101
|
Deus VL, Bispo ES, Franca AS, Gloria MBA. Understanding amino acids and bioactive amines changes during on-farm cocoa fermentation. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
102
|
Dala-Paula BM, Starling MDFV, Gloria MBA. Vegetables consumed in Brazilian cuisine as sources of bioactive amines. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
103
|
Li Q, Li M, Zhang J, Shi X, Yang M, Zheng Y, Cao X, Yue X, Ma S. Donkey milk inhibits triple-negative breast tumor progression and is associated with increased cleaved-caspase-3 expression. Food Funct 2021; 11:3053-3065. [PMID: 32191229 DOI: 10.1039/c9fo02934f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Donkey milk is considered an ideal substitute for human milk and is considered a potential complementary dairy product for the treatment of a variety of human diseases, including cancer. The purpose of this study was to investigate the inhibitory effect of donkey colostrum (DC) and mature milk (DM) on 4T1 triple-negative breast cancer (TNBC) tumors in mice. Metabolomics analyses showed that a total of 476 possible metabolites were found in both types of milk. Among them, 34 differential metabolites were identified, including 25 up-regulated and 9 down-regulated metabolites in the DC compared with DM. Both DC and DM are rich in many known anticancer constituents. The inhibitory effects of DC and DM on 4T1 primary tumors and the relative organ weight of the liver and lungs were determined by measuring the volume of primary tumors and weighing the liver and lungs. Both DC and DM significantly reduced both the primary tumor size and relative organ weight of the liver and lungs in 4T1 mice without affecting the bodyweight of mice. When the expression of cleaved caspase-3, Bax, and MMP2 was investigated by immunohistochemistry, the results showed that DC and DM inhibited the progression of 4T1 tumors by inducing the expression of cleaved-caspase-3 and Bax, and inhibiting the expression of MMP2 and CD31. Our data suggest that DC and DM inhibit the growth and metastasis of mouse 4T1 tumors by inducing apoptosis.
Collapse
Affiliation(s)
- Qilong Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China. and College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Juan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Xinyang Shi
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Mei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Yan Zheng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Xueyan Cao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Shiliang Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
104
|
Janse van Rensburg HC, Limami AM, Van den Ende W. Spermine and Spermidine Priming against Botrytis cinerea Modulates ROS Dynamics and Metabolism in Arabidopsis. Biomolecules 2021; 11:223. [PMID: 33562549 PMCID: PMC7914871 DOI: 10.3390/biom11020223] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/31/2022] Open
Abstract
Polyamines (PAs) are ubiquitous small aliphatic polycations important for growth, development, and environmental stress responses in plants. Here, we demonstrate that exogenous application of spermine (Spm) and spermidine (Spd) induced cell death at high concentrations, but primed resistance against the necrotrophic fungus Botrytis cinerea in Arabidopsis. At low concentrations, Spm was more effective than Spd. Treatments with higher exogenous Spd and Spm concentrations resulted in a biphasic endogenous PA accumulation. Exogenous Spm induced the accumulation of H2O2 after treatment but also after infection with B. cinerea. Both Spm and Spd induced the activities of catalase, ascorbate peroxidase, and guaiacol peroxidase after treatment but also after infection with B. cinerea. The soluble sugars glucose, fructose, and sucrose accumulated after treatment with high concentrations of PAs, whereas only Spm induced sugar accumulation after infection. Total and active nitrate reductase (NR) activities were inhibited by Spm treatment, whereas Spd inhibited active NR at low concentrations but promoted active NR at high concentrations. Finally, γaminobutyric acid accumulated after treatment and infection in plants treated with high concentrations of Spm. Phenylalanine and asparagine also accumulated after infection in plants treated with a high concentration of Spm. Our data illustrate that Spm and Spd are effective in priming resistance against B. cinerea, opening the door for the development of sustainable alternatives for chemical pesticides.
Collapse
Affiliation(s)
| | - Anis M. Limami
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France;
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium;
| |
Collapse
|
105
|
Zeiss DR, Piater LA, Dubery IA. Hydroxycinnamate Amides: Intriguing Conjugates of Plant Protective Metabolites. TRENDS IN PLANT SCIENCE 2021; 26:184-195. [PMID: 33036915 DOI: 10.1016/j.tplants.2020.09.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 05/09/2023]
Abstract
The syntheses of aromatic monoamines and aliphatic polyamines (PAs) are responsive to environmental stresses, with some modulating aspects of plant defense. Conjugation of amines to hydroxycinnamic acids (HCAs) generates HCA amides (HCAAs), with the conjugates possessing properties from both compounds. Conjugation may reduce the polarity of the resulting metabolite and assist in translocation, stability, and compartmentalization. Recent metabolomic insights identified HCAAs as biomarkers during plant-pathogen interactions, supporting a functional role in defense. The conjugates may contribute to regulation of the dynamic metabolic pool of hydroxycinnamates. This review highlights the occurrence of aromatic amines (AAs) and PAs in stress metabolism, conjugation to HCAs, and the roles of HCAAs during host defense, adding emphasis on their involvement in hydrogen peroxide (H2O2) production and cell-wall strengthening.
Collapse
Affiliation(s)
- Dylan R Zeiss
- Department of Biochemistry, Research Centre for Plant Metabolomics, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| | - Lizelle A Piater
- Department of Biochemistry, Research Centre for Plant Metabolomics, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| | - Ian A Dubery
- Department of Biochemistry, Research Centre for Plant Metabolomics, University of Johannesburg, Auckland Park, Johannesburg, South Africa.
| |
Collapse
|
106
|
Miska J, Rashidi A, Lee-Chang C, Gao P, Lopez-Rosas A, Zhang P, Burga R, Castro B, Xiao T, Han Y, Hou D, Sampat S, Cordero A, Stoolman JS, Horbinski CM, Burns M, Reshetnyak YK, Chandel NS, Lesniak MS. Polyamines drive myeloid cell survival by buffering intracellular pH to promote immunosuppression in glioblastoma. SCIENCE ADVANCES 2021; 7:eabc8929. [PMID: 33597238 PMCID: PMC7888943 DOI: 10.1126/sciadv.abc8929] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Glioblastoma is characterized by the robust infiltration of immunosuppressive tumor-associated myeloid cells (TAMCs). It is not fully understood how TAMCs survive in the acidic tumor microenvironment to cause immunosuppression in glioblastoma. Metabolic and RNA-seq analysis of TAMCs revealed that the arginine-ornithine-polyamine axis is up-regulated in glioblastoma TAMCs but not in tumor-infiltrating CD8+ T cells. Active de novo synthesis of highly basic polyamines within TAMCs efficiently buffered low intracellular pH to support the survival of these immunosuppressive cells in the harsh acidic environment of solid tumors. Administration of difluoromethylornithine (DFMO), a clinically approved inhibitor of polyamine generation, enhanced animal survival in immunocompetent mice by causing a tumor-specific reduction of polyamines and decreased intracellular pH in TAMCs. DFMO combination with immunotherapy or radiotherapy further enhanced animal survival. These findings indicate that polyamines are used by glioblastoma TAMCs to maintain normal intracellular pH and cell survival and thus promote immunosuppression during tumor evolution.
Collapse
Affiliation(s)
- Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA.
| | - Aida Rashidi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| | - Peng Gao
- Metabolomics Core Facility, Feinberg School of Medicine, Northwestern University, 710 N Fairbanks Court, Chicago, IL 60611, USA
| | - Aurora Lopez-Rosas
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| | - Peng Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| | - Rachel Burga
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| | - Brandyn Castro
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| | - Ting Xiao
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| | - Yu Han
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| | - David Hou
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| | - Samay Sampat
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| | - Alex Cordero
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| | - Joshua S Stoolman
- Department of Medicine, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2330, Chicago, IL 60611, USA
| | - Craig M Horbinski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| | - Mark Burns
- Aminex Therapeutics Inc., Epsom, NH 03234, USA
| | - Yana K Reshetnyak
- Physics Department, University of Rhode Island, Kingston, RI 02881, USA
| | - Navdeep S Chandel
- Department of Medicine, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2330, Chicago, IL 60611, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| |
Collapse
|
107
|
Amin M, Tang S, Shalamanova L, Taylor RL, Wylie S, Abdullah BM, Whitehead KA. Polyamine biomarkers as indicators of human disease. Biomarkers 2021; 26:77-94. [PMID: 33439737 DOI: 10.1080/1354750x.2021.1875506] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The significant increase of periodontitis, chronic kidney disease (CKD), Alzheimer's disease and cancer can be attributed to an ageing population. Each disease produces a range of biomarkers that can be indicative of disease onset and progression. Biomarkers are defined as cellular (intra/extracellular components and whole cells), biochemical (metabolites, ions and toxins) or molecular (nucleic acids, proteins and lipids) alterations which are measurable in biological media such as human tissues, cells or fluids. An interesting group of biomarkers that merit further investigation are the polyamines. Polyamines are a group of molecules consisting of cadaverine, putrescine, spermine and spermidine and have been implicated in the development of a range of systemic diseases, in part due to their production in periodontitis. Cadaverine and putrescine within the periodontal environment have demonstrated cell signalling interfering abilities, by way of leukocyte migration disruption. The polyamines spermine and spermidine in tumour cells have been shown to inhibit cellular apoptosis, effectively prolonging tumorigenesis and continuation of cancer within the host. Polyamine degradation products such as acrolein have been shown to exacerbate renal damage in CKD patients. Thus, the use of such molecules has merit to be utilized in the early indication of such diseases in patients.
Collapse
Affiliation(s)
- Mohsin Amin
- Microbiology at Interfaces, Manchester Metropolitan University, Manchester, UK.,Department of Engineering and Technology, Built Environment, Liverpool John Moores University, Liverpool, UK
| | - Shiying Tang
- Microbiology at Interfaces, Manchester Metropolitan University, Manchester, UK.,Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Liliana Shalamanova
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Rebecca L Taylor
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Stephen Wylie
- Department of Engineering and Technology, Civil Engineering, Liverpool John Moores University, Liverpool, UK
| | - Badr M Abdullah
- Department of Engineering and Technology, Built Environment, Liverpool John Moores University, Liverpool, UK
| | - Kathryn A Whitehead
- Microbiology at Interfaces, Manchester Metropolitan University, Manchester, UK.,Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
108
|
Sun X, Guo Z, Jiang Y, Qin L, Shi Z, Dong L, Xiong L, Yuan R, Deng W, Wu H, Liu Q, Xie F, Chen Y. Differential Metabolomic Responses of Kentucky Bluegrass Cultivars to Low Nitrogen Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:808772. [PMID: 35154204 PMCID: PMC8831703 DOI: 10.3389/fpls.2021.808772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/09/2021] [Indexed: 05/12/2023]
Abstract
Kentucky bluegrass (Poa pratensis L.) is a cool-season turfgrass species that responds strongly to nitrogen (N), but the metabolomic responses of this grass species to N supply is unknown. The N-tolerant cultivar Bluemoon and N-sensitive cultivar Balin were exposed to normal N (15 mM) and low N (0.5 mM) for 21 days for identification of differentially expressed metabolites (DEMs) between normal N and low N treatments. Balin had more reductions of chlorophyll and total soluble protein concentrations and a higher accumulation of superoxide radicals under low N stress. A total of 99 known DEMs were identified in either cultivar or both including 22 amino acids and derivatives, 16 carbohydrates, 29 organic acids, and 32 other metabolites. In Bluemoon, β-alanine metabolism was most enriched, followed by alanine, aspartate, and glutamate metabolism, biosynthesis of valine, leucine, and isoleucine biosynthesis, and glycine, serine, and threonine metabolism. In Balin, alanine, aspartate, and glutamate metabolism were most enriched, followed by the tricarboxylic acid (TCA), glyoxylate and decarbohydrate metabolism, and carbon fixation. Bluemoon generally maintained higher TCA cycle capacity and had more downregulated amino acids, while changes in more organic acids occurred in Balin under low N stress. Some metabolite changes by low-N stress were cultivar-specific. The results suggested that regulation of metabolites related to energy production or energy saving could contribute to low N tolerance in Kentucky bluegrass.
