101
|
Lohiya G, Katti DS. Mesoporous Silica Nanoparticle-Based Combination of Niclosamide and Doxorubicin: Effect of Treatment Regimens on Breast Cancer Subtypes. ACS APPLIED BIO MATERIALS 2021; 4:7811-7824. [PMID: 35006763 DOI: 10.1021/acsabm.1c00753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Overexpressed Wnt/β-catenin signaling acts as a major cancer driver and plays an important role in the development of resistance against cancer chemotherapy. Therefore, the combinatorial approach of downregulating Wnt/β-catenin signaling along with using a chemotherapeutic agent may improve cancer therapy. However, systemic administration of free anticancer agents is nonspecific and poses serious side effects. Hence, the present study aimed at developing mesoporous silica nanoparticle (MSN)-based targeted combination therapy of a Wnt signaling inhibitor, niclosamide (Nic), and a conventional anticancer agent, doxorubicin (Dox). The results demonstrated the reproducible synthesis of highly stable and monodispersed sub-100 nm spherical shaped NPs. In vitro cytotoxicity studies demonstrated that the individual drug formulations caused concentration-dependent cytotoxicity to all of the three breast cancer subtypes, with higher concentrations being more cytotoxic. Further, sequential and concurrent combination of Nic-loaded MSNs with Dox-loaded MSNs was synergistic and caused significantly enhanced death in all breast cancer subtypes. Quantification of the combinatorial efficacy suggested that multiple combinatorial pairs were synergistic in all of the breast cancer types for both (sequential and concurrent) treatment regimens. However, the extent of synergism varied between the two treatment regimens in different clinical subtypes of breast cancer. Overall, the combination of Nic-loaded MSNs with Dox-loaded MSNs holds promise to be developed as an efficient therapeutic option for breast cancer irrespective of the clinical subtype in both sequential and concurrent treatment regimens.
Collapse
Affiliation(s)
- Garima Lohiya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology─Kanpur, Kanpur 208016, Uttar Pradesh, India.,Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology─Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Dhirendra S Katti
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology─Kanpur, Kanpur 208016, Uttar Pradesh, India.,Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology─Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
102
|
Ratajczak M, Gaweł D, Godlewska M. Novel Inhibitor-Based Therapies for Thyroid Cancer-An Update. Int J Mol Sci 2021; 22:11829. [PMID: 34769260 PMCID: PMC8584403 DOI: 10.3390/ijms222111829] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/16/2022] Open
Abstract
Thyroid cancers (TCs) are the most common tumors of the endocrine system and a constant rise in the number of TC cases has been observed for the past few decades. TCs are one of the most frequent tumors in younger adults, especially in women, therefore early diagnosis and effective therapy are especially important. Ultrasonography examination followed by fine needle biopsy have become the gold standard for diagnosis of TCs, as these strategies allow for early-stage detection and aid accurate qualification for further procedures, including surgical treatment. Despite all the advancements in detection and treatment of TCs, constant mortality levels are still observed. Therefore, a novel generation line of targeted treatment strategies is being developed, including personalized therapies with kinase inhibitors. Recent molecular studies on TCs demonstrate that kinase inhibitor-based therapies might be considered as the most promising. In the past decade, new kinase inhibitors with different mechanisms of action have been reported and approved for clinical trials. This review presents an up-to-date picture of new approaches and challenges of inhibitor-based therapies in treatment of TCs, focusing on the latest findings reported over the past two years.
Collapse
Affiliation(s)
- Maciej Ratajczak
- Centre of Postgraduate Medical Education, Department of Endocrinology, Marymoncka 99/103, 01-813 Warsaw, Poland;
| | - Damian Gaweł
- Centre of Postgraduate Medical Education, Department of Immunohematology, Marymoncka 99/103, 01-813 Warsaw, Poland
- Centre of Postgraduate Medical Education, Department of Biochemistry and Molecular Biology, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Marlena Godlewska
- Centre of Postgraduate Medical Education, Department of Biochemistry and Molecular Biology, Marymoncka 99/103, 01-813 Warsaw, Poland
| |
Collapse
|
103
|
Kumar V, Gupta S, Chaurasia A, Sachan M. Evaluation of Diagnostic Potential of Epigenetically Deregulated MiRNAs in Epithelial Ovarian Cancer. Front Oncol 2021; 11:681872. [PMID: 34692473 PMCID: PMC8529058 DOI: 10.3389/fonc.2021.681872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background Epithelial ovarian cancer (EOC) is one of the most lethal gynecological malignancies among women worldwide. Early diagnosis of EOC could help in ovarian cancer management. MicroRNAs, a class of small non-coding RNA molecules, are known to be involved in post-transcriptional regulation of ~60% of human genes. Aberrantly expressed miRNAs associated with disease progression are confined in lipid or lipoprotein and secreted as extracellular miRNA in body fluid such as plasma, serum, and urine. MiRNAs are stably present in the circulation and recently have gained an importance to serve as a minimally invasive biomarker for early detection of epithelial ovarian cancer. Methods Genome-wide methylation pattern of six EOC and two normal ovarian tissue samples revealed differential methylation regions of miRNA gene promoter through MeDIP-NGS sequencing. Based on log2FC and p-value, three hypomethylated miRNAs (miR-205, miR-200c, and miR-141) known to have a potential role in ovarian cancer progression were selected for expression analysis through qRT-PCR. The expression of selected miRNAs was analyzed in 115 tissue (85 EOC, 30 normal) and 65 matched serum (51 EOC and 14 normal) samples. Results All three miRNAs (miR-205, miR-200c, and miR-141) showed significantly higher expression in both tissue and serum cohorts when compared with normal controls (p < 0.0001). The receiver operating characteristic curve analysis of miR-205, miR-200c, and miR-141 has area under the curve (AUC) values of 87.6 (p < 0.0001), 78.2 (p < 0.0001), and 86.0 (p < 0.0001), respectively; in advance-stage serum samples, however, ROC has AUC values of 88.1 (p < 0.0001), 78.9 (p < 0.0001), and 86.7 (p < 0.0001), respectively, in early-stage serum samples. The combined diagnostic potential of the three miRNAs in advance-stage serum samples and early-stage serum samples has AUC values of 95.9 (95% CI: 0.925-1.012; sensitivity = 96.6% and specificity = 80.0%) and 98.1 (95% CI: 0.941-1.021; sensitivity = 90.5% and specificity = 100%), respectively. Conclusion Our data correlate the epigenetic deregulation of the miRNA genes with their expression. In addition, the miRNA panel (miR-205 + miR-200c + miR-141) has a much higher AUC, sensitivity, and specificity to predict EOC at an early stage in both tissue and serum samples.
Collapse
Affiliation(s)
- Vivek Kumar
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George Medical University, Lucknow, India
| | - Amrita Chaurasia
- Department of Gynaecology and Obstetrics, Motilal Nehru Medical College, Allahabad, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| |
Collapse
|
104
|
Zhang Q, Gong W, Wu H, Wang J, Jin Q, Lin C, Xu S, Bao W, Wang Y, Wu J, Feng S, Zhao C, Chen B, Liu Z. DKK1 suppresses WWP2 to enhance bortezomib resistance in multiple myeloma via regulating GLI2 ubiquitination. Carcinogenesis 2021; 42:1223-1231. [PMID: 34546340 DOI: 10.1093/carcin/bgab086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/13/2021] [Accepted: 09/17/2021] [Indexed: 11/14/2022] Open
Abstract
Bortezomib-based chemotherapy represents the most prevalent regimens for multiple myeloma (MM), whereas acquired drug resistance remains a major obstacle. Myeloma cells often produce excessive amount of dickkopf-1 (DKK1), giving rise to myeloma bone disease. However, it remains obscure about the effects and mechanisms of DKK1 in the progression and bortezomib responsiveness of MM cells. In the current study, we found WWP2, an E3 ubiquitin-protein ligase, was downregulated in the bortezomib-resistant cells along with high expression of DKK1. Further investigation revealed that WWP2 was a direct target of Wnt/β-catenin signaling pathway, and DKK1 suppressed the expression of WWP2 via canonical Wnt signaling. We further identified that WWP2 mediated the ubiquitination and degradation of GLI2, a main transcriptional factor of the Hedgehog (Hh) pathway. Therefore, DKK1-induced WWP2 downregulation improved GLI2 stability and activation of Hh signaling pathway, contributing to the resistance to bortezomib of MM cells. Clinical data also validated that WWP2 expression was associated with the treatment response and clinic outcomes of MM patients. WWP2 overexpression restricted MM progression and enhanced cell sensitivity to bortezomib treatment in vitro and in vivo. Taken together, our findings demonstrate that DKK1 facilitates the generation of bortezomib resistance in MM via downregulating WWP2 and activating Hh pathway. Thus, the manipulation of DKK1-WWP2-GLI2 axis might sensitize myeloma cells to proteasome inhibitors.
Collapse
Affiliation(s)
- Qiguo Zhang
- Department of Hematology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu, China.,Department of Hematology, Chuzhou First People's Hospital of Anhui Medical University, Chuzhou, Anhui
| | - Wenyu Gong
- Department of Hematology, Chuzhou First People's Hospital of Anhui Medical University, Chuzhou, Anhui
| | - Hongyan Wu
- Department of Pathology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu, China
| | - Jing Wang
- Department of Hematology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu, China
| | - Qichuan Jin
- Department of Hematology, Chuzhou First People's Hospital of Anhui Medical University, Chuzhou, Anhui
| | - Chun Lin
- Department of Hematology, Chuzhou First People's Hospital of Anhui Medical University, Chuzhou, Anhui
| | - Shiyun Xu
- Department of Hematology, Chuzhou First People's Hospital of Anhui Medical University, Chuzhou, Anhui
| | - Wenqiang Bao
- Department of Hematology, Chuzhou First People's Hospital of Anhui Medical University, Chuzhou, Anhui
| | - Yin Wang
- Department of Hematology, Chuzhou First People's Hospital of Anhui Medical University, Chuzhou, Anhui
| | - Jing Wu
- Department of Hematology, Chuzhou First People's Hospital of Anhui Medical University, Chuzhou, Anhui
| | - Shanshan Feng
- Department of Hematology, Chuzhou First People's Hospital of Anhui Medical University, Chuzhou, Anhui
| | - Changzhi Zhao
- Department of Hematology, Chuzhou First People's Hospital of Anhui Medical University, Chuzhou, Anhui
| | - Bing Chen
- Department of Hematology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu, China
| | - Zhiqiang Liu
- Department of Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| |
Collapse
|
105
|
Zhao N, Zhang J, Zhao Q, Chen C, Wang H. Mechanisms of Long Non-Coding RNAs in Biological Characteristics and Aerobic Glycolysis of Glioma. Int J Mol Sci 2021; 22:ijms222011197. [PMID: 34681857 PMCID: PMC8541290 DOI: 10.3390/ijms222011197] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 02/06/2023] Open
Abstract
Glioma is the most common and aggressive tumor of the central nervous system. The uncontrolled proliferation, cellular heterogeneity, and diffusive capacity of glioma cells contribute to a very poor prognosis of patients with high grade glioma. Compared to normal cells, cancer cells exhibit a higher rate of glucose uptake, which is accompanied with the metabolic switch from oxidative phosphorylation to aerobic glycolysis. The metabolic reprogramming of cancer cell supports excessive cell proliferation, which are frequently mediated by the activation of oncogenes or the perturbations of tumor suppressor genes. Recently, a growing body of evidence has started to reveal that long noncoding RNAs (lncRNAs) are implicated in a wide spectrum of biological processes in glioma, including malignant phenotypes and aerobic glycolysis. However, the mechanisms of diverse lncRNAs in the initiation and progression of gliomas remain to be fully unveiled. In this review, we summarized the diverse roles of lncRNAs in shaping the biological features and aerobic glycolysis of glioma. The thorough understanding of lncRNAs in glioma biology provides opportunities for developing diagnostic biomarkers and novel therapeutic strategies targeting gliomas.
