101
|
Wang T, Yang Y, Sun T, Qiu H, Wang J, Ding C, Lan R, He Q, Wang W. The Pyroptosis-Related Long Noncoding RNA Signature Predicts Prognosis and Indicates Immunotherapeutic Efficiency in Hepatocellular Carcinoma. Front Cell Dev Biol 2022; 10:779269. [PMID: 35712653 PMCID: PMC9195296 DOI: 10.3389/fcell.2022.779269] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/28/2022] [Indexed: 02/05/2023] Open
Abstract
Pyroptosis was recently demonstrated to be an inflammatory form of gasdermin-regulated programmed cell death characterized by cellular lysis and the release of several proinflammatory factors and participates in tumorigenesis. However, the effects of pyroptosis-related long noncoding RNAs (lncRNAs) on hepatocellular carcinoma (HCC) have not yet been completely elucidated. Based on the regression coefficients of ZFPM2-AS1, KDM4A-AS1, LUCAT1, NRAV, CRYZL2P-SEC16B, AL031985.3, SNHG4, AL049840.5, AC008549.1, MKLN1-AS, AC099850.3, and LINC01224, HCC patients were classified into a low- or high-risk group. The high-risk score according to pyroptosis-related lncRNA signature was significantly associated with poor overall survival even after adjusting for age and clinical stage. Receiver operating characteristic curves and principal component analysis further supported the accuracy of the model. Our study revealed that a higher pyroptosis-related lncRNA risk score was significantly associated with tumor staging, pathological grade, and tumor-node-metastasis stages. The nomogram incorporating the pyroptosis-related lncRNA risk score and clinicopathological factors demonstrated good accuracy. Furthermore, we observed distinct tumor microenvironment cell infiltration characteristics between high- and low-risk tumors. Notably, based on the risk model, we found that the risk score is closely related to the expression of immune checkpoint genes, immune subtypes of tumors, and the sensitivity of HCC to chemotherapy drugs and immunotherapy. In conclusion, our novel risk score of pyroptosis-related lncRNA can serve as a promising prognostic biomarker for HCC patients and provide help for HCC patients to guide precision drug treatment and immunotherapy.
Collapse
Affiliation(s)
- Tao Wang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Yang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, China
| | - Ting Sun
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, China
| | - Haizhou Qiu
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, China
| | - Jian Wang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, China
| | - Cheng Ding
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Ren Lan
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Qiang He
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Wentao Wang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
102
|
Cui Z, Fu Y, Yang Z, Gao Z, Feng H, Zhou M, Zhang L, Chen C. Comprehensive Analysis of a Ferroptosis Pattern and Associated Prognostic Signature in Acute Myeloid Leukemia. Front Pharmacol 2022; 13:866325. [PMID: 35656299 PMCID: PMC9152364 DOI: 10.3389/fphar.2022.866325] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/19/2022] [Indexed: 11/24/2022] Open
Abstract
Ferroptosis is a widespread form of programmed cell death. The environment of cancer cells makes them vulnerable to ferroptosis, including AML cells, yet the specific association between ferroptosis and AML outcome is little known. In this study, we utilized ferroptosis-related genes to distinguish two subtypes in TCGA cohort, which were subsequently validated in independent AML cohorts. The subtypes were linked with tumor-related immunological abnormalities, mutation landscape and pathway dysregulation, and clinical outcome. Further, we developed a 13-gene prognostic model for AML from DEG analysis in the two subtypes. A risk score was calculated for each patient, and then the overall group was stratified into high- and low-risk groups; the higher risk score correlated with short survival. The model was validated in both independent AML cohorts and pan-cancer cohorts, which demonstrated robustness and extended the usage of the model. A nomogram was constructed that integrated risk score, FLT3-ITD, TP53, and RUNX1 mutations, and age. This model had the additional value of discriminating the sensitivity of several chemotherapeutic drugs and ferroptosis inducers in the two risk groups, which increased the translational value of this model as a potential tool in clinical management. Through integrated analysis of ferroptosis pattern and its related model, our work shed new light on the relationship between ferroptosis and AML, which may facilitate clinical application and therapeutics.
Collapse
Affiliation(s)
- Zelong Cui
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue Fu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zongcheng Yang
- Center of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhenxing Gao
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huimin Feng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Minran Zhou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lu Zhang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunyan Chen
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
103
|
Integrative Analysis of Pyroptosis-Related Prognostic Signature and Immunological Infiltration in Lung Squamous Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4944758. [PMID: 35692583 PMCID: PMC9177339 DOI: 10.1155/2022/4944758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 02/08/2023]
Abstract
Background Lung cancer is one of leading causes of human health threatening with approximately 2.09 million initially diagnosed cases and 1.76 million deaths worldwide annually. Pyroptosis is a programmed cell death mediated by Gasdermin family proteins. Pyroptosis could suppress the tumor oncogenesis and progression; nevertheless, pyroptosis could promote tumor growth by forming a suitable microenvironment. Methods LASSO Cox regression analysis was performed to construct prognostic pyroptosis-related gene (PRG) signature. A ceRNA was constructed to explore the potential lncRNA-miRNA-mRNA regulatory axis in LUSC. Results The expression of 26 PRGs were increased or decreased in LUSC. We also summarized simple nucleotide variation and copy number variation landscape of PRGs in LUSC. Prognosis analysis suggested a poor overall survival rate in LUSC patients with high expression of IL6, IL1B, ELANE, and CASP6. A pyroptosis-related prognostic signature was developed based on four prognostic PRGs. High-risk score LUSC patients had a poor overall survival rate versus low-risk score patients with an AUC of 0.565, 0.641, and 0.619 in 1-year, 3-year, and 5-year ROC curves, respectively. Moreover, the risk score was correlated with immune infiltration in LUSC. Further analysis revealed that pyroptosis-related prognostic signature was correlated with immune cell infiltration, tumor mutation burden, microsatellite instability, and drug sensitivity. We also constructed a ceRNA network and identified a lncRNA KCNQ1OT1/miR-328-3p/IL1B regulatory axis for LUSC. Conclusion A bioinformatics method was performed to develop a pyroptosis-related prognostic signature containing four genes (IL6, IL1B, ELANE, and CASP4) in LUSC. We also constructed a ceRNA network and identified a lncRNA KCNQ1OT1/miR-328-3p/IL1B regulatory axis for LUSC. Further in vivo and in vitro studies should be conducted to verify these results.
Collapse
|
104
|
A Novel Pyroptosis-Associated Gene Signature to Predict Prognosis in Patients with Colorectal Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6965308. [PMID: 35620407 PMCID: PMC9129977 DOI: 10.1155/2022/6965308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 04/20/2022] [Indexed: 11/17/2022]
Abstract
Background Pyroptosis is a form of cell death characterized by cell swelling and plasma membrane bubbling in association with inflammatory and immune responses. To date, the association between pyroptosis and colorectal cancer remains unclear. We aimed to establish a novel pyroptosis-associated model for the prognosis of colorectal cancer. Methods Pyroptosis-related genes were extracted using Gene Set Enrichment Analysis. A least absolute shrinkage and selection operator regression model was constructed to identify a pyroptosis-related gene signature using the Cancer Genome Atlas and Gene Expression Omnibus databases. Then, Kyoto Encyclopedia of Genes and Genomes and Gene Ontology and GSEA were performed to better understand the potential mechanisms and the functional pathways associated with pyroptosis involved in colorectal cancer. The relationship between the pyroptosis-related signature and immune infiltration was investigated using Cell-Type Identification by Estimating Relative Subsets of RNA Transcripts and MCPcounter. Results A 12 pyroptosis-related gene signature was identified. Then, patients were classified into high- and low-risk groups. Kaplan–Meier and receiver operating characteristic analyses confirmed that the high-risk groups showed worse overall survival, progression-free survival, or relapse-free survival probability. Functional enrichment analysis showed that pyroptosis was associated with extracellular matrix-related pathways. Furthermore, the pyroptosis risk score was associated with immune infiltration. The low-risk group exhibited a higher percentage of plasma cells, CD4 T cells, activated dendritic cells, and activated mast cells. M2 macrophages and M0 macrophages were positively related to the risk score. Conclusion Our research yielded a novel pyroptosis-related prognostic signature for colorectal cancer that was related to immune cell infiltration, and it provided an immunological perspective for developing personalized therapies.
Collapse
|
105
|
Song W, Liu Z, Wang K, Tan K, Zhao A, Li X, Yuan Y, Yang Z. Pyroptosis-related genes regulate proliferation and invasion of pancreatic cancer and serve as the prognostic signature for modeling patient survival. Discov Oncol 2022; 13:39. [PMID: 35633405 PMCID: PMC9148360 DOI: 10.1007/s12672-022-00495-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/09/2022] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) has high mortality and poor prognosis. Pyroptosis can influence the prognosis of patients by regulating the proliferation, invasion, and metastasis of cancer cells. However, the role of pyroptosis-related genes (PRGs) in PDAC remains unclear. METHODS In this study, based on the Cancer Genome Atlas (TCGA) cohort of PDAC samples, univariate Cox analysis and LASSO regression analysis were used to screen the prognostic PRGs and establish the gene signature. To further evaluate the functional significance of CASP4 and NLRP1 in PDAC, we also conducted an in vitro study to explore the mechanism of CASP4 and NLRP1 regulating the occurrence and development of PDAC. Finally, we investigated the relationship between CASP4 and NLRP1 expression levels and drug sensitivity in pancreatic cancer cells. RESULTS A risk prediction model based on CASP4 and NLRP1 was established, which can distinguish high-risk patients from low-risk patients (P < 0.001). Both internal validation and external GEO data sets validation demonstrate good predictive capability of the model (AUC = 0.732, AUC = 0.802, AUC = 0.632, P < 0.05). In vitro, CCK8 and Transwell assay suggested that CASP4 may accelerate the progression of PDAC by promoting proliferation and migration of pancreatic cancer cells, while NLRP1 has been found to have tumor suppressive effect. It should be noted that knockdown of CASP4 reduced the level of coke death, the expression levels of acetyl-CoA carboxylase, FASN, SREBP-1 and SREBP-2 were decreased, and the number of lipid droplets was also significantly reduced. Moreover, the enrichment of signaling pathways showed that NLRP1 was significantly correlated with MAPK and RAS/ERK signaling pathways, and knocking down NLRP1 could indeed up-regulate p-ERK expression. Finally, high expression of CASP4 and low expression of NLRP1 increased the sensitivity of pancreatic cancer cells to ERK inhibitors. CONCLUSIONS In especial, CASP4 can promote tumor progression by promoting the synthesis and accumulation of fatty acids, while NLRP1 acts on RAS/ERK signaling pathway. Both of genes play an important role in the diagnosis and treatment of PDAC, which may also affect the inhibitors of MAPK/ERK efficiency.
Collapse
Affiliation(s)
- Wenjing Song
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Zhicheng Liu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Kunlei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Kai Tan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Anbang Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Xinyin Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, China.
| | - Zhiyong Yang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, China.
| |
Collapse
|
106
|
Gong Z, Li Q, Yang J, Zhang P, Sun W, Ren Q, Tang J, Wang W, Gong H, Li J. Identification of a Pyroptosis-Related Gene Signature for Predicting the Immune Status and Prognosis in Lung Adenocarcinoma. Front Bioeng Biotechnol 2022; 10:852734. [PMID: 35646872 PMCID: PMC9133407 DOI: 10.3389/fbioe.2022.852734] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/14/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Pyroptosis is a form of programmed cell death triggered by the rupture of cell membranes and the release of inflammatory substances; it is essential in the occurrence and development of cancer. A considerable number of studies have revealed that pyroptosis is closely associated to the biological process of several cancers. However, the role of pyroptosis in lung adenocarcinoma (LUAD) remains elusive. The purpose of this study was to explore the prognostic role of pyroptosis-related genes (PRGs) and their relationship with the tumor immune microenvironment (TIME) in LUAD.Methods: Gene expression profiles and clinical information were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. A prognostic PRG signature was established in the training set and verified in the validation sets. Functional enrichment and immune microenvironment analyses related to PRGs were performed and a nomogram based on the risk score and clinical characteristics was established. What is more, quantitative real-time PCR (qRT-PCR) analysis was applied in order to verify the potential biomarkers for LUAD.Results: A prognostic signature based on five PRGs was constructed to separate LUAD patients into two risk groups. Patients in the high-risk group had worse prognoses than those in the low-risk group. The signature was identified as independent via Cox regression analyses and obtained the largest area under the curve (AUC = 0.677) in the receiver operating characteristic (ROC). Functional enrichment and immune microenvironment analyses demonstrated that the immune status was significantly different in the two subgroups and that immunotherapy may be effective for the high-risk group. Furthermore, qRT-PCR analysis verified that serum PRKACA and GPX4 could serve as diagnostic biomarkers for LUAD.Conclusion: Overall, a risk signature based on five PRGs was generated, providing a novel perspective on the determinants of prognosis and survival in LUAD, as well as a basis for the development of individualized regimes.