Collapse
Affiliation(s)
- Xiaoyang Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zhixin Guo
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Yiwei Jiang
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | - Ligang Qin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zhenjie Shi
- College of Horticulture, Northeast Agricultural University, Harbin, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Lili Dong
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Liangbing Xiong
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Runli Yuan
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Wenjing Deng
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Hanfu Wu
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Qingqing Liu
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Fuchun Xie
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Fuchun Xie,
| | - Yajun Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- College of Horticulture, Northeast Agricultural University, Harbin, China
- *Correspondence: Yajun Chen,
| |
Collapse
|
109
|
Engineered Ripening-Specific Accumulation of Polyamines Spermidine and Spermine in Tomato Fruit Upregulates Clustered C/D Box snoRNA Gene Transcripts in Concert with Ribosomal RNA Biogenesis in the Red Ripe Fruit. PLANTS 2020; 9:plants9121710. [PMID: 33291784 PMCID: PMC7762058 DOI: 10.3390/plants9121710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
Ripening of tomato fruit leads, in general, to a sequential decrease in the endogenous levels of polyamines spermidine (SPD) and spermine (SPM), while the trend for the diamine putrescine (PUT) levels is generally an initial decrease, followed by a substantial increase, and thereafter reaching high levels at the red ripe fruit stage. However, genetic engineering fruit-specific expression of heterologous yeast S-adenosylmethionine (SAM) decarboxylase in tomato has been found to result in a high accumulation of SPD and SPM at the cost of PUT. This system enabled a genetic approach to determine the impact of increased endogenous levels of biogenic amines SPD and SPM in tomato (579HO transgenic line) and on the biogenesis, transcription, processing, and stability of ribosomal RNA (rRNA) genes in tomato fruit as compared with the non-transgenic 556AZ line. One major biogenetic process regulating transcription and processing of pre-mRNA complexes in the nucleus involves small nucleolar RNAs (snoRNAs). To determine the effect of high levels of SPD and SPM on these latter processes, we cloned, sequenced, and identified a box C/D snoRNA cluster in tomato, namely, SlSnoR12, SlU24a, Slz44a, and Slz132b. Similar to this snoRNA cluster housed on chromosome (Chr.) 6, two other noncoding C/D box genes, SlsnoR12.2 and SlU24b, with a 94% identity to those on Chr. 6 were found located on Chr. 3. We also found that other snoRNAs divisible into snoRNA subclusters A and B, separated by a uridine rich spacer, were decorated with other C/D box snoRNAs, namely, J10.3, Z131a/b, J10.1, and Z44a, followed by z132a, J11.3, z132b, U24, Z20, U24a, and J11. Several of these, for example, SlZ44a, Slz132b, and SlU24a share conserved sequences similar to those in Arabidopsis and rice. RNAseq analysis of high SPD/SPM transgenic tomatoes (579HO line) showed significant enrichment of RNA polymerases, ribosomal, and translational protein genes at the breaker+8 ripening stage as compared with the 556AZ control. Thus, these results indicate that SPD/SPM regulates snoRNA and rRNA expression directly or indirectly, in turn, affecting protein synthesis, metabolism, and other cellular activities in a positive manner.
Collapse
|
110
|
Deus VL, Bispo ES, Franca AS, Gloria MBA. Influence of cocoa clones on the quality and functional properties of chocolate – Nitrogenous compounds. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
111
|
Du Z, Wang J, Lu Y, Ma X, Wen R, Lin J, Zhou C, Song Z, Li J, Tu P, Jiang Y. The cardiac protection of Baoyuan decoction via gut-heart axis metabolic pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 79:153322. [PMID: 32920286 DOI: 10.1016/j.phymed.2020.153322] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/30/2020] [Accepted: 08/04/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Gut-heart axis has emerged as a novel concept to provide new insights into the complex mechanisms of heart failure (HF) and offer new therapeutic targets. Cardiac hypertrophy (CH) is one of the etiological agents contributing to the development of HF. Baoyuan Decoction (BYD), a traditional Chinese medicine (TCM) formula, exhibits unambiguous effects on treating CH and preventing HF. Previously, we have reported that BYD-targeted endogenous metabolites are potentially linked to gut microbiota metabolism, but the contribution of gut microbiota and metabolic interaction to the cardioprotective efficacy of BYD remains to be elucidated. PURPOSE To investigate whether the gut microbiota plays a key role in anti-CH effects of BYD. STUDY DESIGN A comprehensive strategy via incorporating pharmacodynamics, microbiomics, metabolomics, and microflora suppression model was adopted to investigate the links between the microbiota-host metabolic interaction and BYD efficacy in CH rats. METHOD Firstly, the efficacy evaluation of BYD in treating chronic isoproterenol (ISO)-induced CH rats was performed by using multiple pharmacodynamic approaches. Then, the fecal metabolomics and 16S rRNA sequencing techniques were used to obtain the microbial and metabolic features of BYD against CH. After that, the potential gut-heart axis-based mechanism of BYD against CH was predicted by bioinformatic network analysis and validated by multiple molecular biology approaches. Finally, the antibiotics (AB)-induced gut microbiota suppression was employed to investigate whether the anti-CH effects of BYD is associated with the gut microflora. RESULTS The fecal microbial communities and metabolic compositions were significantly altered in ISO-induced CH rats, while BYD effectively ameliorated the CH-associated gut microbiota dysbiosis, especially of Firmicutes and Bacteroidetes, and time-dependently alleviated the disturbance of fecal metabolome and reversed the changes of key CH and gut microbiota-related metabolites, such as short/medium chain fatty acids, primary/secondary bile acids, and amino acids. The mechanism study showed that the anti-CH effect of BYD was related to inhibition of the derivatives of arginine and tryptophan and their downstream pro-hypertrophic, pro-inflammatory, and pro-oxidant signaling pathways. The following microflora suppression test showed that BYD-mediated myocardial protection was decreased either in pharmacodynamics or in metabolic modulation. CONCLUSION This study demonstrates that the protection of BYD against CH is partially gut microbiota dependent, and the regulatory effects of gut metabolism-related tryptophan and arginine derivatives is an important cardioprotection mechanism of BYD.
Collapse
Affiliation(s)
- Zhiyong Du
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jinlong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yingyuan Lu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaoli Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ran Wen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jihong Lin
- Waters Technologies Ltd., Shanghai 201203, China
| | - Chao Zhou
- Waters Technologies Ltd., Shanghai 201203, China
| | - Zonghua Song
- Chinese Pharmacopoeia Commission, Beijing 100061, China
| | - Jun Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
112
|
Coradduzza D, Azara E, Medici S, Arru C, Solinas T, Madonia M, Zinellu A, Carru C. A preliminary study procedure for detection of polyamines in plasma samples as a potential diagnostic tool in prostate cancer. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1162:122468. [PMID: 33370684 DOI: 10.1016/j.jchromb.2020.122468] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Many scientific contributions recognize polyamines as important biomarkers for the diagnosis and treatment of cancer. Several authors have suggested the use of LC/MS instruments as an elective method for their measurement, providing good detection limits and specificity; however, many of these procedures suffer from long chromatographic run times, high detection limits and lengthy and expensive sample pre-treatment steps. METHODS UHPLC coupled with high-resolution Orbitrap mass spectrometry (UHPLC/Orbitrap) was set up for the identification and separation ofpolyamines, together with some of their metabolites and catabolites, in the plasma of healthy and prostate cancer human patients. Thirteen metabolites were measured in deproteinized plasma samples through a new analytical approach known as the parallel reaction monitoring (PRM) for targeted quantitative analysis. RESULTS The calibration curves were linear and R2 ranged from 0.9913 to 0.9995 for all analytes. LOQ values are between 0.382 and 25 ng mL-1 and LOD values are between 0.109 and 7.421 ng mL-1. The method shows an accuracy and precision for intra-day and inter-day < 15% RSD and R.E.% for all the QC samples. The matrix effect calculated at different concentration levels did not exceed 15%. CONCLUSIONS The method developed provides rapid, easy and robust identification and measurement of a wide range of polyamines, and some of their metabolites that can be evaluated as biomarkers to predict the clinical features of prostate cancer patients, avoiding invasive diagnostic procedures.
Collapse
Affiliation(s)
| | - Emanuela Azara
- Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Serenella Medici
- Department of Chemistry and Pharmacy, University of Sassari, Italy
| | - Caterina Arru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Tatiana Solinas
- Urologic Clinic, Dep. of Clinical and Experimental Medicine, University of Sassari, Italy
| | - Massimo Madonia
- Urologic Clinic, Dep. of Clinical and Experimental Medicine, University of Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
| |
Collapse
|
113
|
Ouyang Y, Wu Q, Li J, Sun S, Sun S. S-adenosylmethionine: A metabolite critical to the regulation of autophagy. Cell Prolif 2020; 53:e12891. [PMID: 33030764 PMCID: PMC7653241 DOI: 10.1111/cpr.12891] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/21/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a mechanism that enables cells to maintain cellular homeostasis by removing damaged materials and mobilizing energy reserves in conditions of starvation. Although nutrient availability strongly impacts the process of autophagy, the specific metabolites that regulate autophagic responses have not yet been determined. Recent results indicate that S-adenosylmethionine (SAM) represents a critical inhibitor of methionine starvation-induced autophagy. SAM is primarily involved in four key metabolic pathways: transmethylation, transsulphuration, polyamine synthesis and 5'-deoxyadenosyl 5'-radical-mediated biochemical transformations. SAM is the sole methyl group donor involved in the methylation of DNA, RNA and histones, modulating the autophagic process by mediating epigenetic effects. Moreover, the metabolites of SAM, such as homocysteine, glutathione, decarboxylated SAM and spermidine, also exert important influences on the regulation of autophagy. From our perspective, nuclear-cytosolic SAM is a conserved metabolic inhibitor that connects cellular metabolic status and the regulation of autophagy. In the future, SAM might be a new target of autophagy regulators and be widely used in the treatment of various diseases.
Collapse
Affiliation(s)
- Yang Ouyang
- Department of Breast and Thyroid SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Qi Wu
- Department of Breast and Thyroid SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Juanjuan Li
- Department of Breast and Thyroid SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Si Sun
- Department of Clinical LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Shengrong Sun
- Department of Breast and Thyroid SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
114
|
Fenelon JC, Murphy BD. New functions for old factors: the role of polyamines during the establishment of pregnancy. Reprod Fertil Dev 2020; 31:1228-1239. [PMID: 30418870 DOI: 10.1071/rd18235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/01/2018] [Indexed: 12/16/2022] Open
Abstract
Implantation is essential for the establishment of a successful pregnancy, and the preimplantation period plays a significant role in ensuring implantation occurs in a timely and coordinated manner. This requires effective maternal-embryonic signalling, established during the preimplantation period, to synchronise development. Although multiple factors have been identified as present during this time, the exact molecular mechanisms involved are unknown. Polyamines are small cationic molecules that are ubiquitously expressed from prokaryotes to eukaryotes. Despite being first identified over 300 years ago, their essential roles in cell proliferation and growth, including cancer, have only been recently recognised, with new technologies and interest resulting in rapid expansion of the polyamine field. This review provides a summary of our current understanding of polyamine synthesis, regulation and function with a focus on recent developments demonstrating the requirements for polyamines during the establishment of pregnancy up to the implantation stage, in particular the role of polyamines in the control of embryonic diapause and the identification of an alternative pathway for their synthesis in sheep pregnancy. This, along with other novel discoveries, provides new insights into the control of the peri-implantation period in mammals and highlights the complexities that exist in regulating this critical period of pregnancy.
