101
|
Barber K, Mendonca P, Evans JA, Soliman KFA. Antioxidant and Anti-Inflammatory Mechanisms of Cardamonin through Nrf2 Activation and NF-kB Suppression in LPS-Activated BV-2 Microglial Cells. Int J Mol Sci 2023; 24:10872. [PMID: 37446045 PMCID: PMC10341801 DOI: 10.3390/ijms241310872] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Chronic oxidative stress (OS) and inflammation are implicated in developing and progressing neurodegenerative diseases (NDs). The chronic activation of microglia cells leads to the overproduction of several substances, including nitric oxide and reactive oxygen species, which can induce neurodegeneration. Natural compounds have recently been investigated for their potential to protect cells from OS and to improve many disease-related conditions. Cardamonin (CD) is a bioactive compound in many plants, such as Alpinia katsumadai and Alpinia conchigera. The present study examined the effects of CD on LPS-activated BV-2 microglial cells. The cell viability results showed that the increasing concentrations of CD, ranging from 0.78 to 200 µM, induced BV-2 cell cytotoxicity in a dose-response manner. In the nitric oxide assay, CD concentrations of 6.25 to 25 µM reduced the release of nitric oxide in LPS-activated BV-2 cells by 90% compared to those treated with LPS only (p ≤ 0.0001). CD (6.25 µM) significantly decreased the cellular production of SOD (3-fold (p ≤ 0.05)) and increased the levels of expression of CAT (2.5-fold (p ≤ 0.05)) and GSH (2-fold (p ≤ 0.05)) in the LPS-activated BV-2 cells. Furthermore, on RT-PCR arrays, CD (6.25 µM) downregulated mRNA expression of CCL5/RANTES (5-fold), NOS2 (2-fold), SLC38A1 (3-fold), TXNIP (2-fold), SOD1 (2-fold), SOD2 (1.5-fold) and upregulated GSS (1.9-fold), GCLC (1.7-fold) and catalase (2.9-fold) expression, indicating CD efficacy in modulating genes involved in OS and inflammation. Furthermore, CD (6.25 µM) increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and lowered the levels of Kelch-like ECH-associated protein 1 (Keap1), indicating that this may be the signaling responsible for the elevation of antioxidant factors. Lastly, the results showed that CD (6.25 µM) modulated genes and proteins associated with the NF-kB signaling, downregulating genes related to excessive neuroinflammation. These results imply that CD may be a potential compound for developing therapeutic and preventive agents in treating neurodegeneration induced by excessive OS and inflammation.
Collapse
Affiliation(s)
- Kimberly Barber
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (K.B.); (J.A.E.)
| | - Patricia Mendonca
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA
| | - Jasmine A. Evans
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (K.B.); (J.A.E.)
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (K.B.); (J.A.E.)
| |
Collapse
|
102
|
Morilla MJ, Ghosal K, Romero EL. More Than Pigments: The Potential of Astaxanthin and Bacterioruberin-Based Nanomedicines. Pharmaceutics 2023; 15:1828. [PMID: 37514016 PMCID: PMC10385456 DOI: 10.3390/pharmaceutics15071828] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Carotenoids are natural products regulated by the food sector, currently used as feed dyes and as antioxidants in dietary supplements and composing functional foods for human consumption. Of the nearly one thousand carotenoids described to date, only retinoids, derived from beta carotene, have the status of a drug and are regulated by the pharmaceutical sector. In this review, we address a novel field: the transformation of xanthophylls, particularly the highly marketed astaxanthin and the practically unknown bacterioruberin, in therapeutic agents by altering their pharmacokinetics, biodistribution, and pharmacodynamics through their formulation as nanomedicines. The antioxidant activity of xanthophylls is mediated by routes different from those of the classical oral anti-inflammatory drugs such as corticosteroids and non-steroidal anti-inflammatory drugs (NSAIDs): remarkably, xanthophylls lack therapeutic activity but also lack toxicity. Formulated as nanomedicines, xanthophylls gain therapeutic activity by mechanisms other than increased bioavailability. Loaded into ad hoc tailored nanoparticles to protect their structure throughout storage and during gastrointestinal transit or skin penetration, xanthophylls can be targeted and delivered to selected inflamed cell groups, achieving a massive intracellular concentration after endocytosis of small doses of formulation. Most first reports showing the activities of oral and topical anti-inflammatory xanthophyll-based nanomedicines against chronic diseases such as inflammatory bowel disease, psoriasis, atopic dermatitis, and dry eye disease emerged between 2020 and 2023. Here we discuss in detail their preclinical performance, mostly targeted vesicular and polymeric nanoparticles, on cellular models and in vivo. The results, although preliminary, are auspicious enough to speculate upon their potential use for oral or topical administration in the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Maria Jose Morilla
- Nanomedicine Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal 1876, Argentina
| | - Kajal Ghosal
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd., Jadavpur, Kolkata 700032, West Bengal, India
| | - Eder Lilia Romero
- Nanomedicine Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal 1876, Argentina
| |
Collapse
|
103
|
Roberts JA, Rainbow RD, Sharma P. Mitigation of Cardiovascular Disease and Toxicity through NRF2 Signalling. Int J Mol Sci 2023; 24:ijms24076723. [PMID: 37047696 PMCID: PMC10094784 DOI: 10.3390/ijms24076723] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Cardiovascular toxicity and diseases are phenomena that have a vastly detrimental impact on morbidity and mortality. The pathophysiology driving the development of these conditions is multifactorial but commonly includes the perturbance of reactive oxygen species (ROS) signalling, iron homeostasis and mitochondrial bioenergetics. The transcription factor nuclear factor erythroid 2 (NFE2)-related factor 2 (NRF2), a master regulator of cytoprotective responses, drives the expression of genes that provide resistance to oxidative, electrophilic and xenobiotic stresses. Recent research has suggested that stimulation of the NRF2 signalling pathway can alleviate cardiotoxicity and hallmarks of cardiovascular disease progression. However, dysregulation of NRF2 dynamic responses can be severely impacted by ageing processes and off-target toxicity from clinical medicines including anthracycline chemotherapeutics, rendering cells of the cardiovascular system susceptible to toxicity and subsequent tissue dysfunction. This review addresses the current understanding of NRF2 mechanisms under homeostatic and cardiovascular pathophysiological conditions within the context of wider implications for this diverse transcription factor.