Collapse
Affiliation(s)
- Zetian Gong
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qifan Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Pengpeng Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Sun
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qianhe Ren
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junjie Tang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Wei Wang, ; Hui Gong, ; Jun Li,
| | - Hui Gong
- Department of Trauma Center, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Wei Wang, ; Hui Gong, ; Jun Li,
| | - Jun Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Wei Wang, ; Hui Gong, ; Jun Li,
| |
Collapse
|
107
|
Ma S, Wang F, Wang N, Jin J, Yan X, Wang L, Zheng X, Hu S, Du J. Extended Application of Genomic Selection to Screen Multi-Omics Data for the Development of Novel Pyroptosis-Immune Signatures and Predicting Immunotherapy of Glioma. Front Pharmacol 2022; 13:893160. [PMID: 35620284 PMCID: PMC9127445 DOI: 10.3389/fphar.2022.893160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Glioma is one of the most human malignant diseases and the leading cause of cancer-related deaths worldwide. Nevertheless, the present stratification systems do not accurately predict the prognosis and treatment benefit of glioma patients. Currently, no comprehensive analyses of multi-omics data have been performed to better understand the complex link between pyroptosis and immune. In this study, we constructed four pyroptosis immune subgroups by pyroptosis regulators and obtained nine pyroptosis immune signatures by analyzing the differentially expressed genes between the four pyroptosis immune subgroups. Nine novel pyroptosis immune signatures were provided for assessing the complex heterogeneity of glioma by the analyses of multi-omics data. The pyroptosis immune prognostic model (PIPM) was constructed by pyroptosis immune signatures, and the PIPM risk score was established for glioma cohorts with a total of 1716 samples. Then, analyses of the tumor microenvironment revealed an unanticipated correlation of the PIPM risk score with stemness, immune checkpoint expression, infiltrating the immune system, and therapy response in glioma. The low PIPM risk score patients had a better response to immunotherapy and showed sensitivity to radio-chemotherapy. The results of the pan-cancer analyses revealed the significant correlation between the PIPM risk score and clinical outcome, immune infiltration, and stemness. Taken together, we conclude that pyroptosis immune signatures may be a helpful tool for overall survival prediction and treatment guidance for glioma and other tumors patients.
Collapse
Affiliation(s)
- Shuai Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Emergency Medicine Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital Affiliated to Hangzhou Medical College, Hangzhou, China
| | - Fang Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nan Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiaqi Jin
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiuwei Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lili Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiangrong Zheng
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shaoshan Hu
- Emergency Medicine Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital Affiliated to Hangzhou Medical College, Hangzhou, China,*Correspondence: Shaoshan Hu, , ; Jianyang Du,
| | - Jianyang Du
- Emergency Medicine Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital Affiliated to Hangzhou Medical College, Hangzhou, China,Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,*Correspondence: Shaoshan Hu, , ; Jianyang Du,
| |
Collapse
|
108
|
Wu X, Jian A, Tang H, Liu W, Liu F, Liu S, Wu H. A Multi-Omics Study on the Effect of Helicobacter Pylori-Related Genes in the Tumor Immunity on Stomach Adenocarcinoma. Front Cell Infect Microbiol 2022; 12:880636. [PMID: 35619651 PMCID: PMC9127319 DOI: 10.3389/fcimb.2022.880636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/05/2022] [Indexed: 01/01/2023] Open
Abstract
Background Helicobacter pylori (HP), a gram-negative spiral-shaped microaerophilic bacterium, colonizes the stomach of approximately 50% of the world’s population, which is considered a risk factor for gastritis, peptic ulcers, gastric cancer, and other malignancies. HP is also considered carcinogenic since it involves the mutation and damage of multiple HP-related genes. Stomach adenocarcinoma (STAD) is a common stom5ach cancer with a poor prognosis and high risk of metastasis in the advanced stage. Therefore, an early diagnosis and targeted therapies are needed to ensure a better prognosis. In this study, a scoring system was constructed based on three HP infection–related candidate genes to enable a more accurate prediction of tumor progression and metastasis and response to immunotherapies. Methods HP infection–induced mutation patterns of STAD samples from six cohorts were comprehensively assessed based on 73 HP-related genes, which were then correlated with the immune cell–infiltrating characteristics of the tumor microenvironment (TME). The risk signature was constructed to quantify the influence of HP infection on individual tumors. Subsequently, an accurate nomogram was generated to improve the clinical applicability of the risk signature. We conducted immunohistochemical experiments and used the Affiliated Hospital of Youjiang Medical University for Nationalities (AHYMUN) cohort data set with survival information to further verify the clinical value of this risk signature. Results Two distinct HP-related mutation patterns with different immune cell–infiltrating characteristics (ICIC) and survival possibility were identified. We demonstrated that the evaluation of HP infection–induced mutation patterns of tumor could assist the prediction of stages, phenotypes, stromal activity, genetic diversity, and patient prognosis. A low risk score involved an increased mutation burden and activation of immune responses, with a higher 5-year survival rate and enhanced response to anti-PD-1/L1 immunotherapy, while a high risk score involved stromal activation and poorer survival. The efficiency of the risk signature was further evidenced by the nomogram. Conclusions STAD patients with a low risk score demonstrated significant therapeutic advantages and clinical benefits. HP infection–induced mutations play a nonnegligible role in STAD development. Quantifying the HP-related mutation patterns of individual tumors will contribute to phenotype classification, guide more effective targeted and personalized therapies, and enable more accurate predictions of metastasis and prognosis.
Collapse
Affiliation(s)
- Xinrui Wu
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, China
| | - Aiwen Jian
- School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Haidan Tang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Wangrui Liu
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengyuan Liu
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, China
| | - Shifan Liu
- Department of Medical Imaging, Medical School of Nantong University, Nantong, China
| | - Huiqun Wu
- Department of Medical Informatics, Medical School of Nantong University, Nantong, China
- *Correspondence: Huiqun Wu,
| |
Collapse
|
109
|
Zhou Z, Xu J, Huang N, Tang J, Ma P, Cheng Y. A Pyroptosis-Related Gene Signature Associated with Prognosis and Tumor Immune Microenvironment in Gliomas. Int J Gen Med 2022; 15:4753-4769. [PMID: 35571289 PMCID: PMC9091698 DOI: 10.2147/ijgm.s353762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/16/2022] [Indexed: 11/23/2022] Open
Abstract
Background Pyroptosis is a novel form of cell death that plays a significant role in cancer, while the prognostic values of pyroptosis-related genes in gliomas have not been revealed. Methods We analyzed the RNA-seq and clinical data of gliomas from the University of California Santa Cruz (UCSC) Xena database to determine differentially expressed pyroptosis-related genes. Based on these genes, a pyroptosis genes signature was constructed after univariate Cox analysis and Lasso Cox analyses. The sensitivity and specificity of pyroptosis genes signature were verified by the Chinese Glioma Genome Atlas (CGGA) dataset. Finally, we explored the association of risk signatures with tumor microenvironment and immune cell infiltration. Results Of 15 differentially expressed pyroptosis-related genes, three genes of BCL2 associated X (BAX), caspase 3 (CASP3), and caspase 4 (CASP4) were used to construct the risk signature. The effectiveness of risk signature for predicting survival at 1, 3, 5 years was performed by the receiver operating characteristic curve (ROC), and the area under curves (AUC) was 0.739, 0.817, and 0.800, respectively. Functional enrichment results showed signal transduction, cell adhesion, immune response, and inflammatory response were enriched. The immune analysis revealed that pyroptosis had a remarkable effect on the immune microenvironment. Conclusion In this study, we constructed a pyroptosis-related gene signature, which can serve as a potential biomarker for predicting the survival of glioma patients. Additionally, we suggested that pyroptosis may promote gliomas development by inducing chronic inflammation microenvironment.
Collapse
Affiliation(s)
- Zunjie Zhou
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jing Xu
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Ning Huang
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jun Tang
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Ping Ma
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yuan Cheng
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Correspondence: Yuan Cheng, Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Road, Yuzhong District, Chongqing, People’s Republic of China, Tel +8613708329653, Email
| |
Collapse
|
110
|
Yu H, Bai X, Zheng W. Identification of the Pyroptosis-Related Prognosis Gene Signature and Immune Infiltration in Hepatocellular Carcinoma. DISEASE MARKERS 2022; 2022:9124216. [PMID: 35535333 PMCID: PMC9078841 DOI: 10.1155/2022/9124216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/11/2022] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most heterogeneous malignancies worldwide with a dismal prognosis. Lack of efficient biomarkers, early detection, and prognosis is still a challenge for HCC. Pyroptosis is a new discovery inflammatory form of programmed cell death. There is growing evidence revealed that pyroptosis plays a role in physiological and pathological conditions of human cancers. However, the prognostic evaluation of these pyroptosis-related genes (PRGs) in HCC remains blank. Consensus clustering of PRGs was used to classify 374 patients with HCC from the TCGA-LIHC cohort. By applying the least absolute shrinkage and selection operator (LASSO) Cox regression method, a 2-gene prognostic gene model (PLCG1 and GSDMC) was built and indicated the survival rate in HCC with medium-to-high accuracy. Then, the median risk score from the TCGA cohort was utilized; the prognostic gene model was also accurate in Gene Expression Omnibus (GEO) cohort. The functional enrichment analysis indicated that the oncogenic properties are associated with prominent hallmarks of cancer. The ssGSEA analyses and TIMER database indicated that immune infiltration tumor microenvironment in the HCC. In conclusion, our findings provide a foundation for further research targeting PRGs and their immune microenvironment.
Collapse
Affiliation(s)
- Heng Yu
- Department of Digestive Medicine, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
| | - Xue Bai
- Department of Clinic of Internal Medicine, Ulm University, Ulm, Germany
| | - Wangyang Zheng
- Department II of Gastroenterology, Third Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| |
Collapse
|
111
|
Huang X, Li Y, Li J, Yang X, Xiao J, Xu F. The Expression of Pyroptosis-Related Gene May Influence the Occurrence, Development, and Prognosis of Uterine Corpus Endometrial Carcinoma. Front Oncol 2022; 12:885114. [PMID: 35574367 PMCID: PMC9103195 DOI: 10.3389/fonc.2022.885114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Increasing evidence has demonstrated that pyroptosis exerts key roles in the occurrence, development, and prognosis of uterine corpus endometrial carcinoma (UCEC). However, the mechanism of pyroptosis and its predictive value for prognosis remain largely unknown. METHODS UCEC data were acquired from The Cancer Genome Atlas (TCGA) database. The differentially expressed genes in UCEC vs. normal cases were selected to perform a weighted correlation network analysis (WGCNA). Forty-two UCEC-associated pyroptosis-related genes were identified via applying differential expression analysis. Protein-protein interaction (PPI) and gene correlation analyses were applied to explore the relationship between 21 UCEC key genes and 42 UCEC-associated pyroptosis-related genes. The expression of 42 UCEC-associated pyroptosis-related genes of different grades was also calculated. The immune environment of UCEC was evaluated. Furthermore, pyroptosis-related genes were filtered out by the co-expression. Univariate and a least absolute shrinkage and selection operator (LASSO) Cox analyses were implemented to yield a pyroptosis-related gene model. We also performed consensus classification to regroup UCEC samples into two clusters. A clinically relevant heatmap and survival analysis curve were implemented to explore the clinicopathological features and relationship between two clusters. Furthermore, a Kaplan-Meier survival analysis was implemented to analyze the risk model. RESULTS Twenty-one UCEC key genes and 42 UCEC-associated pyroptosis-related genes were identified. The PPI and gene correlation analysis showed a clear relationship. The expression of 42 UCEC-associated pyroptosis-related genes of different grades was also depicted. A risk model based on pyroptosis-related genes was then developed to forecast overall survival among UCEC patients. Finally, Cox regression analysis verified this model as an independent risk factor for UCEC patients. CONCLUSIONS The expression of pyroptosis-related gene may influence UCEC occurrence, development, and prognosis.
Collapse
Affiliation(s)
- Xiaoling Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yangyi Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Jiena Li
- Department of Obstetrics and Gynecology, Heze Municipal Hospital, Heze, China
| | - Xinbin Yang
- Department of Thoracic Surgical Oncology, The Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Jianfeng Xiao
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Feng Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
112
|
Gao X, Cai J. Genome-wide Exploration of a Pyroptosis-Related Long Non-Coding RNA Signature Associated With the Prognosis and Immune Response in Patients With Bladder Cancer. Front Genet 2022; 13:865204. [PMID: 35571063 PMCID: PMC9091201 DOI: 10.3389/fgene.2022.865204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Bladder cancer (BLCA) is a malignant tumor with a complex molecular mechanism and high recurrence rate in the urinary system. Studies have shown that pyroptosis regulates tumor cell proliferation and metastasis and affects the prognosis of cancer patients. However, the role of pyroptosis-related (PR) genes or long non-coding RNAs (lncRNAs) in BLCA development is not fully understood.Methods: We comprehensively analyzed the molecular biological characteristics of PR genes in BLCA, including copy number variation, mutations, expression and prognostic value based on TCGA database. We then identified PR lncRNAs with prognostic value based on the expression of PR genes and performed a consistent clustering analysis of 407 BLCA patients according to the expression of prognosis-related PR lncRNAs and identified two clusters. The least absolute shrinkage and selection operator (LASSO) regression was used to establish a PR lncRNA signature and calculate the risk score associated with the prognosis of patients with BLCA. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) were used to evaluate the possible functions of PR lncRNA signature. We also evaluated the relationship between the risk score and tumor immune microenvironment (TIME).Results: A total of 33 PR genes were obtained in our study and 194 prognosis-related PR lncRNAs were identified. We also constructed a signature consisting of eight-PR-lncRNAs and divided patients into high- and low-risk groups. The overall survival rate of patients with a high risk was significantly lower than patients with a low risk. The risk score was significantly correlated with the degree of infiltration of multiple immune cell subtypes and positively correlated with multiple immune checkpoint genes expression in BLCA. Enrichment analyses showed that these lncRNAs are involved in human immune regulatory functions and immune-related pathways.Conclusion: Our study comprehensively studied the molecular biological characteristics of PR genes BLCA, and the eight-PR-lncRNA signature we identified might play a crucial role in tumor immunity and may be able to predict the prognosis of BLCA patients, providing a theoretical basis for an in-depth study of the relationship between the prognosis and TIME.
