprocessing and Analytical Measurement Techniques, 37308 Heiligenstadt, Germany; (U.S.); (J.L.); (H.R.); (N.H.)
| | - Johanna Ludolph
- Institute for Bioprocessing and Analytical Measurement Techniques, 37308 Heiligenstadt, Germany; (U.S.); (J.L.); (H.R.); (N.H.)
| | - Holger Rothe
- Institute for Bioprocessing and Analytical Measurement Techniques, 37308 Heiligenstadt, Germany; (U.S.); (J.L.); (H.R.); (N.H.)
| | - Nicole Hauptmann
- Institute for Bioprocessing and Analytical Measurement Techniques, 37308 Heiligenstadt, Germany; (U.S.); (J.L.); (H.R.); (N.H.)
| | - Christina Behrens
- Department of Oral and Maxillofacial Surgery, George-Augusta-University, 37075 Goettingen, Germany; (C.B.); (H.S.)
| | - Eva Bittrich
- Center Macromolecular Structure Analysis, Leibniz Institute of Polymer Research, 01005 Dresden, Germany;
| | - Henning Schliephake
- Department of Oral and Maxillofacial Surgery, George-Augusta-University, 37075 Goettingen, Germany; (C.B.); (H.S.)
| | - Klaus Liefeith
- Institute for Bioprocessing and Analytical Measurement Techniques, 37308 Heiligenstadt, Germany; (U.S.); (J.L.); (H.R.); (N.H.)
- Correspondence: ; Tel.:+49-3606-671500
| |
Collapse
|
117
|
Sangkert S, Juncheed K, Meesane J. Osteoconductive Silk Fibroin Binders for Bone Repair in Alveolar Cleft Palate: Fabrication, Structure, Properties, and In Vitro Testing. J Funct Biomater 2022; 13:jfb13020080. [PMID: 35735935 PMCID: PMC9224859 DOI: 10.3390/jfb13020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/25/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoconductive silk fibroin (SF) binders were fabricated for the bone repair of an alveolar cleft defect. Binders were prefigureared by mixing different ratios of a mixture of random coils and SF aggregation with SF fibrils: 100:0 (SFB100), 75:25 (SFB75), 50:50 (SFB50), 25:75 (SFB25), and 0:100 (SFB0). The gelation, molecular organization, structures, topography, and morphology of the binders were characterized and observed. Their physical, mechanical, and biological properties were tested. The SF binders showed gelation via self-assembly of SF aggregation and fibrillation. SFB75, SFB50, and SFB25 had molecular formation via the amide groups and showed more structural stability than SFB100. The morphology of SFB0 demonstrated the largest pore size. SFB0 showed a lowest hydrophilicity. SFB100 showed the highest SF release. SFB25 had the highest maximum load. SFB50 exhibited the lowest elongation at break. Binders with SF fibrils showed more cell viability and higher cell proliferation, ALP activity, calcium deposition, and protein synthesis than without SF fibrils. Finally, the results were deduced: SFB25 demonstrated suitable performance that is promising for the bone repair of an alveolar cleft defect.
Collapse
|
118
|
Ahmadipour S, Varshosaz J, Hashemibeni B, Manshaei M, Safaeian L. In vivo assessment of bone repair by an injectable nanocomposite scaffold for local co-delivery of autologous platelet-rich plasma and calcitonin in rat model. Drug Dev Ind Pharm 2022; 48:98-108. [PMID: 35659167 DOI: 10.1080/03639045.2022.2087080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Background: Gellan gum is obtained from the bacterium Sphingomonas elodea and is a polysaccharide with carboxylic acid functional groups. The goal of this project was to investigate the osteoinductive effect of local administration of calcitonin through an injectable scaffold of gellan gum containing salmon calcitonin loaded in silsesquioxane nanoparticles, hydroxyapatite, and platelets rich plasma.Methods: The femur of rats was defected by creating a 2 × 5 mm2 hole using an electric drill. The defect was filled with an injectable hydrogel scaffold composed of gellan gum enriched with salmon calcitonin loaded in silsesquioxane nanoparticles, hydroxyapatite, platelets rich plasma and then the radiologic images were taken. Bone densitometry and the histologic studies were carried out by Hematoxylin & Eosin test. Biochemical analysis was done to measure the serum alkaline phosphatase (ALP), calcium, calcitonin concentration.Results: Healing of the bone defects and bone densitometry in the treated group by calcitonin-loaded scaffold was significantly higher (p < 0.05) and bone formation occupied 75% of the defect that was greater than other groups. Serum ALP and calcium levels in the scaffold-loaded calcitonin group were more than the other groups (p < 0.05). The osteogenic marker genes also increased significantly (p < 0.05) with free calcitonin and the scaffold.Conclusions: Gellan gum-based scaffold loaded with calcitonin may be considered a promising local treatment to progress bone formation in repairing of skeletal injuries.
Collapse
Affiliation(s)
- Saeedeh Ahmadipour
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Pharmaceutics, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Batool Hashemibeni
- Department of Anatomical Sciences, Faculty of Medicine; Torabinejad Dental Research Center, Dental School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maziar Manshaei
- Dental research center, Dental Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Leila Safaeian
- Department of Pharmacology and Toxicology, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
119
|
Filippi M, Buchner T, Yasa O, Weirich S, Katzschmann RK. Microfluidic Tissue Engineering and Bio-Actuation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108427. [PMID: 35194852 DOI: 10.1002/adma.202108427] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Bio-hybrid technologies aim to replicate the unique capabilities of biological systems that could surpass advanced artificial technologies. Soft bio-hybrid robots consist of synthetic and living materials and have the potential to self-assemble, regenerate, work autonomously, and interact safely with other species and the environment. Cells require a sufficient exchange of nutrients and gases, which is guaranteed by convection and diffusive transport through liquid media. The functional development and long-term survival of biological tissues in vitro can be improved by dynamic flow culture, but only microfluidic flow control can develop tissue with fine structuring and regulation at the microscale. Full control of tissue growth at the microscale will eventually lead to functional macroscale constructs, which are needed as the biological component of soft bio-hybrid technologies. This review summarizes recent progress in microfluidic techniques to engineer biological tissues, focusing on the use of muscle cells for robotic bio-actuation. Moreover, the instances in which bio-actuation technologies greatly benefit from fusion with microfluidics are highlighted, which include: the microfabrication of matrices, biomimicry of cell microenvironments, tissue maturation, perfusion, and vascularization.
Collapse
Affiliation(s)
- Miriam Filippi
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Thomas Buchner
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Oncay Yasa
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Stefan Weirich
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Robert K Katzschmann
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| |
Collapse
|
120
|
Salerno E, Orlandi G, Ongaro C, d’Adamo A, Ruffini A, Carnevale G, Zardin B, Bertacchini J, Angeli D. Liquid flow in scaffold derived from natural source: experimental observations and biological outcome. Regen Biomater 2022; 9:rbac034. [PMID: 35747746 PMCID: PMC9211004 DOI: 10.1093/rb/rbac034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/12/2022] [Accepted: 05/22/2022] [Indexed: 11/25/2022] Open
Abstract
This study investigates the biological effects on a 3D scaffold based on hydroxyapatite cultured with MC3T3 osteoblasts in response to flow-induced shear stress (FSS). The scaffold adopted here (B-HA) derives from the biomorphic transformation of natural wood and its peculiar channel geometry mimics the porous structure of the bone. From the point of view of fluid dynamics, B-HA can be considered a network of micro-channels, intrinsically offering the advantages of a microfluidic system. This work, for the first time, offers a description of the fluid dynamic properties of the B-HA scaffold, which are strongly connected to its morphology. These features are necessary to determine the FSS ranges to be applied during in vitro studies to get physiologically relevant conditions. The selected ranges of FSS promoted the elongation of the attached cells along the flow direction and early osteogenic cell differentiation. These data confirmed the ability of B-HA to promote the differentiation process along osteogenic lineage. Hence, such a bioactive and naturally derived scaffold can be considered as a promising tool for bone regeneration applications.