Collapse
Affiliation(s)
- James A. Roberts
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Richard D. Rainbow
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
- Liverpool Centre for Cardiovascular Science, Liverpool L7 8TX, UK
| | - Parveen Sharma
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
- Liverpool Centre for Cardiovascular Science, Liverpool L7 8TX, UK
| |
Collapse
|
104
|
Kuret T, Kreft ME, Romih R, Veranič P. Cannabidiol as a Promising Therapeutic Option in IC/BPS: In Vitro Evaluation of Its Protective Effects against Inflammation and Oxidative Stress. Int J Mol Sci 2023; 24:ijms24055055. [PMID: 36902479 PMCID: PMC10003465 DOI: 10.3390/ijms24055055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Several animal studies have described the potential effect of cannabidiol (CBD) in alleviating the symptoms of interstitial cystitis/bladder pain syndrome (IC/BPS), a chronic inflammatory disease of the urinary bladder. However, the effects of CBD, its mechanism of action, and modulation of downstream signaling pathways in urothelial cells, the main effector cells in IC/BPS, have not been fully elucidated yet. Here, we investigated the effect of CBD against inflammation and oxidative stress in an in vitro model of IC/BPS comprised of TNFα-stimulated human urothelial cells SV-HUC1. Our results show that CBD treatment of urothelial cells significantly decreased TNFα-upregulated mRNA and protein expression of IL1α, IL8, CXCL1, and CXCL10, as well as attenuated NFκB phosphorylation. In addition, CBD treatment also diminished TNFα-driven cellular reactive oxygen species generation (ROS), by increasing the expression of the redox-sensitive transcription factor Nrf2, the antioxidant enzymes superoxide dismutase 1 and 2, and hem oxygenase 1. CBD-mediated effects in urothelial cells may occur by the activation of the PPARγ receptor since inhibition of PPARγ resulted in significantly diminished anti-inflammatory and antioxidant effects of CBD. Our observations provide new insights into the therapeutic potential of CBD through modulation of PPARγ/Nrf2/NFκB signaling pathways, which could be further exploited in the treatment of IC/BPS.
Collapse
|
105
|
Li Z, Long L, Jin X, Li Y, Wu Q, Chen X, Geng Z, Zhang C. Effects of Clostridium butyricum on growth performance, meat quality, and intestinal health of broilers. Front Vet Sci 2023; 10:1107798. [PMID: 36761883 PMCID: PMC9902377 DOI: 10.3389/fvets.2023.1107798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
This study investigated the effects of Clostridium butyricum on the growth performance, meat quality and intestinal health of broilers. A total of 800 one-day-old male Arbor Acres broilers were randomly assigned to two groups with 16 replicates of 25 broilers per group and fed with a basal diet (CON) or a basal diet supplemented with 1.5 × 109 cfu/kg C. butyricum and 5 × 108 cfu/kg C. butyricum at 1-21 d and 22-42 d, respectively (CB). The results indicated that C. butyricum significantly increased the final body weight, average daily gain at 1-42 d in the growth performance of broilers (P < 0.05). Moreover, C. butyricum significantly increased a 24 h * value and pH24h value of breast meat but reduced the drip loss and shear force (P < 0.05). Regarding serum antioxidant indices, C. butyricum significantly increased the total superoxide dismutase (T-SOD) and total antioxidative capacity activities and reduced the malondialdehyde content (P < 0.05). Furthermore, the broilers in the CB demonstrated an increase in jejunal lipase and trypsin activities, villus height (VH) and VH-to-crypt depth ratio at 42 d compared with those in the CON (P < 0.05). C. butyricum also upregulated the intestinal mRNA levels of zonula occludens-1, nuclear factor erythroid 2-related factor 2 (Nrf2), SOD1 and interleukin-10 in the jejunal mucosa (P < 0.05), but it downregulated the mRNA levels of nuclear factor kappa B (NF-κB) and tumor necrosis factor-α (P < 0.05). These results indicate that C. butyricum can improve the growth performance and meat quality of broilers. In particular, C. butyricum can improve the intestinal health of broilers, which is likely to be related to the activation of the Nrf2 signaling pathway and inhibition of the NF-κB signaling pathway.
Collapse
|
106
|
Poladian N, Orujyan D, Narinyan W, Oganyan AK, Navasardyan I, Velpuri P, Chorbajian A, Venketaraman V. Role of NF-κB during Mycobacterium tuberculosis Infection. Int J Mol Sci 2023; 24:1772. [PMID: 36675296 PMCID: PMC9865913 DOI: 10.3390/ijms24021772] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Mycobacterium tuberculosis (M. tb) causes tuberculosis infection in humans worldwide, especially among immunocompromised populations and areas of the world with insufficient funding for tuberculosis treatment. Specifically, M. tb is predominantly exhibited as a latent infection, which poses a greater risk of reactivation for infected individuals. It has been previously shown that M. tb infection requires pro-inflammatory and anti-inflammatory mediators to manage its associated granuloma formation via tumor necrosis factor-α (TNF-α), interleukin-12 (IL-12), interferon-γ (IFN-γ), and caseum formation via IL-10, respectively. Nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) has been found to play a unique mediator role in providing a pro-inflammatory response to chronic inflammatory disease processes by promoting the activation of macrophages and the release of various cytokines such as IL-1, IL-6, IL-12, and TNF-α. NF-κB's role is especially interesting in its mechanism of assisting the immune system's defense against M. tb, wherein NF-κB induces IL-2 receptors (IL-2R) to decrease the immune response, but has also been shown to crucially assist in keeping a granuloma and bacterial load contained. In order to understand NF-κB's role in reducing M. tb infection, within this literature review we will discuss the dynamic interaction between M. tb and NF-κB, with a focus on the intracellular signaling pathways and the possible side effects of NF-κB inactivation on M. tb infection. Through a thorough review of these interactions, this review aims to highlight the role of NF-κB in M. tb infection for the purpose of better understanding the complex immune response to M. tb infection and to uncover further potential therapeutic methods.