Collapse
|
106
|
Liu T, Hu J, Han B, Tan S, Jia W, Xin Y. A positive feedback loop of lncRNA-RMRP/ZNRF3 axis and Wnt/β-catenin signaling regulates the progression and temozolomide resistance in glioma. Cell Death Dis 2021; 12:952. [PMID: 34657141 PMCID: PMC8520527 DOI: 10.1038/s41419-021-04245-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/31/2021] [Accepted: 09/22/2021] [Indexed: 12/14/2022]
Abstract
Drug resistance strikingly limits the therapeutic effect of temozolomide (TMZ) (a common drug for glioma). Long non-coding RNA (lncRNA) RMRP has been found to be implicated in glioma progression. However, the effect of RMRP on TMZ resistance along with related molecular mechanisms is poorly defined in glioma. In the present study, RMRP, ZNRF3, and IGF2BP3 were screened out by bioinformatics analysis. The expression levels of lncRNAs and mRNAs were measured by RT-qPCR assay. Protein levels of genes were detected by western blot and immunofluorescence assays. ZNRF3 mRNA stability was analyzed using Actinomycin D assay. Cell proliferative ability and survival rate were determined by CCK-8 assay. Cell apoptotic pattern was estimated by flow cytometry. The effect of RMRP knockdown on the growth of TMZ-treated glioma xenograft tumors was explored in vivo. The relationships of IGF2BP3, RMRP, and ZNRF3 were explored by bioinformatics prediction analysis, RNA immunoprecipitation, luciferase, and RNA pull-down, and chromatin immunoprecipitation assays. The results showed that RMRP was highly expressed in glioma. RMRP knockdown curbed cell proliferation, facilitated cell apoptosis and reduced TMZ resistance in glioma cells, and hindered the growth of TMZ-treated glioma xenograft tumors. RMRP exerted its functions by down-regulating ZNRF3 in glioma cells. IGF2BP3 interacted with RMRP and ZNRF3 mRNA. IGF2BP3 knockdown weakened the interaction of Argonaute 2 (Ago2) and ZNRF3. RMRP reduced ZNRF3 expression and mRNA stability by IGF2BP3. RMRP knockdown inhibited β-catenin expression by up-regulating ZNRF3. The inhibition of Wnt/β-catenin signaling pathway by XAV-939 weakened RMRP-mediated TMZ resistance in glioma cells. β-catenin promoted RMRP expression by TCF4 in glioma cells. In conclusion, RMRP/ZNRF3 axis and Wnt/β-catenin signaling formed a positive feedback loop to regulate TMZ resistance in glioma. The sustained activation of Wnt/β-catenin signaling by RMRP might contribute to the better management of cancers.
Collapse
Affiliation(s)
- Tie Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Jie Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Bo Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Shishan Tan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Wenqing Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yu Xin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
107
|
Wang R, Liu J, Li K, Yang G, Chen S, Wu J, Xie X, Ren H, Pang Y. An SETD1A/Wnt/β-catenin feedback loop promotes NSCLC development. J Exp Clin Cancer Res 2021; 40:318. [PMID: 34645486 PMCID: PMC8513302 DOI: 10.1186/s13046-021-02119-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/26/2021] [Indexed: 11/23/2022] Open
Abstract
Background SETD1A, a member of SET1/MLL family H3K4 methyltransferases, is involved in the tumorigenesis of numerous cancers. However, the biological role and mechanism of SETD1A in non-small cell lung cancer (NSCLC) remain to be elucidated. Methods The expression of SETD1A, NEAT1, EZH2, and β-catenin in NSCLC tissues and cell lines was detected by qRT-PCR, immunohistochemistry and western blotting. The regulatory mechanisms were validated by chromatin immunoprecipitation, co-immunoprepitation and luciferase reporter assay. The self-renewal, cisplatin sensitivity and tumorigenesis of NSCLC cells were analyzed using sphere formation, CCK-8, colony formation assays and xenograft tumor models. Results SETD1A expression was significantly increased in NSCLC and its overexpression predicted a poor prognosis of patients with NSCLC. Functional experiments showed that SETD1A positively regulated cancer stem cell property and negatively regulated cisplatin sensitivity in NSCLC cells via the Wnt/β-catenin pathway. Next, we found that SETD1A positively regulated the Wnt/β-catenin pathway via interacting with and stabilizing β-catenin. The SET domain is dispensable for the interaction between SETD1A and β-catenin. Furthermore, we identified that SETD1A bound to the promoters of NEAT1 and EZH2 to activate gene transcription by inducing H3K4me3 enrichment. Rescue experiments showed that SETD1A promoted the Wnt/β-catenin pathway and exerted its oncogenic functions in NSCLC, at least, partly through NEAT1 and EZH2 upregulation. In addition, SETD1A was proven to be a direct target of the Wnt/β-catenin pathway, thus forming a positive feedback loop in NSCLC cells. Conclusion SETD1A and Wnt/β-catenin pathway form a positive feedback loop and coordinately contribute to NSCLC progression. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02119-x.
Collapse
Affiliation(s)
- Rui Wang
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Jian Liu
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China.,Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Kai Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Ganghua Yang
- Department of Geriatric Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Sisi Chen
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Jie Wu
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Xinming Xie
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Hong Ren
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China.
| | - Yamei Pang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|
108
|
Abstract
Liver metastasis, originating either from a primary liver or other cancer types, represent a large cancer-related burden. Therefore, studies that add to better understanding of its molecular basis are needed. Herein, the role of the Wnt signaling pathway in liver metastasis is outlined. Its role in hepatocellular carcinoma (HCC) epithelial-mesenchymal transition (EMT), motility, migration, metastasis formation, and other steps of the metastatic cascade are presented. Additionally, the roles of the Wnt signaling pathway in the liver metastasis formation of colorectal, breast, gastric, lung, melanoma, pancreatic, and prostate cancer are explored. The special emphasis is given to the role of the Wnt signaling pathway in the communication between the many of the components of the primary and secondary cancer microenvironment that contribute to the metastatic outgrowth in the liver. The data presented herein are a review of the most recent publications and advances in the field that add to the idea that the Wnt pathway is among the drivers of liver metastasis and that its targeting could potentially relieve liver metastasis–related complications.
Collapse
|
109
|
Luo M, Xia Y, Wang F, Zhang H, Su D, Su C, Yang C, Wu S, An S, Lin S, Fu L. PD0325901, an ERK inhibitor, enhances the efficacy of PD-1 inhibitor in non-small cell lung carcinoma. Acta Pharm Sin B 2021; 11:3120-3133. [PMID: 34729305 PMCID: PMC8546891 DOI: 10.1016/j.apsb.2021.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 12/29/2022] Open
Abstract
ERK pathway regulated the programmed death ligand-1 (PD-L1) expression which was linked to the response of programmed death-1 (PD-1)/PD-L1 blockade therapy. So it is deducible that ERK inhibitor could enhance the efficacy of PD-1 inhibitor in cancer immunotherapy. In this study, PD0325901, an oral potent ERK inhibitor, strongly enhanced the efficacy of PD-1 antibody in vitro and in vivo models in non-small cell lung carcinoma (NSCLC) cells. Mechanistically, PD0325901 or shRNA-ERK1/2 significantly downregulated the PD-L1 expression in NSCLC cells and increased the CD3+ T cells infiltration and functions in tumor tissue. There was a positive correlation between the p-ERK1/2 expression and PD-L1 expression in patients with NSCLC. And the patients with low p-ERK1/2 expression were observed a high response rate of PD-1/PD-L1 blockage therapy. Our results demonstrate that PD0325901, an ERK inhibitor, can enhance the efficacy of PD-1 blockage against NSCLC in vitro and in vivo models. And the combination of ERK inhibitor such as PD0325901 and PD-1/PD-L1 blockage is a promising regimen and encouraged to be further confirmed in the treatment of patients with NSCLC.
Collapse
Affiliation(s)
- Min Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yuhui Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hong Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Danting Su
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chaoyue Su
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Pharmacy College, Guangzhou Medical University, Guangzhou 510182, China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shaocong Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Sainan An
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Suxia Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Corresponding authors. Tel.: +86 20 873431-63, fax: +86 20 87343170.
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Corresponding authors. Tel.: +86 20 873431-63, fax: +86 20 87343170.
| |
Collapse
|
110
|
Olatunde A, Nigam M, Singh RK, Panwar AS, Lasisi A, Alhumaydhi FA, Jyoti Kumar V, Mishra AP, Sharifi-Rad J. Cancer and diabetes: the interlinking metabolic pathways and repurposing actions of antidiabetic drugs. Cancer Cell Int 2021; 21:499. [PMID: 34535145 PMCID: PMC8447515 DOI: 10.1186/s12935-021-02202-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022] Open
Abstract
Cancers are regarded as one of the main causes of death and result in high health burden worldwide. The management of cancer include chemotherapy, surgery and radiotherapy. The chemotherapy, which involves the use of chemical agents with cytotoxic actions is utilised as a single treatment or combined treatment. However, these managements of cancer such as chemotherapy poses some setbacks such as cytotoxicity on normal cells and the problem of anticancer drug resistance. Therefore, the use of other therapeutic agents such as antidiabetic drugs is one of the alternative interventions used in addressing some of the limitations in the use of anticancer agents. Antidiabetic drugs such as sulfonylureas, biguanides and thiazolidinediones showed beneficial and repurposing actions in the management of cancer, thus, the activities of these drugs against cancer is attributed to some of the metabolic links between the two disorders and these includes hyperglycaemia, hyperinsulinemia, inflammation, and oxidative stress as well as obesity. Furthermore, some studies showed that the use of antidiabetic drugs could serve as risk factors for the development of cancerous cells particularly pancreatic cancer. However, the beneficial role of these chemical agents overweighs their detrimental actions in cancer management. Hence, the present review indicates the metabolic links between cancer and diabetes and the mechanistic actions of antidiabetic drugs in the management of cancers.