Collapse
Affiliation(s)
- Xin Gao
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Clinical Laboratory, The First People’s Hospital of Huaihua / The Fourth Affiliated Hospital of Jishou University, Huaihua, China
| | - Jianping Cai
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Jianping Cai,
| |
Collapse
|
113
|
Zhang Y, Zhang C, Yang Y, Wang G, Wang Z, Liu J, Zhang L, Yu Y. Pyroptosis-Related Gene Signature Predicts Prognosis and Indicates Immune Microenvironment Infiltration in Glioma. Front Cell Dev Biol 2022; 10:862493. [PMID: 35547808 PMCID: PMC9081442 DOI: 10.3389/fcell.2022.862493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/04/2022] [Indexed: 01/13/2023] Open
Abstract
Objective: Gliomas are the most common primary tumors in the central nervous system with a bad prognosis. Pyroptosis, an inflammatory form of regulated cell death, plays a vital role in the progression and occurrence of tumors. However, the value of pyroptosis related genes (PRGs) in glioma remains poorly understood. This study aims to construct a PRGs signature risk model and explore the correlation with clinical characteristics, prognosis, tumor microenviroment (TME), and immune checkpoints. Methods: RNA sequencing profiles and the relevant clinical data were obtained from the Chinese Glioma Genome Atlas (CGGA), the Cancer Genome Atlas (TCGA), the Repository of Molecular Brain Neoplasia Data (REMBRANDT), and the Genotype-Tissue Expression Project (GTEx-Brain). Then, the differentially expressed pyroptosis related genes (PRGs) were identified, and the least absolute shrinkage and selection operator (LASSO) and mutiCox regression model was generated using the TCGA-train dataset. Then the expression of mRNA and protein levels of PRGs signature was detected through qPCR and human protein atlas (HPA). Further, the predictive ability of the PRGs-signature, prognostic analysis, and stratification analysis were utilized and validated using TCGA-test, CGGA, and REMBRANDT datasets. Subsequently, we constructed the nomogram by combining the PRGs signature and other key clinical features. Moreover, we used gene set enrichment analysis (GSEA), GO, KEGG, the tumor immune dysfunction and exclusion (TIDE) single-sample GSEA (ssGSEA), and Immunophenoscore (IPS) to determine the relationship between PRGs and TME, immune infiltration, and predict the response of immune therapy in glioma. Results: A four-gene PRGs signature (CASP4, CASP9, GSDMC, IL1A) was identified and stratified patients into low- or high-risk group. Survival analysis, ROC curves, and stratified analysis revealed worse outcomes in the high-risk group than in the low-risk group. Correlation analysis showed that the risk score was correlated with poor disease features. Furthermore, GSEA and immune infiltrating and IPS analysis showed that the PRGs signature could potentially predict the TME, immune infiltration, and immune response in glioma. Conclusion: The newly identified four-gene PRGs signature is effective in diagnosis and could robustly predict the prognosis of glioma, and its impact on the TME and immune cell infiltrations may provide further guidance for immunotherapy.
Collapse
Affiliation(s)
- Yulian Zhang
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Chuanpeng Zhang
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
- Department of Neurosurgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Yanbo Yang
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
- Department of Neurosurgery, Graduate School of Peking Union Medical College, Beijing, China
| | - Guohui Wang
- Department of Radiotherapy, Tianjin First Center Hospital, Tianjin, China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Jiang Liu
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Li Zhang
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
- Department of Neurosurgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Department of Neurosurgery, Graduate School of Peking Union Medical College, Beijing, China
| | - Yanbing Yu
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
- Department of Neurosurgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Department of Neurosurgery, Graduate School of Peking Union Medical College, Beijing, China
- *Correspondence: Yanbing Yu,
| |
Collapse
|
114
|
Xia Y, Jin Y, Cui D, Wu X, Song C, Jin W, Huang H. Antitumor Effect of Simvastatin in Combination With DNA Methyltransferase Inhibitor on Gastric Cancer via GSDME-Mediated Pyroptosis. Front Pharmacol 2022; 13:860546. [PMID: 35517821 PMCID: PMC9065610 DOI: 10.3389/fphar.2022.860546] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Gasdermin E (GSDME) is one of the executors of pyroptosis, a type of programmed lytic cell death, which can be triggered by caspase-3 activation upon stimulation. Silenced GSDME expression due to promoter hypermethylation is associated with gastric cancer (GC), which is confirmed in the present study by bioinformatics analysis and methylation-specific PCR (MSP) test of GC cell lines and clinical samples. GC cell lines and mouse xenograft models were used to investigate the pyroptosis-inducing effect of the common cholesterol-depleting, drug simvastatin (SIM), allied with upregulating GSDME expression by doxycycline (DOX)- inducible Tet-on system or DNA methyltransferase inhibitor 5-Aza-2′-deoxycytidine (5-Aza-CdR). Cell viability assessment and xenograft tumour growth demonstrated that the tumour inhibition effects of SIM can be enhanced by elevated GSDME expression. Morphological examinations and assays measuring lactate dehydrogenase (LDH) release and caspase-3/GSDME protein cleavage underlined the stimulation of pyroptosis as an important mechanism. Using short hairpin RNA (shRNA) knockdown of caspase-3 or GSDME, and caspase-3-specific inhibitors, we provided evidence of the requirement of caspase-3/GSDME in the pyroptosis process triggered by SIM. We conclude that reactivating GSDME expression and thereby inducing cancer cell-specific pyroptosis could be a potential therapeutic strategy against GC.
Collapse
Affiliation(s)
- Ying Xia
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Pathophysiology, School of Basic Medical Science, Guizhou Medical University, Guiyang, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Yong Jin
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Daxiang Cui
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Wu
- Guizhou Provincial People’s Hospital, Guiyang, China
| | - Cunfeng Song
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Cunfeng Song, ; Weilin Jin, ; Hai Huang,
| | - Weilin Jin
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, China
- *Correspondence: Cunfeng Song, ; Weilin Jin, ; Hai Huang,
| | - Hai Huang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
- *Correspondence: Cunfeng Song, ; Weilin Jin, ; Hai Huang,
| |
Collapse
|
115
|
Yang W, Niu L, Zhao X, Duan L, Wang X, Li Y, Chen J, Zhou W, Zhang Y, Fan D, Hong L. Pyroptosis impacts the prognosis and treatment response in gastric cancer via immune system modulation. Am J Cancer Res 2022; 12:1511-1534. [PMID: 35530274 PMCID: PMC9077078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023] Open
Abstract
Pyroptosis plays a vital role in the development of cancers; however, its role in regulating immune cell infiltration in tumor microenvironment (TME) and pyroptosis-related molecular subtypes remain unclear. Herein, we comprehensively analyzed the molecular subtypes mediated by the pyroptosis-related genes (PRGs) in gastric cancer (GC). Three pyroptosis patterns were determined with distinct TME cell-infiltrating characteristics and prognosis. Principal component analysis was performed to establish the pyroptosis score. The high pyroptosis score group was featured by increased activated CD4+ T cell infiltration, better prognosis, elevated tumor mutation burden, higher immune and stromal scores, and enhanced response to immunotherapy. However, the low pyroptosis score group was characterized by poorer survival, decreased immune infiltration, and glycerolipid and histidine metabolism pathways. Additionally, high pyroptosis score was confirmed as an independent favorable prognostic factor for overall survival. Three cohorts designed to analyze the response to immunotherapy verified that patients with higher pyroptosis score showed treatment benefit. In summary, our study demonstrated that pyroptosis regulates the complex TME. Assessing the pyroptosis patterns will advance our understanding on TME features and tumor immunology and provide the rationale for designing personalized immunotherapy strategies.
Collapse
Affiliation(s)
- Wanli Yang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an, Shaanxi, China
| | - Liaoran Niu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an, Shaanxi, China
| | - Xinhui Zhao
- Department of Thyroid and Breast Surgery, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Northwest UniversityXi’an, Shaanxi, China
| | - Lili Duan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an, Shaanxi, China
| | - Xiaoqian Wang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an, Shaanxi, China
| | - Yiding Li
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an, Shaanxi, China
| | - Junfeng Chen
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an, Shaanxi, China
| | - Wei Zhou
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an, Shaanxi, China
| | - Yujie Zhang
- Department of Histology and Embryology, School of Basic Medicine, Xi’an Medical UniversityXi’an, Shaanxi, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an, Shaanxi, China
| | - Liu Hong
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi’an, Shaanxi, China
| |
Collapse
|
116
|
Xu Y, Chen Y, Niu Z, Xing J, Yang Z, Yin X, Guo L, Zhang Q, Qiu H, Han Y. A Novel Pyroptotic and Inflammatory Gene Signature Predicts the Prognosis of Cutaneous Melanoma and the Effect of Anticancer Therapies. Front Med (Lausanne) 2022; 9:841568. [PMID: 35492358 PMCID: PMC9053829 DOI: 10.3389/fmed.2022.841568] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeThe purpose of this study was to construct a gene signature comprising genes related to both inflammation and pyroptosis (GRIPs) to predict the prognosis of patients with cutaneous melanoma patients and the efficacy of immunotherapy, chemotherapy, and targeted therapy in these patients.MethodsGene expression profiles were collected from The Cancer Genome Atlas. Weighted gene co-expression network analysis was performed to identify GRIPs. Univariable Cox regression and Lasso regression further selected key prognostic genes. Multivariable Cox regression was used to construct a risk score, which stratified patients into high- and low-risk groups. Areas under the ROC curves (AUCs) were calculated, and Kaplan-Meier analyses were performed for the two groups, following validation in an external cohort from Gene Expression Omnibus (GEO). A nomogram including the GRIP signature and clinicopathological characteristics was developed for clinical use. Gene set enrichment analysis illustrated differentially enriched pathways. Differences in the tumor microenvironment (TME) between the two groups were assessed. The efficacies of immune checkpoint inhibitors (ICIs), chemotherapeutic agents, and targeted agents were predicted for both groups. Immunohistochemical analyses of the GRIPs between the normal and CM tissues were performed using the Human Protein Atlas data. The qRT-PCR experiments validated the expression of genes in CM cell lines, Hacat, and PIG1 cell lines.ResultsA total of 185 GRIPs were identified. A novel gene signature comprising eight GRIPs (TLR1, CCL8, EMP3, IFNGR2, CCL25, IL15, RTP4, and NLRP6) was constructed. The signature had AUCs of 0.714 and 0.659 for predicting 3-year overall survival (OS) in the TCGA entire and GEO validation cohorts, respectively. Kaplan-Meier analyses revealed that the high-risk group had a poorer prognosis. Multivariable Cox regression showed that the GRIP signature was an independent predictor of OS with higher accuracy than traditional clinicopathological features. The nomogram showed good accuracy and reliability in predicting 3-year OS (AUC = 0.810). GSEA and TME analyses showed that the high-risk group had lower levels of pyroptosis, inflammation, and immune response, such as lower levels of CD8+ T-cell infiltration, CD4+ memory-activated T-cell infiltration, and ICI. In addition, low-risk patients whose disease expressed PD-1 or CTLA-4 were likely to respond better to ICIs, and several chemotherapeutic and targeted agents. Immunohistochemical analysis confirmed the distinct expression of five out of the eight GRIPs between normal and CM tissues.ConclusionOur novel 8-GRIP signature can accurately predict the prognosis of patients with CM and the efficacies of multiple anticancer therapies. These GRIPs might be potential prognostic biomarkers and therapeutic targets for CM.