Collapse
Affiliation(s)
- Nicole Poladian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Davit Orujyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - William Narinyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Armani K. Oganyan
- College of Osteopathic Medicine, Des Moines University, 3200 Grand Ave, Des Moines, IA 50312, USA
| | - Inesa Navasardyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Prathosh Velpuri
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Abraham Chorbajian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
107
|
de Siqueira EA, Magalhães EP, de Menezes RRPPB, Sampaio TL, Lima DB, da Silva Martins C, Neves KRT, de Castro Brito GA, Martins AMC, de Barros Viana GS. Vitamin D3 actions on astrocyte cells: A target for therapeutic strategy in Parkinson's disease? Neurosci Lett 2023; 793:136997. [PMID: 36470505 DOI: 10.1016/j.neulet.2022.136997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic cells in the substantia nigra pars compacta. PD patients' brains show neuroinflammation, oxidative stress, and mitochondrial dysfunction. The present study aims to evaluate the neuroprotective activity of VD3 on astrocytes after their exposure to rotenone (ROT) a natural pesticide known to exhibit neurotoxic potential via the inhibition of mitochondrial complex I. Cell viability parameters were evaluated by the MTT test and staining with 7-AAD in cultures of astrocytes treated and untreated with VD3 (0.1, 0.5, and 1.0 ng/mL) and/or ROT (10 µg/mL or 5 µg/mL), and the cytoplasmic production of ROS and the cell death profile were measured by flow cytometry. Glutathione accumulation and ultrastructural changes were evaluated and immunocytochemistry assays for NF-kB and Nrf2 were also carried out. The results showed that VD3 improved the viability of cells previously treated with VD3 and then exposed to ROT, reducing the occurrence of necrotic and apoptotic events. Furthermore, cells exposed to ROT showed increased production of ROS, which decreased significantly with previous treatment with VD3. Importantly, the decrease by ROT in the mitochondrial transmembrane potential was significantly prevented after treating cells with VD3, especially at a concentration of 1 ng/mL. Therefore, treatment with VD3 protected astrocytes from damage caused by ROT, decreasing oxidative stress, decreasing NF-kB and Nrf2 expressions, and improving mitochondrial function. However, further investigation is needed regarding the participation and mechanism of action of VD3 in this cellular model of PD focusing on the crosstalk between Nrf2 and NF-kB.
Collapse
|
108
|
Alrawaiq NS, Atia A, Abdullah A. Effect of Administration of an Equal Dose of Selected Dietary Chemicals on Nrf2 Nuclear Translocation in the Mouse Liver. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9291417. [PMID: 37077659 PMCID: PMC10110381 DOI: 10.1155/2023/9291417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 04/21/2023]
Abstract
Certain dietary chemicals influenced the expression of chemopreventive genes through the Nrf2-Keap1 pathway. However, the difference in Nrf2 activation potency of these chemicals is not well studied. This study is aimed at determining the difference in the potency of liver Nrf2 nuclear translocation induced by the administration of equal doses of selected dietary chemicals in mice. Male ICR white mice were administered 50 mg/kg of sulforaphane, quercetin, curcumin, butylated hydroxyanisole, and indole-3-carbinol for 14 days. On day 15, the animals were sacrificed, and their livers were isolated. Liver nuclear extracts were prepared, and Nrf2 nuclear translocation was detected through Western blotting. To determine the implication of the Nrf2 nuclear translocation on the expression levels of several Nrf2-regulated genes, liver RNA was extracted for qPCR assay. Equal doses of sulforaphane, quercetin, curcumin, butylated hydroxyanisole, and indole-3-carbinol significantly induced the nuclear translocation of Nrf2 with different intensities and subsequently increased the expression of Nrf2-regulated genes with an almost similar pattern as the Nrf2 nuclear translocation intensities (sulforaphane > butylated hydroxyanisole = indole-3-carbinol > curcumin > quercetin). In conclusion, sulforaphane is the most potent dietary chemical that induces the Nrf2 translocation into the nuclear fraction in the mouse liver.
Collapse
Affiliation(s)
- Nadia Salem Alrawaiq
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
- Department of Pharmacology, Faculty of Pharmacy, Sebha University, Sebha, Libya
| | - Ahmed Atia
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
- Department of Anaesthesia and Intensive Care, Faculty of Medical Technology, Tripoli University, Tripoli, Libya
| | - Azman Abdullah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
109
|
Cheemanapalli S, Palaniappan C, Mahesh Y, Iyyappan Y, Yarrappagaari S, Kanagaraj S. In vitro and in silico perspectives to explain anticancer activity of a novel syringic acid analog ((4-(1H-1, 3-benzodiazol-2-yl)-2, 6-dimethoxy phenol)) through apoptosis activation and NFkB inhibition in K562 leukemia cells. Comput Biol Med 2023; 152:106349. [PMID: 36470147 DOI: 10.1016/j.compbiomed.2022.106349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 11/13/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Syringic acid (SA) is an active carcinogenesis inhibitor; however, the low bioavailability and unstable functional groups hinder its activity. Here, a chemically synthesized novel SA analog (SA10) is evaluated for its anticancer activity using in-vitro and in-silico studies. K562 cell line study revealed that SA10 had shown a higher rate of inhibition (IC50 = 50.40 μg/mL) than its parental compound, SA (IC50 = 96.92 μg/mL), at 50 μM concentration. The inhibition ratio was also been evaluated by checking the expression level of NFkB and Bcl-2 and showing that SA10 has two-fold increase in the inhibitory mechanism than SA. This result demonstrates that SA10 acts as an NFkB inhibitor and an apoptosis inducer. Further, molecular docking and simulation have been performed to get insights into the possible inhibitory mechanism of SA and SA10 on NFkB at the atomistic level. The molecular docking results exemplify that both SA and SA10 bind to the active site of NFkB, thereby interfering with the association between DNA and NFkB. SA10 exhibits a more robust binding affinity than SA and is firmly docked well into the interior of the NFkB, as confirmed by MM-PBSA calculations. In a nutshell, the Benzimidazole scaffold containing SA10 has shown more NFkB inhibitory activity in K562 cells than SA, which could be helpful as an ideal therapeutic NFkB inhibitor for treating cancers.