Collapse
Affiliation(s)
- Elisabetta Salerno
- CNR-NANO S3 Research Center on nanoStructures and bioSystems at Surfaces , via Campi 213/A, Modena, I-41125, Italy
- University of Modena and Reggio Emilia Department of Sciences and Methods for Engineering, , Via Amendola 2, Reggio Emilia, 42122, Italy
| | - Giulia Orlandi
- University of Modena and Reggio Emilia Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, , Via del Pozzo 71, Modena, 41125, Italy
| | - Claudio Ongaro
- DIEF-Engineering Department “Enzo Ferrari” , Via Pietro Vivarelli 10, Modena, 41125, Italy
| | - Alessandro d’Adamo
- DIEF-Engineering Department “Enzo Ferrari” , Via Pietro Vivarelli 10, Modena, 41125, Italy
| | - Andrea Ruffini
- National Research Council (CNR) Institute of Science and Technology for Ceramics (ISTEC), , Via Granarolo 64, Faenza, 48018, Italy
| | - Gianluca Carnevale
- University of Modena and Reggio Emilia Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, , Via del Pozzo 71, Modena, 41125, Italy
| | - Barbara Zardin
- DIEF-Engineering Department “Enzo Ferrari” , Via Pietro Vivarelli 10, Modena, 41125, Italy
| | - Jessika Bertacchini
- University of Modena and Reggio Emilia Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, , Via del Pozzo 71, Modena, 41125, Italy
| | - Diego Angeli
- University of Modena and Reggio Emilia Department of Sciences and Methods for Engineering, , Via Amendola 2, Reggio Emilia, 42122, Italy
| |
Collapse
|
121
|
Basanth A, Mayilswamy N, Kandasubramanian B. Bone regeneration by biodegradable polymers. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2029886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Abina Basanth
- Biopolymer Science, Cipet: Ipt, Hil Colony, Kochi, India
| | - Neelaambhigai Mayilswamy
- Department Of Metallurgical And Materials Engineering, Diat(D.U.), Ministry Of Defence, Girinagar, Pune, India
| | | |
Collapse
|
122
|
Fan J, Abedi-Dorcheh K, Sadat Vaziri A, Kazemi-Aghdam F, Rafieyan S, Sohrabinejad M, Ghorbani M, Rastegar Adib F, Ghasemi Z, Klavins K, Jahed V. A Review of Recent Advances in Natural Polymer-Based Scaffolds for Musculoskeletal Tissue Engineering. Polymers (Basel) 2022; 14:polym14102097. [PMID: 35631979 PMCID: PMC9145843 DOI: 10.3390/polym14102097] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
The musculoskeletal (MS) system consists of bone, cartilage, tendon, ligament, and skeletal muscle, which forms the basic framework of the human body. This system plays a vital role in appropriate body functions, including movement, the protection of internal organs, support, hematopoiesis, and postural stability. Therefore, it is understandable that the damage or loss of MS tissues significantly reduces the quality of life and limits mobility. Tissue engineering and its applications in the healthcare industry have been rapidly growing over the past few decades. Tissue engineering has made significant contributions toward developing new therapeutic strategies for the treatment of MS defects and relevant disease. Among various biomaterials used for tissue engineering, natural polymers offer superior properties that promote optimal cell interaction and desired biological function. Natural polymers have similarity with the native ECM, including enzymatic degradation, bio-resorb and non-toxic degradation products, ability to conjugate with various agents, and high chemical versatility, biocompatibility, and bioactivity that promote optimal cell interaction and desired biological functions. This review summarizes recent advances in applying natural-based scaffolds for musculoskeletal tissue engineering.
Collapse
Affiliation(s)
- Jingzhi Fan
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia;
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia
| | - Keyvan Abedi-Dorcheh
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Asma Sadat Vaziri
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Fereshteh Kazemi-Aghdam
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Saeed Rafieyan
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Masoume Sohrabinejad
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Mina Ghorbani
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Fatemeh Rastegar Adib
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Zahra Ghasemi
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Kristaps Klavins
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia;
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia
- Correspondence: (K.K.); (V.J.)
| | - Vahid Jahed
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia;
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia
- Correspondence: (K.K.); (V.J.)
| |
Collapse
|
123
|
Organic acid cross-linked 3D printed cellulose nanocomposite bioscaffolds with controlled porosity, mechanical strength, and biocompatibility. iScience 2022; 25:104263. [PMID: 35521531 PMCID: PMC9062678 DOI: 10.1016/j.isci.2022.104263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/24/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022] Open
Abstract
Herein, we fabricated chemically cross-linked polysaccharide-based three-dimensional (3D) porous scaffolds using an ink composed of nanofibrillated cellulose, carboxymethyl cellulose, and citric acid (CA), featuring strong shear thinning behavior and adequate printability. Scaffolds were produced by combining direct-ink-writing 3D printing, freeze-drying, and dehydrothermal heat-assisted cross-linking techniques. The last step induces a reaction of CA. Degree of cross-linking was controlled by varying the CA concentration (2.5–10.0 wt.%) to tune the structure, swelling, degradation, and surface properties (pores: 100-450 μm, porosity: 86%) of the scaffolds in the dry and hydrated states. Compressive strength, elastic modulus, and shape recovery of the cross-linked scaffolds increased significantly with increasing cross-linker concentration. Cross-linked scaffolds promoted clustered cell adhesion and showed no cytotoxic effects as determined by the viability assay and live/dead staining with human osteoblast cells. The proposed method can be extended to all polysaccharide-based materials to develop cell-friendly scaffolds suitable for tissue engineering applications. Chemically cross-linked polysaccharide-based 3D porous scaffolds were fabricated Physicochemical and mechanical properties increased with cross-linker concentration Lower cross-linker concentration led to higher porosity and interconnected pores Scaffolds promoted clustered cell adhesion and showed no cytotoxic effects
Collapse
|
124
|
Karakeçili A, Korpayev S, Orhan K. Optimizing Chitosan/Collagen Type I/Nanohydroxyapatite Cross-linked Porous Scaffolds for Bone Tissue Engineering. Appl Biochem Biotechnol 2022; 194:3843-3859. [PMID: 35543856 DOI: 10.1007/s12010-022-03962-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/02/2022] [Indexed: 11/02/2022]
Abstract
Bio-composite scaffolds mimicking the natural microenvironment of bone tissue offer striking advantages in material-guided bone regeneration. The combination of biodegradable natural polymers and bioactive ceramics that leverage potent bio-mimicking cues has been an active strategy to achieve success in bone tissue engineering. Herein, a competitive approach was followed to point out an optimized bio-composite scaffold in terms of scaffold properties and stimulation of osteoblast differentiation. The scaffolds, composed of chitosan/collagen type I/nanohydroxyapatite (Chi/Coll/nHA) as the most attractive components in bone tissue engineering, were analyzed. The scaffolds were prepared by freeze-drying method and cross-linked using different types of cross-linkers. Based on the physicochemical and mechanical characterization, the scaffolds were eliminated comparatively. All types of scaffolds displayed highly porous structures. The cross-linker type and collagen content had prominent effects on mechanical strength. Glyoxal cross-linked structures displayed optimum mechanical and structural properties. The MC3T3-E1 proliferation, osteogenic-related gene expression, and matrix mineralization were better pronounced in collagen presence and triggered as collagen type I amount was increased. The results highlighted that glyoxal cross-linked scaffolds containing equal amounts of Chi and Coll by mass and 1% (w/v) nHA are the best candidates for osteoblast differentiation and matrix mineralization.