Collapse
Affiliation(s)
- Ahmed Olatunde
- Department of Biochemistry, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Manisha Nigam
- Department of Biochemistry, School of Life Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar, Garhwal, Uttarakhand, 246174, India.
| | - Rahul Kunwar Singh
- Department of Microbiology, School of Life Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar, Garhwal, Uttarakhand, 246174, India
| | - Abhaya Shikhar Panwar
- Department of Biochemistry, School of Life Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar, Garhwal, Uttarakhand, 246174, India
| | - Abdulwahab Lasisi
- Maidstone and Tunbridge Wells NHS Trust, Hermitage Lane, Maidstone, Kent, ME169QQ, UK
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Vijay Jyoti Kumar
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University, Garhwal, Srinagar, Uttarakhand, 246174, India
| | - Abhay Prakash Mishra
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Science, University of Free State, 205, Nelson Mandela Drive, Park West, Bloemfontein, 9300, South Africa
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
111
|
Sompel K, Elango A, Smith AJ, Tennis MA. Cancer chemoprevention through Frizzled receptors and EMT. Discov Oncol 2021; 12:32. [PMID: 34604862 PMCID: PMC8429367 DOI: 10.1007/s12672-021-00429-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
Frizzled (FZD) transmembrane receptors are well known for their role in β-catenin signaling and development and now understanding of their role in the context of cancer is growing. FZDs are often associated with the process of epithelial to mesenchymal transition (EMT) through β-catenin, but some also influence EMT through non-canonical pathways. With ten different FZDs, there is a wide range of activity from oncogenic to tumor suppressive depending on the tissue context. Alterations in FZD signaling can occur during development of premalignant lesions, supporting their potential as targets of chemoprevention agents. Agonizing or antagonizing FZD activity may affect EMT, which is a key process in lesion progression often targeted by chemoprevention agents. Recent studies identified a specific FZD as important for activity of an EMT inhibiting chemopreventive agent and other studies have highlighted the previously unrecognized potential for targeting small molecules to FZD receptors. This work demonstrates the value of investigating FZDs in chemoprevention and here we provide a review of FZDs in cancer EMT and their potential as chemoprevention targets.
Collapse
Affiliation(s)
- K. Sompel
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E 19th AVE, RC2 Box C272, Aurora, CO 80045 USA
| | - A. Elango
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E 19th AVE, RC2 Box C272, Aurora, CO 80045 USA
| | - A. J. Smith
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E 19th AVE, RC2 Box C272, Aurora, CO 80045 USA
| | - M. A. Tennis
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E 19th AVE, RC2 Box C272, Aurora, CO 80045 USA
| |
Collapse
|
112
|
Lee NK, Choi JU, Kim HR, Chung SW, Ko YG, Cho YS, Park SJ, Lee EJ, Kim SY, Kim IS, Byun Y. Caspase-cleavable peptide-doxorubicin conjugate in combination with CD47-antagonizing nanocage therapeutics for immune-mediated elimination of colorectal cancer. Biomaterials 2021; 277:121105. [PMID: 34478928 DOI: 10.1016/j.biomaterials.2021.121105] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 01/03/2023]
Abstract
Here we report a novel combination of a caspase-cleavable peptide-doxorubicin conjugate (MPD-1) with CD47-antagonizing nanocage therapeutics for the treatment of microsatellite-stable (MSS) colorectal cancer (CRC). MPD-1 (i) upregulated markers of immunogenic cell death (ICD) in tumor, and increased co-stimulatory markers on dendritic cells (DCs), (ii) enhanced CD8+ T cell infiltration and antigen presenting cell (APC) activation, and (iii) showed negligible off-target immune-related toxicity compared to free dox. Then, the CD47 antagonist FS nanocage, a SIRPα-expressing ferritin nanocage, was co-administered with MPD-1 that resulted in 95.2% (p < 0.001) tumor growth inhibition in an established CRC model. T cell-mediated elimination of tumors was also confirmed by the tumor-specific activation of T cells detected by IFNγ and tumor-free mice were observed (95%) that bared a memory response when re-challenged. The strategically developed MPD-1 is an ideal adjuvant to immunotherapy and the combination with FS nanocage triggers potent immunity against MSS CRC. In summary, we present an approach to initiate and stimulate immune-mediated eradication of cancer cells using synergistic immunogenic agents targeting the MSS CRC.
Collapse
Affiliation(s)
- Na Kyeong Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong Uk Choi
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ha Rin Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Woo Chung
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Yoon Gun Ko
- Pharosgen, Inc., 2-404 Jangji-dong 892, Songpa-Gu, Seoul, 05852, Republic of Korea
| | - Young Seok Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seong Jin Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun Jung Lee
- Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sang Yoon Kim
- Department of Otolaryngology, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - In-San Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea.
| | - Youngro Byun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
113
|
Erbe R, Wang Z, Wu S, Xiu J, Zaidi N, La J, Tuck D, Fillmore N, Giraldo NA, Topper M, Baylin S, Lippman M, Isaacs C, Basho R, Serebriiskii I, Lenz HJ, Astsaturov I, Marshall J, Taverna J, Lee J, Jaffee EM, Roussos Torres ET, Weeraratna A, Easwaran H, Fertig EJ. Evaluating the impact of age on immune checkpoint therapy biomarkers. Cell Rep 2021; 36:109599. [PMID: 34433020 PMCID: PMC8757482 DOI: 10.1016/j.celrep.2021.109599] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/01/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022] Open
Abstract
Both tumors and aging alter the immune landscape of tissues. These interactions may play an important role in tumor progression among elderly patients and may suggest considerations for patient care. We leverage large-scale genomic and clinical databases to perform comprehensive comparative analysis of molecular and cellular markers of immune checkpoint blockade (ICB) response with patient age. These analyses demonstrate that aging is associated with increased tumor mutational burden, increased expression and decreased promoter methylation of immune checkpoint genes, and increased interferon gamma signaling in older patients in many cancer types studied, all of which are expected to promote ICB efficacy. Concurrently, we observe age-related alterations that might be expected to reduce ICB efficacy, such as decreases in T cell receptor diversity. Altogether, these changes suggest the capacity for robust ICB response in many older patients, which may warrant large-scale prospective study on ICB therapies among patients of advanced age.
Collapse
Affiliation(s)
- Rossin Erbe
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Zheyu Wang
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sharon Wu
- Caris Life Sciences, Irving, TX, USA
| | | | - Neeha Zaidi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jennifer La
- VA Boston Healthcare System, Boston, MA, USA
| | - David Tuck
- VA Boston Healthcare System, Boston, MA, USA
| | | | - Nicolas A Giraldo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michael Topper
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Stephen Baylin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Marc Lippman
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Claudine Isaacs
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Reva Basho
- Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, 8700 Beverly Boulevard, #AC-1046A, Los Angeles, CA 90048, USA
| | | | - Heinz-Josef Lenz
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - John Marshall
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Josephine Taverna
- Division of Hematology and Oncology, Department of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jerry Lee
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Elizabeth M Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Ashani Weeraratna
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Hariharan Easwaran
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Elana J Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Applied Mathematics and Statistics, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins Bloomberg School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
114
|
Bhagat R, Rajpara P, Kaur G, Gupta K, Seth P. Zika virus E protein dysregulate mir-204/WNT2 signalling in human fetal neural stem cells. Brain Res Bull 2021; 176:93-102. [PMID: 34425198 DOI: 10.1016/j.brainresbull.2021.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/17/2022]
Abstract
Zika Virus (ZIKV) belongs to the family of flaviviruses, and is neurotrophic. It has been known to cause severe congenital disabilities including microcephaly in neonates. The virus has a specific preference towards neural stem cells (NSCs). ZIKV impairs proliferation and differentiation of NSCs during in-utero brain development of the fetus. However, molecular pathways involved in ZIKV induced alteration in NSCs are yet to be explored. In our previous study, we have described that ZIKV E protein dysregulates microRNA circuitry in NSCs and also impairs their proliferative and differentiation abilities. WNT signalling was found to be the target of differentially expressed miRNAs as suggested by PANTHER PATHWAY analysis of differentially expressed miRNA targets. In our current follow-up study, we investigate that WNT2 is downregulated in response to ZIKV E protein in human fetal NSCs and WNT2 is the molecular target of microRNA miR-204-5p. We provide pieces of evidences that miR-204-5p/WNT2 axis is involved in ZIKV induced impairment in the proliferation and immature differentiation of neural stem cells.
Collapse
Affiliation(s)
- Reshma Bhagat
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Gurgaon, Haryana, India.
| | - Prateek Rajpara
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Gurgaon, Haryana, India.
| | - Guneet Kaur
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Gurgaon, Haryana, India.
| | - Karnika Gupta
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Gurgaon, Haryana, India.
| | - Pankaj Seth
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Gurgaon, Haryana, India.
| |
Collapse
|
115
|
Behrooz AB, Vazifehmand R, Tajudin AA, Masarudin MJ, Sekawi Z, Masomian M, Syahir A. Tailoring drug co-delivery nanosystem for mitigating U-87 stem cells drug resistance. Drug Deliv Transl Res 2021; 12:1253-1269. [PMID: 34405338 DOI: 10.1007/s13346-021-01017-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2021] [Indexed: 12/17/2022]
Abstract
Glioblastoma multiforme (GBM) is the most prevalent form of brain tumor, which generally has a poor prognosis. According to consensus, recurrence of the tumor and chemotherapy resistance acquisition are the two distinguishing features of GBM originated from glioblastoma stem cells (GSCs). To eliminate these obstacles inherent in GBM chemotherapy, targeting GSCs through a smart drug delivery system has come to the front position of GBM therapeutics. In this study, B19 aptamer (Apt)-conjugated polyamidoamine (PAMAM) G4C12 dendrimer nanoparticles (NPs), called Apt-NPs, were formulated for the co-delivery of paclitaxel (PTX) and temozolomide (TMZ) to U-87 stem cells. These drugs were loaded using a double emulsification solvent evaporation method. As a result, drug-loaded Apt-NPs significantly inhibited the tumor growth of U-87 stem cells, by the initiation of apoptosis via the downregulation of autophagic and multidrug resistance (MDR) genes. Additionally, by their downregulation by qPCR of CD133, CD44, SOX2, and the canonical Wnt/β-catenin pathway, cell proliferation has substantially decreased. Altogether, the results demonstrate that this intelligent drug co-delivery system is capable of effectively transferring PTX and TMZ to U-87 stem cells and without any toxic effect on Apt-NPs alone to U-87 stem cells. Furthermore, the designed dendrimer-based pharmaceutical system along with single-stranded B19 aptamer might be utilized as a new therapeutic strategy for the treatment of U-87 stem cells drug resistance in the GBM.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Reza Vazifehmand
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Human Genetic, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Asilah Ahmad Tajudin
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Zamberi Sekawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Malihe Masomian
- Centre of Virus and Vaccine Research, School of Medical and Life Science, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Amir Syahir
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia. .,MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| |
Collapse
|
116
|
Chen ZQ, Yuan T, Jiang H, Yang YY, Wang L, Fu RM, Luo SQ, Zhang T, Wu ZY, Wen KM. MicroRNA‑8063 targets heterogeneous nuclear ribonucleoprotein AB to inhibit the self‑renewal of colorectal cancer stem cells via the Wnt/β‑catenin pathway. Oncol Rep 2021; 46:219. [PMID: 34396427 PMCID: PMC8377466 DOI: 10.3892/or.2021.8170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
The presence of cancer stem cells (CSCs) is a major cause of therapeutic failure in a variety of cancer types, including colorectal cancer (CRC). However, the underlying mechanisms that regulate the self-renewal of colorectal cancer stem cells (CRCSCs) remain unclear. Our previous study utilized CRCSCs and their parent cells; through gene microarray screening and bioinformatics analysis, we hypothesized that microRNA (miR)-8063 may bind to, and regulate the expression of, heterogeneous nuclear ribonucleoprotein AB (hnRNPAB) to facilitate the regulation of CRCSC self-renewal. The aim of the present study was to confirm this conjecture through relevant experiments. The results indicated that compared with that in parent cells, miR-8063 expression was significantly downregulated in CRCSCs, while hnRNPAB expression was increased. Furthermore, hnRNPAB was identified as a direct target of miR-8063 using a dual-Luciferase assay. Overexpression of hnRNPAB promoted the acquisition of CSC characteristics in CRC cells (increased colony formation ability, enhanced tumorigenicity, and upregulated expression of CSC markers), as well as the upregulation of key proteins (Wnt3a, Wnt5a and β-catenin) in the Wnt/β-catenin signaling pathway. Similarly, after silencing miR-8063 in CRC cells, the characteristics of CSC were altered, and the expression of hnRNPAB protein was promoted. However, post overexpression of miR-8063 in CRCSCs, the self-renewal ability of CSCs was weakened with the downregulation of hnRNPAB protein, Wnt3a, Wnt5a and β-catenin. These results suggest that as a tumor suppressor, miR-8063 is involved in regulating the self-renewal of CRCSCs, where loss of miR-8063 expression weakens its inhibition on hnRNPAB, which leads to the activation of Wnt/β-catenin signaling to promote the self-renewal of CRCSCs.