Collapse
Affiliation(s)
- Jane C Fenelon
- School of BioSciences, The University of Melbourne, Parkville, Vic. 3010, Australia
| | - Bruce D Murphy
- Centre de recherché en reproduction et fertilité, Faculté de médicine vétérinaire, Université de Montréal, 3200 Rue Sicotte, Saint-Hyacinthe, Quebec J2S 2M2, Canada
| |
Collapse
|
115
|
Penuelas J, Krisztin T, Obersteiner M, Huber F, Winner H, Janssens IA, Ciais P, Sardans J. Country-Level Relationships of the Human Intake of N and P, Animal and Vegetable Food, and Alcoholic Beverages with Cancer and Life Expectancy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7240. [PMID: 33022999 PMCID: PMC7579602 DOI: 10.3390/ijerph17197240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND The quantity, quality, and type (e.g., animal and vegetable) of human food have been correlated with human health, although with some contradictory or neutral results. We aimed to shed light on this association by using the integrated data at country level. METHODS We correlated elemental (nitrogen (N) and phosphorus (P)) compositions and stoichiometries (N:P ratios), molecular (proteins) and energetic traits (kilocalories) of food of animal (terrestrial or aquatic) and vegetable origin, and alcoholic beverages with cancer prevalence and mortality and life expectancy (LE) at birth at the country level. We used the official databases of United Nations (UN), Food and Agriculture Organization of the United Nations (FAO), Organization for Economic Co-operation and Development (OECD), World Bank, World Health Organization (WHO), U.S. Department of Agriculture, U.S. Department of Health, and Eurobarometer, while also considering other possibly involved variables such as income, mean age, or human development index of each country. RESULTS The per capita intakes of N, P, protein, and total intake from terrestrial animals, and especially alcohol were significantly and positively associated with prevalence and mortality from total, colon, lung, breast, and prostate cancers. In contrast, high per capita intakes of vegetable N, P, N:P, protein, and total plant intake exhibited negative relationships with cancer prevalence and mortality. However, a high LE at birth, especially in underdeveloped countries was more strongly correlated with a higher intake of food, independent of its animal or vegetable origin, than with other variables, such as higher income or the human development index. CONCLUSIONS Our analyses, thus, yielded four generally consistent conclusions. First, the excessive intake of terrestrial animal food, especially the levels of protein, N, and P, is associated with higher prevalence of cancer, whereas equivalent intake from vegetables is associated with lower prevalence. Second, no consistent relationship was found for food N:P ratio and cancer prevalence. Third, the consumption of alcoholic beverages correlates with prevalence and mortality by malignant neoplasms. Fourth, in underdeveloped countries, reducing famine has a greater positive impact on health and LE than a healthier diet.
Collapse
Affiliation(s)
- Josep Penuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Cerdanyola del Vallès, Spain;
- CREAF, 08193 Cerdanyola del Vallès, Spain
| | - Tamás Krisztin
- International Institute for Applied Systems Analysis (IIASA), Ecosystems Services and Management, Schlossplatz 1, A-2361 Laxenburg, Austria; (T.K.); (M.O.)
| | - Michael Obersteiner
- International Institute for Applied Systems Analysis (IIASA), Ecosystems Services and Management, Schlossplatz 1, A-2361 Laxenburg, Austria; (T.K.); (M.O.)
| | - Florian Huber
- Paris Lodron University of Salzburg, Mönchsberg 2a, A-5020 Salzburg, Austria; (F.H.); (H.W.)
| | - Hannes Winner
- Paris Lodron University of Salzburg, Mönchsberg 2a, A-5020 Salzburg, Austria; (F.H.); (H.W.)
- Austrian Institute of Economic Research (WIFO), Arsenal Objekt 20, A-1030 Vienna, Austria
| | - Ivan A. Janssens
- Research Group Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, B-2610 Wilrijk, Belgium;
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l’Environnement, IPSL, 91191 Gif-sur-Yvette, France;
| | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Cerdanyola del Vallès, Spain;
- CREAF, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
116
|
Coleman DN, Lopreiato V, Alharthi A, Loor JJ. Amino acids and the regulation of oxidative stress and immune function in dairy cattle. J Anim Sci 2020; 98:S175-S193. [PMID: 32810243 PMCID: PMC7433927 DOI: 10.1093/jas/skaa138] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Vincenzo Lopreiato
- Department of Health Science, Interdepartmental Services Centre of Veterinary for Human and Animal Health, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Abdulrahman Alharthi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Juan J Loor
- Department of Animal Sciences, University of Illinois, Urbana, IL.,Division of Nutritional Sciences, University of Illinois, Urbana, IL
| |
Collapse
|
117
|
Malpica-Nieves CJ, Rivera-Aponte DE, Tejeda-Bayron FA, Mayor AM, Phanstiel O, Veh RW, Eaton MJ, Skatchkov SN. The involvement of polyamine uptake and synthesis pathways in the proliferation of neonatal astrocytes. Amino Acids 2020; 52:1169-1180. [PMID: 32816168 PMCID: PMC7908810 DOI: 10.1007/s00726-020-02881-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022]
Abstract
Polyamines (PAs), such as spermidine (SPD) and spermine (SPM), are essential to promote cell growth, survival, proliferation, and longevity. In the adult central nervous system (CNS), SPD and SPM are accumulated predominantly in healthy adult glial cells where PA synthesis is not present. To date, the accumulation and biosynthesis of PAs in developing astrocytes are not well understood. The purpose of the present study was to determine the contribution of uptake and/or synthesis of PAs using proliferation of neonatal astrocytes as an endpoint. We inhibited synthesis of PAs using α-difluoromethylornithine (DFMO; an inhibitor of the PA biosynthetic enzyme ornithine decarboxylase (ODC)) and inhibited uptake of PAs using trimer44NMe (PTI; a novel polyamine transport inhibitor). DFMO, but not PTI alone, blocked proliferation, suggesting that PA biosynthesis was present. Furthermore, exogenous administration of SPD rescued cell proliferation when PA synthesis was blocked by DFMO. When both synthesis and uptake of PAs were inhibited (DFMO + PTI), exogenous SPD no longer supported proliferation. These data indicate that neonatal astrocytes synthesize sufficient quantities of PAs de novo to support cell proliferation, but are also able to import exogenous PAs. This suggests that the PA uptake mechanism is present in both neonates as well as in adults and can support cell proliferation in neonatal astrocytes when ODC is blocked.
Collapse
Affiliation(s)
- Christian J Malpica-Nieves
- Department of Biochemistry, School of Medicine, Universidad Central del Caribe, P.O. Box 60327, Bayamón, PR, 00960-6032, USA
| | - David E Rivera-Aponte
- Department of Biochemistry, School of Medicine, Universidad Central del Caribe, P.O. Box 60327, Bayamón, PR, 00960-6032, USA
| | - Flavia A Tejeda-Bayron
- Department of Biochemistry, School of Medicine, Universidad Central del Caribe, P.O. Box 60327, Bayamón, PR, 00960-6032, USA
| | - Angel M Mayor
- Department of Internal Medicine, Universidad Central del Caribe, Bayamón, PR, 00956, USA
| | - Otto Phanstiel
- Department of Medical Education, University of Central Florida, Orlando, FL, 32816, USA
| | - Rüdiger W Veh
- Institut für Zell- Und Neurobiologie, Charité, 10117, Berlin, Germany
| | - Misty J Eaton
- Department of Biochemistry, School of Medicine, Universidad Central del Caribe, P.O. Box 60327, Bayamón, PR, 00960-6032, USA
| | - Serguei N Skatchkov
- Department of Biochemistry, School of Medicine, Universidad Central del Caribe, P.O. Box 60327, Bayamón, PR, 00960-6032, USA.
- Department of Physiology, School of Medicine, Universidad Central del Caribe, P.O. Box 60327, Bayamón, PR, 00960-6032, USA.
| |
Collapse
|
118
|
Lyu J, Liu Y, McCabe JW, Schrecke S, Fang L, Russell DH, Laganowsky A. Discovery of Potent Charge-Reducing Molecules for Native Ion Mobility Mass Spectrometry Studies. Anal Chem 2020; 92:11242-11249. [PMID: 32672445 DOI: 10.1021/acs.analchem.0c01826] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is growing interest in the characterization of protein complexes and their interactions with ligands using native ion mobility mass spectrometry. A particular challenge, especially for membrane proteins, is preserving noncovalent interactions and maintaining native-like structures. Different approaches have been developed to minimize activation of protein complexes by manipulating charge on protein complexes in solution and the gas-phase. Here, we report the utility of polyamines that have exceptionally high charge-reducing potencies with some molecules requiring 5-fold less than trimethylamine oxide to elicit the same effect. The charge-reducing molecules do not adduct to membrane protein complexes and are also compatible with ion-mobility mass spectrometry, paving the way for improved methods of charge reduction.
Collapse
Affiliation(s)
- Jixing Lyu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Yang Liu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jacob W McCabe
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Samantha Schrecke
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Lei Fang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
119
|
Red maple (Acer rubrum L.) trees demonstrate acclimation to urban conditions in deciduous forests embedded in cities. PLoS One 2020; 15:e0236313. [PMID: 32706781 PMCID: PMC7380610 DOI: 10.1371/journal.pone.0236313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/02/2020] [Indexed: 12/26/2022] Open
Abstract
The impacts of urbanization, such as urban heat island (UHI) and nutrient loads, can influence tree function through altered physiology and metabolism and stress response, which has implications for urban forest health in cities across the world. Our goal was to compare growth-stimulating and stress-mitigating acclimation patterns of red maple (Acer rubrum) trees in deciduous forests embedded in a small (Newark, DE, US) and a large (Philadelphia, PA, US) city. The study was conducted in a long-term urban forest network on seventy-nine mature red maple trees spanning ten forests across Newark and Philadelphia. We hypothesized that red maples in Philadelphia forests compared to Newark forests will be healthier and more acclimated to warmer temperatures, elevated CO2 concentrations and reactive nitrogen (Nr) deposition, and higher nutrient/heavy metal loads. Therefore, these red maples will have higher foliar pigments, nutrients, and stress-indicating elements, enriched δ15N isotopes and increased free polyamines and amino acids to support a growth-stimulating and stress-induced response to urbanization. Our results indicate red maples are potentially growth-stimulated and stress-acclimated in Philadelphia forests experiencing a greater magnitude of urban intensity. Red maples in Philadelphia forests contained higher concentrations of foliar chlorophyll, %N, δ15N, and nutrients than those in Newark forests. Similarly, lower foliar magnesium and manganese, and higher foliar zinc, cadmium, lead, and aluminum reflected the difference in soil biogeochemistry in Philadelphia forests. Accumulation patterns of foliar free amino acids, polyamines, phosphorous, and potassium ions in red maples in Philadelphia forests shows a reallocation in cellular metabolism and nutrient uptake pathways responsible for physiological acclimation. Our results suggest the approach used here can serve as a model for investigating ‘plant physiology’ and the use of urban trees as a biomonitor of the impacts of ‘urban pollution’ on urban forests. The results suggest that cellular oxidative stress in trees caused by pollutant uptake is mitigated by the accumulation of free amino acids, polyamines, and nutrients in a larger city. Our study provides a framework for determining whether trees respond to complex urban environments through stress memory and/or acclimation.