Collapse
Affiliation(s)
- Yujian Xu
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Youbai Chen
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zehao Niu
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiahua Xing
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zheng Yang
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiangye Yin
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lingli Guo
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qixu Zhang
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Haixia Qiu
- Department of Laser Medicine, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Haixia Qiu
| | - Yan Han
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Yan Han
| |
Collapse
|
117
|
Zhang Q, Tan Y, Zhang J, Shi Y, Qi J, Zou D, Ci W. Pyroptosis-Related Signature Predicts Prognosis and Immunotherapy Efficacy in Muscle-Invasive Bladder Cancer. Front Immunol 2022; 13:782982. [PMID: 35479097 PMCID: PMC9035667 DOI: 10.3389/fimmu.2022.782982] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/18/2022] [Indexed: 12/13/2022] Open
Abstract
Pyroptosis has profound impacts on tumor cell proliferation, invasion, and metastasis and is of great clinical significance for different cancers. However, the role of pyroptosis in the progression and prognosis of muscle invasive bladder cancer (MIBC) remains poorly characterized. Here, we collected multicenter MIBC data and performed integrated analysis to dissect the role of pyroptosis in MIBC and provide an optimized treatment for this disease. Based on transcriptomic data, we developed a novel prognostic model named the pyroptosis-related gene score (PRGScore), which summarizes immunological features, genomic alterations, and clinical characteristics associated with the pyroptosis phenotype. Samples with high PRGScore showed enhancement in CD8+ T cell effector function, antigen processing machinery and immune checkpoint and better response to immunotherapy by programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) inhibitors, which indicates that PRGScore is a valuable signature in the identification of populations sensitive to immune checkpoint inhibitors. Collectively, our study provides insights into further research targeting pyroptosis and its tumor immune microenvironment (TME) and offers an opportunity to optimize the treatment of MIBC.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yezhen Tan
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianye Zhang
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Yue Shi
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Qi
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Daojia Zou
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weimin Ci
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Weimin Ci,
| |
Collapse
|
118
|
Li C, Pan J, Jiang Y, Wu Y, Jin Z, Chen X. Characterization of Pyroptosis-Related Subtypes via RNA-Seq and ScRNA-Seq to Predict Chemo-Immunotherapy Response in Triple-Negative Breast Cancer. Front Genet 2022; 13:788670. [PMID: 35386285 PMCID: PMC8978671 DOI: 10.3389/fgene.2022.788670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/15/2022] [Indexed: 11/30/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is associated with poor prognosis and invalid therapeutical response to immunotherapy due to biological heterogeneity. There is an urgent need to screen for reliable indices, especially immunotherapy-associated biomarkers that can predict patient outcomes. Pyroptosis, as an inflammation-induced type of programmed cell death, is shown to create a tumor-suppressive environment and improve the chemotherapeutic response in multiple tumors. However, the specific therapeutic effect of pyroptosis in TNBC remains unclear. In this study, we present a consensus clustering by pyroptosis-related signatures of 119 patients with TNBC into two subtypes (clusterA and clusterB) with distinct immunological and prognostic characteristics. First, clusterB, associated with better outcomes, was characterized by a significantly higher pyroptosis-related signature expression, tumor microenvironment prognostic score, and upregulation of immunotherapy checkpoints. A total of 262 differentially expressed genes between the subtypes were further identified and the Ps-score was built using LASSO and COX regression analyses. The external GEO data set demonstrated that cohorts with low Ps-scores consistently had higher expression of pyroptosis-related signatures, immunocyte infiltration levels, and better prognosis. In addition, external immunotherapy and chemotherapy cohorts validated that patients with lower Ps-scores exhibited significant therapeutic response and clinical benefit. Combined with other clinical characteristics, we successfully constructed a nomogram to effectively predict the survival rate of patients with TNBC. Finally, using the scRNA-seq data sets, we validated the landscape of cellular subtypes of TNBC and successfully constructed an miRNA-Ps-score gene interaction network. These findings indicated that the systematic assessment of tumor pyroptosis and identification of Ps-scores has potential clinical implications and facilitates tailoring optimal immunotherapeutic strategies for TNBC.
Collapse
Affiliation(s)
- Chenlu Li
- Department of Gastroenterology, Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jingjing Pan
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yinyan Jiang
- Department of Hematopathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanzhi Wu
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhenlin Jin
- Department of Hematopathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xupeng Chen
- Department of Gastroenterology, Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
119
|
Lu L, Zhang P, Cao X, Guan M. Prognosis and Characterization of Immune Microenvironment in Head and Neck Squamous Cell Carcinoma through a Pyroptosis-Related Signature. JOURNAL OF ONCOLOGY 2022; 2022:1539659. [PMID: 35432539 PMCID: PMC9007648 DOI: 10.1155/2022/1539659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/30/2021] [Indexed: 01/22/2023]
Abstract
Pyroptosis, as a novel identified programmed cell death, is closely correlated with tumor immunity and shows potential roles in cancer treatment. Discerning a pyroptosis-related gene signature and its correlations with tumor immune microenvironment is critical in head and neck squamous cell carcinoma (HNSCC). Transcriptome data and corresponding clinical data were downloaded from TCGA and GEO databases. Tumor mutation burden (TMB) data were obtained from TCGA database. Firstly, univariate and least absolute shrinkage and selection operator (LASSO) regression analyses were used to construct a six pyroptosis-related gene signature. Kaplan-Meier analysis, receiver operating characteristic (ROC) curves, and principal component analysis (PCA) results verified that the risk model has good performance in predicting the survival. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the pyroptosis-related gene signature was immune related. Finally, the immune landscape and immunotherapy sensitivity prediction capabilities of the risk model were further explored. There were close correlations between the overall survival (OS) and various immune cells and immune functions. Single-sample gene set enrichment analysis (ssGSEA) showed that high risk group had decreased expression of various immune cells and lower activities of immune functions. Meanwhile, tumor mutation burden (TMB) data combining risk score could well predict the OS of HNSCC patients. However, tumor immune dysfunction and exclusion (TIDE) analysis revealed that there was no significant difference in the sensitivity to immunotherapies between high and low risk groups. Finally, a nomogram based on risk score and clinicopathological parameters was constructed. And, the risk model demonstrated better sensitivity and specificity than TIDE scores and T-cell-inflamed signature (TIS). In conclusion, although the risk model could not well predict the immune escape and response to immunotherapies, the signature established by pyroptosis-related genes, with better sensitivity and specificity than TIDE scores and TIS signature, could be used for predicting prognosis and immune status of HNSCC patients.
Collapse
Affiliation(s)
- Lin Lu
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Peiling Zhang
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Xiaofei Cao
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Mingmei Guan
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| |
Collapse
|
120
|
Liu ZK, Wu KF, Zhang RY, Kong LM, Shang RZ, Lv JJ, Li C, Lu M, Yong YL, Zhang C, Zheng NS, Li YH, Chen ZN, Bian H, Wei D. Pyroptosis-Related LncRNA Signature Predicts Prognosis and Is Associated With Immune Infiltration in Hepatocellular Carcinoma. Front Oncol 2022; 12:794034. [PMID: 35311105 PMCID: PMC8927701 DOI: 10.3389/fonc.2022.794034] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/11/2022] [Indexed: 12/15/2022] Open
Abstract
Pyroptosis is an inflammatory form of programmed cell death that is involved in various cancers, including hepatocellular carcinoma (HCC). Long non-coding RNAs (lncRNAs) were recently verified as crucial mediators in the regulation of pyroptosis. However, the role of pyroptosis-related lncRNAs in HCC and their associations with prognosis have not been reported. In this study, we constructed a prognostic signature based on pyroptosis-related differentially expressed lncRNAs in HCC. A co-expression network of pyroptosis-related mRNAs-lncRNAs was constructed based on HCC data from The Cancer Genome Atlas. Cox regression analyses were performed to construct a pyroptosis-related lncRNA signature (PRlncSig) in a training cohort, which was subsequently validated in a testing cohort and a combination of the two cohorts. Kaplan-Meier analyses revealed that patients in the high-risk group had poorer survival times. Receiver operating characteristic curve and principal component analyses further verified the accuracy of the PRlncSig model. Besides, the external cohort validation confirmed the robustness of PRlncSig. Furthermore, a nomogram based on the PRlncSig score and clinical characteristics was established and shown to have robust prediction ability. In addition, gene set enrichment analysis revealed that the RNA degradation, the cell cycle, the WNT signaling pathway, and numerous immune processes were significantly enriched in the high-risk group compared to the low-risk group. Moreover, the immune cell subpopulations, the expression of immune checkpoint genes, and response to chemotherapy and immunotherapy differed significantly between the high- and low-risk groups. Finally, the expression levels of the five lncRNAs in the signature were validated by quantitative real-time PCR. In summary, our PRlncSig model shows significant predictive value with respect to prognosis of HCC patients and could provide clinical guidance for individualized immunotherapy.
Collapse
Affiliation(s)
- Ze-Kun Liu
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Ke-Fei Wu
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Ren-Yu Zhang
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Ling-Min Kong
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Run-Ze Shang
- Department of General Surgery, Affiliated Haixia Hospital of Huaqiao University (The 910 Hospital of the Joint Logistics Team), Quanzhou, China
| | - Jian-Jun Lv
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Can Li
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Meng Lu
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Yu-Le Yong
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Cong Zhang
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Nai-Shan Zheng
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Yan-Hong Li
- Department of Gynaecology and Obstetrics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhi-Nan Chen
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Huijie Bian
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Ding Wei
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
121
|
Lin G, Feng Q, Zhan F, Yang F, Niu Y, Li G. Generation and Analysis of Pyroptosis-Based and Immune-Based Signatures for Kidney Renal Clear Cell Carcinoma Patients, and Cell Experiment. Front Genet 2022; 13:809794. [PMID: 35281845 PMCID: PMC8908022 DOI: 10.3389/fgene.2022.809794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Pyroptosis is a programmed cell death caused by inflammasomes, which is closely related to immune responses and tumor progression. The present study aimed to construct dual prognostic indices based on pyroptosis-associated and immune-associated genes and to investigate the impact of the biological signatures of these genes on Kidney Renal Clear Cell Carcinoma (KIRC). Materials and Methods: All the KIRC samples from the Cancer Genome Atlas (TCGA) were randomly and equally divided into the training and testing datasets. Cox and Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis were used to screen crucial pyroptosis-associated genes (PAGs), and a pyroptosis-associated genes prognostic index (PAGsPI) was constructed. Immune-associated genes (IAGs) related to PAGs were identified, and then screened through Cox and LASSO regression analyses, and an immune-associated genes prognostic index (IAGsPI) was developed. These two prognostic indices were verified by using the testing and the Gene Expression Omnibus (GEO) datasets and an independent cohort. The patients’ response to immunotherapy was analyzed. A nomogram was constructed and calibrated. qRT-PCR was used to detect the expression of PAGs and IAGs in the tumor tissues and normal tissues. Functional experiment was carried out. Results: 86 PAGs and 1,774 differentially expressed genes (DEGs) were obtained. After intersecting PAGs with DEGs, 22 differentially expressed PAGs (DEPAGs) were included in Cox and LASSO regression analyses, identifying 5 crucial PAGs. The PAGsPI was generated. Patients in the high-PAGsPI group had a poor prognosis. 82 differentially expressed IAGs (DEIAGs) were highly correlated with DEPAGs. 7 key IAGs were screened out, and an IAGsPI was generated. Patients in the high-IAGsPI group had a poor prognosis. PAGsPI and IAGsPI were verified to be robust and reliable. The results revealed patients in low-PAGsPI group and high-IAGsPI group may be more sensitive to immunotherapy. The calibrated nomogram was proved to be reliable. An independent cohort study also proved that PAGsPI and IAGsPI performed well in prognosis prediction. We found that the expression of AIM2 may affect proliferation of KIRC cells. Conclusion: PAGsPI and IAGsPI could be regarded as potential biomarkers for predicting the prognosis of patients with KIRC.
Collapse
Affiliation(s)
- Gaoteng Lin
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Qingfu Feng
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Fangfang Zhan
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, China
| | - Fan Yang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuanjie Niu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gang Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
122
|
Li H, Li T, Zhang X. Identification of a Pyroptosis-Related Prognostic Signature Combined With Experiments in Hepatocellular Carcinoma. Front Mol Biosci 2022; 9:822503. [PMID: 35309514 PMCID: PMC8931679 DOI: 10.3389/fmolb.2022.822503] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/18/2022] [Indexed: 01/26/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide with poor prognosis. There is a necessary search for improvement in diagnosis and treatment methods to improve the prognosis. Some useful prognostic markers of HCC are still lacking. Pyroptosis is a type of programmed cell death caused by the inflammasome. It is still unknown whether pyroptosis-related genes (PRGs) are involved in the prognosis in HCC. The gene expression and clinical data of LIHC (liver hepatocellular carcinoma) patients were downloaded from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium database (ICGC). In this study, we identified 40 PRGs that were differentially expressed between LIHC and normal liver tissues. Based on the TCGA-LIHC cohort, a 9-gene prediction model was established with the Least absolute shrinkage and selection operator (LASSO)-penalized Cox regression. The risk score was calculated according to the model in the TCGA-LIHC cohort and the ICGC-LIHC cohort. Utilizing the median risk score from the TCGA cohort, LIHC patients from the ICGC-LIHC cohort were divided into two risk subgroups. The Kaplan–Meier (KM) survival curves demonstrated that patients with lower risk scores had significantly favorable overall survival (OS). Combined with the clinical characteristics, the risk score was an independent factor for predicting the OS of LIHC patients in both the TCGA-LIHC cohort and the ICGC-LIHC cohort. Functional enrichment and immune function analysis were carried out. Furthermore, a nomogram based on risk score, age, gender, and tumor stage was used to predict mortality of patients with LIHC. Moreover, KM survival analysis was performed for 9 genes in the risk model, among which CHMP4A, SCAF11, and GSDMC had significantly different results and the ceRNA network was constructed. Based on the core role of SCAF11, we performed loss-of-function experiments to explore the function of SCAF11 in vitro. Suppression of SCAF11 expression inhibited the proliferation, attenuated the migration and invasion, and induced apoptosis of liver cancer cell lines. In conclusion, the pyroptosis-related model and nomogram can be utilized for the clinical prognostic prediction in LIHC. This study has demonstrated for the first time that SCAF11 promotes the progression of liver cancer.
Collapse
Affiliation(s)
- Huihui Li
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tang Li
- Department of Respiratory and Critical Care Medicine, The Affiliated People’s Hospital to Ningbo University, Ningbo, China
| | - Xiaohua Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiaohua Zhang,
| |
Collapse
|
123
|
Luo J, Lai J. Pyroptosis-related molecular classification and immune microenvironment infiltration in breast cancer: A novel therapeutic target. J Cell Mol Med 2022; 26:2259-2272. [PMID: 35233921 PMCID: PMC8995442 DOI: 10.1111/jcmm.17247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 12/18/2022] Open
Abstract
The underlying role of pyroptosis in breast cancer (BC) remains unknown. Herein, we investigated the correlations of 33 pyroptosis‐related genes (PRGs) with immune checkpoints and immune cell infiltrations in BC patients based on The Cancer Genome Atlas cohort (n = 996) and Gene Expression Omnibus cohort (n = 3,262). Enrichment analysis revealed that these PRGs mainly functioned in pyroptosis, inflammasomes and regulation of autophagy pathway. Four prognostic independent PRGs (CASP9, TIRAP, GSDMC and IL18) were identified. Then, cluster 1/2 was recognized using consensus clustering for these four PRGs. Patients from cluster 1 had a favourable prognosis and diverse immune cell infiltrations. A nomogram was developed based on age, TNM stage, tumour subtype and pyroptosis score. Patients with the high‐risk group exhibited worse 5‐year OS, and the result was consistent in the external cohort. Additionally, high‐risk group patients were associated with downregulated immune checkpoint expression. Further analysis suggested that the high‐risk group patients were associated with a higher IC50 of paclitaxel, doxorubicin, cisplatin, methotrexate and vinorelbine. In summarizing, the pyroptosis score‐based nomogram might serve as an independent prognostic predictor and could guide medication for chemotherapy. Additionally, it may bring novel insight into the regulation of tumour immune microenvironment in BC and help to achieve precision immunotherapy.