Collapse
Affiliation(s)
- Ayşe Karakeçili
- Chemical Engineering Department, Faculty of Engineering, Ankara University, 06100, Ankara, Turkey.
| | - Serdar Korpayev
- Biotechnology Institute, Ankara University, 06100, Ankara, Turkey.
| | - Kaan Orhan
- Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Ankara University, Ankara, 06560, Turkey.,Medical Design Application and Research Center (MEDITAM), Ankara University, Ankara, 06100, Turkey
| |
Collapse
|
125
|
Sivakumar PM, Yetisgin AA, Sahin SB, Demir E, Cetinel S. Bone tissue engineering: Anionic polysaccharides as promising scaffolds. Carbohydr Polym 2022; 283:119142. [DOI: 10.1016/j.carbpol.2022.119142] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/21/2022]
|
126
|
Hixon KR, Miller AN. Animal models of impaired long bone healing and tissue engineering- and cell-based in vivo interventions. J Orthop Res 2022; 40:767-778. [PMID: 35072292 DOI: 10.1002/jor.25277] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/05/2021] [Accepted: 01/16/2022] [Indexed: 02/04/2023]
Abstract
Bone healing after injury typically follows a systematic process and occurs spontaneously under appropriate physiological conditions. However, impaired long bone healing is still quite common and may require surgical intervention. Various complications can result in different forms of impaired bone healing including nonunion, critical-size defects, or stress fractures. While a nonunion may occur due to impaired biological signaling and/or mechanical instability, a critical-size defect exhibits extensive bone loss that will not spontaneously heal. Comparatively, a stress fracture occurs from repetitive forces and results in a non-healing crack or break in the bone. Clinical standards of treatment vary between these bone defects due to their pathological differences. The use of appropriate animal models for modeling healing defects is critical to improve current treatment methods and develop novel rescue therapies. This review provides an overview of these clinical bone healing impairments and current animal models available to study the defects in vivo. The techniques used to create these models are compared, along with the outcomes, to clarify limitations and future objectives. Finally, rescue techniques focused on tissue engineering and cell-based therapies currently applied in animal models are specifically discussed to analyze their ability to initiate healing at the defect site, providing information regarding potential future therapies. In summary, this review focuses on the current animal models of nonunion, critical-size defects, and stress fractures, as well as interventions that have been tested in vivo to provide an overview of the clinical potential and future directions for improving bone healing.
Collapse
Affiliation(s)
- Katherine R Hixon
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, USA.,Thayer School of Engineering, Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Anna N Miller
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
127
|
Additive Manufacturing of Poly(3-hydroxybutyrate- co-3-hydroxyvalerate)/Poly(D,L-lactide- co-glycolide) Biphasic Scaffolds for Bone Tissue Regeneration. Int J Mol Sci 2022; 23:ijms23073895. [PMID: 35409254 PMCID: PMC8999344 DOI: 10.3390/ijms23073895] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Polyhydroxyalkanoates are biopolyesters whose biocompatibility, biodegradability, environmental sustainability, processing versatility, and mechanical properties make them unique scaffolding polymer candidates for tissue engineering. The development of innovative biomaterials suitable for advanced Additive Manufacturing (AM) offers new opportunities for the fabrication of customizable tissue engineering scaffolds. In particular, the blending of polymers represents a useful strategy to develop AM scaffolding materials tailored to bone tissue engineering. In this study, scaffolds from polymeric blends consisting of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(D,L-lactide-co-glycolide) (PLGA) were fabricated employing a solution-extrusion AM technique, referred to as Computer-Aided Wet-Spinning (CAWS). The scaffold fibers were constituted by a biphasic system composed of a continuous PHBV matrix and a dispersed PLGA phase which established a microfibrillar morphology. The influence of the blend composition on the scaffold morphological, physicochemical, and biological properties was demonstrated by means of different characterization techniques. In particular, increasing the content of PLGA in the starting solution resulted in an increase in the pore size, the wettability, and the thermal stability of the scaffolds. Overall, in vitro biological experiments indicated the suitability of the scaffolds to support murine preosteoblast cell colonization and differentiation towards an osteoblastic phenotype, highlighting higher proliferation for scaffolds richer in PLGA.
Collapse
|
128
|
Alamán-Díez P, García-Gareta E, Napal PF, Arruebo M, Pérez MÁ. In Vitro Hydrolytic Degradation of Polyester-Based Scaffolds under Static and Dynamic Conditions in a Customized Perfusion Bioreactor. MATERIALS 2022; 15:ma15072572. [PMID: 35407903 PMCID: PMC9000590 DOI: 10.3390/ma15072572] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/22/2022]
Abstract
Creating biofunctional artificial scaffolds could potentially meet the demand of patients suffering from bone defects without having to rely on donors or autologous transplantation. Three-dimensional (3D) printing has emerged as a promising tool to fabricate, by computer design, biodegradable polymeric scaffolds with high precision and accuracy, using patient-specific anatomical data. Achieving controlled degradation profiles of 3D printed polymeric scaffolds is an essential feature to consider to match them with the tissue regeneration rate. Thus, achieving a thorough characterization of the biomaterial degradation kinetics in physiological conditions is needed. Here, 50:50 blends made of poly(ε-caprolactone)-Poly(D,L-lactic-co-glycolic acid (PCL-PLGA) were used to fabricate cylindrical scaffolds by 3D printing (⌀ 7 × 2 mm). Their hydrolytic degradation under static and dynamic conditions was characterized and quantified. For this purpose, we designed and in-house fabricated a customized bioreactor. Several techniques were used to characterize the degradation of the parent polymers: X-ray Photoelectron Spectroscopy (XPS), Gel Permeation Chromatography (GPC), Scanning Electron Microscopy (SEM), evaluation of the mechanical properties, weigh loss measurements as well as the monitoring of the degradation media pH. Our results showed that flow perfusion is critical in the degradation process of PCL-PLGA based scaffolds implying an accelerated hydrolysis compared to the ones studied under static conditions, and up to 4 weeks are needed to observe significant degradation in polyester scaffolds of this size and chemical composition. Our degradation study and characterization methodology are relevant for an accurate design and to tailor the physicochemical properties of polyester-based scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Pilar Alamán-Díez
- Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Instituto de Investigación Sanitaria Aragón (IIS Aragón), University of Zaragoza, 50018 Zaragoza, Spain; (E.G.-G.); (P.F.N.); (M.Á.P.)
- Correspondence:
| | - Elena García-Gareta
- Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Instituto de Investigación Sanitaria Aragón (IIS Aragón), University of Zaragoza, 50018 Zaragoza, Spain; (E.G.-G.); (P.F.N.); (M.Á.P.)