Collapse
|
120
|
Upadhyay RK, Fatima T, Handa AK, Mattoo AK. Polyamines and Their Biosynthesis/Catabolism Genes Are Differentially Modulated in Response to Heat Versus Cold Stress in Tomato Leaves ( Solanum lycopersicum L.). Cells 2020; 9:cells9081749. [PMID: 32707844 PMCID: PMC7465501 DOI: 10.3390/cells9081749] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
Polyamines (PAs) regulate growth in plants and modulate the whole plant life cycle. They have been associated with different abiotic and biotic stresses, but little is known about the molecular regulation involved. We quantified gene expression of PA anabolic and catabolic pathway enzymes in tomato (Solanum lycopersicum cv. Ailsa Craig) leaves under heat versus cold stress. These include arginase1 and 2, arginine decarboxylase 1 and 2, agmatine iminohydrolase/deiminase 1, N-carbamoyl putrescine amidase, two ornithine decarboxylases, three S-adenosylmethionine decarboxylases, two spermidine synthases; spermine synthase; flavin-dependent polyamine oxidases (SlPAO4-like and SlPAO2) and copper dependent amine oxidases (SlCuAO and SlCuAO-like). The spatiotemporal transcript abundances using qRT-PCR revealed presence of their transcripts in all tissues examined, with higher transcript levels observed for SAMDC1, SAMDC2 and ADC2 in most tissues. Cellular levels of free and conjugated forms of putrescine and spermidine were found to decline during heat stress while they increased in response to cold stress, revealing their differential responses. Transcript levels of ARG2, SPDS2, and PAO4-like increased in response to both heat and cold stresses. However, transcript levels of ARG1/2, AIH1, CPA, SPDS1 and CuAO4 increased in response to heat while those of ARG2, ADC1,2, ODC1, SAMDC1,2,3, PAO2 and CuPAO4-like increased in response to cold stress, respectively. Transcripts of ADC1,2, ODC1,2, and SPMS declined in response to heat stress while ODC2 transcripts declined under cold stress. These results show differential expression of PA metabolism genes under heat and cold stresses with more impairment clearly seen under heat stress. We interpret these results to indicate a more pronounced role of PAs in cold stress acclimation compared to that under heat stress in tomato leaves.
Collapse
Affiliation(s)
- Rakesh K. Upadhyay
- Sustainable Agricultural Systems Laboratory, United States Department of Agriculture, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705-2350, USA;
- Center of Plant Biology, Department of Horticulture and Landscape Architecture, Purdue University, W. Lafayette, IN 47907, USA; (T.F.); (A.K.H.)
| | - Tahira Fatima
- Center of Plant Biology, Department of Horticulture and Landscape Architecture, Purdue University, W. Lafayette, IN 47907, USA; (T.F.); (A.K.H.)
| | - Avtar K. Handa
- Center of Plant Biology, Department of Horticulture and Landscape Architecture, Purdue University, W. Lafayette, IN 47907, USA; (T.F.); (A.K.H.)
| | - Autar K. Mattoo
- Sustainable Agricultural Systems Laboratory, United States Department of Agriculture, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705-2350, USA;
- Correspondence: ; Tel.: +1-301-504-6622
| |
Collapse
|
121
|
Golbedaghi R, Tabanez AM, Esmaeili S, Fausto R. Biological Applications of Macrocyclic Schiff Base Ligands and Their Metal Complexes: A Survey of the Literature (2005–2019). Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5884] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Reza Golbedaghi
- Chemistry Department Payame Noor University Tehran 19395‐4697 Iran
- University of Coimbra CQC, Department of Chemistry Coimbra P‐3004‐535 Portugal
| | - Andreia M. Tabanez
- University of Coimbra CQC, Department of Chemistry Coimbra P‐3004‐535 Portugal
| | - Somayeh Esmaeili
- Internal Medicine Department Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Rui Fausto
- University of Coimbra CQC, Department of Chemistry Coimbra P‐3004‐535 Portugal
| |
Collapse
|
122
|
Maráková K, Piešťanský J, Zelinková Z, Mikuš P. Simultaneous determination of twelve biogenic amines in human urine as potential biomarkers of inflammatory bowel diseases by capillary electrophoresis – tandem mass spectrometry. J Pharm Biomed Anal 2020; 186:113294. [DOI: 10.1016/j.jpba.2020.113294] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 12/17/2022]
|
123
|
Differential expression of polyamine biosynthetic pathways in skin lesions and in plasma reveals distinct profiles in diffuse cutaneous leishmaniasis. Sci Rep 2020; 10:10543. [PMID: 32601369 PMCID: PMC7324605 DOI: 10.1038/s41598-020-67432-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/03/2020] [Indexed: 01/14/2023] Open
Abstract
Tegumentary leishmaniasis (TL) is a parasitic disease that can result in wide spectrum clinical manifestations. It is necessary to understand host and parasite determinants of clinical outcomes to identify novel therapeutic targets. Previous studies have indicated that the polyamine biosynthetic pathway is critical for Leishmania growth and survival. Despite its importance, expression of the such pathway has not been previously investigated in TL patients. We performed an exploratory analysis employing Systems Biology tools to compare circulating polyamines and amino acid concentration as well as polyamine pathway gene expression in cutaneous lesions patients presenting with distinct TL disease presentations. Diffuse cutaneous leishmaniasis (DCL) was associated with higher concentrations of amino acids, polyamines and its substrate transporters than mucosal cutaneous leishmaniasis or localized cutaneous leishmaniasis. In addition, the RNA expression of polyamine-related genes of patients lesions from two separate cohorts demonstrated that differential activation of this pathway is associated with parasite loads and able to discriminate the clinical spectrum of TL. Taken together, our findings highlight a new aspect of DCL immunopathogenesis indicating that the polyamine pathway may be explored as a novel therapeutic target to control disease burden.
Collapse
|
124
|
Reis GCL, Guidi LR, Fernandes C, Godoy HT, Gloria MBA. UPLC-UV Method for the Quantification of Free Amino Acids, Bioactive Amines, and Ammonia in Fresh, Cooked, and Canned Mushrooms. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01777-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
125
|
Fan J, Feng Z, Chen N. Spermidine as a target for cancer therapy. Pharmacol Res 2020; 159:104943. [PMID: 32461185 DOI: 10.1016/j.phrs.2020.104943] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
Spermidine, as a natural component from polyamine members, is originally isolated from semen and also existed in many natural plants, and can be responsible for cell growth and development in eukaryotes. The supplementation of spermidine can extend health and lifespan across species. Although the elevated levels of polyamines and the regulation of rate-limiting enzymes for polyamine metabolism have been identified as the biomarkers in many cancers, recent epidemiological data support that an increased uptake of spermidine as a caloric restriction mimic can reduce overall mortality associated with cancers. The possible mechanisms between spermidine and cancer development may be related to the precise regulation of polyamine metabolism, anti-cancer immunosurveillance, autophagy, and apoptosis. Increased intake of polyamine seems to suppress tumorigenesis, but appears to accelerate the growth of established tumors. Based on these observations and the absolute requirement for polyamines in tumor growth, spermidine could be a rational target for chemoprevention and clinical therapeutics of cancers.
Collapse
Affiliation(s)
- Jingjing Fan
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan 430079, China
| | - Ziyuan Feng
- Graduate School, Wuhan Sports University, Wuhan 430079, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
126
|
Chen X, Bründl M, Friesacher T, Stary-Weinzinger A. Computational Insights Into Voltage Dependence of Polyamine Block in a Strong Inwardly Rectifying K + Channel. Front Pharmacol 2020; 11:721. [PMID: 32499707 PMCID: PMC7243266 DOI: 10.3389/fphar.2020.00721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/30/2020] [Indexed: 12/30/2022] Open
Abstract
Inwardly rectifying potassium (KIR) channels play important roles in controlling cellular excitability and K+ ion homeostasis. Under physiological conditions, KIR channels allow large K+ influx at potentials negative to the equilibrium potential of K+ but permit little outward current at potentials positive to the equilibrium potential of K+, due to voltage dependent block of outward K+ flux by cytoplasmic polyamines. These polycationic molecules enter the KIR channel pore from the intracellular side. They block K+ ion movement through the channel at depolarized potentials, thereby ensuring, for instance, the long plateau phase of the cardiac action potential. Key questions concerning how deeply these charged molecules migrate into the pore and how the steep voltage dependence arises remain unclear. Recent MD simulations on GIRK2 (=Kir3.2) crystal structures have provided unprecedented details concerning the conduction mechanism of a KIR channel. Here, we use MD simulations with applied field to provide detailed insights into voltage dependent block of putrescine, using the conductive state of the strong inwardly rectifying K+ channel GIRK2 as starting point. Our µs long simulations elucidate details about binding sites of putrescine in the pore and suggest that voltage-dependent rectification arises from a dual mechanism.
Collapse
|
127
|
Fernández-García JC, Martínez-Sánchez MA, Bernal-López MR, Muñoz-Garach A, Martínez-González MA, Fitó M, Salas-Salvadó J, Tinahones FJ, Ramos-Molina B. Effect of a lifestyle intervention program with energy-restricted Mediterranean diet and exercise on the serum polyamine metabolome in individuals at high cardiovascular disease risk: a randomized clinical trial. Am J Clin Nutr 2020; 111:975-982. [PMID: 32246717 DOI: 10.1093/ajcn/nqaa064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Many food items included in the Mediterranean diet (MedDiet) are rich in polyamines, small aliphatic amines with potential cardioprotective effects. The consumption of a MedDiet could increase polyamine concentrations. Based on experimental models, polyamine concentrations may be also influenced by physical activity (PA). OBJECTIVES We aimed to evaluate whether an intervention based on an energy-restricted MedDiet (er-MedDiet) and PA promotion, in comparison with an energy-unrestricted MedDiet and traditional health care, influences the serum pattern of polyamines and related metabolites in subjects at high risk of cardiovascular disease (CVD). METHODS This was a substudy from the PREDIMED-Plus trial, an ongoing randomized clinical trial including 6874 participants allocated either to an intensive weight-loss lifestyle intervention based on er-MedDiet, PA promotion, and behavioral support (er-MedDiet + PA group), or to an energy-unrestricted MedDiet and traditional health care group (MedDiet group). A total of 75 patients (n = 38, er-MedDiet + PA group; n = 37, MedDiet group) were included in this study. Serum concentrations of arginine, ornithine, polyamines, and acetyl polyamines at baseline and 26 wk of intervention were measured by an ultra-high-performance LC-tandem MS platform. RESULTS At week 26, study groups had similar adherence to the MedDiet but patients randomly assigned to the er-MedDiet + PA group showed significantly lower mean energy intake (-340.3 kcal/d; 95% CI: -567.3, -113.4 kcal/d; P = 0.004), higher mean PA (1290.6; 95% CI: 39.9, 2541.3 metabolic equivalent tasks · min/d; P = 0.043), and higher mean decrease in BMI (in kg/m2) (-1.3; 95% CI: -1.8, -0.6; P < 0.001) than the MedDiet group. However, no significant differences in serum polyamines or related metabolites were found between study groups after 26 wk of intervention and no significant between-group differences were found in glycated hemoglobin, HDL-cholesterol, or triglyceride concentrations. CONCLUSIONS In individuals at high CVD risk, an er-MedDiet with increased PA did not result in significant changes of serum concentrations of polyamines or related metabolites in comparison with an energy-unrestricted MedDiet and no increase in PA. This trial was registered at isrctn.com as ISRCTN89898870.