Collapse
Affiliation(s)
- Srinivasulu Cheemanapalli
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India; Regional Ayurveda Research Institute (CCRAS, Govt. of India), Itanagar, Arunachal Pradesh, India
| | - Chandrasekaran Palaniappan
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India; Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Yeshwanth Mahesh
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
| | - Yuvaraj Iyyappan
- National Institute for Plant Biotechnology, ICAR, New Delhi, India
| | - Suresh Yarrappagaari
- Division of Ethnopharmacology, Department of Biotechnology, School of Herbal Studies and Natural Sciences, Dravidian University, Kuppam, Andhra Pradesh, India
| | - Sekar Kanagaraj
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
110
|
Oxidative Stress Response's Kinetics after 60 Minutes at Different (30% or 100%) Normobaric Hyperoxia Exposures. Int J Mol Sci 2022; 24:ijms24010664. [PMID: 36614106 PMCID: PMC9821105 DOI: 10.3390/ijms24010664] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
Oxygen is a powerful trigger for cellular reactions and is used in many pathologies, including oxidative stress. However, the effects of oxygen over time and at different partial pressures remain poorly understood. In this study, the metabolic responses of normobaric oxygen intake for 1 h to mild (30%) and high (100%) inspired fractions were investigated. Fourteen healthy non-smoking subjects (7 males and 7 females; age: 29.9 ± 11.1 years, height: 168.2 ± 9.37 cm; weight: 64.4 ± 12.3 kg; BMI: 22.7 ± 4.1) were randomly assigned in the two groups. Blood samples were taken before the intake at 30 min, 2 h, 8 h, 24 h, and 48 h after the single oxygen exposure. The level of oxidation was evaluated by the rate of reactive oxygen species (ROS) and the levels of isoprostane. Antioxidant reactions were observed by total antioxidant capacity (TAC), superoxide dismutase (SOD), and catalase (CAT). The inflammatory response was measured using interleukin-6 (IL-6), neopterin, creatinine, and urates. Oxidation markers increased from 30 min on to reach a peak at 8 h. From 8 h post intake, the markers of inflammation took over, and more significantly with 100% than with 30%. This study suggests a biphasic response over time characterized by an initial "permissive oxidation" followed by increased inflammation. The antioxidant protection system seems not to be the leading actor in the first place. The kinetics of enzymatic reactions need to be better studied to establish therapeutic, training, or rehabilitation protocols aiming at a more targeted use of oxygen.
Collapse
|
111
|
Jayasuriya R, Ramkumar KM. Mangiferin alleviates hyperglycemia-induced endothelial impairment via Nrf2 signaling pathway. Eur J Pharmacol 2022; 936:175359. [DOI: 10.1016/j.ejphar.2022.175359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 11/15/2022]
|
112
|
Costa S, Tedeschi P, Ferraro L, Beggiato S, Grandini A, Manfredini S, Buzzi R, Sacchetti G, Valacchi G. Biological activity of new bioactive steroids deriving from biotransformation of cortisone. Microb Cell Fact 2022; 21:250. [PMID: 36419154 PMCID: PMC9685055 DOI: 10.1186/s12934-022-01967-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022] Open
Abstract
Cortisone is a metabolite belonging to the corticosteroid class that is used pharmaceutically directly as a drug or prodrug. In addition to its large consumption, its use is linked to several side effects, so pharmaceutical research aims to develop effective drugs with low or no side effects, alternative compounds to cortisone are part of an active investment in ongoing research on drug discovery. Since biotransformation can be considered a source of new molecules with potential therapeutic use, the present work focuses on a preliminary in vitro study aimed at evaluating the mutagenic, anti-inflammatory, antioxidant and neuroprotective activity of SCA and SCB molecules obtained from the biotransformation of cortisone using Rh. Rhodnii strain DSM 43960. The results obtained are very encouraging due to the safety of biotransformed compounds with reference to genotoxicity checked by Ames test, to the very high antioxidant capacity and to the anti-inflammatory activity. In fact, thecompounds inhibited both the TNFα-stimulated expression and secretion of NFkB target cytokines, and COX activity, and can activate the glucocorticoid receptor. Finally SCA and SCB exhibited neuroprotective properties.