Collapse
Affiliation(s)
- Zheng-Quan Chen
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Tao Yuan
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Hang Jiang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Yuan-Yuan Yang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Lin Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Rui-Min Fu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Sheng-Qiang Luo
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Tao Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Zhen-Yu Wu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Kun-Ming Wen
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
117
|
Merikhian P, Eisavand MR, Farahmand L. Triple-negative breast cancer: understanding Wnt signaling in drug resistance. Cancer Cell Int 2021; 21:419. [PMID: 34376211 PMCID: PMC8353874 DOI: 10.1186/s12935-021-02107-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is not as prevalent as hormone receptor or HER2-positive breast cancers and all receptor tests come back negative. More importantly, the heterogeneity and complexity of the TNBC on the molecular and clinical levels have limited the successful development of novel therapeutic strategies and led to intrinsic or developed resistance to chemotherapies and new therapeutic agents. Studies have demonstrated deregulation of Wnt/β-catenin signaling in tumorigenesis which plays decisive roles at the low survival rate of patients and facilitates resistance to currently existing therapies. This review summarizes mechanisms of Wnt/β-catenin signaling for resistance development in TNBC, the complex interaction between Wnt/β-catenin signaling, and the transactivated receptor tyrosine kinase (RTK) signaling pathways, lymphocytic infiltration, epithelial-mesenchymal transition (EMT), and induction of metastasis. Such associations and how these pathways interact in the development and progression of cancer have led to the careful analysis and development of new and effective combination therapies without generating significant toxicity and resistance.
Collapse
Affiliation(s)
- Parnaz Merikhian
- Recombinant protein department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, 146, South Gandhi Ave., Vanak Circus, Tehran, Iran
| | - Mohammad Reza Eisavand
- Recombinant protein department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, 146, South Gandhi Ave., Vanak Circus, Tehran, Iran
| | - Leila Farahmand
- Recombinant protein department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, 146, South Gandhi Ave., Vanak Circus, Tehran, Iran.
| |
Collapse
|
118
|
Nobiletin and Xanthohumol Sensitize Colorectal Cancer Stem Cells to Standard Chemotherapy. Cancers (Basel) 2021; 13:cancers13163927. [PMID: 34439086 PMCID: PMC8392547 DOI: 10.3390/cancers13163927] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Colorectal cancer stem cells (CR-CSCs) play a pivotal role in the therapy resistance and relapse of CRC patients. Herein we demonstrate that new treatment approaches comprising polymethoxyflavones and prenylflavonoids extracted from Citrus sinensis and Humulus lupulus, respectively, hamper the viability of CR-CSCs as well as synergizing with 5-fluorouracil and oxaliplatin (FOX)-based chemotherapy. Extract fractions containing Nobiletin and Xanthohumol, in combination with chemotherapy, decreased stemness properties of CR-CSCs and restrained the outgrowth of chemoresistant metastatic CR-CSCs. These data pinpoint Nobiletin and Xanthohumol as efficacious anti-cancer compounds in metastatic settings. Abstract Colorectal cancer (CRC) mortality is mainly caused by patient refractoriness to common anti-cancer therapies and consequent metastasis formation. Besides, the notorious toxic side effects of chemotherapy are a concurrent obstacle to be tackled. Thus, new treatment approaches are needed to effectively improve patient outcomes. Compelling evidence demonstrated that cancer stem cells (CSCs) are responsible for treatment failure and relapse. New natural treatment approaches showed capabilities to selectively target the CSC subpopulation by rendering them targetable by standard cytotoxic compounds. Herein we show the anti-cancer properties of the polymethoxyflavones and prenylflavonoids extracted from Citrus sinensis and Humulus lupulus, respectively. The natural biofunctional fractions, singularly and in combination, reduced the cell viability of CRC stem cells (CR-CSCs) and synergized with 5-fluorouracil and oxaliplatin (FOX) chemotherapy. These phenomena were accompanied by a reduced S and G2/M phase of the cell cycle and upregulation of cell death-related genes. Notably, both phytoextracts in combination with FOX thwarted stemness features in CR-CSCs as demonstrated by the impaired clonogenic potential and decreased Wnt pathway activation. Extracts lowered the expression of CD44v6 and affected the expansion of metastatic CR-CSCs in patients refractory to chemotherapy. Together, this study highlights the importance of polymethoxyflavones and prenylflavonoids as natural remedies to aid oncological therapies.
Collapse
|
119
|
Peres da Silva R, Suphavilai C, Nagarajan N. TUGDA: task uncertainty guided domain adaptation for robust generalization of cancer drug response prediction from in vitro to in vivo settings. Bioinformatics 2021; 37:i76-i83. [PMID: 34000002 PMCID: PMC8275325 DOI: 10.1093/bioinformatics/btab299] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2021] [Indexed: 11/21/2022] Open
Abstract
MOTIVATION Large-scale cancer omics studies have highlighted the diversity of patient molecular profiles and the importance of leveraging this information to deliver the right drug to the right patient at the right time. Key challenges in learning predictive models for this include the high-dimensionality of omics data and heterogeneity in biological and clinical factors affecting patient response. The use of multi-task learning techniques has been widely explored to address dataset limitations for in vitro drug response models, while domain adaptation (DA) has been employed to extend them to predict in vivo response. In both of these transfer learning settings, noisy data for some tasks (or domains) can substantially reduce the performance for others compared to single-task (domain) learners, i.e. lead to negative transfer (NT). RESULTS We describe a novel multi-task unsupervised DA method (TUGDA) that addresses these limitations in a unified framework by quantifying uncertainty in predictors and weighting their influence on shared feature representations. TUGDA's ability to rely more on predictors with low-uncertainty allowed it to notably reduce cases of NT for in vitro models (94% overall) compared to state-of-the-art methods. For DA to in vivo settings, TUGDA improved over previous methods for patient-derived xenografts (9 out of 14 drugs) as well as patient datasets (significant associations in 9 out of 22 drugs). TUGDA's ability to avoid NT thus provides a key capability as we try to integrate diverse drug-response datasets to build consistent predictive models with in vivo utility. AVAILABILITYAND IMPLEMENTATION https://github.com/CSB5/TUGDA. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Rafael Peres da Silva
- School of Computing, National University of Singapore, 117417 Singapore, Singapore.,Genome Institute of Singapore, A*STAR, 138672 Singapore, Singapore
| | | | - Niranjan Nagarajan
- School of Computing, National University of Singapore, 117417 Singapore, Singapore.,Genome Institute of Singapore, A*STAR, 138672 Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore
| |
Collapse
|
120
|
Evaluation of β-Catenin Inhibition of Axitinib and Nitazoxanide in Human Monocyte-Derived Dendritic Cells. Biomedicines 2021; 9:biomedicines9080949. [PMID: 34440153 PMCID: PMC8391762 DOI: 10.3390/biomedicines9080949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 01/03/2023] Open
Abstract
Modulation of β-catenin signaling has attractive therapeutic potential in cancer immunotherapy. Several studies have found that β-catenin can mediate immune evasion in cancer and promote anti-inflammatory features of antigen-presenting dendritic cells. Many small molecular compounds that inhibit Wnt/β-catenin signaling are currently in clinical development, but none have entered routine clinical use. New inhibitors of β-catenin signaling are consequently desirable. Here, we have tested, in monocyte-derived dendritic cells, the effects of two small molecular compounds, axitinib and nitazoxanide, that previously have been discovered to inhibit β-catenin signaling in colon cancer cells. Immature and lipopolysaccharide-matured dendritic cells prepared from healthy blood donor buffy coats were stimulated with 6-bromoindirubin-3′-oxime (6-BIO) to boost basal β-catenin activity, and the effects of axitinib and nitazoxanide were compared with the commercial β-catenin inhibitor ICG-001. Assays, including genome-wide RNA-sequencing, indicated that neither axitinib nor nitazoxanide demonstrated considerable β-catenin inhibition. Both compounds were found to be less toxic to monocyte-derived dendritic cells than either 6-BIO or ICG-001. Axitinib stimulated several aspects of dendritic cell function, such as IL12-p70 secretion, and counteracted IL-10 secretion, according to the present study. However, neither axitinib nor nitazoxanide were found to be efficient β-catenin inhibitors in monocyte-derived dendritic cells.
Collapse
|
121
|
Abreu de Oliveira WA, Moens S, El Laithy Y, van der Veer BK, Athanasouli P, Cortesi EE, Baietti MF, Koh KP, Ventura JJ, Amant F, Annibali D, Lluis F. Wnt/β-Catenin Inhibition Disrupts Carboplatin Resistance in Isogenic Models of Triple-Negative Breast Cancer. Front Oncol 2021; 11:705384. [PMID: 34367990 PMCID: PMC8340846 DOI: 10.3389/fonc.2021.705384] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/28/2021] [Indexed: 12/11/2022] Open
Abstract
Triple-Negative Breast Cancer (TNBC) is the most aggressive breast cancer subtype, characterized by limited treatment options and higher relapse rates than hormone-receptor-positive breast cancers. Chemotherapy remains the mainstay treatment for TNBC, and platinum salts have been explored as a therapeutic alternative in neo-adjuvant and metastatic settings. However, primary and acquired resistance to chemotherapy in general and platinum-based regimens specifically strongly hampers TNBC management. In this study, we used carboplatin-resistant in vivo patient-derived xenograft and isogenic TNBC cell-line models and detected enhanced Wnt/β-catenin activity correlating with an induced expression of stem cell markers in both resistant models. In accordance, the activation of canonical Wnt signaling in parental TNBC cell lines increases stem cell markers' expression, formation of tumorspheres and promotes carboplatin resistance. Finally, we prove that Wnt signaling inhibition resensitizes resistant models to carboplatin both in vitro and in vivo, suggesting the synergistic use of Wnt inhibitors and carboplatin as a therapeutic option in TNBC. Here we provide evidence for a prominent role of Wnt signaling in mediating resistance to carboplatin, and we establish that combinatorial targeting of Wnt signaling overcomes carboplatin resistance enhancing chemotherapeutic drug efficacy.