Collapse
Affiliation(s)
- Jiayue Luo
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jianguo Lai
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
124
|
Wang YY, Shi LY, Zhu ZT, Wang QJ. A new pyroptosis model can predict the immunotherapy response and immune microenvironment characteristics and prognosis of patients with cutaneous melanoma based on TCGA and GEO databases. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:353. [PMID: 35434038 PMCID: PMC9011270 DOI: 10.21037/atm-22-1095] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/18/2022] [Indexed: 01/14/2023]
Abstract
Background Recent studies have shown that pyroptosis is related to cancer development. Our previous study also found that gasdermins (GSDMs) was associated with the tumor immune microenvironment. Therefore, we wanted to observe the relationship between pyroptosis and the immune microenvironment and prognosis of skin cutaneous melanoma (SKCM). Methods Pyroptosis-related genes were used for pan-cancer prognostic analysis using the GEPIA2 online analysis website. Prognosis-related genes were clustered using R software and related R packages, and the best clustering results were screened for prognosis analysis. The prognosis-related genes were also used to establish a prognosis-related model. Assess the predictive power of a model by comparing area under the curve (AUC). The t-test was used to analyze the differences of immune-related indicators between the two clusters and between high and low risk groups. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed on the differential genes. Results By clustering the prognosis-related genes, SKCM could be divided into 2 clusters with significant differences in prognosis P<0.05. A prognostic model can be established using prognosis-related genes. The AUC value of 1 year, 2 years and 3 years was 0.696, 0.702 and 0.664, respectively. The risk score was significantly associated with prognosis in both univariate and multivariate Cox analyses P<0.001. The low-risk group or C2 cluster with better prognosis had higher expression of pyroptosis-related genes, and tended to have a lower exclusion score, greater chemokine expression, more immune cells and higher immune score. However, the C2 cluster or low-risk group was also associated with a higher dysfunction score. At the same time, the C2 or low-risk group was more suitable for immunotherapy because of the higher immunophenoscore (IPS) score P<0.001. Correlation analysis also demonstrated that the risk score was positively correlated with the gene expression of most immunoinhibitors, MHC molecules, immunostimulators, and chemokines and their receptors. Conclusions Pyroptosis is associated with melanoma immune microenvironment, immunotherapy response, and prognoses. The constructed risk scores could effectively predict the characteristics of the immune microenvironment, the sensitivity to immunotherapy, and the prognosis of melanoma patients.
Collapse
Affiliation(s)
- Yuan-Yuan Wang
- Department of Clinical Trial, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Lin-Yang Shi
- Department of Clinical Trial, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zhi-Tu Zhu
- Department of Clinical Trial, Institute of Clinical Bioinformatics, Cancer Center of Jinzhou Medical University, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Qing-Jun Wang
- Department of Clinical Trial, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
125
|
Guo C, Liu Z, Yu Y, Liu S, Ma K, Ge X, Xing Z, Lu T, Weng S, Wang L, Liu L, Hua Z, Han X, Li Z. Integrated Analysis of Multi-Omics Alteration, Immune Profile, and Pharmacological Landscape of Pyroptosis-Derived lncRNA Pairs in Gastric Cancer. Front Cell Dev Biol 2022; 10:816153. [PMID: 35281096 PMCID: PMC8916586 DOI: 10.3389/fcell.2022.816153] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/09/2022] [Indexed: 12/11/2022] Open
Abstract
Background: Recent evidence demonstrates that pyroptosis-derived long non-coding RNAs (lncRNAs) have profound impacts on the initiation, progression, and microenvironment of tumors. However, the roles of pyroptosis-derived lncRNAs (PDLs) in gastric cancer (GC) remain elusive. Methods: We comprehensively analyzed the multi-omics data of 839 GC patients from three independent cohorts. The previous gene set enrichment analysis embedding algorithm was utilized to identify PDLs. A gene pair pipeline was developed to facilitate clinical translation via qualitative relative expression orders. The LASSO algorithm was used to construct and validate a pyroptosis-derived lncRNA pair prognostics signature (PLPPS). The associations between PLPPS and multi-omics alteration, immune profile, and pharmacological landscape were further investigated. Results: A total of 350 PDLs and 61,075 PDL pairs in the training set were generated. Cox regression revealed 15 PDL pairs associated with overall survival, which were utilized to construct the PLPPS model via the LASSO algorithm. The high-risk group demonstrated adverse prognosis relative to the low-risk group. Remarkably, genomic analysis suggested that the lower tumor mutation burden and gene mutation frequency (e.g., TTN, MUC16, and LRP1B) were found in the high-risk group patients. The copy number variants were not significantly different between the two groups. Additionally, the high-risk group possessed lower immune cell infiltration abundance and might be resistant to a few chemotherapeutic drugs (including cisplatin, paclitaxel, and gemcitabine). Conclusion: PDLs were closely implicated in the biological process and prognosis of GC, and our PLPPS model could serve as a promising tool to advance prognostic management and personalized treatment of GC patients.
Collapse
Affiliation(s)
- Chunguang Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yin Yu
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Shirui Liu
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Ma
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyong Ge
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhe Xing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Taoyuan Lu
- Department of Cerebrovascular Disease, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhaohui Hua
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Zhaohui Hua, ; Xinwei Han, ; Zhen Li,
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Zhaohui Hua, ; Xinwei Han, ; Zhen Li,
| | - Zhen Li
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Zhaohui Hua, ; Xinwei Han, ; Zhen Li,
| |
Collapse
|
126
|
Liang C, Fan J, Liang C, Guo J. Identification and Validation of a Pyroptosis-Related Prognostic Model for Gastric Cancer. Front Genet 2022; 12:699503. [PMID: 35280928 PMCID: PMC8916103 DOI: 10.3389/fgene.2021.699503] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/11/2021] [Indexed: 12/28/2022] Open
Abstract
Pyroptosis is an inflammatory form of programmed cell death triggered by caspase-1/4/5/11 that plays an important role in the occurrence and development of gastric cancer (GC). We investigated the prognostic value of pyroptosis-related genes in GC. The “LIMMA” R package and univariate Cox analysis were used to find pyroptosis-related genes with differential expression and prognostic value in the TCGA cohort and the identified genes were analyzed for GO enrichment and KEGG pathways. The selected genes were then included in a multivariate Cox proportional hazard regression analysis, and a ten genes prognostic model (BIRC2, CD274, IRGM, ANXA2, GBP5, TXNIP, POP1, GBP1, DHX9, and TLR2) was established. To evaluate the predictive value of the risk score on prognosis, patients were divided into high-risk and low-risk groups according to the median risk score, and survival analysis was carried out. Compared with the low-risk group, the OS of GC patients in the high-risk group was significantly worse. Additionally, these results were verified in the GSE84437 and GSE66229 datasets. Finally, through the combination of prognostic gene characteristics and clinicopathological features, a nomogram was established to predict individual survival probability. The results show that the genetic risk characteristics related to clinical features can be used as independent prognostic indicators for patients with GC. In summary, the pyroptosis-related risk signals proposed in this study can potentially predict the prognosis of patients with GC. In addition, we also found significant infiltration of dendritic cells, macrophages, and neutrophils in tissues of high-risk patients.
Collapse
Affiliation(s)
- Chaowei Liang
- Department of Gastrointestinal Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jiaxin Fan
- Department of Gastrointestinal Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chaojie Liang
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Chaojie Liang, ; Jiansheng Guo,
| | - Jiansheng Guo
- Department of Gastrointestinal Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Chaojie Liang, ; Jiansheng Guo,
| |
Collapse
|
127
|
Hu D, Cao Q, Tong M, Ji C, Li Z, Huang W, Jin Y, Tong G, Wang Y, Li P, Zhang H. A novel defined risk signature based on pyroptosis-related genes can predict the prognosis of prostate cancer. BMC Med Genomics 2022; 15:24. [PMID: 35135561 PMCID: PMC8822680 DOI: 10.1186/s12920-022-01172-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/31/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Pyroptosis can not only inhibit the occurrence and development of tumors but also develop a microenvironment conducive to cancer growth. However, pyroptosis research in prostate cancer (PCa) has rarely been reported. METHODS The expression profile and corresponding clinical data were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Patients were divided into different clusters using consensus clustering analysis, and differential genes were obtained. We developed and validated a prognostic biomarker for biochemical recurrence (BCR) of PCa using univariate Cox analysis, Lasso-Cox analysis, Kaplan-Meier (K-M) survival analysis, and time-dependent receiver operating characteristics (ROC) curves. RESULTS The expression levels of most pyroptosis-related genes (PRGs) are different not only between normal and tumor tissues but also between different clusters. Cluster 2 patients have a better prognosis than cluster 1 patients, and there are significant differences in immune cell content and biological pathway between them. Based on the classification of different clusters, we constructed an eight genes signature that can independently predict the progression-free survival (PFS) rate of a patient, and this signature was validated using a GEO data set (GSE70769). Finally, we established a nomogram model with good accuracy. CONCLUSIONS In this study, PRGs were used as the starting point and based on the expression profile and clinical data, a prognostic signature with a high predictive value for biochemical recurrence (BCR) following radical prostatectomy (RP) was finally constructed, and the relationship between pyroptosis, immune microenvironment, and PCa was explored, providing important clues for future research on pyroptosis and immunity.
Collapse
Affiliation(s)
- Ding Hu
- Department of Urology, Jinzhou Medical University, The First Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Qingfei Cao
- Department of Urology, Jinzhou Medical University, The First Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ming Tong
- Department of Urology, Jinzhou Medical University, The First Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - Chundong Ji
- Department of Urology, Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China.
| | - Zizhi Li
- Department of Urology, Jinzhou Medical University, The First Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Weichao Huang
- Department of Urology, Jinzhou Medical University, The First Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yanyang Jin
- Department of Urology, Jinzhou Medical University, The First Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Guangquan Tong
- Department of Urology, Jinzhou Medical University, The First Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yutao Wang
- Department of Urology, China Medical University, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Pengfei Li
- Department of Urology, Jinzhou Medical University, The First Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Huashan Zhang
- Department of Urology, Jinzhou Medical University, The First Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
128
|
Xu T, Gu H, Zhang C, Zhang W, Liang X, Cheng X. A Novel Risk Model Identified Based on Pyroptosis-Related lncRNA Predicts Overall Survival and Associates With the Immune Landscape of GC Patients. Front Genet 2022; 13:843538. [PMID: 35198013 PMCID: PMC8859253 DOI: 10.3389/fgene.2022.843538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignant gastrointestinal tumors worldwide. Pyroptosis was widely reported to exert a crucial function in tumor development. In addition, pyroptosis was also proved to be associated with the immune landscape. However, whether pyroptosis-related lncRNAs are associated with the prognosis and the immune landscape of GC remains unclear. In the present study, we first constructed a novel risk model by using pyroptosis-related lncRNAs. We identified 11 pyroptosis-related lncRNAs for the establishment of the risk model. The risk model could be used to predict the survival outcome and immune landscape of GC patients. The results of survival analysis and AUC value of a time-related ROC curve proved that our risk model has an elevated efficiency and accuracy in predicting the survival outcome of patients. We also found that the risk model was also associated with the immune landscape, drug sensitivity, and tumor mutation burden of GC patients. In conclusion, our risk model plays a crucial role in the tumor immune microenvironment and could be used to predict survival outcomes of GC patients.
Collapse
Affiliation(s)
- Tingting Xu
- The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Hanxin Gu
- The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Changsong Zhang
- The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Wushuang Zhang
- The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Xiaolong Liang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Xiaoxia Cheng, ; Xiaolong Liang,
| | - Xiaoxia Cheng
- The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, China
- *Correspondence: Xiaoxia Cheng, ; Xiaolong Liang,
| |
Collapse
|
129
|
Zhu W, Zhang J, Wang M, Zhai R, Xu Y, Wang J, Wang M, Zhang H, Liu L. Development of a prognostic pyroptosis-related gene signature for head and neck squamous cell carcinoma patient. Cancer Cell Int 2022; 22:62. [PMID: 35123464 PMCID: PMC8817543 DOI: 10.1186/s12935-022-02476-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/19/2022] [Indexed: 12/24/2022] Open
Abstract
Objective Head and neck squamous cell carcinoma (HNSCC) is a major threat to public health. Pyroptosis is a form of inflammatory programmed cell death that is still incompletely understood. The role of pyroptotic cell death in HNSCC remains to be fully defined. As such, the present study was developed to explore the potential prognostic utility of a pyroptosis-related gene (PRG) signature in HNSCC. Methods PRG expression patterns and the associated mutational landscape in HNSCC were analyzed, after which a 6-gene prognostic model was constructed through least absolute shrinkage and selection operator (LASSO) and Cox regression analyses using the TCGA dataset, followed by validation with two GEO datasets (GSE41643 and GSE65858). The relative expression of the genes in the prognostic model was assessed via RT-qPCR in tumor and paired adjacent normal tissue samples from a 32-patient cohort. Potential predictors of patient outcomes associated with this 6-gene model were identified through topological degree analyses of a protein–protein interaction network. Moreover, the prognostic value of NLRP3 as a predictor of HNSCC patient prognosis was established through immunohistochemical (IHC) analyses of samples from 176 HNSCC patients. Lastly, in vitro studies were performed to further demonstrate the relevance of NLRP3 in the context of HNSCC development. Results Differentially expressed PRGs were able to readily differentiate between HNSCC tumors and normal tissues. Risk scores derived from the 6-gene PRG model were independent predictors of HNSCC patient prognosis, and genes that were differentially expressed between low- and high-risk groups were associated with tumor immunity. RT-qPCR assays also showed the potential protective role of NLRP3 in HNSCC patients. IHC analyses further supported the value of NLRP3 as a predictor of HNSCC patient outcomes. Invasion and migration assays demonstrated the potential role of NLRP3 in the inhibition of HNSCC development. Conclusions Overall, these results highlight a novel prognostic gene signature that offers value in the context of HNSCC patient evaluation, although additional research will be essential to elucidate the mechanisms linking these PRGs to HNSCC outcomes. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02476-3.