Collapse
Affiliation(s)
- Stefania Costa
- grid.8484.00000 0004 1757 2064Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari, 46 Ferrara, 44121 Ferrara, Italy ,grid.8484.00000 0004 1757 2064Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari, 46 Ferrara, 44121 Ferrara, Italy
| | - Paola Tedeschi
- grid.8484.00000 0004 1757 2064Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari, 46 Ferrara, 44121 Ferrara, Italy
| | - Luca Ferraro
- grid.8484.00000 0004 1757 2064Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari, 46 Ferrara, 44121 Ferrara, Italy ,grid.8484.00000 0004 1757 2064Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato Di Mortara 70, 44121 Ferrara, Italy
| | - Sarah Beggiato
- grid.8484.00000 0004 1757 2064Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari, 46 Ferrara, 44121 Ferrara, Italy
| | - Alessandro Grandini
- grid.8484.00000 0004 1757 2064Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari, 46 Ferrara, 44121 Ferrara, Italy
| | - Stefano Manfredini
- grid.8484.00000 0004 1757 2064Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari, 46 Ferrara, 44121 Ferrara, Italy
| | - Raissa Buzzi
- grid.8484.00000 0004 1757 2064Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari, 46 Ferrara, 44121 Ferrara, Italy
| | - Gianni Sacchetti
- grid.8484.00000 0004 1757 2064Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari, 46 Ferrara, 44121 Ferrara, Italy
| | - Giuseppe Valacchi
- grid.8484.00000 0004 1757 2064Department of Environmental Sciences and Prevention, University of Ferrara, Via L. Borsari, 46 Ferrara, 44121 Ferrara, Italy ,grid.40803.3f0000 0001 2173 6074North Carolina Research Campus, Plants for Human Health Institute, Animal Science, North Carolina State University, Kannapolis, NC 28081 USA ,grid.289247.20000 0001 2171 7818Department of Food and Nutrition, Kyung Hee University, Seoul, 02447 Korea
| |
Collapse
|
113
|
Atalay Ekiner S, Gęgotek A, Skrzydlewska E. The molecular activity of cannabidiol in the regulation of Nrf2 system interacting with NF-κB pathway under oxidative stress. Redox Biol 2022; 57:102489. [PMID: 36198205 PMCID: PMC9535304 DOI: 10.1016/j.redox.2022.102489] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/11/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
Cannabidiol (CBD), the major non-psychoactive phytocannabinoid of Cannabis sativa L., is one of the most studied compounds in pharmacotherapeutic approaches to treat oxidative stress-related diseases such as cardiovascular, metabolic, neurodegenerative, and neoplastic diseases. The literature data to date indicate the possibility of both antioxidant and pro-oxidative effects of CBD. Thus, the mechanism of action of this natural compound in the regulation of nuclear factor 2 associated with erythroid 2 (Nrf2), which plays the role of the main cytoprotective regulator of redox balance and inflammation under oxidative stress conditions, seems to be particularly important. Moreover, Nrf2 is strongly correlated with the cellular neoplastic profile and malignancy, which in turn is critical in determining the cellular response induced by CBD under pathophysiological conditions. This paper summarizes the CBD-mediated pathways of regulation of the Nrf2 system by altering the expression and modification of both proteins directly involved in Nrf2 transcriptional activity and proteins involved in the relationship between Nrf2 and the nuclear factor kappa B (NF-κB) which is another redox-sensitive transcription factor.
Collapse
Affiliation(s)
- Sinemyiz Atalay Ekiner
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland.
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland.
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland.
| |
Collapse
|
114
|
Metibemu DS, Ogungbe IV. Carotenoids in Drug Discovery and Medicine: Pathways and Molecular Targets Implicated in Human Diseases. Molecules 2022; 27:6005. [PMID: 36144741 PMCID: PMC9503763 DOI: 10.3390/molecules27186005] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Carotenoids are isoprenoid-derived natural products produced in plants, algae, fungi, and photosynthetic bacteria. Most animals cannot synthesize carotenoids because the biosynthetic machinery to create carotenoids de novo is absent in animals, except arthropods. Carotenoids are biosynthesized from two C20 geranylgeranyl pyrophosphate (GGPP) molecules made from isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) via the methylerythritol 4-phosphate (MEP) route. Carotenoids can be extracted by a variety of methods, including maceration, Soxhlet extraction, supercritical fluid extraction (SFE), microwave-assisted extraction (MAE), accelerated solvent extraction (ASE), ultrasound-assisted extraction (UAE), pulsed electric field (PEF)-assisted extraction, and enzyme-assisted extraction (EAE). Carotenoids have been reported to exert various biochemical actions, including the inhibition of the Akt/mTOR, Bcl-2, SAPK/JNK, JAK/STAT, MAPK, Nrf2/Keap1, and NF-κB signaling pathways and the ability to increase cholesterol efflux to HDL. Carotenoids are absorbed in the intestine. A handful of carotenoids and carotenoid-based compounds are in clinical trials, while some are currently used as medicines. The application of metabolic engineering techniques for carotenoid production, whole-genome sequencing, and the use of plants as cell factories to produce specialty carotenoids presents a promising future for carotenoid research. In this review, we discussed the biosynthesis and extraction of carotenoids, the roles of carotenoids in human health, the metabolism of carotenoids, and carotenoids as a source of drugs and supplements.
Collapse
Affiliation(s)
| | - Ifedayo Victor Ogungbe
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS 39217-0095, USA
| |
Collapse
|
115
|
Heurtaux T, Bouvier DS, Benani A, Helgueta Romero S, Frauenknecht KBM, Mittelbronn M, Sinkkonen L. Normal and Pathological NRF2 Signalling in the Central Nervous System. Antioxidants (Basel) 2022; 11:1426. [PMID: 35892629 PMCID: PMC9394413 DOI: 10.3390/antiox11081426] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (NRF2) was originally described as a master regulator of antioxidant cellular response, but in the time since, numerous important biological functions linked to cell survival, cellular detoxification, metabolism, autophagy, proteostasis, inflammation, immunity, and differentiation have been attributed to this pleiotropic transcription factor that regulates hundreds of genes. After 40 years of in-depth research and key discoveries, NRF2 is now at the center of a vast regulatory network, revealing NRF2 signalling as increasingly complex. It is widely recognized that reactive oxygen species (ROS) play a key role in human physiological and pathological processes such as ageing, obesity, diabetes, cancer, and neurodegenerative diseases. The high oxygen consumption associated with high levels of free iron and oxidizable unsaturated lipids make the brain particularly vulnerable to oxidative stress. A good stability of NRF2 activity is thus crucial to maintain the redox balance and therefore brain homeostasis. In this review, we have gathered recent data about the contribution of the NRF2 pathway in the healthy brain as well as during metabolic diseases, cancer, ageing, and ageing-related neurodegenerative diseases. We also discuss promising therapeutic strategies and the need for better understanding of cell-type-specific functions of NRF2 in these different fields.