Collapse
Affiliation(s)
| | - Stijn Moens
- Leuven Cancer Institute (LKI), Department of Oncology, Gynecological Oncology Lab 3000, KU Leuven, Leuven, Belgium
| | - Youssef El Laithy
- Stem Cell Institute, Department of Development and Regeneration, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Bernard K van der Veer
- Stem Cell Institute, Department of Development and Regeneration, Laboratory for Stem Cell and Developmental Epigenetics, KU Leuven, Leuven, Belgium
| | - Paraskevi Athanasouli
- Stem Cell Institute, Department of Development and Regeneration, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Emanuela Elsa Cortesi
- Translational Cell and Tissue Research - Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | | | - Kian Peng Koh
- Stem Cell Institute, Department of Development and Regeneration, Laboratory for Stem Cell and Developmental Epigenetics, KU Leuven, Leuven, Belgium
| | - Juan-Jose Ventura
- Translational Cell and Tissue Research - Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Frédéric Amant
- Leuven Cancer Institute (LKI), Department of Oncology, Gynecological Oncology Lab 3000, KU Leuven, Leuven, Belgium.,Centre for Gynecologic Oncology Amsterdam (CGOA), Antoni Van Leeuwenhoek-Netherlands Cancer Institute (AvL-NKI), University Medical Center (UMC), Amsterdam, Netherlands
| | - Daniela Annibali
- Leuven Cancer Institute (LKI), Department of Oncology, Gynecological Oncology Lab 3000, KU Leuven, Leuven, Belgium.,Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Frederic Lluis
- Stem Cell Institute, Department of Development and Regeneration, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| |
Collapse
|
122
|
Gaggianesi M, Di Franco S, Pantina VD, Porcelli G, D'Accardo C, Verona F, Veschi V, Colarossi L, Faldetta N, Pistone G, Bongiorno MR, Todaro M, Stassi G. Messing Up the Cancer Stem Cell Chemoresistance Mechanisms Supported by Tumor Microenvironment. Front Oncol 2021; 11:702642. [PMID: 34354950 PMCID: PMC8330815 DOI: 10.3389/fonc.2021.702642] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the recent advances in cancer patient management and in the development of targeted therapies, systemic chemotherapy is currently used as a first-line treatment for many cancer types. After an initial partial response, patients become refractory to standard therapy fostering rapid tumor progression. Compelling evidence highlights that the resistance to chemotherapeutic regimens is a peculiarity of a subpopulation of cancer cells within tumor mass, known as cancer stem cells (CSCs). This cellular compartment is endowed with tumor-initiating and metastasis formation capabilities. CSC chemoresistance is sustained by a plethora of grow factors and cytokines released by neighboring tumor microenvironment (TME), which is mainly composed by adipocytes, cancer-associated fibroblasts (CAFs), immune and endothelial cells. TME strengthens CSC refractoriness to standard and targeted therapies by enhancing survival signaling pathways, DNA repair machinery, expression of drug efflux transporters and anti-apoptotic proteins. In the last years many efforts have been made to understand CSC-TME crosstalk and develop therapeutic strategy halting this interplay. Here, we report the combinatorial approaches, which perturb the interaction network between CSCs and the different component of TME.
Collapse
Affiliation(s)
- Miriam Gaggianesi
- Department of Surgical Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Simone Di Franco
- Department of Surgical Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Vincenzo Davide Pantina
- Department of Surgical Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Gaetana Porcelli
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Caterina D'Accardo
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Francesco Verona
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Veronica Veschi
- Department of Surgical Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | | | - Naida Faldetta
- Department of Surgery, Villa Sofia-Cervello Hospital, Palermo, Italy
| | - Giuseppe Pistone
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Maria Rita Bongiorno
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Matilde Todaro
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| |
Collapse
|
123
|
Meiller C, Montagne F, Hirsch TZ, Caruso S, de Wolf J, Bayard Q, Assié JB, Meunier L, Blum Y, Quetel L, Gibault L, Pintilie E, Badoual C, Humez S, Galateau-Sallé F, Copin MC, Letouzé E, Scherpereel A, Zucman-Rossi J, Le Pimpec-Barthes F, Jaurand MC, Jean D. Multi-site tumor sampling highlights molecular intra-tumor heterogeneity in malignant pleural mesothelioma. Genome Med 2021; 13:113. [PMID: 34261524 PMCID: PMC8281651 DOI: 10.1186/s13073-021-00931-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/30/2021] [Indexed: 12/23/2022] Open
Abstract
Background Malignant pleural mesothelioma (MPM) is a heterogeneous cancer. Better knowledge of molecular and cellular intra-tumor heterogeneity throughout the thoracic cavity is required to develop efficient therapies. This study focuses on molecular intra-tumor heterogeneity using the largest series to date in MPM and is the first to report on the multi-omics profiling of a substantial series of multi-site tumor samples. Methods Intra-tumor heterogeneity was investigated in 16 patients from whom biopsies were taken at distinct anatomical sites. The paired biopsies collected from apex, side wall, costo-diaphragmatic, or highest metabolic sites as well as 5 derived cell lines were screened using targeted sequencing. Whole exome sequencing, RNA sequencing, and DNA methylation were performed on a subset of the cohort for deep characterization. Molecular classification, recently defined histo-molecular gradients, and cell populations of the tumor microenvironment were assessed. Results Sequencing analysis identified heterogeneous variants notably in NF2, a key tumor suppressor gene of mesothelial carcinogenesis. Subclonal tumor populations were shared among paired biopsies, suggesting a polyclonal dissemination of the tumor. Transcriptome analysis highlighted dysregulation of cell adhesion and extracellular matrix pathways, linked to changes in histo-molecular gradient proportions between anatomic sites. Methylome analysis revealed the contribution of epigenetic mechanisms in two patients. Finally, significant changes in the expression of immune mediators and genes related to immunological synapse, as well as differential infiltration of immune populations in the tumor environment, were observed and led to a switch from a hot to a cold immune profile in three patients. Conclusions This comprehensive analysis reveals patient-dependent spatial intra-tumor heterogeneity at the genetic, transcriptomic, and epigenetic levels and in the immune landscape of the tumor microenvironment. Results support the need for multi-sampling for the implementation of molecular-based precision medicine. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-021-00931-w.
Collapse
Affiliation(s)
- Clément Meiller
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France
| | - François Montagne
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France.,Present address: Service de Chirurgie Thoracique, Hôpital Calmette, CHRU de Lille, Lille, France
| | - Theo Z Hirsch
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France
| | - Julien de Wolf
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France.,Present address: Service de Chirurgie Thoracique et Transplantation Pulmonaire, Hôpital Foch, Suresnes, France
| | - Quentin Bayard
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France
| | - Jean-Baptiste Assié
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France.,University Paris-Est Créteil (UPEC), CEpiA (Clinical Epidemiology and Ageing), EA 7376- IMRB, UPEC, Créteil, France.,GRC OncoThoParisEst, Service de Pneumologie, CHI Créteil, UPEC, Créteil, France
| | - Léa Meunier
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France
| | - Yuna Blum
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, Paris, France.,Present address: IGDR UMR 6290, CNRS, Université de Rennes 1, Rennes, France
| | - Lisa Quetel
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France
| | - Laure Gibault
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France.,Service d'Anatomopathologie et Cytologie, Université de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Ecaterina Pintilie
- Univ. Lille, CHU Lille, Service de Chirurgie Thoracique, Hôpital Calmette, Lille, France
| | - Cécile Badoual
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France.,Service d'Anatomopathologie et Cytologie, Université de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Sarah Humez
- Univ. Lille, CHU Lille, Institut de Pathologie, Lille, France.,Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | | | - Marie-Christine Copin
- Univ. Lille, CHU Lille, Institut de Pathologie, Lille, France.,Present address: Département de Pathologie Cellulaire et Tissulaire, CHU d'Angers, Angers, France
| | - Eric Letouzé
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France
| | - Arnaud Scherpereel
- Univ. Lille, CHU Lille, Service de Pneumologie et d'Oncologie Thoracique, unité INSERM 1189 OncoThAI, Lille, France.,Réseau National Expert pour le Mésothéliome Pleural Malin (NETMESO), Lille, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Françoise Le Pimpec-Barthes
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France.,Service de Chirurgie Thoracique, Hôpital Européen Georges Pompidou, Paris, France
| | - Marie-Claude Jaurand
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France
| | - Didier Jean
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France.
| |
Collapse
|
124
|
Lohiya G, Katti DS. A Synergistic Combination of Niclosamide and Doxorubicin as an Efficacious Therapy for All Clinical Subtypes of Breast Cancer. Cancers (Basel) 2021; 13:cancers13133299. [PMID: 34209317 PMCID: PMC8268129 DOI: 10.3390/cancers13133299] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Chemotherapy is the gold standard treatment option for metastatic cancers. However, the efficacy of chemotherapy is limited due to the development of resistance. The aberrantly expressed Wnt/β-catenin signaling pathway acts as one of the major cancer drivers that also causes the development of resistance. Therefore, in this study, we explored the combinatorial approach of downregulating the Wnt/β-catenin pathway along with using a chemotherapeutic agent as a strategy to overcome drug resistance and improve cancer therapy. We evaluated the combinatorial efficacy of Niclosamide (an antihelminthic repurposed as a Wnt signaling inhibitor) and Doxorubicin (first-line treatment for multiple cancers in the clinic) against breast cancer. The combination showed synergistically enhanced death of all three clinical subtypes of breast cancer cells in both the sequential and concurrent treatment regimens and holds the potential to be developed as an efficient therapeutic option for breast cancer irrespective of its clinical subtype. Abstract Drug resistance is one of the major hurdles in the success of cancer chemotherapy. Notably, aberrantly expressed Wnt/β-catenin signaling plays a major role in the initiation and maintenance of oncogenesis along with development of chemoresistance. Therefore, the combinatorial approach of targeting Wnt/β-catenin pathway along with using a chemotherapeutic agent seems to be a promising strategy to improve cancer therapy. In the present study, we evaluated the combination of niclosamide (Nic), an FDA-approved antihelminthic drug repurposed as a Wnt signaling inhibitor, and doxorubicin (Dox), a conventional anticancer agent, in all clinical subtypes of breast cancer viz. triple negative breast cancer, HER2 positive breast cancer, and hormone receptor positive breast cancer. The results demonstrated that the combination induced apoptosis and caused synergistically enhanced death of all breast cancer cell types at multiple combinatorial concentrations using both the sequential and concurrent treatment regimens. Mechanistically, downregulation of Wnt/β-catenin signaling and cell cycle arrest at G0/G1 phase by Nic and increase in reactive oxygen species by both Nic and Dox along with the inherent cytotoxicity of Dox mediated the synergism between the two drugs in both the treatment regimens. Overall, the combination of Nic and Dox holds promise to be developed as an efficient therapeutic option for breast cancer irrespective of its clinical subtype.
Collapse
Affiliation(s)
- Garima Lohiya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India;
- Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Dhirendra S. Katti
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India;
- Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
- Correspondence:
| |
Collapse
|
125
|
Zhang C, Zhang Y, Pan H, Tan Y, Wei Q, Dai X, Wei J, Chen Y. Combination of Ferulic Acid, Ligustrazine and Tetrahydropalmatine attenuates Epithelial-mesenchymal Transformation via Wnt/β-catenin Pathway in Endometriosis. Int J Biol Sci 2021; 17:2449-2460. [PMID: 34326686 PMCID: PMC8315018 DOI: 10.7150/ijbs.60167] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/22/2021] [Indexed: 12/22/2022] Open
Abstract
Previously the potential therapeutic action of ferulic acid, ligustrazine and tetrahydropalmatine (FLT) are discovered with unclear mechanism in rat autograft endometriosis. However, the effect of FLT on endometrial cells and allograft endometriosis is still unclear. This study is designed to elucidate the influence of FLT on epithelial-mesenchymal transformation in allograft endometriosis and endometrium cells. In vivo, fluorescent xenogeneic endometriosis model was established. In vitro, invasion and metastasis were analyzed after treating FLT. Epithelial-mesenchymal transformation and Wnt/β-catenin pathway were inspected in vitro and in vivo. Activator or inhibitor of Wnt/β-catenin signaling was performed to inspect mechanism of epithelial-mesenchymal transformation. In vivo, FLT not only decreased fluorescent intensity and volume of ectopic lesion, but also ameliorated pathological morphology. E2 and PROG levels in serum were reduced by FLT. In endometrial cells, FLT significantly inhibited the invasion and metastasis. Meantime, epithelial-mesenchymal transformation was reversed, accompanied by suppression of Wnt/β-catenin pathway. In-depth study, activation of Wnt/β-catenin pathway lead to promotion of epithelial-mesenchymal transformation, which was reversed by FLT. FLT prevented fluorescent allograft endometriosis and endometrium cells, which was related to suppress epithelial-mesenchymal transformation through inactivating Wnt/β-catenin pathway. The findings disclose molecular mechanism of epithelial-mesenchymal transformation in endometriosis by FLT, and contribute to further application.