Collapse
|
130
|
Deng M, Sun S, Zhao R, Guan R, Zhang Z, Li S, Wei W, Guo R. The pyroptosis-related gene signature predicts prognosis and indicates immune activity in hepatocellular carcinoma. Mol Med 2022; 28:16. [PMID: 35123387 PMCID: PMC8818170 DOI: 10.1186/s10020-022-00445-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/25/2022] [Indexed: 01/12/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) remains one of the most common malignant tumors with poor survival. Pyroptosis is a kind of programmed cell death that can regulate the proliferation, invasion, and metastasis of tumor cells. However, the expression levels of pyroptosis-related genes (PRGs) in HCC and their relationship with prognosis are still unclear. Methods Our study identified 35 PRGs through bioinformatics analysis that were differentially expressed between tumor samples and nontumor samples. According to these differentially expressed genes, HCC patients could be divided into two groups, cluster 1 and cluster 2. The least absolute shrinkage and selection operator (LASSO) Cox regression method was performed to construct a 10-gene signature that classified HCC patients in the cancer genome atlas (TCGA) database into low-risk and high-risk groups. Results The results showed that the survival rate of HCC patients in the low-risk group was significantly higher than that in the high-risk group (p < 0.001). The validation cohort, the Gene Expression Omnibus (GEO) cohort, was divided into two risk groups based on the median risk score calculated by the TCGA cohort. The overall survival (OS) of the low-risk group was significantly better than that of the high-risk group (p = 0.007). Univariate and multivariate Cox regression analyses revealed that the risk score was an independent factor in predicting OS in HCC patients. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that immune-related high-risk groups were rich in genes and had reduced immune status. Conclusions PRGs play a significant role in tumor immunity and have the potential capability to predict the prognosis of HCC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00445-0.
Collapse
|
131
|
Ou T, Wei Y, Long Y, Pan X, Yao D. A Novel Pyroptosis-Related Prognostic Signature for Cervical Squamous Cell Carcinoma. Int J Gen Med 2022; 15:2057-2073. [PMID: 35237069 PMCID: PMC8885126 DOI: 10.2147/ijgm.s353576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/11/2022] [Indexed: 12/01/2022] Open
Abstract
Purpose Pyroptosis has vital roles in tumorigenesis and cancer development; however, its relationship with cervical squamous cell cancer (CSCC) remains unexplored. In this study, we aimed to develop a CSCC prediction signature related to pyroptosis. Patients and Methods Consensus clustering analysis was conducted to detect pyroptosis-related subclusters for CSCC. Next, differentially expressed genes (DEGs) between subclusters were identified. Univariate, least absolute shrinkage and selection operator, and stepwise multivariate Cox regression analyses were applied to establish a prognostic model and a nomogram drawn. Additionally, functional enrichment analysis, tumor mutation burden, and immune characteristics associated with this signature were investigated. Results We constructed a seven-gene signature that functions as an independent predictor of prognosis in CSCC using data from The Cancer Genome Atlas. Patients with CSCC were divided into two groups based on median risk score, and patients in the low-risk group had significantly longer survival time than those in the high-risk group. Our findings were validated using Gene Expression Omnibus cohort data. We also established a nomogram, to expand the clinical applicability of our findings. The seven gene signature was associated with various molecular pathways, tumor mutation status, and immune microenvironment. Conclusion The pyroptosis-related risk signature consisting of seven genes developed here represents a potential robust biomarker for predicting prognosis and immunotherapy response in patients with CSCC.
Collapse
Affiliation(s)
- Tingyu Ou
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
- Department of Gynecology, The Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Yousheng Wei
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
| | - Ying Long
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
| | - Xinbin Pan
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
| | - Desheng Yao
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
- Correspondence: Desheng Yao, Email
| |
Collapse
|
132
|
Yu H, Fu Y, Tang Z, Jiang L, Qu C, Li H, Tan Z, Shu D, Peng Y, Liu S. A novel pyroptosis-related signature predicts prognosis and response to treatment in breast carcinoma. Aging (Albany NY) 2022; 14:989-1013. [PMID: 35085103 PMCID: PMC8833126 DOI: 10.18632/aging.203855] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/21/2022] [Indexed: 11/25/2022]
Abstract
Background: Pyroptosis is a new form of programmed cell death (PCD), also known as cellular inflammatory necrosis. Its discovery has resulted in a novel approach to the progression and medication resistance of breast cancer (BC). However, there is still a significant gap in the investigation of pyroptosis-related genes in BC. Methods: The mRNA expression profiles and clinical data of BC patients were obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Then, using the TCGA cohort, we created a predictive multigene signature including pyroptosis-related genes and verified it using the two GEO cohorts. A pyroptosis-related gene signature was created by combining several bioinformatics and statistical methodologies to predict patient prognosis and responses to immunotherapy and chemotherapy. Furthermore, a nomogram based on the gene signature and clinicopathological markers was created to better classify the risk and quantify the risk assessment of individual patients. Results: A pyroptosis-related gene signature consisting of 15 genes was established. The pyroptosis-related gene signature classified the patients into two groups: high-risk and low-risk. When combined with clinical variables, the risk score was discovered to be an independent predictor of overall survival (OS) in BC patients. Some immunological pathways and genes were linked to pyroptosis, according to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) evaluations. Patients in the high-risk group had a worse prognosis and were not very sensitive to immunotherapy. However, several chemotherapeutic agents were predicted to have greater potential for patients in the high-risk group. Finally, a nomogram was developed that included a classifier based on the 15 pyroptosis-related genes, tumor stage, age, and histologic grade. This nomogram demonstrated good classification capacity and might help with clinical decision-making in BC.
Collapse
Affiliation(s)
- Haochen Yu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Medical Faculty of Ludwig-Maximilians-University of Munich, University Hospital of LMU Munich, Munich, Germany
| | - Yong Fu
- Department of Breast Surgery, Dianjiang People’s Hospital of Chongqing, Chongqing, China
| | - Zhenrong Tang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Linshan Jiang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chi Qu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Han Li
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhaofu Tan
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Shu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Peng
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengchun Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
133
|
Zhang S, Li X, Zhang X, Zhang S, Tang C, Kuang W. The Pyroptosis-Related Gene Signature Predicts the Prognosis of Hepatocellular Carcinoma. Front Mol Biosci 2022; 8:781427. [PMID: 35047554 PMCID: PMC8762168 DOI: 10.3389/fmolb.2021.781427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Objective: Hepatocellular carcinoma (HCC) is a genetically and phenotypically heterogeneous tumor, and the prediction of its prognosis remains a challenge. In the past decade, studies elucidating the mechanisms that induce tumor cell pyroptosis has rapidly increased. The elucidation of their mechanisms is essential for the clinical development optimal application of anti-hepatocellular carcinoma therapeutics. Methods: Based on the different expression profiles of pyroptosis-related genes in HCC, we constructed a LASSO Cox regression pyroptosis-related genes signature that could more accurately predict the prognosis of HCC patients. Results: We identified seven pyroptosis-related genes signature (BAK1, CHMP4B, GSDMC, NLRP6, NOD2, PLCG1, SCAF11) in predicting the prognosis of HCC patients. Kaplan Meier survival analysis showed that the pyroptosis-related high-risk gene signature was associated with poor prognosis HCC patients. Moreover, the pyroptosis-related genes signature performed well in the survival analysis and ICGC validation group. The hybrid nomogram and calibration curve further demonstrated their feasibility and accuracy for predicting the prognosis of HCC patients. Meanwhile, the evaluation revealed that our novel signature predicted the prognosis of HCC patients more accurately than traditional clinicopathological features. GSEA analysis further revealed the novel signature associated mechanisms of immunity response in high-risk groups. Moreover, analysis of immune cell subsets with relevant functions revealed significant differences in aDCs, APC co-stimulation, CCR, check-point, iDCs, Macrophages, MHC class-I, Treg, and type II INF response between high- and low-risk groups. Finally, the expression of Immune checkpoints was enhanced in high-risk group, and m6A-related modifications were expressed differently between low- and high-risk groups. Conclusion: The novel pyroptosis-related genes signature can predict the prognosis of patients with HCC and insight into new cell death targeted therapies.
Collapse
Affiliation(s)
- Shuqiao Zhang
- First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyu Li
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiang Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shijun Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunzhi Tang
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weihong Kuang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
| |
Collapse
|
134
|
Signature Construction and Molecular Subtype Identification Based on Pyroptosis-Related Genes for Better Prediction of Prognosis in Hepatocellular Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4494713. [PMID: 35069975 PMCID: PMC8767411 DOI: 10.1155/2022/4494713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/11/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. However, there is a lack of adequate means of treatment prognostication for HCC. Pyroptosis is a newly discovered way of programmed cell death. However, the prognostic role of pyroptosis in HCC has not been thoroughly investigated. Here, we generated a novel prognostic signature to evaluate the prognostic value of pyroptosis-related genes (PRGs) using the data from The Cancer Genome Atlas (TCGA) database. The accuracy of the signature was validated using survival analysis through the International Cancer Genome Consortium cohort (n = 231) and the First Affiliated Hospital of Wenzhou Medical University cohort (n = 180). Compared with other clinical factors, the risk score of the signature was found to be associated with better patient outcomes. The enrichment analysis identified multiple pathways related with pyroptosis in HCC. Furthermore, drug sensitivity testing identified six potential chemotherapeutic agents to provide possible treatment avenues. Interestingly, patients with low risk were confirmed to be associated with lower tumor mutation burden (TMB). However, patients at high risk were found to have a higher count of immune cells. Consensus clustering was performed to identify two main molecular subtypes (named clusters A and B) based on the signature. It was found that compared with cluster B, better survival outcomes and lower TMB were observed in cluster A. In conclusion, signature construction and molecular subtype identification of PRGs could be used to predict the prognosis of HCC, which may provide a specific reference for the development of novel biomarkers for HCC treatment.
Collapse
|
135
|
A Pyroptosis-Based Prognostic Model for Immune Microenvironment Estimation of Hepatocellular Carcinoma. DISEASE MARKERS 2022; 2022:8109771. [PMID: 35047095 PMCID: PMC8763514 DOI: 10.1155/2022/8109771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023]
Abstract
Background Hepatocellular carcinoma (HCC), an aggressive malignant tumor, has a high incidence and unfavorable prognosis. Recently, the synergistic effect of pyroptosis in antitumor therapy and regulation of tumor immune microenvironment has made it possible to become a novel therapeutic method, but its potential mechanism still needs further exploration. Methods Differentially expressed genes with prognostic value in Liver Hepatocellular Carcinoma Project of The Cancer Genome Atlas (TCGA-LIHC) cohort were screened and incorporated into the risk signature by Cox proportional hazards regression model and least absolute shrinkage and selection operator. Kaplan-Meier (KM) curves and receiver operating characteristic (ROC) curves were applied to conduct survival comparisons and estimate prediction ability. The dataset of Liver Cancer-RIKEN, Japan Project from International Cancer Genome Consortium (ICGC-LIRI-JP) cohort was used to verify the reliability of the signature. Correlation analysis between clinicopathological characteristics, immune infiltration, drug sensitivities, and risk scores was conducted. Functional annotation analyses were performed for the genes differentially expressed between high-risk and low-risk groups. Results A risk signature consisting of 6 pyroptosis-related genes in HCC was developed and validated. KM curves and ROC curves revealed its considerable predictive accuracy. Higher risk scores meant more advanced grade, higher alpha-fetoprotein level, and stronger invasive ability. Overexpressed genes in high-risk population were more enriched in the immune-associated pathways, and these patients might be more sensitive to immune checkpoint inhibitors instead of Sorafenib. Intriguingly, 6 identified genes were promising to be prognostic biomarkers and therapeutic targets of HCC. Conclusions The signature may have crucial clinical significance in predicting survival prognosis, immune infiltration, and drug efficacy based on pyroptosis-related genes.