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London WC1E 6BT, UK
| | - Pedro Francisco Napal
- Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Instituto de Investigación Sanitaria Aragón (IIS Aragón), University of Zaragoza, 50018 Zaragoza, Spain; (E.G.-G.); (P.F.N.); (M.Á.P.)
| | - Manuel Arruebo
- Instituto de Nanociencia y Materiales de Aragón (INMA), Consejo Superior de Investigaciones Científicas (CSIC), University of Zaragoza, 50018 Zaragoza, Spain;
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio I + D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
| | - María Ángeles Pérez
- Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Instituto de Investigación Sanitaria Aragón (IIS Aragón), University of Zaragoza, 50018 Zaragoza, Spain; (E.G.-G.); (P.F.N.); (M.Á.P.)
| |
Collapse
|
129
|
Scialla S, Gullotta F, Izzo D, Palazzo B, Scalera F, Martin I, Sannino A, Gervaso F. Genipin-crosslinked collagen scaffolds inducing chondrogenesis: a mechanical and biological characterization. J Biomed Mater Res A 2022; 110:1372-1385. [PMID: 35262240 DOI: 10.1002/jbm.a.37379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 12/14/2022]
Abstract
Articular cartilage degeneration is still an unsolved issue owing to its weak repairing capabilities, which usually result in fibrocartilage tissue formation. This fibrous tissue lacks of structural and bio-mechanical properties, degrading over time. Currently, arthroscopic techniques and autologous transplantation are the most used clinical procedures. However, rather than restoring cartilage integrity, these methods only postpone further cartilage deterioration. Therefore, tissue engineering strategies aimed at selecting scaffolds that remarkably support the chondrogenic differentiation of human mesenchymal stem cells (hMSCs) could represent a promising solution, but they are still challenging for researchers. In this study, the influence of two different genipin (Gp) crosslinking routes on collagen (Coll)-based scaffolds in terms of hMSCs chondrogenic differentiation and biomechanical performances was investigated. Three-dimensional (3D) porous Coll scaffolds were fabricated by freeze-drying techniques and were crosslinked with Gp following a "two-step" and an in "bulk" procedure, in order to increase the physico-mechanical stability of the structure. Chondrogenic differentiation efficacy of hMSCs and biomechanical behavior under compression forces through unconfined stress-strain tests were assessed. Coll/Gp scaffolds revealed an isotropic and highly homogeneous pore distribution along with an increase in the stiffness, also supported by the increase in the Coll denaturation temperature (Td = 57-63°C) and a significant amount of Coll and GAG deposition during the 3 weeks of chondrogenic culture. In particular, the presence of Gp in "bulk" led to a more uniform and homogenous chondral-like matrix deposition by hMSCs if compared to the results obtained from the Gp "two-step" functionalization procedure.
Collapse
Affiliation(s)
- Stefania Scialla
- Department of Engineering for Innovation, University of Salento, Lecce, Italy.,Institute of Polymers, Composites and Biomaterials - National Research Council, Naples, Italy
| | - Fabiana Gullotta
- Department of Engineering for Innovation, University of Salento, Lecce, Italy.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Daniela Izzo
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Barbara Palazzo
- Department of Engineering for Innovation, University of Salento, Lecce, Italy.,ENEA, Division for Sustainable Materials - Research Centre of Brindisi, Brindisi, Italy
| | - Francesca Scalera
- Department of Engineering for Innovation, University of Salento, Lecce, Italy.,CNR Nanotec - Institute of Nanotechnology, Lecce, Italy
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Francesca Gervaso
- Department of Engineering for Innovation, University of Salento, Lecce, Italy.,CNR Nanotec - Institute of Nanotechnology, Lecce, Italy
| |
Collapse
|
130
|
Barbosa F, Ferreira FC, Silva JC. Piezoelectric Electrospun Fibrous Scaffolds for Bone, Articular Cartilage and Osteochondral Tissue Engineering. Int J Mol Sci 2022; 23:2907. [PMID: 35328328 PMCID: PMC8952277 DOI: 10.3390/ijms23062907] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 01/15/2023] Open
Abstract
Osteochondral tissue (OCT) related diseases, particularly osteoarthritis, number among the most prevalent in the adult population worldwide. However, no satisfactory clinical treatments have been developed to date to resolve this unmet medical issue. Osteochondral tissue engineering (OCTE) strategies involving the fabrication of OCT-mimicking scaffold structures capable of replacing damaged tissue and promoting its regeneration are currently under development. While the piezoelectric properties of the OCT have been extensively reported in different studies, they keep being neglected in the design of novel OCT scaffolds, which focus primarily on the tissue's structural and mechanical properties. Given the promising potential of piezoelectric electrospun scaffolds capable of both recapitulating the piezoelectric nature of the tissue's fibrous ECM and of providing a platform for electrical and mechanical stimulation to promote the regeneration of damaged OCT, the present review aims to examine the current state of the art of these electroactive smart scaffolds in OCTE strategies. A summary of the piezoelectric properties of the different regions of the OCT and an overview of the main piezoelectric biomaterials applied in OCTE applications are presented. Some recent examples of piezoelectric electrospun scaffolds developed for potentially replacing damaged OCT as well as for the bone or articular cartilage segments of this interfacial tissue are summarized. Finally, the current challenges and future perspectives concerning the use of piezoelectric electrospun scaffolds in OCT regeneration are discussed.
Collapse
Affiliation(s)
- Frederico Barbosa
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (F.B.); (F.C.F.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Frederico Castelo Ferreira
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (F.B.); (F.C.F.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - João Carlos Silva
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (F.B.); (F.C.F.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- CDRSP—Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Rua de Portugal-Zona Industrial, 2430-028 Marinha Grande, Portugal
| |
Collapse
|
131
|
Wang C, Ma Z, Yuan K, Ji T. Using scaffolds as drug delivery systems to treat bone tumor. NANOTECHNOLOGY 2022; 33:212002. [PMID: 35092950 DOI: 10.1088/1361-6528/ac5017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Surgery is the principal strategy to treat osteosarcoma and other types of bone tumors, but it causes bone defects that cannot be healed spontaneously. After surgery, patients still need to receive radiotherapy and/or chemotherapy to prevent tumor recurrence and metastasis, which leads to systemic side effects. Bone scaffolds exhibit the potentials to load cargos (drugs or growth factors) and act as drug delivery systems (DDSs) in the osteosarcoma postoperative treatment. This review introduces current types of bone scaffolds and highlights representative works using scaffolds as DDSs to treat osteosarcomas. Challenges and perspectives in the scaffold-based DDSs are also discussed. This review may provide references to develop effective and safe strategies for osteosarcoma postoperative treatment.
Collapse
Affiliation(s)
- Caifeng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zijiu Ma
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Kemeng Yuan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Tianjiao Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
132
|
Biru EI, Necolau MI, Zainea A, Iovu H. Graphene Oxide-Protein-Based Scaffolds for Tissue Engineering: Recent Advances and Applications. Polymers (Basel) 2022; 14:1032. [PMID: 35267854 PMCID: PMC8914712 DOI: 10.3390/polym14051032] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 01/27/2023] Open
Abstract
The field of tissue engineering is constantly evolving as it aims to develop bioengineered and functional tissues and organs for repair or replacement. Due to their large surface area and ability to interact with proteins and peptides, graphene oxides offer valuable physiochemical and biological features for biomedical applications and have been successfully employed for optimizing scaffold architectures for a wide range of organs, from the skin to cardiac tissue. This review critically focuses on opportunities to employ protein-graphene oxide structures either as nanocomposites or as biocomplexes and highlights the effects of carbonaceous nanostructures on protein conformation and structural stability for applications in tissue engineering and regenerative medicine. Herein, recent applications and the biological activity of nanocomposite bioconjugates are analyzed with respect to cell viability and proliferation, along with the ability of these constructs to sustain the formation of new and functional tissue. Novel strategies and approaches based on stem cell therapy, as well as the involvement of the extracellular matrix in the design of smart nanoplatforms, are discussed.
Collapse
Affiliation(s)
- Elena Iuliana Biru
- Advanced Polymer Materials Group, Department of Bioresources and Polymer Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (E.I.B.); (M.I.N.); (A.Z.)
| | - Madalina Ioana Necolau
- Advanced Polymer Materials Group, Department of Bioresources and Polymer Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (E.I.B.); (M.I.N.); (A.Z.)
| | - Adriana Zainea
- Advanced Polymer Materials Group, Department of Bioresources and Polymer Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (E.I.B.); (M.I.N.); (A.Z.)
| | - Horia Iovu
- Advanced Polymer Materials Group, Department of Bioresources and Polymer Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (E.I.B.); (M.I.N.); (A.Z.)