Collapse
Affiliation(s)
- Tony Heurtaux
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
| | - David S. Bouvier
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
- Luxembourg Centre of Systems Biomedicine (LCSB), University of Luxembourg, 4367 Belvaux, Luxembourg
| | - Alexandre Benani
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France;
| | - Sergio Helgueta Romero
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
| | - Katrin B. M. Frauenknecht
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
| | - Michel Mittelbronn
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
- Luxembourg Centre of Systems Biomedicine (LCSB), University of Luxembourg, 4367 Belvaux, Luxembourg
- Luxembourg Institute of Health (LIH), 1526 Luxembourg, Luxembourg
| | - Lasse Sinkkonen
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
| |
Collapse
|
116
|
Prud’homme GJ, Kurt M, Wang Q. Pathobiology of the Klotho Antiaging Protein and Therapeutic Considerations. FRONTIERS IN AGING 2022; 3:931331. [PMID: 35903083 PMCID: PMC9314780 DOI: 10.3389/fragi.2022.931331] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 12/06/2022]
Abstract
The α-Klotho protein (henceforth denoted Klotho) has antiaging properties, as first observed in mice homozygous for a hypomorphic Klotho gene (kl/kl). These mice have a shortened lifespan, stunted growth, renal disease, hyperphosphatemia, hypercalcemia, vascular calcification, cardiac hypertrophy, hypertension, pulmonary disease, cognitive impairment, multi-organ atrophy and fibrosis. Overexpression of Klotho has opposite effects, extending lifespan. In humans, Klotho levels decline with age, chronic kidney disease, diabetes, Alzheimer’s disease and other conditions. Low Klotho levels correlate with an increase in the death rate from all causes. Klotho acts either as an obligate coreceptor for fibroblast growth factor 23 (FGF23), or as a soluble pleiotropic endocrine hormone (s-Klotho). It is mainly produced in the kidneys, but also in the brain, pancreas and other tissues. On renal tubular-cell membranes, it associates with FGF receptors to bind FGF23. Produced in bones, FGF23 regulates renal excretion of phosphate (phosphaturic effect) and vitamin D metabolism. Lack of Klotho or FGF23 results in hyperphosphatemia and hypervitaminosis D. With age, human renal function often deteriorates, lowering Klotho levels. This appears to promote age-related pathology. Remarkably, Klotho inhibits four pathways that have been linked to aging in various ways: Transforming growth factor β (TGF-β), insulin-like growth factor 1 (IGF-1), Wnt and NF-κB. These can induce cellular senescence, apoptosis, inflammation, immune dysfunction, fibrosis and neoplasia. Furthermore, Klotho increases cell-protective antioxidant enzymes through Nrf2 and FoxO. In accord, preclinical Klotho therapy ameliorated renal, cardiovascular, diabetes-related and neurodegenerative diseases, as well as cancer. s-Klotho protein injection was effective, but requires further investigation. Several drugs enhance circulating Klotho levels, and some cross the blood-brain barrier to potentially act in the brain. In clinical trials, increased Klotho was noted with renin-angiotensin system inhibitors (losartan, valsartan), a statin (fluvastatin), mTOR inhibitors (rapamycin, everolimus), vitamin D and pentoxifylline. In preclinical work, antidiabetic drugs (metformin, GLP-1-based, GABA, PPAR-γ agonists) also enhanced Klotho. Several traditional medicines and/or nutraceuticals increased Klotho in rodents, including astaxanthin, curcumin, ginseng, ligustilide and resveratrol. Notably, exercise and sport activity increased Klotho. This review addresses molecular, physiological and therapeutic aspects of Klotho.
Collapse
Affiliation(s)
- Gérald J. Prud’homme
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON, Canada
- *Correspondence: Gérald J. Prud’homme,
| | - Mervé Kurt
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON, Canada
| | - Qinghua Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China
- Shanghai Yinuo Pharmaceutical Co., Ltd., Shanghai, China
| |
Collapse
|
117
|
Cao Z, Gao J, Huang W, Yan J, Shan A, Gao X. Curcumin mitigates deoxynivalenol-induced intestinal epithelial barrier disruption by regulating Nrf2/p53 and NF-κB/MLCK signaling in mice. Food Chem Toxicol 2022; 167:113281. [PMID: 35817260 DOI: 10.1016/j.fct.2022.113281] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 12/18/2022]
Abstract
Deoxynivalenol (DON) induces intestinal epithelial barrier disruption, posing a threat to the body. Curcumin (Cur) possesses pharmacological bioactivities such as antioxidant and anti-inflammatory effects that help maintain intestinal health. Here, the protective effects of Cur against DON-induced intestinal epithelial barrier disruption were explored. Cur (75 or 150 mg/kg body weight [B.W.]) alleviated DON-induced (2.4 mg/kg B.W.) inhibition of growth performance and morphological damage to intestinal epithelium in mice. Cur also significantly attenuated DON-induced intestinal epithelial barrier disruption and structural damage to the tight junctions (TJs), as assessed by ultrastructure observation, serum FITC-dextran concentrations and diamine oxidase activity. Cur mitigated the DON-induced increase in reactive oxygen species, malondialdehyde and 8-hydroxy-2'-deoxyguanosine levels; p53, cytoplasmic cytochrome c, Bax, and Bcl-2 expression; and TUNEL-positive cell rate and caspase-3 activity. It decreased the total antioxidant capacity and expression of nuclear Nrf2 and its downstream target genes. Lastly, Cur attenuated the DON-induced increase in MLCK, p-MLC, nuclear NF-κB p65 expression, and the NF-κB downstream target genes; decrease in the expression of TJs proteins (claudin-1, occludin, and zonula occludens-1 [ZO-1]); and abnormal ZO-1 distribution. Overall, Cur mitigated the DON-induced disruption of the intestinal epithelial barrier by regulating the Nrf2/p53-mediated apoptotic pathway and NF-κB/MLCK-mediated TJs pathway in mice.