Collapse
|
136
|
Wang Q, Liu Q, Qi S, Zhang J, Liu X, Li X, Li C. Comprehensive Pan-Cancer Analyses of Pyroptosis-Related Genes to Predict Survival and Immunotherapeutic Outcome. Cancers (Basel) 2022; 14:cancers14010237. [PMID: 35008400 PMCID: PMC8750048 DOI: 10.3390/cancers14010237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/24/2021] [Accepted: 12/31/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Pyroptosis is a type of programmed cell death accompanied by inflammation. Although the dysregulation of pyroptosis has been reported to be involved in carcinogenesis, its function in cancer progression and therapy remains largely unknown and controversial because of the inconsistency across different cancer types. This study provides the most complete gene set of pyroptosis-related genes (PRGs), depicts their expression changes across 31 cancer types for the first time, and constructs a novel prognostic risk model to predict cancer patient survival. In addition, the effects of pyroptosis on immune cell infiltration and immunotherapy were dissected at the pan-cancer level. Small-molecule compounds, which may be beneficial to immunotherapy, were screened on the basis of differentially expressed PRGs. These results lay the foundation for the study of pyroptosis in cancer. Abstract Pyroptosis is a newly characterized type of programmed cell death. However, its function in cancer progression and its response to treatments remain controversial. Here, we extensively and systematically compiled genes associated with pyroptosis, integrated multiomics data and clinical data across 31 cancer types from The Cancer Genome Atlas, and delineated the global alterations in PRGs at the transcriptional level. The underlying transcriptional regulations by copy number variation, miRNAs, and enhancers were elucidated by integrating data from the Genotype-Tissue Expression and International Cancer Genome Consortium. A prognostic risk model, based on the expression of PRGs across 31 cancer types, was constructed. To investigate the role of pyroptosis in immunotherapy, we found five PRGs associated with effectiveness by exploring the RNA-Seq data of patients with immunotherapy, and further identified two small-molecule compounds that are potentially beneficial for immunotherapy. For the first time, from a pyroptosis standpoint, this study establishes a novel strategy to predict cancer patient survival and immunotherapeutic outcomes.
Collapse
Affiliation(s)
- Qilin Wang
- School of Engineering Medicine, Beihang University, Beijing 100191, China; (Q.W.); (Q.L.); (S.Q.); (J.Z.)
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Qian Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China; (Q.W.); (Q.L.); (S.Q.); (J.Z.)
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Sihan Qi
- School of Engineering Medicine, Beihang University, Beijing 100191, China; (Q.W.); (Q.L.); (S.Q.); (J.Z.)
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Junyou Zhang
- School of Engineering Medicine, Beihang University, Beijing 100191, China; (Q.W.); (Q.L.); (S.Q.); (J.Z.)
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Xian Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (X.L.); (X.L.)
| | - Xin Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (X.L.); (X.L.)
| | - Chunyan Li
- School of Engineering Medicine, Beihang University, Beijing 100191, China; (Q.W.); (Q.L.); (S.Q.); (J.Z.)
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, China
- Correspondence:
| |
Collapse
|
137
|
Wang N, Ding L, Liu D, Zhang Q, Zheng G, Xia X, Xiong S. Molecular investigation of candidate genes for pyroptosis-induced inflammation in diabetic retinopathy. Front Endocrinol (Lausanne) 2022; 13:918605. [PMID: 35957838 PMCID: PMC9357938 DOI: 10.3389/fendo.2022.918605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Diabetic retinopathy is a diabetic microvascular complication. Pyroptosis, as a way of inflammatory death, plays an important role in the occurrence and development of diabetic retinopathy, but its underlying mechanism has not been fully elucidated. The purpose of this study is to identify the potential pyroptosis-related genes in diabetic retinopathy by bioinformatics analysis and validation in a diabetic retinopathy model and predict the microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) interacting with them. Subsequently, the competing endogenous RNA (ceRNA) regulatory network is structured to explore their potential molecular mechanism. METHODS We obtained mRNA expression profile dataset GSE60436 from the Gene Expression Omnibus (GEO) database and collected 51 pyroptosis-related genes from the PubMmed database. The differentially expressed pyroptosis-related genes were obtained by bioinformatics analysis with R software, and then eight key genes of interest were identified by correlation analysis, Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and protein-protein interaction (PPI) network analysis. Then, the expression levels of these key pyroptosis-related genes were validated with quantitative real-time polymerase chain reaction (qRT-PCR) in human retinal endothelial cells with high glucose incubation, which was used as an in vitro model of diabetic retinopathy. Western blot was performed to measure the protein levels of gasdermin D (GSDMD), dasdermin E (GSDME) and cleaved caspase-3 in the cells. Moreover, the aforementioned genes were further confirmed with the validation set. Finally, the ceRNA regulatory network was structured, and the miRNAs and lncRNAs which interacted with CASP3, TLR4, and GBP2 were predicted. RESULTS A total of 13 differentially expressed pyroptosis-related genes were screened from six proliferative diabetic retinopathy patients and three RNA samples from human retinas, including one downregulated gene and 12 upregulated genes. A correlation analysis showed that there was a correlation among these genes. Then, KEGG pathway and GO enrichment analyses were performed to explore the functional roles of these genes. The results showed that the mRNA of these genes was mainly related to inflammasome complex, interleukin-1 beta production, and NOD-like receptor signaling pathway. In addition, eight hub genes-CASP3, TLR4, NLRP3, GBP2, CASP1, CASP4, PYCARD, and GBP1-were identified by PPI network analysis using Cytoscape software. High glucose increased the protein level of GSDMD and GSDME, as critical effectors of pyroptosis, in retinal vascular endothelial cells. Verified by qRT-PCR, the expression of all these eight hub genes in the in vitro model of diabetic retinopathy was consistent with the results of the bioinformatics analysis of mRNA chip. Among them, CASP4, GBP1, CASP3, TLR4, and GBP2 were further validated in the GSE179568 dataset. Finally, 20 miRNAs were predicted to target three key genes-CASP3, GBP2, and TLR4, and 22 lncRNAs were predicted to potentially bind to these 20 miRNAs. Then, we constructed a key ceRNA network that is expected to mediate cellular pyroptosis in diabetic retinopathy. CONCLUSION Through the data analysis of the GEO database by R software and verification by qRT-PCR and validation set, we successfully identified potential pyroptosis-related genes involved in the occurrence of diabetic retinopathy. The key ceRNA regulatory network associated with these genes was structured. These findings might improve the understanding of molecular mechanisms underlying pyroptosis in diabetic retinopathy.
Collapse
Affiliation(s)
- Nan Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lexi Ding
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Die Liu
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Quyan Zhang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Guoli Zheng
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Siqi Xiong
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Siqi Xiong,
| |
Collapse
|
138
|
Zheng S, Xie X, Guo X, Wu Y, Chen G, Chen X, Wang M, Xue T, Zhang B. Identification of a Pyroptosis-Related Gene Signature for Predicting Overall Survival and Response to Immunotherapy in Hepatocellular Carcinoma. Front Genet 2021; 12:789296. [PMID: 34925465 PMCID: PMC8678488 DOI: 10.3389/fgene.2021.789296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
Pyroptosis is a novel kind of cellular necrosis and shown to be involved in cancer progression. However, the diverse expression, prognosis and associations with immune status of pyroptosis-related genes in Hepatocellular carcinoma (HCC) have yet to be analyzed. Herein, the expression profiles and corresponding clinical characteristics of HCC samples were collected from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Then a pyroptosis-related gene signature was built by applying the least absolute shrinkage and selection operator (LASSO) Cox regression model from the TCGA cohort, while the GEO datasets were applied for verification. Twenty-four pyroptosis-related genes were found to be differentially expressed between HCC and normal samples. A five pyroptosis-related gene signature (GSDME, CASP8, SCAF11, NOD2, CASP6) was constructed according to LASSO Cox regression model. Patients in the low-risk group had better survival rates than those in the high-risk group. The risk score was proved to be an independent prognostic factor for overall survival (OS). The risk score correlated with immune infiltrations and immunotherapy responses. GSEA indicated that endocytosis, ubiquitin mediated proteolysis and regulation of autophagy were enriched in the high-risk group, while drug metabolism cytochrome P450 and tryptophan metabolism were enriched in the low-risk group. In conclusion, our pyroptosis-related gene signature can be used for survival prediction and may also predict the response of immunotherapy.
Collapse
Affiliation(s)
- Susu Zheng
- Department of Hepatic Oncology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China.,Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Zhongshan Hospital and Shanghai Medical School, The Liver Cancer Institute, Fudan University, Shanghai, China
| | - Xiaoying Xie
- Department of Hepatic Oncology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China.,Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Zhongshan Hospital and Shanghai Medical School, The Liver Cancer Institute, Fudan University, Shanghai, China
| | - Xinkun Guo
- Department of Hepatic Oncology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Yanfang Wu
- Department of Hepatic Oncology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Guobin Chen
- Department of Hepatic Oncology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Xiaochun Chen
- Department of Hepatic Oncology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Meixia Wang
- Department of Hepatic Oncology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Tongchun Xue
- Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Zhongshan Hospital and Shanghai Medical School, The Liver Cancer Institute, Fudan University, Shanghai, China
| | - Boheng Zhang
- Department of Hepatic Oncology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China.,Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Zhongshan Hospital and Shanghai Medical School, The Liver Cancer Institute, Fudan University, Shanghai, China.,Center for Evidence-based Medicine, Shanghai Medical School, Fudan University, Shanghai, China
| |
Collapse
|
139
|
Huang Q, Li J, Mo L, Zhao Y. A Novel Risk Signature with Seven Pyroptosis-Related Genes for Prognosis Prediction in Glioma. World Neurosurg 2021; 159:e285-e302. [PMID: 34929369 DOI: 10.1016/j.wneu.2021.12.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Increasing evidence indicates that pyroptosis is closely linked to the occurrence and progression of cancer. However, the expression and prognostic role of most pyroptosis-related genes in glioma have not been fully elucidated. METHODS Herein, we explored the expression profiles and prognostic value of 33 pyroptosis-related genes in glioma. LASSO regression analysis was then used to construct a risk signature to predict glioma outcomes in The Cancer Genome Atlas (TCGA) cohort. Furthermore, we constructed a nomogram based on independent prognostic factors and performed external validation. Finally, functional enrichment analysis was performed to explore the potential biological role of the pyroptosis-related signature in glioma. RESULTS The expression of most pyroptosis-related genes (31/33) was significantly different between normal brain and glioma tissue. By univariate Cox regression analysis, 24 genes were found to be significantly correlated with glioma overall survival (OS). Subsequently, we constructed a 7-gene risk signature in the TCGA training cohort, which demonstrated good performance in predicting glioma survival through multidatabase validation. Moreover, a nomogram was established based on independent prognostic factors (age, WHO grade, IDH status and signature) and confirmed to be more effective and accurate through internal evaluation and external validation. Finally, functional enrichment analyses suggested that the signature might be related to invasion ability and immune function. CONCLUSIONS The risk signature based on seven pyroptosis-related genes can effectively predict the clinical outcomes of glioma patients. Our study provides novel insights for further understanding the association between pyroptosis-related genes and glioma prognosis.
Collapse
Affiliation(s)
- Qianrong Huang
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China
| | - Jianwen Li
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China
| | - Ligen Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China
| | - Yinnong Zhao
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China.
| |
Collapse
|
140
|
Lv W, Zhao C, Tan Y, Hu W, Yu H, Zeng N, Zhang Q, Wu Y. Identification of an Aging-Related Gene Signature in Predicting Prognosis and Indicating Tumor Immune Microenvironment in Breast Cancer. Front Oncol 2021; 11:796555. [PMID: 34976839 PMCID: PMC8716799 DOI: 10.3389/fonc.2021.796555] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/25/2021] [Indexed: 12/17/2022] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed malignancy accompanied by high invasion and metastasis features. Importantly, emerging studies have supported that aging is a key clue that participates in the immune state and development of BC. Nevertheless, there are no studies concerning the aging-related genes (AGs) in constructing the prognosis signature of BC. Here, to address this issue, we initially performed a systematic investigation of the associations between AGs and BC prognosis and accordingly constructed a prognosis risk model with 10 AGs including PLAU, JUND, IL2RG, PCMT1, PTK2, HSPA8, NFKBIA, GCLC, PIK3CA, and DGAT1 by using the least absolute shrinkage and selection operator (LASSO) regression and Cox regression analysis. Meanwhile, our analysis further confirmed that the nomogram possessed a robust performance signature for predicting prognosis compared to clinical characteristics of BC patients, including age, clinical stage, and TNM staging. Moreover, the risk score was confirmed as an independent prognostic index of BC patients and was potentially correlated with immune scores, estimate score, immune cell infiltration level, tumor microenvironment, immunotherapy effect, and drug sensitivity. Furthermore, in the external clinical sample validation, AGs were expressed differentially in patients from different risk groups, and tumor-associated macrophage markers were elevated in high-risk BC tissues with more co-localization of AGs. In addition, the proliferation, transwell, and wound healing assays also confirmed the promoting effect of DGAT1 in BC cell proliferation and migration. Therefore, this well-established risk model could be used for predicting prognosis and immunotherapy in BC, thus providing a powerful instrument for combating BC.