Collapse
Affiliation(s)
- José C Fernández-García
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), Malaga, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
| | - María A Martínez-Sánchez
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), Malaga, Spain
| | - María R Bernal-López
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain.,Internal Medicine Department, Regional University Hospital of Malaga, Institute of Biomedical Research in Malaga (IBIMA), Malaga, Spain
| | - Araceli Muñoz-Garach
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), Malaga, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
| | - Miguel A Martínez-González
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain.,Department of Preventive Medicine and Public Health, Medical School, University of Navarra, Pamplona, Spain
| | - Montse Fitó
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain.,Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar d'Investigacions Mediques (IMIM), Barcelona, Spain
| | - Jordi Salas-Salvadó
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain.,Human Nutrition Unit, Hospital Universitari Sant Joan de Reus, Institut d'Investigació Sanitaria Pere Virgili (IISPV); Department of Biochemistry and Biotechnology, Rovira i Virgili University, Reus, Spain
| | - Francisco J Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), Malaga, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
| | - Bruno Ramos-Molina
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), Malaga, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain.,Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
128
|
Mo A, Xu T, Bai Q, Shen Y, Gao F, Guo J. FaPAO5 regulates Spm/Spd levels as a signaling during strawberry fruit ripening. PLANT DIRECT 2020; 4:e00217. [PMID: 32355906 PMCID: PMC7189608 DOI: 10.1002/pld3.217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/17/2020] [Accepted: 03/26/2020] [Indexed: 05/24/2023]
Abstract
Polyamines are important for non-climacteric fruit ripening according to an analysis of the model plant strawberry. However, the molecular mechanism underlying the polyamine accumulation during ripening has not been fully elucidated. In this study, an examination of our proteome data related to strawberry fruit ripening revealed a putative polyamine oxidase 5, FaPAO5, which was localized in the cytoplasm and nucleus. Additionally, FaPAO5 expression levels as well as the abundance of the encoded protein continually decreased during ripening. Inhibiting FaPAO5 expression by RNAi promoted Spd, Spm, and ABA accumulation while inhibited H2O2 production, which ultimately enhanced ripening as evidenced by the ripening-related events and corresponding gene expression changes. The opposite effects were observed in FaPAO5-overexpressing transgenic fruits. Analyses of the binding affinity and enzymatic activity of FaPAO5 with Spm, Spd, and Put uncovered a special role for FaPAO5 in the terminal catabolism of Spm and Spd, with a K d of 0.21 and 0.29 µM, respectively. Moreover, FaPAO5 expression was inhibited by ABA and promoted by Spd and Spm. Furthermore, the RNA-seq analysis of RNAi and control fruits via differentially expressed genes (DEGs) indicated the six most enriched pathways among the differentially expressed genes were related to sugar, abscisic acid, ethylene, auxin, gibberellin, and Ca2+. Among four putative PAO genes in the strawberry genome, only FaPAO5 was confirmed to influence fruit ripening. In conclusion, FaPAO5 is a negative regulator of strawberry fruit ripening and modulates Spm/Spd levels as a signaling event, in which ABA plays a central role.
Collapse
Affiliation(s)
- Aowai Mo
- Beijing Collaborative Innovation Center for Eco‐Environmental Improvement with Forestry and Fruit TreesBeijing University of AgricultureBeijingChina
| | - Tian Xu
- Beijing Collaborative Innovation Center for Eco‐Environmental Improvement with Forestry and Fruit TreesBeijing University of AgricultureBeijingChina
| | - Qian Bai
- Beijing Collaborative Innovation Center for Eco‐Environmental Improvement with Forestry and Fruit TreesBeijing University of AgricultureBeijingChina
- Bei Jing Bei Nong Enterprise Management Co., LtdBeijingChina
| | - Yaunyue Shen
- Beijing Collaborative Innovation Center for Eco‐Environmental Improvement with Forestry and Fruit TreesBeijing University of AgricultureBeijingChina
| | - Fan Gao
- Beijing Collaborative Innovation Center for Eco‐Environmental Improvement with Forestry and Fruit TreesBeijing University of AgricultureBeijingChina
| | - Jiaxuan Guo
- Beijing Collaborative Innovation Center for Eco‐Environmental Improvement with Forestry and Fruit TreesBeijing University of AgricultureBeijingChina
| |
Collapse
|
129
|
Tanaka H, Shew CY, Yoshikawa Y, Kenmotsu T, Yoshikawa K. Low-efficiency of gene expression with a long diamine is attributable to the effect on DNA zipping. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
130
|
Killiny N, Nehela Y. Citrus Polyamines: Structure, Biosynthesis, and Physiological Functions. PLANTS 2020; 9:plants9040426. [PMID: 32244406 PMCID: PMC7238152 DOI: 10.3390/plants9040426] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 01/10/2023]
Abstract
Polyamines (PAs) are ubiquitous biogenic amines found in all living organisms from bacteria to Archaea, and Eukaryotes including plants and animals. Since the first description of putrescine conjugate, feruloyl-putrescine (originally called subaphylline), from grapefruit leaves and juice, many research studies have highlighted the importance of PAs in growth, development, and other physiological processes in citrus plants. PAs appear to be involved in a wide range of physiological processes in citrus plants; however, their exact roles are not fully understood. Accordingly, in the present review, we discuss the biosynthesis of PAs in citrus plants, with an emphasis on the recent advances in identifying and characterizing PAs-biosynthetic genes and other upstream regulatory genes involved in transcriptional regulation of PAs metabolism. In addition, we will discuss the recent metabolic, genetic, and molecular evidence illustrating the roles of PAs metabolism in citrus physiology including somatic embryogenesis; root system formation, morphology, and architecture; plant growth and shoot system architecture; inflorescence, flowering, and flowering-associated events; fruit set, development, and quality; stomatal closure and gas-exchange; and chlorophyll fluorescence and photosynthesis. We believe that the molecular and biochemical understanding of PAs metabolism and their physiological roles in citrus plants will help citrus breeding programs to enhance tolerance to biotic and abiotic stresses and provide bases for further research into potential applications.
Collapse
Affiliation(s)
- Nabil Killiny
- Citrus Research and Education Center and Department of Plant Pathology, IFAS, University of Florida, Lake Alfred, FL 33850, USA;
- Correspondence: ; Tel.: +1-863-956-8833
| | - Yasser Nehela
- Citrus Research and Education Center and Department of Plant Pathology, IFAS, University of Florida, Lake Alfred, FL 33850, USA;
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
131
|
Sun C, Liu W, Ma S, Zhang M, Geng Y, Wang X. Development of a high-coverage matrix-assisted laser desorption/ionization mass spectrometry imaging method for visualizing the spatial dynamics of functional metabolites in Salvia miltiorrhiza Bge. J Chromatogr A 2020; 1614:460704. [DOI: 10.1016/j.chroma.2019.460704] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
|
132
|
|
133
|
Holz O, DeLuca DS, Roepcke S, Illig T, Weinberger KM, Schudt C, Hohlfeld JM. Smokers with COPD Show a Shift in Energy and Nitrogen Metabolism at Rest and During Exercise. Int J Chron Obstruct Pulmon Dis 2020; 15:1-13. [PMID: 32021139 PMCID: PMC6956026 DOI: 10.2147/copd.s217474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/21/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose There is an ongoing demand for easily accessible biomarkers that reflect the physiological and pathophysiological mechanisms of COPD. To test if an exercise challenge could help to identify clinically relevant metabolic biomarkers in COPD. Patients and Methods We performed two constant-load exercise challenges separated by 4 weeks including smokers with COPD (n=23/19) and sex- and age-matched healthy smokers (n=23/20). Two hours after a standardized meal venous blood samples were obtained before, 5 mins after the start, at the end of submaximal exercise, and following a recovery of 20 mins. Data analysis was performed using mixed- effects model, with the metabolite level as a function of disease, time point and interaction terms and using each individual's resting level as reference. Results Exercise duration was longer in healthy smokers but lactate levels were comparable between groups at all four time points. Glucose levels were increased in COPD. Glutamine was lower, while glutamate and arginine were higher in COPD. Branched-chain amino acids showed a stronger decline during exercise in healthy smokers. Carnitine and the acyl-carnitines C16 and C18:1 were increased in COPD. These metabolite levels and changes were reproducible in the second challenge. Conclusion Higher serum glucose, evidence for impaired utilization of amino acids during exercise and a shift of energy metabolism to enhanced consumption of lipids could be early signs for a developing metabolic syndrome in COPD. In COPD patients, deviations of energy and nitrogen metabolism are amplified by an exercise challenge.
Collapse
Affiliation(s)
- Olaf Holz
- Fraunhofer ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| | - David S DeLuca
- Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| | - Stefan Roepcke
- Department of Biomarker Development, Takeda Pharmaceuticals International GmbH, Zürich, Switzerland
| | - Thomas Illig
- Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| | - Klaus M Weinberger
- Biocrates Life Sciences AG, Innsbruck, Austria.,Research Group for Clinical Bioinformatics, Private University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria.,sAnalytiCo Ltd, Belfast, Ireland
| | | | - Jens M Hohlfeld
- Fraunhofer ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany.,Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| |
Collapse
|
134
|
Talevi A, Carrillo C, Comini M. The Thiol-polyamine Metabolism of Trypanosoma cruzi: Molecular Targets and Drug Repurposing Strategies. Curr Med Chem 2019; 26:6614-6635. [PMID: 30259812 DOI: 10.2174/0929867325666180926151059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/23/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022]
Abstract
Chagas´ disease continues to be a challenging and neglected public health problem in many American countries. The etiologic agent, Trypanosoma cruzi, develops intracellularly in the mammalian host, which hinders treatment efficacy. Progress in the knowledge of parasite biology and host-pathogen interaction has not been paralleled by the development of novel, safe and effective therapeutic options. It is then urgent to seek for novel therapeutic candidates and to implement drug discovery strategies that may accelerate the discovery process. The most appealing targets for pharmacological intervention are those essential for the pathogen and, whenever possible, absent or significantly different from the host homolog. The thiol-polyamine metabolism of T. cruzi offers interesting candidates for a rational design of selective drugs. In this respect, here we critically review the state of the art of the thiolpolyamine metabolism of T. cruzi and the pharmacological potential of its components. On the other hand, drug repurposing emerged as a valid strategy to identify new biological activities for drugs in clinical use, while significantly shortening the long time and high cost associated with de novo drug discovery approaches. Thus, we also discuss the different drug repurposing strategies available with a special emphasis in their applications to the identification of drug candidates targeting essential components of the thiol-polyamine metabolism of T. cruzi.