Collapse
Affiliation(s)
- Zheng Cao
- Post-doctoral Research Station of Animal Husbandry, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jinsong Gao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Wanyue Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Juli Yan
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Anshan Shan
- Post-doctoral Research Station of Animal Husbandry, Northeast Agricultural University, Harbin, 150030, China
| | - Xiang Gao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
118
|
Chang TM, Yang TY, Huang HC. Nicotinamide Mononucleotide and Coenzyme Q10 Protects Fibroblast Senescence Induced by Particulate Matter Preconditioned Mast Cells. Int J Mol Sci 2022; 23:7539. [PMID: 35886889 PMCID: PMC9319393 DOI: 10.3390/ijms23147539] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 01/21/2023] Open
Abstract
Particulate matter (PM) pollutants impose a certain degree of destruction and toxicity to the skin. Mast cells in the skin dermis could be activated by PMs that diffuse across the blood vessel after being inhaled. Mast cell degranulation in the dermis provides a kind of inflammatory insult to local fibroblasts. In this study, we evaluated human dermal fibroblast responses to conditioned medium from KU812 cells primed with PM. We found that PM promoted the production of proinflammatory cytokines in mast cells and that the cell secretome induced reactive oxygen species and mitochondrial reactive oxygen species production in dermal fibroblasts. Nicotinamide mononucleotide or coenzyme Q10 alleviated the generation of excessive ROS and mitochondrial ROS induced by the conditioned medium from PM-activated KU812 cells. PM-conditioned medium treatment increased the NF-κB expression in dermal fibroblasts, whereas NMN or Q10 inhibited p65 upregulation by PM. The reduced sirtuin 1 (SIRT 1) and nuclear factor erythroid 2-related Factor 2 (Nrf2) expression induced by PM-conditioned medium was reversed by NMN or Q10 in HDFs. Moreover, NMN or Q10 attenuated the expression of senescent β-galactosidase induced by PM-conditioned KU812 cell medium. These findings suggest that NMN or Q10 ameliorates PM-induced inflammation by improving the cellular oxidative status, suppressing proinflammatory NF-κB, and promoting the levels of the antioxidant and anti-inflammatory regulators Nrf2 and SIRT1 in HDFs. The present observations help to understand the factors that affect HDFs in the dermal microenvironment and the therapeutic role of NMN and Q10 as suppressors of skin aging.
Collapse
Affiliation(s)
- Tsong-Min Chang
- Department of Applied Cosmetology, Hungkuang University, Taichung 43302, Taiwan;
| | - Ting-Ya Yang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, China Medical University, Taichung 40402, Taiwan;
| | - Huey-Chun Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, China Medical University, Taichung 40402, Taiwan;
| |
Collapse
|
119
|
Elhady SS, Goda MS, Mehanna ET, Elfaky MA, Koshak AE, Noor AO, Bogari HA, Malatani RT, Abdelhameed RFA, Wahba AS. Meleagrin Isolated from the Red Sea Fungus Penicillium chrysogenum Protects against Bleomycin-Induced Pulmonary Fibrosis in Mice. Biomedicines 2022; 10:biomedicines10051164. [PMID: 35625905 PMCID: PMC9138525 DOI: 10.3390/biomedicines10051164] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 12/18/2022] Open
Abstract
The Red Sea marine fungus Penicillium chrysogenum (Family: Ascomycota) comprises a panel of chemically diverse natural metabolites. A meleagrin alkaloid was isolated from deep-sediment-derived P. chrysogenum Strain S003 and has been reported to exert antibacterial and cytotoxic activities. The present study aimed to explore the therapeutic potential of meleagrin on pulmonary fibrosis. Lung fibrosis was induced in mice by a single intratracheal instillation of 2.5 mg/kg bleomycin. Mice were given 5 mg/kg meleagrin daily either for 3 weeks after bleomycin administration in the treatment group or 2 weeks before and 3 weeks after bleomycin administration in the protection group. Bleomycin triggered excessive ROS production, inflammatory infiltration, collagen overproduction and fibrosis. Bleomycin-induced pulmonary fibrosis was attenuated by meleagrin. Meleagrin was noted to restore the oxidant–antioxidant balance, as evidenced by lower MDA contents and higher levels of SOD and catalase activities and GSH content compared to the bleomycin group. Meleagrin also activated the Nrf2/HO-1 antioxidant signaling pathway and inhibited TLR4 and NF-κB gene expression, with a subsequent decreased release of pro-inflammatory cytokines (TNF-α, IL-6 and IFN-γ). Additionally, meleagrin inhibited bleomycin-induced apoptosis by abating the activities of pro-apoptotic proteins Bax and caspase-3 while elevating Bcl2. Furthermore, it suppressed the gene expression of α-SMA, TGF-β1, Smad-2, type I collagen and MMP-9, with a concomitant decrease in the protein levels of TGF-β1, α-SMA, phosphorylated Smad-2, MMP-9, elastin and fibronectin. This study revealed that meleagrin’s protective effects against bleomycin-induced pulmonary fibrosis are attributed to its antioxidant, anti-inflammatory, anti-apoptotic and antifibrotic properties. Notably, the use of meleagrin as a protective agent against bleomycin-induced lung fibrosis was more efficient than its use as a treatment agent.
Collapse
Affiliation(s)
- Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.E.); (A.E.K.)
- Correspondence: (S.S.E.); (E.T.M.); Tel.: +966-544512552 (S.S.E.)
| | - Marwa S. Goda
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Eman T. Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
- Correspondence: (S.S.E.); (E.T.M.); Tel.: +966-544512552 (S.S.E.)
| | - Mahmoud A. Elfaky
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.E.); (A.E.K.)