Collapse
Affiliation(s)
| | | | | | | | | | - Ning Zeng
- *Correspondence: Ning Zeng, ; Qi Zhang, ; Yiping Wu,
| | - Qi Zhang
- *Correspondence: Ning Zeng, ; Qi Zhang, ; Yiping Wu,
| | - Yiping Wu
- *Correspondence: Ning Zeng, ; Qi Zhang, ; Yiping Wu,
| |
Collapse
|
141
|
Pyroptosis-Related Gene Signature Is a Novel Prognostic Biomarker for Sarcoma Patients. DISEASE MARKERS 2021; 2021:9919842. [PMID: 34904022 PMCID: PMC8665299 DOI: 10.1155/2021/9919842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/07/2021] [Accepted: 11/13/2021] [Indexed: 01/01/2023]
Abstract
Sarcoma is a rare and an extremely aggressive form of cancer that originates from mesenchymal cells. Pyroptosis exerts a dual effect on tumours by inhibiting tumour cell proliferation while creating a microenvironment suitable for tumour cell development and proliferation. However, the significance of pyroptosis-related gene (PRG) expression in sarcoma has not yet been evaluated. Here, we conduct a retrospective analysis to examine PRG expression in 256 sarcoma samples from The Cancer Genome Atlas database. We identified the PRGs that had a significant correlation with overall patient survival in sarcoma by performing a univariate Cox regression analysis. Subsequently, we conducted a LASSO regression analysis and created a risk model for a six-PRG signature. As indicated from the Kaplan–Meier analysis, this signature revealed a significant difference between high- and low-risk sarcoma patients. A receiver operating characteristic curve analysis confirmed that this signature could predict overall patient survival in sarcoma patients with high sensitivity and specificity. Gene ontology annotation and Kyoto Encyclopaedia of Genes and Genomes pathway enrichment analyses revealed that five independent PRGs were closely associated with increased immune activity. Moreover, we also deciphered that increased number of immune cells infiltrated the tumour microenvironment in sarcoma. In brief, the PRG signature can effectively act as novel prognostic biomarker for sarcoma patients and is associated with the tumour immune microenvironment.
Collapse
|
142
|
Zhang Y, He R, Lei X, Mao L, Jiang P, Ni C, Yin Z, Zhong X, Chen C, Zheng Q, Li D. A Novel Pyroptosis-Related Signature for Predicting Prognosis and Indicating Immune Microenvironment Features in Osteosarcoma. Front Genet 2021; 12:780780. [PMID: 34899864 PMCID: PMC8662937 DOI: 10.3389/fgene.2021.780780] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is a common malignant bone tumor with a propensity for drug resistance, recurrence, and metastasis. A growing number of studies have elucidated the dual role of pyroptosis in the development of cancer, which is a gasdermin-regulated novel inflammatory programmed cell death. However, the interaction between pyroptosis and the overall survival (OS) of osteosarcoma patients is poorly understood. This study aimed to construct a prognostic model based on pyroptosis-related genes to provide new insights into the prognosis of osteosarcoma patients. We identified 46 differentially expressed pyroptosis-associated genes between osteosarcoma tissues and normal control tissues. A total of six risk genes affecting the prognosis of osteosarcoma patients were screened to form a pyroptosis-related signature by univariate and LASSO regression analysis and verified using GSE21257 as a validation cohort. Combined with other clinical characteristics, including age, gender, and metastatic status, we found that the pyroptosis-related signature score, which we named “PRS-score,” was an independent prognostic factor for patients with osteosarcoma and that a low PRS-score indicated better OS and a lower risk of metastasis. The result of ssGSEA and ESTIMATE algorithms showed that a lower PRS-score indicated higher immune scores, higher levels of tumor infiltration by immune cells, more active immune function, and lower tumor purity. In summary, we developed and validated a pyroptosis-related signature for predicting the prognosis of osteosarcoma, which may contribute to early diagnosis and immunotherapy of osteosarcoma.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Rong He
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Xuan Lei
- Department of Burn and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lianghao Mao
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Pan Jiang
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Guizhou Orthopedics Hospital, Guiyang, China
| | - Chenlie Ni
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhengyu Yin
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xinyu Zhong
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chen Chen
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University Zhenjiang, Guiyang, China
| | - Qiping Zheng
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University Zhenjiang, Guiyang, China.,Shenzhen Academy of Peptide Targeting Technology at Pingshan, and Shenzhen Tyercan Bio-Pharm Co., Ltd., Shenzhen, China
| | - Dapeng Li
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
143
|
Niu X, Cheng R, Wang Y, Chen J, Wang C, Ji H. Development of a Prognostic Model of Glioma Based on Pyroptosis-Related Genes. World Neurosurg 2021; 158:e929-e945. [PMID: 34861452 DOI: 10.1016/j.wneu.2021.11.112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Glioma is the most malignant tumor of the central nervous system, with a poor prognosis. Pyroptosis is known to regulate the malignant phenotype of tumor cells, thus affecting the prognosis of patients. However, the role of pyroptosis-related genes (PRGs) in glioma remains unclear. METHODS We used the Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and Rembrandt database of patients with glioma to construct a PRG-based prognostic model and analyzed the relationship between the prognostic model and tumor immune microenvironment. The Wilcox test was used to compare the expression of PRGs in glioma and normal tissues based on TCGA. Univariate Cox and LASSO regression were used to construct the prognostic model. The CGGA and Rembrandt database were used as validation sets to validate the model. RESULTS Five genes were included in the model (BAX, CASP1, CASP3, CASP6, and NOD1). The survival of patients in the high-risk group was lower than that in the low-risk group. The receiver operating characteristic curve showed that the model had good prognostic evaluation ability and accuracy in all 3 cohorts of patients with glioma. The correlation analysis between the prognostic model and immune infiltration showed that the degree of immune cell infiltration, immune response process, and the expression level of immune checkpoints in the high-risk group were higher than those in the low-risk group. CONCLUSIONS We have constructed a reliable PRG-related prognostic model, which can provide reference for the prognostic evaluation of patients with glioma.
Collapse
Affiliation(s)
- Xiaochen Niu
- The Fifth Clinical Medical College of Shanxi Medical University, Tai Yuan, China
| | - Rui Cheng
- The Fifth Clinical Medical College of Shanxi Medical University, Tai Yuan, China; Department of Neurosurgery, Shanxi Provincial People's Hospital, Tai Yuan, China
| | - Yongqi Wang
- The Second Clinical Medical College of Shanxi Medical University, Tai Yuan, China
| | - Juanjuan Chen
- The Second Clinical Medical College of Shanxi Medical University, Tai Yuan, China
| | - Chunhong Wang
- The Fifth Clinical Medical College of Shanxi Medical University, Tai Yuan, China; Department of Neurosurgery, Shanxi Provincial People's Hospital, Tai Yuan, China
| | - Hongming Ji
- The Fifth Clinical Medical College of Shanxi Medical University, Tai Yuan, China; Department of Neurosurgery, Shanxi Provincial People's Hospital, Tai Yuan, China.
| |
Collapse
|
144
|
Identification of pyroptosis-related signature for cervical cancer predicting prognosis. Aging (Albany NY) 2021; 13:24795-24814. [PMID: 34837692 PMCID: PMC8660613 DOI: 10.18632/aging.203716] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/28/2021] [Indexed: 12/21/2022]
Abstract
Cervical cancer (CC) is one of the most common malignancies encountered in gynecology practice. However, there is a paucity of information about specific biomarkers that assist in the diagnosis and prognosis of CC. Pyroptosis is a form of programmed cell death whose different elements are related to the occurrence, invasion, and metastasis of tumors. However, the role of pyroptosis phenomena in the progression of CC has not yet been elucidated. This study focuses on the development of a pyroptosis-associated prognostic signature for CC using integrated bioinformatics to delineate the relationships among the signature, tumor microenvironment, and immune response of the patients. In this respect, we identified a prognostic signature that depends on eight pyroptosis-related genes (PRGs) that designate with better prognostic survival in the low-risk group (P<0.05) and where AUC values were greater than 0.7. A multi-factor Cox regression analysis indicated that such a signature could be used as an independent prognostic factor, and both the DCA and the Nomogram suggested that the proposed prognostic signature had good predictive capabilities. Interestingly, this prognostic signature can be applied to multiple tumors and thus, is versatile from a clinical point of view. In addition, there were significant differences in the tumor microenvironment and immune infiltration status between the high- and low-risk groups (P<0. 05). The core gene granzyme B (GZMB) was screened and the CC-associated regulatory axis, GZMB/ miR-378a/TRIM52-AS1, was constructed, which may promote CC progression, and further experimentation is needed to validate these results.
Collapse
|
145
|
Zhang X, Yang Q. A Pyroptosis-Related Gene Panel in Prognosis Prediction and Immune Microenvironment of Human Endometrial Cancer. Front Cell Dev Biol 2021; 9:705828. [PMID: 34722500 PMCID: PMC8551636 DOI: 10.3389/fcell.2021.705828] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/22/2021] [Indexed: 12/02/2022] Open
Abstract
As the second common diagnosed cancer among gynecological tumors, endometrial cancer (EC) has heterogeneous pathogenesis and clinical manifestations. Therefore, prognosis prediction that considers gene expression value and clinical characteristics, is helpful to patients with EC. We downloaded RNA expression and clinical data from the TCGA database. We achieved 4 DEPRGs and constructed the PRG panel by univariate, lasso and multivariate Cox analysis. Based on the median value of the risk score, patients were divided into two groups. The Kaplan–Meier curve suggested that the patients with lower risk scores had better clinical outcomes of EC. AUC of ROC curves suggested the panel can be used as an independent predictor. Future analysis indicated the positive correlations between risk score and clinical characteristics. What’s more, we performed GO and KEGG functional analysis and immune environment exploration to get an understanding of the potential molecular mechanism and immunotherapeutic target. To future validate the panel, we found that the relapse-free and overall survival probability of 4 prognostic DEPRGs between high-expression group and low-expression group were different through the Kaplan–Meier plotter in UCEC. In addition, GEPIA database and RT-PCR experiment indicated GPX4 and GSDMD were highly expressed in UCEC compared to normal endometrial tissue, and TIRAP and ELANE were downregulated. This study identified a PRG panel to predict the prognosis immune microenvironment in human EC. Then, Kaplan–Meier analysis and AUC below the ROC curves was used to validate the panel. In addition, Chi-square was used to show the clinical significance. GO, KEGG and GSEA were used to show the functional differences. Different immune-related databases were used to analyze the immune characteristics. The Kaplan–Meier plotter website was used to assess the effect of genes on survival. GEPIA and RT-PCR were used to analyze the expression level. In summary, we identified 4 prognosis-associated pyroptosis-related genes (ELANE, GPX4, GSDMD, and TIRAP). The panel can also predict prognosis prediction and immune microenvironment in human endometrial cancer.
Collapse
Affiliation(s)
- Xiaocui Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
146
|
Zheng C, Tan Z. A novel identified pyroptosis-related prognostic signature of colorectal cancer. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:8783-8796. [PMID: 34814322 DOI: 10.3934/mbe.2021433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Colorectal cancer (CRC), one of the most common malignancies worldwide, leads to abundant cancer-related mortalities annually. Pyroptosis, a new kind of programmed cell death, plays a critical role in immune response and tumor progression. Our study aimed to identify a prognostic signature for CRC based on pyroptosis-related genes (PRGs). The difference in PRGs between CRC tissues and normal tissues deposited in the TCGA database was calculated by "limma" R package. The tumor microenvironment (TME) of CRC cases was accessed by the ESTIMATE algorithm. The prognostic PRGs were identified using Cox regression analysis. A least absolute shrinkage and selector operation (LASSO) algorithm was used to calculate the risk scores and construct a clinical predictive model of CRC. Gene Set Enrichment Analysis (GSEA) was performed for understanding the function annotation of the signature in the tumor microenvironment. We found that most PRGs were significantly dysregulated in CRC. Through the LASSO method, three key PRGs were selected to calculate the risk scores and construct the prognostic model for CRC. The risk score was an independent indicator of patient's prognosis. In addition, we classified the CRC patients into two clusters based on risk scores and discovered that CRC patients in cluster 2 underwent worse overall survival and owned higher expression levels of immune checkpoint genes in tumor tissues. In conclusion, our study identified a PRG-related prognostic signature for CRC, according to which we classified the CRC patients into two clusters with distinct prognosis and immunotherapy potential.
Collapse
Affiliation(s)
- Chen Zheng
- First Department of General Surgery, Xi'an Central Hospital, Xi'an, Shaanxi Province, China
| | - Zhaobang Tan
- Department of digestive surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
147
|
Wu P, Shi J, Sun W, Zhang H. Identification and validation of a pyroptosis-related prognostic signature for thyroid cancer. Cancer Cell Int 2021; 21:523. [PMID: 34627252 PMCID: PMC8502398 DOI: 10.1186/s12935-021-02231-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022] Open
Abstract
Background Pyroptosis is a form of programmed cell death triggered by inflammasomes. However, the roles of pyroptosis-related genes in thyroid cancer (THCA) remain still unclear. Objective This study aimed to construct a pyroptosis-related signature that could effectively predict THCA prognosis and survival. Methods A LASSO Cox regression analysis was performed to build a prognostic model based on the expression profile of each pyroptosis-related gene. The predictive value of the prognostic model was validated in the internal cohort. Results A pyroptosis-related signature consisting of four genes was constructed to predict THCA prognosis and all patients were classified into high- and low-risk groups. Patients with a high-risk score had a poorer overall survival (OS) than those in the low-risk group. The area under the curve (AUC) of the receiver operator characteristic (ROC) curves assessed and verified the predictive performance of this signature. Multivariate analysis showed the risk score was an independent prognostic factor. Tumor immune cell infiltration and immune status were significantly higher in low-risk groups, which indicated a better response to immune checkpoint inhibitors (ICIs). Of the four pyroptosis-related genes in the prognostic signature, qRT-PCR detected three of them with significantly differential expression in THCA tissues. Conclusion In summary, our pyroptosis-related risk signature may have an effective predictive and prognostic capability in THCA. Our results provide a potential foundation for future studies of the relationship between pyroptosis and the immunotherapy response. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02231-0.
Collapse
Affiliation(s)
- Pu Wu
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jinyuan Shi
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Wei Sun
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Hao Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|