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, 050094 Bucharest, Romania
| |
Collapse
|
133
|
Nasr Azadani M, Zahedi A, Bowoto OK, Oladapo BI. A review of current challenges and prospects of magnesium and its alloy for bone implant applications. Prog Biomater 2022; 11:1-26. [PMID: 35239157 DOI: 10.1007/s40204-022-00182-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/29/2022] [Indexed: 02/08/2023] Open
Abstract
Medical application materials must meet multiple requirements, and the designed implant must mimic the bone structure in shape and support the formation of bone tissue (osteogenesis). Magnesium (Mg) alloys, as a "smart" biodegradable material and as "the green engineering material in the twenty-first century", have become an outstanding bone implant material due to their natural degradability, smart biocompatibility, and desirable mechanical properties. Magnesium is recognised as the next generation of orthopaedic appliances and bioresorbable scaffolds. At the same time, improving the mechanical properties and corrosion resistance of magnesium alloys is an urgent challenge to promote the application of magnesium alloys. Nevertheless, the excessively quick deterioration rate generally results in premature mechanical integrity disintegration and local hydrogen build-up, resulting in restricted clinical bone restoration applicability. The condition of Mg bone implants is thoroughly examined in this study. The relevant approaches to boost the corrosion resistance, including purification, alloying treatment, surface coating, and Mg-based metal matrix composite, are comprehensively revealed. These characteristics are reviewed to assess the progress of contemporary Mg-based biocomposites and alloys for biomedical applications. The fabricating techniques for Mg bone implants also are thoroughly investigated. Notably, laser-based additive manufacturing fabricates customised forms and complicated porous structures based on its distinctive additive manufacturing conception. Because of its high laser energy density and strong controllability, it is capable of fast heating and cooling, allowing it to modify the microstructure and performance. This review paper aims to provide more insight on the present challenges and continued research on Mg bone implants, highlighting some of the most important characteristics, challenges, and strategies for improving Mg bone implants.
Collapse
Affiliation(s)
- Meysam Nasr Azadani
- School of Engineering and Sustainable Development, De Montfort University, Leicester, LE1 9BH, UK.
| | - Abolfazl Zahedi
- School of Engineering and Sustainable Development, De Montfort University, Leicester, LE1 9BH, UK
| | - Oluwole Kingsley Bowoto
- School of Engineering and Sustainable Development, De Montfort University, Leicester, LE1 9BH, UK
| | - Bankole Ibrahim Oladapo
- School of Engineering and Sustainable Development, De Montfort University, Leicester, LE1 9BH, UK
| |
Collapse
|
134
|
Filippi M, Garello F, Yasa O, Kasamkattil J, Scherberich A, Katzschmann RK. Engineered Magnetic Nanocomposites to Modulate Cellular Function. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104079. [PMID: 34741417 DOI: 10.1002/smll.202104079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Magnetic nanoparticles (MNPs) have various applications in biomedicine, including imaging, drug delivery and release, genetic modification, cell guidance, and patterning. By combining MNPs with polymers, magnetic nanocomposites (MNCs) with diverse morphologies (core-shell particles, matrix-dispersed particles, microspheres, etc.) can be generated. These MNCs retain the ability of MNPs to be controlled remotely using external magnetic fields. While the effects of these biomaterials on the cell biology are still poorly understood, such information can help the biophysical modulation of various cellular functions, including proliferation, adhesion, and differentiation. After recalling the basic properties of MNPs and polymers, and describing their coassembly into nanocomposites, this review focuses on how polymeric MNCs can be used in several ways to affect cell behavior. A special emphasis is given to 3D cell culture models and transplantable grafts, which are used for regenerative medicine, underlining the impact of MNCs in regulating stem cell differentiation and engineering living tissues. Recent advances in the use of MNCs for tissue regeneration are critically discussed, particularly with regard to their prospective involvement in human therapy and in the construction of advanced functional materials such as magnetically operated biomedical robots.
Collapse
Affiliation(s)
- Miriam Filippi
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Francesca Garello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino, 10126, Italy
| | - Oncay Yasa
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Jesil Kasamkattil
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, Basel, 4031, Switzerland
| | - Arnaud Scherberich
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, Basel, 4031, Switzerland
- Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, Allschwil, 4123, Switzerland
| | - Robert K Katzschmann
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| |
Collapse
|
135
|
Nikpour S, Ansari-Asl Z, Sedaghat T, Hoveizi E. Curcumin-loaded Fe-MOF/PDMS porous scaffold: fabrication, characterization, and biocompatibility assessment. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
136
|
Borciani G, Ciapetti G, Vitale-Brovarone C, Baldini N. Strontium Functionalization of Biomaterials for Bone Tissue Engineering Purposes: A Biological Point of View. MATERIALS 2022; 15:ma15051724. [PMID: 35268956 PMCID: PMC8911212 DOI: 10.3390/ma15051724] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 02/04/2023]
Abstract
Strontium (Sr) is a trace element taken with nutrition and found in bone in close connection to native hydroxyapatite. Sr is involved in a dual mechanism of coupling the stimulation of bone formation with the inhibition of bone resorption, as reported in the literature. Interest in studying Sr has increased in the last decades due to the development of strontium ranelate (SrRan), an orally active agent acting as an anti-osteoporosis drug. However, the use of SrRan was subjected to some limitations starting from 2014 due to its negative side effects on the cardiac safety of patients. In this scenario, an interesting perspective for the administration of Sr is the introduction of Sr ions in biomaterials for bone tissue engineering (BTE) applications. This strategy has attracted attention thanks to its positive effects on bone formation, alongside the reduction of osteoclast activity, proven by in vitro and in vivo studies. The purpose of this review is to go through the classes of biomaterials most commonly used in BTE and functionalized with Sr, i.e., calcium phosphate ceramics, bioactive glasses, metal-based materials, and polymers. The works discussed in this review were selected as representative for each type of the above-mentioned categories, and the biological evaluation in vitro and/or in vivo was the main criterion for selection. The encouraging results collected from the in vitro and in vivo biological evaluations are outlined to highlight the potential applications of materials’ functionalization with Sr as an osteopromoting dopant in BTE.