Collapse
Affiliation(s)
- Alan Talevi
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata, La Plata, Argentina
| | - Carolina Carrillo
- Instituto de Ciencias y Tecnología Dr. César Milstein (ICT Milstein) - CONICET. Ciudad Autónoma de Buenos Aires, Argentina
| | - Marcelo Comini
- Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| |
Collapse
|
135
|
Perincherry L, Lalak-Kańczugowska J, Stępień Ł. Fusarium-Produced Mycotoxins in Plant-Pathogen Interactions. Toxins (Basel) 2019; 11:toxins11110664. [PMID: 31739566 PMCID: PMC6891594 DOI: 10.3390/toxins11110664] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022] Open
Abstract
Pathogens belonging to the Fusarium genus are causal agents of the most significant crop diseases worldwide. Virtually all Fusarium species synthesize toxic secondary metabolites, known as mycotoxins; however, the roles of mycotoxins are not yet fully understood. To understand how a fungal partner alters its lifestyle to assimilate with the plant host remains a challenge. The review presented the mechanisms of mycotoxin biosynthesis in the Fusarium genus under various environmental conditions, such as pH, temperature, moisture content, and nitrogen source. It also concentrated on plant metabolic pathways and cytogenetic changes that are influenced as a consequence of mycotoxin confrontations. Moreover, we looked through special secondary metabolite production and mycotoxins specific for some significant fungal pathogens-plant host models. Plant strategies of avoiding the Fusarium mycotoxins were also discussed. Finally, we outlined the studies on the potential of plant secondary metabolites in defense reaction to Fusarium infection.
Collapse
|
136
|
Seo SY, Kim YJ, Park KY. Increasing Polyamine Contents Enhances the Stress Tolerance via Reinforcement of Antioxidative Properties. FRONTIERS IN PLANT SCIENCE 2019; 10:1331. [PMID: 31736992 PMCID: PMC6834694 DOI: 10.3389/fpls.2019.01331] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/25/2019] [Indexed: 05/08/2023]
Abstract
The diamine putrescine and the polyamines (PAs), spermidine (Spd) and spermine (Spm), are ubiquitously occurring polycations associated with several important cellular functions, especially antisenescence. Numerous studies have reported increased levels of PA in plant cells under conditions of abiotic and biotic stress such as drought, high salt concentrations, and pathogen attack. However, the physiological mechanism of elevated PA levels in response to abiotic and biotic stresses remains undetermined. Transgenic plants having overexpression of SAMDC complementary DNA and increased levels of putrescine (1.4-fold), Spd (2.3-fold), and Spm (1.8-fold) under unstressed conditions were compared to wild-type (WT) plants in the current study. The most abundant PA in transgenic plants was Spd. Under salt stress conditions, enhancement of endogenous PAs due to overexpression of the SAMDC gene and exogenous treatment with Spd considerably reduces the reactive oxygen species (ROS) accumulation in intra- and extracellular compartments. Conversely, as compared to the WT, PA oxidase transcription rapidly increases in the S16-S-4 transgenic strain subsequent to salt stress. Furthermore, transcription levels of ROS detoxifying enzymes are elevated in transgenic plants as compared to the WT. Our findings with OxyBlot analysis indicate that upregulated amounts of endogenous PAs in transgenic tobacco plants show antioxidative effects for protein homeostasis against stress-induced protein oxidation. These results imply that the increased PAs induce transcription of PA oxidases, which oxidize PAs, which in turn trigger signal antioxidative responses resulting to lower the ROS load. Furthermore, total proteins from leaves with exogenously supplemented Spd and Spm upregulate the chaperone activity. These effects of PAs for antioxidative properties and antiaggregation of proteins contribute towards maintaining the physiological cellular functions against abiotic stresses. It is suggested that these functions of PAs are beneficial for protein homeostasis during abiotic stresses. Taken together, these results indicate that PA molecules function as antisenescence regulators through inducing ROS detoxification, antioxidative properties, and molecular chaperone activity under stress conditions, thereby providing broad-spectrum tolerance against a variety of stresses.
Collapse
Affiliation(s)
| | | | - Ky Young Park
- Department of Biology, Sunchon National University, Suncheon, South Korea
| |
Collapse
|
137
|
Nishio T, Yoshikawa Y, Shew CY, Umezawa N, Higuchi T, Yoshikawa K. Specific effects of antitumor active norspermidine on the structure and function of DNA. Sci Rep 2019; 9:14971. [PMID: 31628357 PMCID: PMC6802174 DOI: 10.1038/s41598-019-50943-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/23/2019] [Indexed: 01/11/2023] Open
Abstract
We compared the effects of trivalent polyamines, spermidine (SPD) and norspermidine (NSPD), a chemical homologue of SPD, on the structure of DNA and gene expression. The chemical structures of SPD and NSPD are different only with the number of methylene groups between amine groups, [N-3-N-4-N] and [N-3-N-3-N], respectively. SPD plays vital roles in cell function and survival, including in mammals. On the other hand, NSPD has antitumor activity and is found in some species of plants, bacteria and algae, but not in humans. We found that both polyamines exhibit biphasic effect; enhancement and inhibition on in vitro gene expression, where SPD shows definitely higher potency in enhancement but NSPD causes stronger inhibition. Based on the results of AFM (atomic force microscopy) observations together with single DNA measurements with fluorescence microscopy, it becomes clear that SPD tends to align DNA orientation, whereas NSPD induces shrinkage with a greater potency. The measurement of binding equilibrium by NMR indicates that NSPD shows 4-5 times higher affinity to DNA than SPD. Our theoretical study with Monte Carlo simulation provides the insights into the underlying mechanism of the specific effect of NSPD on DNA.
Collapse
Affiliation(s)
- Takashi Nishio
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Yuko Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Chwen-Yang Shew
- Doctoral Program in Chemistry, The Graduate Center of the City University of New York, New York, 10016, USA.
- Department of Chemistry, College of Staten Island, Staten Island, New York, 10314, USA.
| | - Naoki Umezawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Tsunehiko Higuchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan.
| |
Collapse
|
138
|
Sánchez-Jiménez F, Medina MÁ, Villalobos-Rueda L, Urdiales JL. Polyamines in mammalian pathophysiology. Cell Mol Life Sci 2019; 76:3987-4008. [PMID: 31227845 PMCID: PMC11105599 DOI: 10.1007/s00018-019-03196-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 02/07/2023]
Abstract
Polyamines (PAs) are essential organic polycations for cell viability along the whole phylogenetic scale. In mammals, they are involved in the most important physiological processes: cell proliferation and viability, nutrition, fertility, as well as nervous and immune systems. Consequently, altered polyamine metabolism is involved in a series of pathologies. Due to their pathophysiological importance, PA metabolism has evolved to be a very robust metabolic module, interconnected with the other essential metabolic modules for gene expression and cell proliferation/differentiation. Two different PA sources exist for animals: PA coming from diet and endogenous synthesis. In the first section of this work, the molecular characteristics of PAs are presented as determinant of their roles in living organisms. In a second section, the metabolic specificities of mammalian PA metabolism are reviewed, as well as some obscure aspects on it. This second section includes information on mammalian cell/tissue-dependent PA-related gene expression and information on crosstalk with the other mammalian metabolic modules. The third section presents a synthesis of the physiological processes described as modulated by PAs in humans and/or experimental animal models, the molecular bases of these regulatory mechanisms known so far, as well as the most important gaps of information, which explain why knowledge around the specific roles of PAs in human physiology is still considered a "mysterious" subject. In spite of its robustness, PA metabolism can be altered under different exogenous and/or endogenous circumstances so leading to the loss of homeostasis and, therefore, to the promotion of a pathology. The available information will be summarized in the fourth section of this review. The different sections of this review also point out the lesser-known aspects of the topic. Finally, future prospects to advance on these still obscure gaps of knowledge on the roles on PAs on human physiopathology are discussed.
Collapse
Affiliation(s)
- Francisca Sánchez-Jiménez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, and IBIMA (Biomedical Research Institute of Málaga), Málaga, Spain
- UNIT 741, CIBER de Enfermedades Raras (CIBERER), 29071, Málaga, Spain
| | - Miguel Ángel Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, and IBIMA (Biomedical Research Institute of Málaga), Málaga, Spain
- UNIT 741, CIBER de Enfermedades Raras (CIBERER), 29071, Málaga, Spain
| | - Lorena Villalobos-Rueda
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, and IBIMA (Biomedical Research Institute of Málaga), Málaga, Spain
| | - José Luis Urdiales
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, and IBIMA (Biomedical Research Institute of Málaga), Málaga, Spain.
- UNIT 741, CIBER de Enfermedades Raras (CIBERER), 29071, Málaga, Spain.
| |
Collapse
|
139
|
Does diet play a role in reducing nociception related to inflammation and chronic pain? Nutrition 2019; 66:153-165. [DOI: 10.1016/j.nut.2019.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/22/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
|
140
|
Anwar R, Fatima S, Mattoo AK, Handa AK. Fruit Architecture in Polyamine-Rich Tomato Germplasm Is Determined via a Medley of Cell Cycle, Cell Expansion, and Fruit Shape Genes. PLANTS 2019; 8:plants8100387. [PMID: 31569586 PMCID: PMC6843802 DOI: 10.3390/plants8100387] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 12/26/2022]
Abstract
Shape and size are important features of fruits. Studies using tomatoes expressing yeast Spermidine Synthase under either a constitutive or a fruit-ripening promoter showed obovoid fruit phenotype compared to spherical fruit in controls, suggesting that polyamines (PAs) have a role in fruit shape. The obovoid fruit pericarp exhibited decreased cell layers and pericarp thickness compared to wild-type fruit. Transgenic floral buds and ovaries accumulated higher levels of free PAs, with the bound form of PAs being predominant. Transcripts of the fruit shape genes, SUN1 and OVATE, and those of CDKB2, CYCB2, KRP1 and WEE1 genes increased significantly in the transgenic ovaries 2 and 5 days after pollination (DAP). The levels of cell expansion genes CCS52A/B increased at 10 and 20 DAP in the transgenic fruits and exhibited negative correlation with free or bound forms of PAs. In addition, the cell layers and pericarp thickness of the transgenic fruits were inversely associated with free or bound PAs in 10 and 20 DAP transgenic ovaries. Collectively, these results provide evidence for a linkage between PA homeostasis and expression patterns of fruit shape, cell division, and cell expansion genes during early fruit development, and suggest role(s) of PAs in tomato fruit architecture.
Collapse
Affiliation(s)
- Raheel Anwar
- Department of Horticulture and Landscape Architecture, 625 Agriculture Mall Drive, Purdue University, West Lafayette, IN 47906, USA.