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulrahman E. Koshak
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.E.); (A.E.K.)
| | - Ahmad O. Noor
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.O.N.); (H.A.B.); (R.T.M.)
| | - Hanin A. Bogari
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.O.N.); (H.A.B.); (R.T.M.)
| | - Rania T. Malatani
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.O.N.); (H.A.B.); (R.T.M.)
| | - Reda F. A. Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt;
| | - Alaa S. Wahba
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
120
|
Scuto M, Modafferi S, Rampulla F, Zimbone V, Tomasello M, Spano’ S, Ontario M, Palmeri A, Trovato Salinaro A, Siracusa R, Di Paola R, Cuzzocrea S, Calabrese E, Wenzel U, Calabrese V. Redox modulation of stress resilience by Crocus Sativus L. for potential neuroprotective and anti-neuroinflammatory applications in brain disorders: From molecular basis to therapy. Mech Ageing Dev 2022; 205:111686. [DOI: 10.1016/j.mad.2022.111686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022]
|
121
|
Elhady SS, Abdelhameed RFA, Mehanna ET, Wahba AS, Elfaky MA, Koshak AE, Noor AO, Bogari HA, Malatani RT, Goda MS. Metabolic Profiling, Chemical Composition, Antioxidant Capacity, and In Vivo Hepato- and Nephroprotective Effects of Sonchus cornutus in Mice Exposed to Cisplatin. Antioxidants (Basel) 2022; 11:819. [PMID: 35624682 PMCID: PMC9137627 DOI: 10.3390/antiox11050819] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
Sonchus cornutus (Asteraceae) is a wild. edible plant that represents a plentiful source of polyphenolic compounds. For the first time, the metabolic analysis profiling demonstrated the presence of anthocyanidin glycosides, coumarins, flavonoids and their corresponding glycosides, and phenolic acids. The total phenolic compounds were determined to be 206.28 ± 14.64 mg gallic acid equivalent/gm, while flavonoids were determined to be 45.56 ± 1.78 mg quercetin equivalent/gm. The crude extract of S. cornutus exhibited a significant 1,1-diphenyl-2-picrylhydrazyl free radical scavenging effect with half-maximal inhibitory concentration (IC50) of 16.10 ± 2.14 µg/mL compared to ascorbic acid as a standard (10.64 ± 0.82 µg/mL). In vitro total antioxidant capacity and ferric reducing power capacity assays revealed a promising reducing potential of S. cornutus extract. Therefore, the possible protective effects of S. cornutus against hepatic and renal toxicity induced by cisplatin in experimental mice were investigated. S. cornutus significantly ameliorated the cisplatin-induced disturbances in liver and kidney functions and oxidative stress, decreased MDA, ROS, and NO levels, and restored CAT and SOD activities. Besides, it reversed cisplatin-driven upregulation in inflammatory markers, including iNOS, IL-6, and IL-1β levels and NF-κB and TNF-α expression, and elevated anti-inflammatory IL-10 levels and Nrf2 expression. Additionally, the extract mitigated cisplatin alteration in apoptotic (Bax and caspase-3) and anti-apoptotic (Bcl-2) proteins. Interestingly, hepatic, and renal histopathology revealed the protective impacts of S. cornutus against cisplatin-induced pathological changes. Our findings guarantee a protective effect of S. cornutus against cisplatin-induced hepatic and renal damage via modulating oxidative stress, inflammation, and apoptotic pathways.
Collapse
Affiliation(s)
- Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.E.); (A.E.K.)
| | - Reda F. A. Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Eman T. Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.T.M.); (A.S.W.)
| | - Alaa Samir Wahba
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.T.M.); (A.S.W.)
| | - Mahmoud A. Elfaky
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.E.); (A.E.K.)
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulrahman E. Koshak
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.E.); (A.E.K.)
| | - Ahmad O. Noor
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.O.N.); (H.A.B.); (R.T.M.)
| | - Hanin A. Bogari
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.O.N.); (H.A.B.); (R.T.M.)
| | - Rania T. Malatani
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.O.N.); (H.A.B.); (R.T.M.)
| | - Marwa S. Goda
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
122
|
Tonolo F, Folda A, Scalcon V, Marin O, Bindoli A, Rigobello MP. Nrf2-Activating Bioactive Peptides Exert Anti-Inflammatory Activity through Inhibition of the NF-κB Pathway. Int J Mol Sci 2022; 23:ijms23084382. [PMID: 35457199 PMCID: PMC9032749 DOI: 10.3390/ijms23084382] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 01/05/2023] Open
Abstract
Redox status and inflammation are related to the pathogenesis of the majority of diseases. Therefore, understanding the role of specific food-derived molecules in the regulation of their specific pathways is a relevant issue. Our previous studies indicated that K-8-K and S-10-S, milk and soy-derived bioactive peptides, respectively, exert antioxidant effects through activation of the Keap1/Nrf2 pathway. A crosstalk between Nrf2 and NF-κB, mediated by the action of heme oxygenase (HO-1), is well known. On this basis, we studied if these peptides, in addition to their antioxidant activity, could exert anti-inflammatory effects in human cells. First, we observed an increase of HO-1 expression in Caco-2 cells treated with K-8-K and S-10-S, following the activation of the Keap1/Nrf2 pathway. Moreover, when cells are treated with the two peptides and stimulated by TNF-α, the levels of NF-κB in the nucleus decreased in comparison with TNF-α alone. In the same conditions, we observed the downregulation of the gene expression of proinflammatory cytokines (IL1B, IL6, and TNF), while the anti-inflammatory cytokine gene, IL1RN, was upregulated in Caco-2 cells processed as reported above. Then, when the cells were pretreated with the two peptides and stimulated with LPS, a different proinflammatory factor, (TNF-α) was estimated to have a lower secretion in the supernatant of cells. In conclusion, these observations confirmed that Nrf2-activating bioactive peptides, K-8-K and S-10-S, exerted anti-inflammatory effects by inhibiting the NF-κB pathway.
Collapse
Affiliation(s)
- Federica Tonolo
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; (F.T.); (A.F.); (V.S.); (O.M.)
| | - Alessandra Folda
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; (F.T.); (A.F.); (V.S.); (O.M.)
| | - Valeria Scalcon
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; (F.T.); (A.F.); (V.S.); (O.M.)
| | - Oriano Marin
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; (F.T.); (A.F.); (V.S.); (O.M.)
| | - Alberto Bindoli
- Institute of Neuroscience, CNR, Via G Colombo 3, 35131 Padova, Italy;
| | - Maria Pia Rigobello
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; (F.T.); (A.F.); (V.S.); (O.M.)
- Correspondence:
| |
Collapse
|