Collapse
Affiliation(s)
- Chengling Zhang
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China.,Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China.,Pharmacology of Chinese Materia Medica - the Key Discipline Constructed by the state Administration of Traditional Chinese Medicine, Chongqing, China.,National Demonstration Center for Experimental Pharmacy Education (Southwest University), Chongqing, China
| | - Ying Zhang
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China.,Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China.,Pharmacology of Chinese Materia Medica - the Key Discipline Constructed by the state Administration of Traditional Chinese Medicine, Chongqing, China.,National Demonstration Center for Experimental Pharmacy Education (Southwest University), Chongqing, China
| | - Haiying Pan
- Sichuan Jinxin Women & Children Hospital, Chengdu 610066, China
| | - Yi Tan
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China.,Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China.,Pharmacology of Chinese Materia Medica - the Key Discipline Constructed by the state Administration of Traditional Chinese Medicine, Chongqing, China.,National Demonstration Center for Experimental Pharmacy Education (Southwest University), Chongqing, China
| | - Qinghua Wei
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China.,Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China.,Pharmacology of Chinese Materia Medica - the Key Discipline Constructed by the state Administration of Traditional Chinese Medicine, Chongqing, China.,National Demonstration Center for Experimental Pharmacy Education (Southwest University), Chongqing, China
| | - Xueshan Dai
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China.,Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China.,Pharmacology of Chinese Materia Medica - the Key Discipline Constructed by the state Administration of Traditional Chinese Medicine, Chongqing, China.,National Demonstration Center for Experimental Pharmacy Education (Southwest University), Chongqing, China
| | - Jiahui Wei
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China.,Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China.,Pharmacology of Chinese Materia Medica - the Key Discipline Constructed by the state Administration of Traditional Chinese Medicine, Chongqing, China.,National Demonstration Center for Experimental Pharmacy Education (Southwest University), Chongqing, China
| | - Yi Chen
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China.,Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China.,Pharmacology of Chinese Materia Medica - the Key Discipline Constructed by the state Administration of Traditional Chinese Medicine, Chongqing, China.,National Demonstration Center for Experimental Pharmacy Education (Southwest University), Chongqing, China
| |
Collapse
|
126
|
Li Y, Li M, Jin F, Liu J, Chen M, Yin J. DNAJC12 promotes lung cancer growth by regulating the activation of β‑catenin. Int J Mol Med 2021; 47:105. [PMID: 33907820 PMCID: PMC8057298 DOI: 10.3892/ijmm.2021.4938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/24/2021] [Indexed: 01/03/2023] Open
Abstract
Lung cancer has become the leading cause of cancer‑associated mortality worldwide. However, the underlying mechanisms of lung cancer remain poorly understood. DnaJ heat shock protein family (HSP40) member C12 (DNAJC12) is a type III member belonging to the HSP40/DNAJ family. The role of DNAJC12 in numerous types of cancer has been previously reported; however, the effect of DNAJC12 in lung cancer remains unknown. The results of the present study indicated that DNAJC12 may be involved in lung cancer proliferation and migration by regulating the β‑catenin signaling pathway. Data generated in the present study and from The Cancer Genome Atlas revealed that the DNAJC12 expression levels were significantly upregulated in lung cancer tissues compared with non‑cancer lung tissues. The expression of DNAJC12 was subsequently knocked down in A549 and NCI‑H1975 lung cancer cells using lentiviral transfections and further experiments demonstrated that the knockdown of DNAJC12 inhibited the proliferation, colony formation, migration and invasion of lung cancer cells. The results of flow cytometric assays also revealed that the knockdown of DNAJC12 induced the apoptosis of lung cancer cells. In addition, the effects of DNAJC12 knockdown on the in vivo growth of lung cancer cells were observed. Signaling pathway analysis revealed that the knockdown of DNAJC12 expression suppressed the phosphorylation of p65 NF‑κB, downregulated the expression levels and inhibited the subsequent activation of β‑catenin, and downregulated the expression levels of vimentin. Rescue experiments demonstrated that the overexpression of β‑catenin, but not that of NF‑κB or vimentin, reversed the effects of DNAJC12 knockdown on the proliferation and invasion of lung cancer cells. On the whole, the findings of the present study suggest that DNAJC12 may play a crucial role in lung cancer tumorigenesis by regulating the expression and activation of β‑catenin. Therefore, DNAJC12 may represent a novel target for the treatment of lung cancer.
Collapse
Affiliation(s)
- Yun Li
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Meng Li
- Department of Thoracic Surgery, The First People's Hospital of Taian Affiliated to Shandong First Medical University, Taian, Shandong 271000, P.R. China
| | - Fengqi Jin
- Department of Thoracic Surgery, Jinan Zhangqiu District Hospital of Traditional Chinese Medicine, Jinan, Shandong 250200, P.R. China
| | - Jianbo Liu
- Department of Thoracic Surgery, The Fourth People's Hospital, Heze, Shangdong 274100, P.R. China
| | - Minghui Chen
- Department of Anesthesia Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 271000, P.R. China
| | - Jingjing Yin
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
127
|
Pourdashti S, Faridi N, Yaghooti H, Jalali MT, Soroush A, Bathaie SZ. Possible role of WNT10B in increased proliferation and tubule formation of human umbilical vein endothelial cell cultures treated with hypoxic conditioned medium from human adipocytes. Biotech Histochem 2021; 97:168-179. [PMID: 34044678 DOI: 10.1080/10520295.2021.1923801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Regulation of angiogenesis plays an important role in adipose tissue expansion and function. The Wnt pathway and WNT10B, the main member of Wnt family, participate in angiogenesis in cancer tumors, but there is limited evidence to support the regulatory role of WNT10B in human adipose tissue angiogenesis. Subcutaneous white adipose tissue (scWAT) of 80 participants including obese and non-obese subjects was obtained and the expression of WNT10B and VEGFA genes were evaluated using qPCR. Human adipose-derived stem cells (hADSC) were differentiated to adipocytes and incubated under either hypoxic or normoxic conditions. The conditioned media of these adipocytes were collected and used as growth media for human umbilical vein endothelial cells (HUVEC) in Matrigel. We evaluated the proliferation, cell cycle phases, tubule formation and β-catenin activation of these treated cells. We found a significant correlation between WNT10B and VEGFA expression in the scWAT of both obese and non-obese subjects. Proliferation and tubule formation of HUVEC treated with conditioned media of hypoxic adipocytes (hCM) in the S-phase were increased significantly compared to the HUVEC treated with the conditioned media of normoxic adipocytes (nCM). The expression of WNT10B and VEGFA was enhanced in hypoxic adipocytes compared to normoxic adipocytes; also, activation and nuclear translocation of β-catenin was enhanced in the HUVEC treated with hCM compared to nCM. WNT10B acts as an angiogenic protein in scWAT under hypoxic conditions. Hypoxia induced WNT10B increases VEGFA expression and causes tube formation by HUVECs and angiogenesis in adipose tissue via the canonical Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Sara Pourdashti
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran, Iran
| | - Nassim Faridi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran, Iran
| | - Hamid Yaghooti
- Cellular and Molecular Research Center and Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad-Taha Jalali
- Hyperlipidemia Research Center and Diabetes Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Ahmadreza Soroush
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - S Zahra Bathaie
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran, Iran
| |
Collapse
|
128
|
Li YS, Wu HH, Jiang XC, Zhang TY, Zhou Y, Huang LL, Zhi P, Tabata Y, Gao JQ. Active stealth and self-positioning biomimetic vehicles achieved effective antitumor therapy. J Control Release 2021; 335:515-526. [PMID: 34058269 DOI: 10.1016/j.jconrel.2021.05.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/15/2021] [Accepted: 05/22/2021] [Indexed: 01/27/2023]
Abstract
Mesenchymal stem cells (MSCs) are recognized as promising drug delivery vehicles. However, the limitation of drug loading capacity and safety considerations are two obstacles to the further application of MSCs. Here, we report MSC membrane-coated mesoporous silica nanoparticles (MSN@M) that maintain the active stealth and self-positioning drug delivery abilities of MSCs and resolve issues related to MSCs-mediated drug delivery. MSN@M was established through uniformly integrating MSC membrane onto a mesoporous silica nanoparticle (MSN) core by sonication. Reduced clearance of phagocytes mediated by CD47 marker on MSC membrane was observed in vitro, which explained the only ~ 25% clearance rate of MSN@M compared with MSN in vivo within 24 h. MSN@M also showed stronger tumor targeting and penetration ability compared with MSN in HepG2 tumor bearing mice. Simultaneously, MSN@M exhibited strong capacity for drug loading and sustained drug release ability of MSN when loaded with doxorubicin (DOX), the drug loading of MSN@M increased ~ 5 folds compared with MSC membrane. In HepG2 xenograft mice, DOX-loaded MSN@M effectively inhibited the growth of tumors and decreased the side effects of treatment by decreasing the exposure of other tissues to DOX. Consequently, our MSN@M may serve as alternative vehicles for MSCs and provide more options for antitumor treatment.
Collapse
Affiliation(s)
- Yao-Sheng Li
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Hong-Hui Wu
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xin-Chi Jiang
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Tian-Yuan Zhang
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Yi Zhou
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Ling-Ling Huang
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Pei Zhi
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Jian-Qing Gao
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, PR China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; Cancer Center of Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
129
|
El Sabeh M, Saha SK, Afrin S, Islam MS, Borahay MA. Wnt/β-catenin signaling pathway in uterine leiomyoma: role in tumor biology and targeting opportunities. Mol Cell Biochem 2021; 476:3513-3536. [PMID: 33999334 DOI: 10.1007/s11010-021-04174-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
Uterine leiomyoma is the most common tumor of the female reproductive system and originates from a single transformed myometrial smooth muscle cell. Despite the immense medical, psychosocial, and financial impact, the exact underlying mechanisms of leiomyoma pathobiology are poorly understood. Alterations of signaling pathways are thought to be instrumental in leiomyoma biology. Wnt/β-catenin pathway appears to be involved in several aspects of the genesis of leiomyomas. For example, Wnt5b is overexpressed in leiomyoma, and the Wnt/β-catenin pathway appears to mediate the role of MED12 mutations, the most common mutations in leiomyoma, in tumorigenesis. Moreover, Wnt/β-catenin pathway plays a paracrine role where estrogen/progesterone treatment of mature myometrial or leiomyoma cells leads to increased expression of Wnt11 and Wnt16, which induces proliferation of leiomyoma stem cells and tumor growth. Constitutive activation of β-catenin leads to myometrial hyperplasia and leiomyoma-like lesions in animal models. Wnt/β-catenin signaling is also closely involved in mechanotransduction and extracellular matrix regulation and relevant alterations in leiomyoma, and crosstalk is noted between Wnt/β-catenin signaling and other pathways known to regulate leiomyoma development and growth such as estrogen, progesterone, TGFβ, PI3K/Akt/mTOR, Ras/Raf/MEK/ERK, IGF, Hippo, and Notch signaling. Finally, evidence suggests that inhibition of the canonical Wnt pathway using β-catenin inhibitors inhibits leiomyoma cell proliferation. Understanding the molecular mechanisms of leiomyoma development is essential for effective treatment. The specific Wnt/β-catenin pathway molecules discussed in this review constitute compelling candidates for therapeutic targeting.