Collapse
Affiliation(s)
- Giorgia Borciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Correspondence: ; Tel.: +39-051-6366748
| | - Gabriela Ciapetti
- Biomedical Science and Technologies Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
- Laboratory for Nanobiotechnology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Chiara Vitale-Brovarone
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy;
| | - Nicola Baldini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Biomedical Science and Technologies Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
| |
Collapse
|
137
|
Deshpande R, Shukla S, Kale A, Deshmukh N, Nisal A, Venugopalan P. Silk Fibroin Microparticle Scaffold for Use in Bone Void Filling: Safety and Efficacy Studies. ACS Biomater Sci Eng 2022; 8:1226-1238. [PMID: 35166518 DOI: 10.1021/acsbiomaterials.1c01103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Silk fibroin (SF) is a natural biocompatible protein polymer extracted from cocoons of silkworm Bombyx mori. SF can be processed into a variety of different forms and shapes that can be used as scaffolds to support bone regeneration. Three-dimensional (3D) SF scaffolds have shown promise in bone-void-filling applications. In in vitro studies, it has been demonstrated that a microparticle-based SF (M-RSF) scaffold promotes the differentiation of stem cells into an osteoblastic lineage. The expression of differentiation markers was also significantly higher for M-RSF scaffolds as compared to other SF scaffolds and commercial ceramic scaffolds. In this work, we have evaluated the in vitro and in vivo biocompatibility of M-RSF scaffolds as per the ISO 10993 guidelines in a Good Laboratory Practice (GLP)-certified facility. The cytotoxicity, immunogenicity, genotoxicity, systemic toxicity, and implantation studies confirmed that the M-RSF scaffold is biocompatible. Further, the performance of the M-RSF scaffold to support bone formation was evaluated in in vivo bone implantation studies in a rabbit model. Calcium sulfate (CaSO4) scaffolds were chosen as reference material for this study as they are one of the preferred materials for bone-void-filling applications. M-RSF scaffold implantation sites showed a higher number of osteoblast and osteoclast cells as compared to CaSO4 implantation sites indicating active bone remodeling. The number density of osteocytes was double for M-RSF scaffold implantation sites, and these M-RSF scaffold implantation sites were characterized by enhanced collagen deposition, pointing toward a finer quality of the new bone formed. Moreover, the M-RSF scaffold implantation sites had a negligible incidence of secondary fractures as compared to the CaSO4 implantation sites (∼50% sites with secondary fracture), implying a reduction in postsurgical complications. Thus, the study demonstrates that the M-RSF scaffold is nontoxic for bone-void-filling applications and facilitates superior healing of fracture defects as compared to commercial calcium-based bone void fillers.
Collapse
Affiliation(s)
- Rucha Deshpande
- Serigen Mediproducts Pvt Ltd., Plot no. 9, Electronic Co-op Estate, Satara Road, Parvati Paytha, Pune 411009, India
| | - Swati Shukla
- Serigen Mediproducts Pvt Ltd., Plot no. 9, Electronic Co-op Estate, Satara Road, Parvati Paytha, Pune 411009, India
| | - Amod Kale
- Intox Private Limited, Pune, 375, Urawade, Tal. Mulshi, Pune 412115, India
| | - Narendra Deshmukh
- Intox Private Limited, Pune, 375, Urawade, Tal. Mulshi, Pune 412115, India
| | - Anuya Nisal
- Polymer Science and Engineering Dept., CSIR-National Chemical Laboratory, Homi Bhabha Road, Pashan, Pune 411008, India
| | - Premnath Venugopalan
- Polymer Science and Engineering Dept., CSIR-National Chemical Laboratory, Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
138
|
Ghanbari E, Mehdipour A, Khazaei M, Khoshfeterat AB, Niknafs B. A review of recent advances on osteogenic applications of Silk fibroin as a potential bio-scaffold in bone tissue engineering. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2032707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Elham Ghanbari
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Behrooz Niknafs
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
139
|
Chinh NT, Manh VQ, Hoang T, Ramadass K, Sathish C, Trung VQ, Kim Ngan TT, Vinu A. Optimizing the component ratio to develop the biocomposites with carrageenan/collagen/allopurinol for the controlled drug release. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
140
|
Ediyilyam S, Lalitha MM, George B, Shankar SS, Wacławek S, Černík M, Padil VVT. Synthesis, Characterization and Physicochemical Properties of Biogenic Silver Nanoparticle-Encapsulated Chitosan Bionanocomposites. Polymers (Basel) 2022; 14:463. [PMID: 35160453 PMCID: PMC8840532 DOI: 10.3390/polym14030463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/18/2022] Open
Abstract
Green bionanocomposites have garnered considerable attention and applications in the pharmaceutical and packaging industries because of their intrinsic features, such as biocompatibility and biodegradability. The work presents a novel approach towards the combined effect of glycerol, tween 80 and silver nanoparticles (AgNPs) on the physicochemical properties of lyophilized chitosan (CH) scaffolds produced via a green synthesis method.The produced bionanocomposites were characterized with the help of Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). The swelling behavior, water vapor transmission rate, moisture retention capability, degradation in Hanks solution, biodegradability in soil, mechanical strength and electrochemical performance of the composites were evaluated. The addition of additives to the CH matrix alters the physicochemical and biological functioning of the matrix. Plasticized scaffolds showed an increase in swelling degree, water vapor transmission rate and degradability in Hank's balanced solution compared to the blank chitosan scaffolds. The addition of tween 80 made the scaffolds more porous, and changes in physicochemical properties were observed. Green-synthesized AgNPs showed intensified antioxidant and antibacterial properties. Incorporating biogenic nanoparticles into the CH matrix enhances the polymer composites' biochemical properties and increases the demand in the medical and biological sectors. These freeze-dried chitosan-AgNPs composite scaffolds had tremendous applications, especially in biomedical fields like wound dressing, tissue engineering, bone regeneration, etc.
Collapse
Affiliation(s)
- Sreelekha Ediyilyam
- Department of Chemistry, School of Physical Sciences, Central University of Kerala, Kasaragod 671316, India; (S.E.); (M.M.L.)
| | - Mahesh M. Lalitha
- Department of Chemistry, School of Physical Sciences, Central University of Kerala, Kasaragod 671316, India; (S.E.); (M.M.L.)
| | - Bini George
- Department of Chemistry, School of Physical Sciences, Central University of Kerala, Kasaragod 671316, India; (S.E.); (M.M.L.)
| | - Sarojini Sharath Shankar
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasaragod 671316, India
- Department of Medicine, Thomas Jefferson University, Jefferson Alumni Hall, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Stanisław Wacławek
- Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská 1402/2, 461 17 Liberec, Czech Republic;
| | - Miroslav Černík
- Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská 1402/2, 461 17 Liberec, Czech Republic;
| | - Vinod Vellora Thekkae Padil
- Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská 1402/2, 461 17 Liberec, Czech Republic;
| |
Collapse
|
141
|
Graphene-Oxide Porous Biopolymer Hybrids Enhance In Vitro Osteogenic Differentiation and Promote Ectopic Osteogenesis In Vivo. Int J Mol Sci 2022; 23:ijms23010491. [PMID: 35008918 PMCID: PMC8745160 DOI: 10.3390/ijms23010491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 11/17/2022] Open
Abstract
Over the years, natural-based scaffolds have presented impressive results for bone tissue engineering (BTE) application. Further, outstanding interactions have been observed during the interaction of graphene oxide (GO)-reinforced biomaterials with both specific cell cultures and injured bone during in vivo experimental conditions. This research hereby addresses the potential of fish gelatin/chitosan (GCs) hybrids reinforced with GO to support in vitro osteogenic differentiation and, further, to investigate its behavior when implanted ectopically. Standard GCs formulation was referenced against genipin (Gp) crosslinked blend and 0.5 wt.% additivated GO composite (GCsGp/GO 0.5 wt.%). Pre-osteoblasts were put in contact with these composites and induced to differentiate in vitro towards mature osteoblasts for 28 days. Specific bone makers were investigated by qPCR and immunolabeling. Next, CD1 mice models were used to assess de novo osteogenic potential by ectopic implantation in the subcutaneous dorsum pocket of the animals. After 4 weeks, alkaline phosphate (ALP) and calcium deposits together with collagen synthesis were investigated by biochemical analysis and histology, respectively. Further, ex vivo materials were studied after surgery regarding biomineralization and morphological changes by means of qualitative and quantitative methods. Furthermore, X-ray diffraction and Fourier-transform infrared spectroscopy underlined the newly fashioned material structuration by virtue of mineralized extracellular matrix. Specific bone markers determination stressed the osteogenic phenotype of the cells populating the material in vitro and successfully differentiated towards mature bone cells. In vivo results of specific histological staining assays highlighted collagen formation and calcium deposits, which were further validated by micro-CT. It was observed that the addition of 0.5 wt.% GO had an overall significant positive effect on both in vitro differentiation and in vivo bone cell recruitment in the subcutaneous region. These data support the GO bioactivity in osteogenesis mechanisms as being self-sufficient to elevate osteoblast differentiation and bone formation in ectopic sites while lacking the most common osteoinductive agents.