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Punjab 38040, Pakistan.
| | - Shazia Fatima
- Department of Horticulture and Landscape Architecture, 625 Agriculture Mall Drive, Purdue University, West Lafayette, IN 47906, USA.
| | - Autar K Mattoo
- Sustainable Agricultural Systems Laboratory, U.S. Department of Agriculture, Agricultural Research Service, The Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705, USA.
| | - Avtar K Handa
- Department of Horticulture and Landscape Architecture, 625 Agriculture Mall Drive, Purdue University, West Lafayette, IN 47906, USA.
| |
Collapse
|
141
|
Nambeesan SU, Mattoo AK, Handa AK. Nexus Between Spermidine and Floral Organ Identity and Fruit/Seed Set in Tomato. FRONTIERS IN PLANT SCIENCE 2019; 10:1033. [PMID: 31608074 PMCID: PMC6774279 DOI: 10.3389/fpls.2019.01033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Polyamines (PAs) constituting putrescine (Put), spermidine (Spd), and spermine (Spm) are ubiquitous in all organisms and play essential roles in the growth and developmental processes in living organisms, including plants. Evidences obtained through genetic, biochemical, and transgenic approaches suggest a tight homeostasis for cellular PA levels. Altered cellular PA homeostasis is associated with abnormal phenotypes. However, the mechanisms involved for these abnormalities are not yet fully understood, nor is it known whether cellular ratios of different polyamines play any role(s) in specific plant processes. We expressed a yeast spermidine synthase gene (ySpdSyn) under a constitutive promoter CaMV35S in tomato and studied the different phenotypes that developed. The constitutive expression of ySpdSyn resulted in variable flower phenotypes in independent transgenic lines, some of which lacked fruit and seed set. Quantification of PA levels in the developing flowers showed that the transgenic plants without fruit and seed set had significantly reduced Spd levels as well as low Spd/Put ratio compared to the transgenic lines with normal fruit and seed set. Transcript levels of SlDELLA, GA-20oxidase-1, and GA-3oxidase-2, which impact gibberellin (GA) metabolism and signaling, were significantly reduced in bud tissue of transgenic lines that lacked fruit and seed set. These findings indicate that PAs, particularly Spd, impact floral organ identity and fruit set in tomato involving GA metabolism and signaling. Furthermore, we suggest that a nexus exists between PA ratios and developmental programs in plants.
Collapse
Affiliation(s)
| | - Autar K. Mattoo
- Sustainable Agricultural Systems Laboratory, USDA-ARS, Beltsville Agricultural Research Center, Beltsville, MD, United States
| | - Avtar K. Handa
- Center of Plant Biology, Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
142
|
Bito T, Okamoto N, Otsuka K, Yabuta Y, Arima J, Kawano T, Watanabe F. Involvement of Spermidine in the Reduced Lifespan of Caenorhabditis elegans During Vitamin B 12 Deficiency. Metabolites 2019; 9:metabo9090192. [PMID: 31546940 PMCID: PMC6780408 DOI: 10.3390/metabo9090192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/12/2019] [Accepted: 09/18/2019] [Indexed: 11/25/2022] Open
Abstract
Vitamin B12 deficiency leads to various symptoms such as neuropathy, growth retardation, and infertility. Vitamin B12 functions as a coenzyme for two enzymes involved in amino acid metabolisms. However, there is limited information available on whether amino acid disorders caused by vitamin B12 deficiency induce such symptoms. First, free amino acid levels were determined in vitamin B12-deficient Caenorhabditis elegans to clarify the mechanisms underlying the symptoms caused by vitamin B12 deficiency. Various amino acids (valine, leucine, isoleucine, methionine, and cystathionine, among others) metabolized by vitamin B12-dependent enzymes were found to be significantly changed during conditions of B12 deficiency, which indirectly affected certain amino acids metabolized by vitamin B12-independent enzymes. For example, ornithine was significantly increased during vitamin B12 deficiency, which also significantly increased arginase activity. The accumulation of ornithine during vitamin B12 deficiency constitutes the first report. In addition, the biosynthesis of spermidine from ornithine was significantly decreased during vitamin B12 deficiency, likely due to the reduction of S-adenosylmethionine as a substrate for S-adenosylmethionine decarboxylase, which catalyzes the formation of spermidine. Moreover, vitamin B12 deficiency also demonstrated a significant reduction in worm lifespan, which was partially recovered by the addition of spermidine. Collectively, our findings suggest that decreased spermidine is one factor responsible for reduced lifespan in vitamin B12-deficient worms.
Collapse
Affiliation(s)
- Tomohiro Bito
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.
| | - Naho Okamoto
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Japan.
| | - Kenji Otsuka
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.
| | - Yukinori Yabuta
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.
| | - Jiro Arima
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.
| | - Tsuyoshi Kawano
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.
| | - Fumio Watanabe
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.
| |
Collapse
|
143
|
Syatkin SP, Neborak EV, Khlebnikov AI, Komarova MV, Shevkun NA, Kravtsov EG, Blagonravov ML, Agostinelli E. The investigation of structure-activity relationship of polyamine-targeted synthetic compounds from different chemical groups. Amino Acids 2019; 52:199-211. [PMID: 31520286 DOI: 10.1007/s00726-019-02778-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/14/2019] [Indexed: 01/26/2023]
Abstract
The polyamine (PA) metabolism is involved in cell proliferation and differentiation. Increased cellular PA levels are observed in different types of cancers. Products of PA oxidation induce apoptosis in cancer cells. These observations open a perspective to exploit the enzymes of PA catabolism as a target for anticancer drug design. The substances capable to enhance PA oxidation may become potential anticancer agents. The goal of our study was to explore how the mode of ligand binding with a PA catabolic enzyme is associated with its stimulatory or inhibitory effect upon PA oxidation. Murine N1-acetylpolyamine oxidase (5LFO) crystalline structure was used for molecular docking with ligands of various chemical structures. In vitro experiments were carried out to evaluate the action of the tested compounds upon PA oxidative deamination in a cell-free test system from rat liver. Two amino acid residues (Aps211 and Tyr204) in the structure of 5LFO were found to be significant for binding with the tested compounds. 19 out of 51 screened compounds were activators and 17 were inhibitors of oxidative deamination of PA. Taken together, these results enabled to construct a recognition model with characteristic descriptors depicting activators and inhibitors. The general tendency indicated that a strong interaction with Asp211 or Tyr204 was rather typical for activators. The understanding of how the structure determines the binding mode of compounds with PA catabolic enzyme may help in explanation of their structure-activity relationship and thus promote structure-based drug design.
Collapse
Affiliation(s)
- Sergey P Syatkin
- Medical Institute, RUDN University (Peoples' Friendship University of Russia), Miklukho-Maklaya str.6, Moscow, 117198, Russia.
| | - Ekaterina V Neborak
- Medical Institute, RUDN University (Peoples' Friendship University of Russia), Miklukho-Maklaya str.6, Moscow, 117198, Russia
| | - Andrei I Khlebnikov
- Kizhner Research Center, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia
- Scientific Research Institute of Biological Medicine, Altai State University, Barnaul, 656049, Russia
| | | | - Natalia A Shevkun
- Drug Product Division, Project Development Department, NEARMEDIC PHARMA LLC, Moscow, Russia
| | - Eduard G Kravtsov
- Medical Institute, RUDN University (Peoples' Friendship University of Russia), Miklukho-Maklaya str.6, Moscow, 117198, Russia
| | - Mikhail L Blagonravov
- Medical Institute, RUDN University (Peoples' Friendship University of Russia), Miklukho-Maklaya str.6, Moscow, 117198, Russia
| | - Enzo Agostinelli
- Department of Biochemical Sciences, SAPIENZA University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
- International Polyamines Foundation, ONLUS, Via del Forte Tiburtino, 98, 00159, Rome, Italy
| |
Collapse
|
144
|
The Interplay among Polyamines and Nitrogen in Plant Stress Responses. PLANTS 2019; 8:plants8090315. [PMID: 31480342 PMCID: PMC6784213 DOI: 10.3390/plants8090315] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/27/2022]
Abstract
The interplay between polyamines (PAs) and nitrogen (N) is emerging as a key factor in plant response to abiotic and biotic stresses. The PA/N interplay in plants connects N metabolism, carbon (C) fixation, and secondary metabolism pathways. Glutamate, a pivotal N-containing molecule, is responsible for the biosynthesis of proline (Pro), arginine (Arg) and ornithine (Orn) and constitutes a main common pathway for PAs and C/N assimilation/incorporation implicated in various stresses. PAs and their derivatives are important signaling molecules, as they act largely by protecting and preserving the function/structure of cells in response to stresses. Use of different research approaches, such as generation of transgenic plants with modified intracellular N and PA homeostasis, has helped to elucidate a plethora of PA roles, underpinning their function as a major player in plant stress responses. In this context, a range of transgenic plants over-or under-expressing N/PA metabolic genes has been developed in an effort to decipher their implication in stress signaling. The current review describes how N and PAs regulate plant growth and facilitate crop acclimatization to adverse environments in an attempt to further elucidate the N-PAs interplay against abiotic and biotic stresses, as well as the mechanisms controlling N-PA genes/enzymes and metabolites.
Collapse
|
145
|
Muñoz-Esparza NC, Latorre-Moratalla ML, Comas-Basté O, Toro-Funes N, Veciana-Nogués MT, Vidal-Carou MC. Polyamines in Food. Front Nutr 2019; 6:108. [PMID: 31355206 PMCID: PMC6637774 DOI: 10.3389/fnut.2019.00108] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022] Open
Abstract
The polyamines spermine, spermidine, and putrescine are involved in various biological processes, notably in cell proliferation and differentiation, and also have antioxidant properties. Dietary polyamines have important implications in human health, mainly in the intestinal maturation and in the differentiation and development of immune system. The antioxidant and anti-inflammatory effect of polyamine can also play an important role in the prevention of chronic diseases such as cardiovascular diseases. In addition to endogenous synthesis, food is an important source of polyamines. Although there are no recommendations for polyamine daily intake, it is known that in stages of rapid cell growth (i.e., in the neonatal period), polyamine requirements are high. Additionally, de novo synthesis of polyamines tends to decrease with age, which is why their dietary sources acquire a greater importance in an aging population. Polyamine daily intake differs among to the available estimations, probably due to different dietary patterns and methodologies of data collection. Polyamines can be found in all types of foods in a wide range of concentrations. Spermidine and spermine are naturally present in food whereas putrescine could also have a microbial origin. The main polyamine in plant-based products is spermidine, whereas spermine content is generally higher in animal-derived foods. This article reviews the main implications of polyamines for human health, as well as their content in food and breast milk and infant formula. In addition, the estimated levels of polyamines intake in different populations are provided.
Collapse
Affiliation(s)
- Nelly C. Muñoz-Esparza
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), Barcelona, Spain
- Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA·UB), Barcelona, Spain
- Catalonian Reference Network on Food Technology (XaRTA), Barcelona, Spain
| | - M. Luz Latorre-Moratalla
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), Barcelona, Spain
- Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA·UB), Barcelona, Spain
- Catalonian Reference Network on Food Technology (XaRTA), Barcelona, Spain
| | - Oriol Comas-Basté
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), Barcelona, Spain
- Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA·UB), Barcelona, Spain
- Catalonian Reference Network on Food Technology (XaRTA), Barcelona, Spain
| | - Natalia Toro-Funes
- Eurecat, Technological Unit of Nutrition and Health, Technology Centre of Catalonia, Reus, Spain
| | - M. Teresa Veciana-Nogués
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), Barcelona, Spain
- Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA·UB), Barcelona, Spain
- Catalonian Reference Network on Food Technology (XaRTA), Barcelona, Spain
| | - M. Carmen Vidal-Carou
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), Barcelona, Spain
- Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA·UB), Barcelona, Spain
- Catalonian Reference Network on Food Technology (XaRTA), Barcelona, Spain
| |
Collapse
|
146
|
Sobieszczuk-Nowicka E, Paluch-Lubawa E, Mattoo AK, Arasimowicz-Jelonek M, Gregersen PL, Pacak A. Polyamines - A New Metabolic Switch: Crosstalk With Networks Involving Senescence, Crop Improvement, and Mammalian Cancer Therapy. FRONTIERS IN PLANT SCIENCE 2019; 10:859. [PMID: 31354753 PMCID: PMC6635640 DOI: 10.3389/fpls.2019.00859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/14/2019] [Indexed: 05/06/2023]
Abstract
Polyamines (PAs) are low molecular weight organic cations comprising biogenic amines that play multiple roles in plant growth and senescence. PA metabolism was found to play a central role in metabolic and genetic reprogramming during dark-induced barley leaf senescence (DILS). Robust PA catabolism can impact the rate of senescence progression in plants. We opine that deciphering senescence-dependent polyamine-mediated multidirectional metabolic crosstalks is important to understand regulation and involvement of PAs in plant death and re-mobilization of nutrients during senescence. This will involve optimizing the use of PA biosynthesis inhibitors, robust transgenic approaches to modulate PA biosynthetic and catabolic genes, and developing novel germplasm enriched in pro- and anti-senescence traits to ensure sustained crop productivity. PA-mediated delay of senescence can extend the photosynthesis capacity, thereby increasing grain starch content in malting grains such as barley. On the other hand, accelerating the onset of senescence can lead to increases in mineral and nitrogen content in grains for animal feed. Unraveling the "polyamine metabolic switch" and delineating the roles of PAs in senescence should further our knowledge about autophagy mechanisms involved in plant senescence as well as mammalian systems. It is noteworthy that inhibitors of PA biosynthesis block cell viability in animal model systems (cell tumor lines) to control some cancers, in this instance, proliferative cancer cells were led toward cell death. Likewise, PA conjugates work as signal carriers for slow release of regulatory molecule nitric oxide in the targeted cells. Taken together, these and other outcomes provide examples for developing novel therapeutics for human health wellness as well as developing plant resistance/tolerance to stress stimuli.