Collapse
Affiliation(s)
- Malak El Sabeh
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Subbroto Kumar Saha
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Sadia Afrin
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Md Soriful Islam
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Mostafa A Borahay
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA.
| |
Collapse
|
130
|
Targeting Wnt Signaling in Endometrial Cancer. Cancers (Basel) 2021; 13:cancers13102351. [PMID: 34068065 PMCID: PMC8152465 DOI: 10.3390/cancers13102351] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Wnt has diverse regulatory roles at multiple cellular levels and numerous targeting points, and aberrant Wnt signaling has crucial roles in carcinogenesis, metastasis, cancer recurrence, and chemotherapy resistance; based on these facts, Wnt represents an appealing therapeutic target for cancer treatment. Although preclinical data supports a role for the Wnt signaling pathway in uterine carcinogenesis, this area remains understudied. In this review, we identify the functions of several oncogenes of the Wnt/β-catenin signaling pathway in tumorigenesis and address the translation approach with potent Wnt inhibitors that have already been established or are being investigated to target key components of the pathway. Further research is likely to expand the potential for both biomarker and cancer drug development. There is a scarcity of treatment choices for advanced and recurrent endometrial cancer; investigating the sophisticated connections of Wnt signaling networks in endometrial cancer could address the unmet need for new therapeutic targets. Abstract This review presents new findings on Wnt signaling in endometrial carcinoma and implications for possible future treatments. The Wnt proteins are essential mediators in cell signaling during vertebrate embryo development. Recent biochemical and genetic studies have provided significant insight into Wnt signaling, in particular in cell cycle regulation, inflammation, and cancer. The role of Wnt signaling is well established in gastrointestinal and breast cancers, but its function in gynecologic cancers, especially in endometrial cancers, has not been well elucidated. Development of a subset of endometrial carcinomas has been attributed to activation of the APC/β-catenin signaling pathway (due to β-catenin mutations) and downregulation of Wnt antagonists by epigenetic silencing. The Wnt pathway also appears to be linked to estrogen and progesterone, and new findings implicate it in mTOR and Hedgehog signaling. Therapeutic interference of Wnt signaling remains a significant challenge. Herein, we discuss the Wnt-activating mechanisms in endometrial cancer and review the current advances and challenges in drug discovery.
Collapse
|
131
|
Habara O, Logan CY, Kanai-Azuma M, Nusse R, Takase HM. WNT signaling in pre-granulosa cells is required for ovarian folliculogenesis and female fertility. Development 2021; 148:261700. [PMID: 33914868 PMCID: PMC8126407 DOI: 10.1242/dev.198846] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/26/2021] [Indexed: 01/26/2023]
Abstract
In mammalian ovaries, immature oocytes are reserved in primordial follicles until their activation for potential ovulation. Precise control of primordial follicle activation (PFA) is essential for reproduction, but how this is achieved is unclear. Here, we show that canonical wingless-type MMTV integration site family (WNT) signaling is pivotal for pre-granulosa cell (pre-GC) activation during PFA. We identified several WNT ligands expressed in pre-GCs that act in an autocrine manner. Inhibition of WNT secretion from pre-GCs/GCs by conditional knockout (cKO) of the wntless (Wls) gene led to female infertility. In Wls cKO mice, GC layer thickness was greatly reduced in growing follicles, which resulted in impaired oocyte growth with both an abnormal, sustained nuclear localization of forkhead box O3 (FOXO3) and reduced phosphorylation of ribosomal protein S6 (RPS6). Constitutive stabilization of β-catenin (CTNNB1) in pre-GCs/GCs induced morphological changes of pre-GCs from a squamous into a cuboidal form, though it did not influence oocyte activation. Our results reveal that canonical WNT signaling plays a permissive role in the transition of pre-GCs to GCs, which is an essential step to support oocyte growth.
Collapse
Affiliation(s)
- Okiko Habara
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Catriona Y Logan
- Howard Hughes Medical Institute, Department of Developmental Biology and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Masami Kanai-Azuma
- Department of Experimental Animal Model for Human Disease, Center for Experimental Animals, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Roeland Nusse
- Howard Hughes Medical Institute, Department of Developmental Biology and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hinako M Takase
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.,Department of Experimental Animal Model for Human Disease, Center for Experimental Animals, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| |
Collapse
|
132
|
From Channels to Canonical Wnt Signaling: A Pathological Perspective. Int J Mol Sci 2021; 22:ijms22094613. [PMID: 33924772 PMCID: PMC8125460 DOI: 10.3390/ijms22094613] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Wnt signaling is an important pathway mainly active during embryonic development and controlling cell proliferation. This regulatory pathway is aberrantly activated in several human diseases. Ion channels are known modulators of several important cellular functions ranging from the tuning of the membrane potential to modulation of intracellular pathways, in particular the influence of ion channels in Wnt signaling regulation has been widely investigated. This review will discuss the known links between ion channels and canonical Wnt signaling, focusing on their possible roles in human metabolic diseases, neurological disorders, and cancer.
Collapse
|
133
|
Kobar K, Collett K, Prykhozhij SV, Berman JN. Zebrafish Cancer Predisposition Models. Front Cell Dev Biol 2021; 9:660069. [PMID: 33987182 PMCID: PMC8112447 DOI: 10.3389/fcell.2021.660069] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer predisposition syndromes are rare, typically monogenic disorders that result from germline mutations that increase the likelihood of developing cancer. Although these disorders are individually rare, resulting cancers collectively represent 5-10% of all malignancies. In addition to a greater incidence of cancer, affected individuals have an earlier tumor onset and are frequently subjected to long-term multi-modal cancer screening protocols for earlier detection and initiation of treatment. In vivo models are needed to better understand tumor-driving mechanisms, tailor patient screening approaches and develop targeted therapies to improve patient care and disease prognosis. The zebrafish (Danio rerio) has emerged as a robust model for cancer research due to its high fecundity, time- and cost-efficient genetic manipulation and real-time high-resolution imaging. Tumors developing in zebrafish cancer models are histologically and molecularly similar to their human counterparts, confirming the validity of these models. The zebrafish platform supports both large-scale random mutagenesis screens to identify potential candidate/modifier genes and recently optimized genome editing strategies. These techniques have greatly increased our ability to investigate the impact of certain mutations and how these lesions impact tumorigenesis and disease phenotype. These unique characteristics position the zebrafish as a powerful in vivo tool to model cancer predisposition syndromes and as such, several have already been created, including those recapitulating Li-Fraumeni syndrome, familial adenomatous polyposis, RASopathies, inherited bone marrow failure syndromes, and several other pathogenic mutations in cancer predisposition genes. In addition, the zebrafish platform supports medium- to high-throughput preclinical drug screening to identify compounds that may represent novel treatment paradigms or even prevent cancer evolution. This review will highlight and synthesize the findings from zebrafish cancer predisposition models created to date. We will discuss emerging trends in how these zebrafish cancer models can improve our understanding of the genetic mechanisms driving cancer predisposition and their potential to discover therapeutic and/or preventative compounds that change the natural history of disease for these vulnerable children, youth and adults.
Collapse
Affiliation(s)
- Kim Kobar
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Keon Collett
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | | | - Jason N. Berman
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
134
|
Targeting the crosstalk between canonical Wnt/β-catenin and inflammatory signaling cascades: A novel strategy for cancer prevention and therapy. Pharmacol Ther 2021; 227:107876. [PMID: 33930452 DOI: 10.1016/j.pharmthera.2021.107876] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
Emerging scientific evidence indicates that inflammation is a critical component of tumor promotion and progression. Most cancers originate from sites of chronic irritation, infections and inflammation, underscoring that the tumor microenvironment is largely orchestrated by inflammatory cells and pro-inflammatory molecules. These inflammatory components are intimately involved in neoplastic processes which foster proliferation, survival, invasion, and migration, making inflammation the primary target for cancer prevention and treatment. The influence of inflammation and the immune system on the progression and development of cancer has recently gained immense interest. The Wnt/β-catenin signaling pathway, an evolutionarily conserved signaling strategy, has a critical role in regulating tissue development. It has been implicated as a major player in cancer development and progression with its regulatory role on inflammatory cascades. Many naturally-occurring and small synthetic molecules endowed with inherent anti-inflammatory properties inhibit this aberrant signaling pathway, making them a promising class of compounds in the fight against inflammatory cancers. This article analyzes available scientific evidence and suggests a crosslink between Wnt/β-catenin signaling and inflammatory pathways in inflammatory cancers, especially breast, gastrointestinal, endometrial, and ovarian cancer. We also highlight emerging experimental findings that numerous anti-inflammatory synthetic and natural compounds target the crosslink between Wnt/β-catenin pathway and inflammatory cascades to achieve cancer prevention and intervention. Current challenges, limitations, and future directions of research are also discussed.
Collapse
|
135
|
Kumar V, Vashishta M, Kong L, Wu X, Lu JJ, Guha C, Dwarakanath BS. The Role of Notch, Hedgehog, and Wnt Signaling Pathways in the Resistance of Tumors to Anticancer Therapies. Front Cell Dev Biol 2021; 9:650772. [PMID: 33968932 PMCID: PMC8100510 DOI: 10.3389/fcell.2021.650772] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
Resistance to therapy is the major hurdle in the current cancer management. Cancer cells often rewire their cellular process to alternate mechanisms to resist the deleterious effect mounted by different therapeutic approaches. The major signaling pathways involved in the developmental process, such as Notch, Hedgehog, and Wnt, play a vital role in development, tumorigenesis, and also in the resistance to the various anticancer therapies. Understanding how cancer utilizes these developmental pathways in acquiring the resistance to the multi-therapeutic approach cancer can give rise to a new insight of the anti-therapy resistance mechanisms, which can be explored for the development of a novel therapeutic approach. We present a brief overview of Notch, Hedgehog, and Wnt signaling pathways in cancer and its role in providing resistance to various cancer treatment modalities such as chemotherapy, radiotherapy, molecular targeted therapy, and immunotherapy. Understanding the importance of these molecular networks will provide a rational basis for novel and safer combined anticancer therapeutic approaches for the improvement of cancer treatment by overcoming drug resistance.