Collapse
|
142
|
Garcia L, Kerns G, O'Reilley K, Okesanjo O, Lozano J, Narendran J, Broeking C, Ma X, Thompson H, Njapa Njeuha P, Sikligar D, Brockstein R, Golecki HM. The Role of Soft Robotic Micromachines in the Future of Medical Devices and Personalized Medicine. MICROMACHINES 2021; 13:28. [PMID: 35056193 PMCID: PMC8781893 DOI: 10.3390/mi13010028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 12/16/2022]
Abstract
Developments in medical device design result in advances in wearable technologies, minimally invasive surgical techniques, and patient-specific approaches to medicine. In this review, we analyze the trajectory of biomedical and engineering approaches to soft robotics for healthcare applications. We review current literature across spatial scales and biocompatibility, focusing on engineering done at the biotic-abiotic interface. From traditional techniques for robot design to advances in tunable material chemistry, we look broadly at the field for opportunities to advance healthcare solutions in the future. We present an extracellular matrix-based robotic actuator and propose how biomaterials and proteins may influence the future of medical device design.
Collapse
Affiliation(s)
- Lourdes Garcia
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Genevieve Kerns
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Kaitlin O'Reilley
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Omolola Okesanjo
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jacob Lozano
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jairaj Narendran
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Conor Broeking
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Xiaoxiao Ma
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Hannah Thompson
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Preston Njapa Njeuha
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Drashti Sikligar
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Reed Brockstein
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Holly M Golecki
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
143
|
Bahraminasab M, Janmohammadi M, Arab S, Talebi A, Nooshabadi VT, Koohsarian P, Nourbakhsh MS. Bone Scaffolds: An Incorporation of Biomaterials, Cells, and Biofactors. ACS Biomater Sci Eng 2021; 7:5397-5431. [PMID: 34797061 DOI: 10.1021/acsbiomaterials.1c00920] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Large injuries to bones are still one of the most challenging musculoskeletal problems. Tissue engineering can combine stem cells, scaffold biomaterials, and biofactors to aid in resolving this complication. Therefore, this review aims to provide information on the recent advances made to utilize the potential of biomaterials for making bone scaffolds and the assisted stem cell therapy and use of biofactors for bone tissue engineering. The requirements and different types of biomaterials used for making scaffolds are reviewed. Furthermore, the importance of stem cells and biofactors (growth factors and extracellular vesicles) in bone regeneration and their use in bone scaffolds and the key findings are discussed. Lastly, some of the main obstacles in bone tissue engineering and future trends are highlighted.
Collapse
Affiliation(s)
- Marjan Bahraminasab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran.,Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Mahsa Janmohammadi
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, Semnan University, Semnan 3513119111, Iran
| | - Samaneh Arab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran.,Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Athar Talebi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Vajihe Taghdiri Nooshabadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran.,Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Parisa Koohsarian
- Department of Biochemistry and Hematology, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | | |
Collapse
|
144
|
Applying extrusion-based 3D printing technique accelerates fabricating complex biphasic calcium phosphate-based scaffolds for bone tissue regeneration. J Adv Res 2021; 40:69-94. [PMID: 36100335 PMCID: PMC9481949 DOI: 10.1016/j.jare.2021.12.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/09/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022] Open
Abstract
Biphasic calcium phosphates offer a chemically similar biomaterial to the natural bone, which can significantly accelerate bone formation and reconstruction. Robocasting is a suitable technique to produce porous scaffolds supporting cell viability, proliferation, and differentiation. This review discusses materials and methods utilized for BCP robocasting, considering recent advancements and existing challenges in using additives for bioink preparation. Commercialization and marketing approach, in-vitro and in-vivo evaluations, biologic responses, and post-processing steps are also investigated. Possible strategies and opportunities for the use of BCP toward injured bone regeneration along with clinical applications are discussed. The study proposes that BCP possesses an acceptable level of bone substituting, considering its challenges and struggles.
Background Aim of review Key scientific concepts of review
Collapse
|
145
|
Oliveira CS, Leeuwenburgh S, Mano JF. New insights into the biomimetic design and biomedical applications of bioengineered bone microenvironments. APL Bioeng 2021; 5:041507. [PMID: 34765857 PMCID: PMC8568480 DOI: 10.1063/5.0065152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/06/2021] [Indexed: 12/31/2022] Open
Abstract
The bone microenvironment is characterized by an intricate interplay between cellular and noncellular components, which controls bone remodeling and repair. Its highly hierarchical architecture and dynamic composition provide a unique microenvironment as source of inspiration for the design of a wide variety of bone tissue engineering strategies. To overcome current limitations associated with the gold standard for the treatment of bone fractures and defects, bioengineered bone microenvironments have the potential to orchestrate the process of bone regeneration in a self-regulated manner. However, successful approaches require a strategic combination of osteogenic, vasculogenic, and immunomodulatory factors through a synergic coordination between bone cells, bone-forming factors, and biomaterials. Herein, we provide an overview of (i) current three-dimensional strategies that mimic the bone microenvironment and (ii) potential applications of bioengineered microenvironments. These strategies range from simple to highly complex, aiming to recreate the architecture and spatial organization of cell-cell, cell-matrix, and cell-soluble factor interactions resembling the in vivo microenvironment. While several bone microenvironment-mimicking strategies with biophysical and biochemical cues have been proposed, approaches that exploit the ability of the cells to self-organize into microenvironments with a high regenerative capacity should become a top priority in the design of strategies toward bone regeneration. These miniaturized bone platforms may recapitulate key characteristics of the bone regenerative process and hold great promise to provide new treatment concepts for the next generation of bone implants.
Collapse
Affiliation(s)
- Cláudia S. Oliveira
- Department of Chemistry, CICECO–Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Sander Leeuwenburgh
- Department of Dentistry-Regenerative Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - João F. Mano
- Department of Chemistry, CICECO–Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
146
|
Abbas M, Alqahtani MS, Almohiy HM, Alqahtani FF, Alhifzi R, Jambi LK. The Potential Contribution of Biopolymeric Particles in Lung Tissue Regeneration of COVID-19 Patients. Polymers (Basel) 2021; 13:4011. [PMID: 34833310 PMCID: PMC8623030 DOI: 10.3390/polym13224011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 02/08/2023] Open
Abstract
The lung is a vital organ that houses the alveoli, which is where gas exchange takes place. The COVID-19 illness attacks lung cells directly, creating significant inflammation and resulting in their inability to function. To return to the nature of their job, it may be essential to rejuvenate the afflicted lung cells. This is difficult because lung cells need a long time to rebuild and resume their function. Biopolymeric particles are the most effective means to transfer developing treatments to airway epithelial cells and then regenerate infected lung cells, which is one of the most significant symptoms connected with COVID-19. Delivering biocompatible and degradable natural biological materials, chemotherapeutic drugs, vaccines, proteins, antibodies, nucleic acids, and diagnostic agents are all examples of these molecules' usage. Furthermore, they are created by using several structural components, which allows them to effectively connect with these cells. We highlight their most recent uses in lung tissue regeneration in this review. These particles are classified into three groups: biopolymeric nanoparticles, biopolymeric stem cell materials, and biopolymeric scaffolds. The techniques and processes for regenerating lung tissue will be thoroughly explored.
Collapse
Affiliation(s)
- Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
- Computers and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; (M.S.A.); (H.M.A.); (R.A.)