Collapse
Affiliation(s)
- Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Ewelina Paluch-Lubawa
- Department of Plant Physiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Autar K. Mattoo
- Sustainable Agricultural Systems Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, United States Department of Agriculture, Beltsville, MD, United States
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Per L. Gregersen
- Department of Molecular Biology and Genetics, Aarhus University, Slagelse, Denmark
| | - Andrzej Pacak
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
147
|
da Silva MB, Rodrigues LFOS, Monteiro GC, Monar GRS, Gomez Gomez HA, Seabra Junior S, Minatel IO, Lima GPP. Evaluation of biogenic amines and nitrate in raw and pickled jurubeba ( Solanum paniculatum L.) fruit. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2019; 56:2970-2978. [PMID: 31205352 PMCID: PMC6542861 DOI: 10.1007/s13197-019-03772-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/18/2019] [Accepted: 04/04/2019] [Indexed: 12/26/2022]
Abstract
The presence of biogenic amines, such as histamine and tyramine, in pickled food can cause health problems, such as allergies. However, other bioactive amines may be present and can induce some diseases. Some biogenic amines can react with nitrate and form nitrosamines, compounds harmful to human health. In this research, we qualitatively and quantitatively evaluated some biogenic amines and nitrate content in jurubeba preserved in oil or vinegar. The fruits were obtained from cultivated plants, or wild plants, or they were purchased from market. Jurubeba fruit was analyzed raw and after cooking. After thermal processing, the fruits were preserved in soybean oil or vinegar and were evaluated after 1 h and at 30, 60 and 90 days of storage. Variations in the contents of biogenic amine were found depending on the place from which the fruits were obtained, as well as depending on the type of preservative and time of storage. The nitrate levels did not exceed the established limits, mainly when preserved in vinegar, which also showed the lowest levels of biogenic amines.
Collapse
Affiliation(s)
- Mônica Bartira da Silva
- Department of Chemistry and Biochemistry, Institute of Bioscience, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-000 Brazil
| | | | - Gean Charles Monteiro
- Department of Horticulture, School of Agriculture, Sao Paulo State University (UNESP), Botucatu, São Paulo 18.618-000 Brazil
| | - Giovana Rafaela Stelzer Monar
- Department of Chemistry and Biochemistry, Institute of Bioscience, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-000 Brazil
| | - Hector Alonzo Gomez Gomez
- Department of Food Technology, Universidad Nacional de Agricultura, Barrio El Espino, Catacamas, Honduras
| | - Santino Seabra Junior
- Department of Agricultural Engineering, Sate University of Mato Grosso (UNEMAT), Nova Mutum, Mato Grosso 78.450-000 Brazil
| | - Igor Otavio Minatel
- Department of Chemistry and Biochemistry, Institute of Bioscience, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-000 Brazil
| | - Giuseppina Pace Pereira Lima
- Department of Chemistry and Biochemistry, Institute of Bioscience, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-000 Brazil
| |
Collapse
|
148
|
Wang W, Paschalidis K, Feng JC, Song J, Liu JH. Polyamine Catabolism in Plants: A Universal Process With Diverse Functions. FRONTIERS IN PLANT SCIENCE 2019; 10:561. [PMID: 31134113 PMCID: PMC6513885 DOI: 10.3389/fpls.2019.00561] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/12/2019] [Indexed: 05/18/2023]
Abstract
Polyamine (PA) catabolic processes are performed by copper-containing amine oxidases (CuAOs) and flavin-containing PA oxidases (PAOs). So far, several CuAOs and PAOs have been identified in many plant species. These enzymes exhibit different subcellular localization, substrate specificity, and functional diversity. Since PAs are involved in numerous physiological processes, considerable efforts have been made to explore the functions of plant CuAOs and PAOs during the recent decades. The stress signal transduction pathways usually lead to increase of the intracellular PA levels, which are apoplastically secreted and oxidized by CuAOs and PAOs, with parallel production of hydrogen peroxide (H2O2). Depending on the levels of the generated H2O2, high or low, respectively, either programmed cell death (PCD) occurs or H2O2 is efficiently scavenged by enzymatic/nonenzymatic antioxidant factors that help plants coping with abiotic stress, recruiting different defense mechanisms, as compared to biotic stress. Amine and PA oxidases act further as PA back-converters in peroxisomes, also generating H2O2, possibly by activating Ca2+ permeable channels. Here, the new research data are discussed on the interconnection of PA catabolism with the derived H2O2, together with their signaling roles in developmental processes, such as fruit ripening, senescence, and biotic/abiotic stress reactions, in an effort to elucidate the mechanisms involved in crop adaptation/survival to adverse environmental conditions and to pathogenic infections.
Collapse
Affiliation(s)
- Wei Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Konstantinos Paschalidis
- Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Heraklion, Greece
| | - Jian-Can Feng
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Jie Song
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
149
|
Ghaffari MH, Sadri H, Schuh K, Dusel G, Frieten D, Koch C, Prehn C, Adamski J, Sauerwein H. Biogenic amines: Concentrations in serum and skeletal muscle from late pregnancy until early lactation in dairy cows with high versus normal body condition score. J Dairy Sci 2019; 102:6571-6586. [PMID: 31056318 DOI: 10.3168/jds.2018-16034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
Abstract
Biogenic amines (BA) are a class of nitrogenous compounds that are involved in a wide variety of physiological processes, but their role in transition cows is poorly understood. Our objectives were to describe the longitudinal changes of BA in serum and in skeletal muscle during the transition period and to characterize temporal responses of BA in relation to body condition score (BCS) of periparturient dairy cows. Fifteen weeks before calving, 36 multiparous Holstein cows were assigned to 2 groups (n = 18 per group) that were fed differently to reach either high [HBCS; net energy for lactation (NEL) = 7.2 MJ/kg of dry matter (DM)] or normal BCS (NBCS; NEL = 6.8 MJ/kg of DM) at dry-off. The targeted BCS and back fat thickness (BFT) at dry-off (HBCS, >3.75 and >1.4 cm; NBCS, <3.5 and <1.2 cm) were reached. Thereafter, both groups were fed identical diets. Blood samples and muscle (semitendinosus) biopsies were collected at d -49, +3, +21, and +84 relative to parturition. In serum and skeletal muscle, BA concentrations were measured using a targeted metabolomics assay. The data were analyzed as a repeated measure using the MIXED procedure of SAS. The serum concentrations of most BA (i.e., creatinine, taurine, carnosine putrescine, spermine, α-aminoadipic acid, acetylornithine, kynurenine, serotonin, hydroxyproline, asymmetric dimethylarginine, and symmetric dimethylarginine) fluctuated during the transition period, while others (i.e., spermidine, phenylethylamine) did not change with time. The muscle concentrations of BA remained unchanged over time. Creatinine had the highest concentrations in the serum, while carnosine had the highest concentration among the muscle BA. The serum concentrations of creatinine (d +21), putrescine (d +84), α-aminoadipic acid (d +3), and hydroxyproline (d +21) were or tended to be higher for HBCS compared with NBCS postpartum. The serum concentrations of symmetric dimethylarginine (d -49) and acetylornithine (d +84) were or tended to be lower for HBCS compared with NBCS, respectively. The serum kynurenine/tryptophan ratio was greater with HBCS than with NBCS (d +84). Compared with NBCS, HBCS was associated with lower muscle concentrations of carnosine, but those of hydroxyproline were higher (d -49). In both serum and muscle, the asymmetric dimethylarginine concentrations were greater with HBCS than with NBCS (d -49). No correlation was found between serum and skeletal muscle BA. This study indicates that overconditioning of dairy cows may influence serum and muscle BA concentrations in the periparturient period.
Collapse
Affiliation(s)
- M H Ghaffari
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - H Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 516616471 Tabriz, Iran.
| | - K Schuh
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Bonn, Germany; Department of Life Sciences and Engineering, Animal Nutrition and Hygiene Unit, University of Applied Sciences Bingen, 55411 Bingen am Rhein, Germany
| | - G Dusel
- Department of Life Sciences and Engineering, Animal Nutrition and Hygiene Unit, University of Applied Sciences Bingen, 55411 Bingen am Rhein, Germany
| | - Dörte Frieten
- Department of Life Sciences and Engineering, Animal Nutrition and Hygiene Unit, University of Applied Sciences Bingen, 55411 Bingen am Rhein, Germany
| | - C Koch
- Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle, 67728 Muenchweiler an der Alsenz, Germany
| | - C Prehn
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 München-Neuherberg, Germany
| | - J Adamski
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 München-Neuherberg, Germany; Lehrstuhl für Experimentelle Genetik, Technische Universität München, 85350 Freising-Weihenstephan, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - H Sauerwein
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
150
|
Becerra-Rivera VA, Dunn MF. Polyamine biosynthesis and biological roles in rhizobia. FEMS Microbiol Lett 2019; 366:5476500. [DOI: 10.1093/femsle/fnz084] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/22/2019] [Indexed: 12/31/2022] Open
Abstract
ABSTRACTPolyamines are ubiquitous molecules containing two or more amino groups that fulfill varied and often essential physiological and regulatory roles in all organisms. In the symbiotic nitrogen-fixing bacteria known as rhizobia, putrescine and homospermidine are invariably produced while spermidine and norspermidine synthesis appears to be restricted to the alfalfa microsymbiont Sinorhizobium meliloti. Studies with rhizobial mutants deficient in the synthesis of one or more polyamines have shown that these compounds are important for growth, stress resistance, motility, exopolysaccharide production and biofilm formation. In this review, we describe these studies and examine how polyamines are synthesized and regulated in rhizobia.
Collapse
Affiliation(s)
- Victor A Becerra-Rivera
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas-Universidad Nacional Autónoma de México, Cuernavaca, Morelos, C.P. 62210, Mexico
| | - Michael F Dunn
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas-Universidad Nacional Autónoma de México, Cuernavaca, Morelos, C.P. 62210, Mexico
| |
Collapse
|