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Hussain M. Almohiy
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; (M.S.A.); (H.M.A.); (R.A.)
| | - Fawaz F. Alqahtani
- Department of Radiological Sciences, College of Applied Medical Sciences, Najran University, Najran 1988, Saudi Arabia;
| | - Roaa Alhifzi
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; (M.S.A.); (H.M.A.); (R.A.)
| | - Layal K. Jambi
- Radiological Sciences Department, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia;
| |
Collapse
|
147
|
Abstract
Successful periodontal regeneration requires the hierarchical reorganization of multiple tissues including periodontal ligament, cementum, alveolar bone, and gingiva. The limitation of conventional regenerative therapies has been attracting research interest in tissue engineering-based periodontal therapies where progenitor cells, scaffolds, and bioactive molecules are delivered. Scaffolds offer not only structural support but also provide geometrical clue to guide cell fate. Additionally, functionalization improves bioactive properties to the scaffold. Various scaffold designs have been proposed for periodontal regeneration. These include the fabrication of biomimetic periodontal extracellular matrix, multiphasic scaffolds with tissue-specific layers, and personalized 3D printed scaffolds. This review summarizes the basic concept as well as the recent advancement of scaffold designing and fabrication for periodontal regeneration and provides an insight of future clinical translation.
Collapse
Affiliation(s)
- Shuntaro Yamada
- Department of Clinical Dentistry, Faculty of Medicine - Tissue Engineering Group, University of Bergen, Årstadveien 19, 5009 Bergen, Norway
| | - Siddharth Shanbhag
- Department of Clinical Dentistry, Faculty of Medicine - Tissue Engineering Group, University of Bergen, Årstadveien 19, 5009 Bergen, Norway; Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of Medicine - Tissue Engineering Group, University of Bergen, Årstadveien 19, 5009 Bergen, Norway.
| |
Collapse
|
148
|
Petretta M, Gambardella A, Desando G, Cavallo C, Bartolotti I, Shelyakova T, Goranov V, Brucale M, Dediu VA, Fini M, Grigolo B. Multifunctional 3D-Printed Magnetic Polycaprolactone/Hydroxyapatite Scaffolds for Bone Tissue Engineering. Polymers (Basel) 2021; 13:3825. [PMID: 34771382 PMCID: PMC8588077 DOI: 10.3390/polym13213825] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
Abstract
Multifunctional and resistant 3D structures represent a great promise and a great challenge in bone tissue engineering. This study addresses this problem by employing polycaprolactone (PCL)-based scaffolds added with hydroxyapatite (HAp) and superparamagnetic iron oxide nanoparticles (SPION), able to drive on demand the necessary cells and other bioagents for a high healing efficiency. PCL-HAp-SPION scaffolds with different concentrations of the superparamagnetic component were developed through the 3D-printing technology and the specific topographical features were detected by Atomic Force and Magnetic Force Microscopy (AFM-MFM). AFM-MFM measurements confirmed a homogenous distribution of HAp and SPION throughout the surface. The magnetically assisted seeding of cells in the scaffold resulted most efficient for the 1% SPION concentration, providing good cell entrapment and adhesion rates. Mesenchymal Stromal Cells (MSCs) seeded onto PCL-HAp-1% SPION showed a good cell proliferation and intrinsic osteogenic potential, indicating no toxic effects of the employed scaffold materials. The performed characterizations and the collected set of data point on the inherent osteogenic potential of the newly developed PCL-HAp-1% SPION scaffolds, endorsing them towards next steps of in vitro and in vivo studies and validations.
Collapse
Affiliation(s)
- Mauro Petretta
- REGENHU Ltd., Z.I. Le Vivier 22, 1690 Villaz-St-Pierre, Switzerland;
- SSD Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (I.B.); (B.G.)
| | - Alessandro Gambardella
- SC Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.G.); (M.F.)
| | - Giovanna Desando
- SSD Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (I.B.); (B.G.)
| | - Carola Cavallo
- SSD Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (I.B.); (B.G.)
| | - Isabella Bartolotti
- SSD Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (I.B.); (B.G.)
| | - Tatiana Shelyakova
- SC Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.G.); (M.F.)
| | - Vitaly Goranov
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy; (V.G.); (M.B.); (V.A.D.)
- BioDevice Systems, Bulharská, 10-Vršovice, 996/20, 10100 Praha, Czech Republic
| | - Marco Brucale
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy; (V.G.); (M.B.); (V.A.D.)
| | - Valentin Alek Dediu
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy; (V.G.); (M.B.); (V.A.D.)
| | - Milena Fini
- SC Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.G.); (M.F.)
| | - Brunella Grigolo
- SSD Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (I.B.); (B.G.)
| |
Collapse
|
149
|
Singh YP, Dasgupta S, Bhaskar R, Agrawal AK. Monetite addition into gelatin based freeze-dried scaffolds for improved mechanical and osteogenic properties. Biomed Mater 2021; 16. [PMID: 34624878 DOI: 10.1088/1748-605x/ac2e17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/08/2021] [Indexed: 11/12/2022]
Abstract
This study was aimed at fabricating monetite nanoparticles impregnated gelatin-based composite scaffold to improve the chemical, mechanical and osteogenic properties. Scaffolds were fabricated using a freeze-drying technique of the slurry containing a varying proportion of gelatin and monetite. The lyophilized scaffolds were cross-linked with 0.25 wt% glutaraldehyde solution to obtain a three-dimensional (3D) interconnected porous microstructure with improved mechanical strength and stability in a physiological environment. The fabricated scaffolds possessed >80% porosity having 3D interconnected pore size distribution varying between 65 and 270 μm as evident from field emission scanning electron microscopy analysis. The average pore size of the prepared scaffold decreased with monetite addition as reflected in values of 210 μm for pure gelatin GM0scaffold and 118 μm registered by GM20scaffold. On increase in monetite content up to 20 wt% of total polymer concentration, compressive strength of the prepared scaffolds was increased from 0.92 MPa in pure gelatin-based GM0to 2.43 MPa in GM20. Up to 20 wt% of monetite reinforced composite scaffolds exhibited higher bioactivity as compared to that observed in pure gelatin-based GM0scaffold. Simulated body fluid (SBF) study and alizarin red assays confirmed higher bio-mineralization ability of GM20as compared to that exhibited by GM0. Human preosteoblast cells (MG-63) revealed higher degree of filopodia and lamellipodia extensions and excellent spreading behavior to anchor with GM20matrix as compared to that onto GM0and GM10. MTT assay and alkaline phosphatase staining study indicated that MG-63 cells found a more conducive environment to proliferate and subsequently differentiate into osteoblast lineage when exposed to GM20scaffolds rather than to GM0and GM10. This study revealed that up to 20 wt% monetite addition in gelatin could improve the performance of prepared scaffolds and serve as an efficient candidate to repair and regenerate bone tissues at musculoskeletal defect sites.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Department of Ceramic Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Sudip Dasgupta
- Department of Ceramic Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Rakesh Bhaskar
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | | |
Collapse
|
150
|
Abstract
The present work reported the preparation of biocomposites based on poly(3-hydroxybutyrate) (PHB), plasticizer, and bacterial cellulose (BC) by melt processing and their testing by means of thermal properties (DSC), water absorption, and in vitro degradation. The surface of the biocomposites was analyzed via atomic force microscopy (AFM). In vitro degradation of the biocomposites was evaluated by weight loss and thermal properties (DSC) assessment after the immersion of the specimens in phosphate-buffered saline solution (PBS of pH 7.4) over 20 days. The results showed that the BC can reduce the PHB crystallinity and promote its degradation under PBS medium. Moreover, it was found that the water absorption increased as the percentage of BC increased.
Collapse
|