Collapse
Affiliation(s)
- Vivek Kumar
- R&D Dept, Shanghai Proton and Heavy Ion Center (SPHIC), Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Mohit Vashishta
- R&D Dept, Shanghai Proton and Heavy Ion Center (SPHIC), Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Lin Kong
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Xiaodong Wu
- R&D Dept, Shanghai Proton and Heavy Ion Center (SPHIC), Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jiade J Lu
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Chandan Guha
- Albert Einstein College of Medicine, The Bronx, NY, United States
| | - B S Dwarakanath
- R&D Dept, Shanghai Proton and Heavy Ion Center (SPHIC), Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| |
Collapse
|
136
|
Wang N, Wen J, Ren W, Wu Y, Deng C. Upregulation of TRIB2 by Wnt/β-catenin activation in BRAF V600E papillary thyroid carcinoma cells confers resistance to BRAF inhibitor vemurafenib. Cancer Chemother Pharmacol 2021; 88:155-164. [PMID: 33860836 DOI: 10.1007/s00280-021-04270-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/25/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE The BRAFV600E mutation is an oncogenic driver associated with aggressive tumor behaviors and increased mortality among patients with papillary thyroid cancer (PTC). Although the BRAF inhibitor vemurafenib gave promising results in BRAFV600E-mutant PTC, resistance development remains a major clinical challenge. This study aimed to explore the mechanisms underlying drug resistance in PTC. METHODS Two vemurafenib-resistant PTC cell lines (KTC1 and BCPAP) were established by continuous treatment with vemurafenib for 5 months. The knockdown and upregulation of Tribbles homolog 2 (TRIB2) in PTC cells were achieved by the transfection with short hairpin RNA against TRIB2 or recombinant lentiviral vector carrying TRIB2, respectively. The β-catenin inhibitor, ICG-001, was used for the inhibition of the Wnt/β-catenin signaling in PTC cells. RESULTS Vemurafenib-resistant PTC cells showed higher TRIB2 expression, upregulated ERK and AKT activation, enhanced invasive capacity, and increased epithelial-mesenchymal transition compared to the drug-sensitive groups. TRIB2 knockdown repressed the activation of ERK and AKT, inhibited invasion and EMT, and induced apoptosis of PTC cells. TRIB2 deficiency also enhanced the sensitivity of both PTC cells to vemurafenib. Vemurafenib-resistant PTC cells showed elevated expression of β-catenin in both cytoplasm and nucleus. The pre-incubation of cells with β-catenin inhibitor significantly inhibited TRIB2 expression, suppressed EMT, and repressed the activation of ERK and AKT in vemurafenib-resistant cells. CONCLUSION Our study showed that the upregulation of TRIB2 by the Wnt/β-catenin activation confers resistance to vemurafenib in PTC with BRAFV600 mutation. These findings support the potential use of TRIB2 as a therapeutic target for resistant PTC.
Collapse
Affiliation(s)
- Nianxue Wang
- Department of Immunology, Guizhou Medical University, Guiyang City, 550025, Guizhou Province, China
| | - Jing Wen
- Department of Ultrasonic Center, Affiliated Hospital of Guizhou Medical University, Guiyang City, 550004, Guizhou Province, China
| | - Wei Ren
- Department of Immunology, Guizhou Medical University, Guiyang City, 550025, Guizhou Province, China
| | - Yuting Wu
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Guiyang City, 550004, Guizhou Province, China
| | - Chaonan Deng
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Guiyang City, 550004, Guizhou Province, China.
| |
Collapse
|
137
|
Chen D, Li C, Zhao Y, Zhou J, Wang Q, Xie Y. Bioinformatics analysis for the identification of differentially expressed genes and related signaling pathways in H. pylori-CagA transfected gastric cancer cells. PeerJ 2021; 9:e11203. [PMID: 33954041 PMCID: PMC8053379 DOI: 10.7717/peerj.11203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/11/2021] [Indexed: 12/25/2022] Open
Abstract
Aim Helicobacter pylori cytotoxin-associated protein A (CagA) is an important virulence factor known to induce gastric cancer development. However, the cause and the underlying molecular events of CagA induction remain unclear. Here, we applied integrated bioinformatics to identify the key genes involved in the process of CagA-induced gastric epithelial cell inflammation and can ceration to comprehend the potential molecular mechanisms involved. Materials and Methods AGS cells were transected with pcDNA3.1 and pcDNA3.1::CagA for 24 h. The transfected cells were subjected to transcriptome sequencing to obtain the expressed genes. Differentially expressed genes (DEG) with adjusted P value < 0.05, — logFC —> 2 were screened, and the R package was applied for gene ontology (GO) enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The differential gene protein–protein interaction (PPI) network was constructed using the STRING Cytoscape application, which conducted visual analysis to create the key function networks and identify the key genes. Next, the Kaplan–Meier plotter survival analysis tool was employed to analyze the survival of the key genes derived from the PPI network. Further analysis of the key gene expressions in gastric cancer and normal tissues were performed based on The Cancer Genome Atlas (TCGA) database and RT-qPCR verification. Results After transfection of AGS cells, the cell morphology changes in a hummingbird shape and causes the level of CagA phosphorylation to increase. Transcriptomics identified 6882 DEG, of which 4052 were upregulated and 2830 were downregulated, among which q-value < 0.05, FC > 2, and FC under the condition of ≤2. Accordingly, 1062 DEG were screened, of which 594 were upregulated and 468 were downregulated. The DEG participated in a total of 151 biological processes, 56 cell components, and 40 molecular functions. The KEGG pathway analysis revealed that the DEG were involved in 21 pathways. The PPI network analysis revealed three highly interconnected clusters. In addition, 30 DEG with the highest degree were analyzed in the TCGA database. As a result, 12 DEG were found to be highly expressed in gastric cancer, while seven DEG were related to the poor prognosis of gastric cancer. RT-qPCR verification results showed that Helicobacter pylori CagA caused up-regulation of BPTF, caspase3, CDH1, CTNNB1, and POLR2A expression. Conclusion The current comprehensive analysis provides new insights for exploring the effect of CagA in human gastric cancer, which could help us understand the molecular mechanism underlying the occurrence and development of gastric cancer caused by Helicobacter pylori.
Collapse
Affiliation(s)
- Dingyu Chen
- Key Laboratory of Endemic and Ethnic Diseases , Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Chao Li
- Key Laboratory of Endemic and Ethnic Diseases , Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Yan Zhao
- Key Laboratory of Endemic and Ethnic Diseases , Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Jianjiang Zhou
- Key Laboratory of Endemic and Ethnic Diseases , Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Qinrong Wang
- Key Laboratory of Endemic and Ethnic Diseases , Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Yuan Xie
- Key Laboratory of Endemic and Ethnic Diseases , Ministry of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
138
|
Kim J, Choi KW, Lee J, Lee J, Lee S, Sun R, Kim J. Wnt/β-catenin Signaling Inhibitors suppress the Tumor-initiating properties of a CD44 +CD133 + subpopulation of Caco-2 cells. Int J Biol Sci 2021; 17:1644-1659. [PMID: 33994850 PMCID: PMC8120464 DOI: 10.7150/ijbs.58612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/26/2021] [Indexed: 01/15/2023] Open
Abstract
Tumor-initiating cells or cancer stem cells are a subset of cancer cells that have tumorigenic potential in human cancer. Although several markers have been proposed to distinguish tumor-initiating cells from colorectal cancer cells, little is known about how this subpopulation contributes to tumorigenesis. Here, we characterized a tumor-initiating cell subpopulation from Caco-2 colorectal cancer cells. Based on the findings that Caco-2 cell subpopulations express different cell surface markers, we were able to discriminate three main fractions, CD44-CD133-, CD44-CD133+, and CD44+CD133+ subsets, and characterized their biochemical and tumorigenic properties. Our results show that CD44+CD133+ cells possessed an unusual capacity to proliferate and could form tumors when transplanted into NSG mice. Additionally, primary tumors grown from CD44+CD133+ Caco-2 cells contained mixed populations of CD44+CD133+ and non-CD44+CD133+ Caco-2 cells, indicating that the full phenotypic heterogeneity of the parental Caco-2 cells was re-created. Notably, only the CD44+CD133+ subset of Caco-2-derived primary tumors had tumorigenic potential in NSG mice, and the tumor growth of CD44+CD133+ cells was faster in secondary xenografts than in primary transplants. Gene expression analysis revealed that the Wnt/β-catenin pathway was over-activated in CD44+CD133+ cells, and the growth and tumorigenic potential of this subpopulation were significantly suppressed by small-molecule Wnt/β-catenin signaling inhibitors. Our findings suggest that the CD44+CD133+ subpopulation from Caco-2 cells was highly enriched in tumorigenic cells and will be useful for investigating the mechanisms leading to human colorectal cancer development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jungho Kim
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul 04107, Korea
| |
Collapse
|
139
|
Raghav PK, Mann Z. Cancer stem cells targets and combined therapies to prevent cancer recurrence. Life Sci 2021; 277:119465. [PMID: 33831426 DOI: 10.1016/j.lfs.2021.119465] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/01/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs) control the dynamics of tumorigenesis by self-renewal ability and differentiation potential. These properties contribute towards tumor malignancy, metastasis, cellular heterogeneity, and immune escape, which are regulated by multiple signaling pathways. The CSCs are chemoresistant and cause cancer recurrence, generally recognized as a small side-population that eventually leads to tumor relapse. Despite many treatment options available, none can be considered entirely efficient due to a lack of specificity and dose limitation. This review primarily highlights the processes involved in CSCs development and maintenance. Secondly, the current effective therapies based on stem cells, cell-free therapies that involve exosomes and miRNAs, and photodynamic therapy have been discussed. Also, the inhibitors that specifically target various signaling pathways, which can be used in combination to control CSCs kinetics have been highlighted. Conclusively, this comprehensive review is a detailed study of recently developed novel treatment strategies that will facilitate in coming up with better-targeted approaches against CSCs.
Collapse
Affiliation(s)
| | - Zoya Mann
- Independent Researcher, New Delhi, India
| |
Collapse
|
140
|
Bhattacharya S, Mohanty A, Achuthan S, Kotnala S, Jolly MK, Kulkarni P, Salgia R. Group Behavior and Emergence of Cancer Drug Resistance. Trends Cancer 2021; 7:323-334. [PMID: 33622644 PMCID: PMC8500356 DOI: 10.1016/j.trecan.2021.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
Drug resistance is a major impediment in cancer. Although it is generally thought that acquired drug resistance is due to genetic mutations, emerging evidence indicates that nongenetic mechanisms also play an important role. Resistance emerges through a complex interplay of clonal groups within a heterogeneous tumor and the surrounding microenvironment. Traits such as phenotypic plasticity, intercellular communication, and adaptive stress response, act in concert to ensure survival of intermediate reversible phenotypes, until permanent, resistant clones can emerge. Understanding the role of group behavior, and the underlying nongenetic mechanisms, can lead to more efficacious treatment designs and minimize or delay emergence of resistance.
Collapse
Affiliation(s)
- Supriyo Bhattacharya
- Translational Bioinformatics, Center for Informatics, Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Srisairam Achuthan
- Center for Informatics, Division of Research Informatics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Sourabh Kotnala
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
141
|
Zolghadr F, Tse N, Loka D, Joun G, Meppat S, Wan V, Zoellner H, Xaymardan M, Farah CS, Lyons JG, Hau E, Patrick E, Seyedasli N. A Wnt-mediated phenotype switch along the epithelial-mesenchymal axis defines resistance and invasion downstream of ionising radiation in oral squamous cell carcinoma. Br J Cancer 2021; 124:1921-1933. [PMID: 33785878 DOI: 10.1038/s41416-021-01352-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 02/11/2021] [Accepted: 03/02/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Dynamic transitions of tumour cells along the epithelial-mesenchymal axis are important in tumorigenesis, metastasis and therapy resistance. METHODS In this study, we have used cell lines, 3D spheroids and tumour samples in a variety of cell biological and transcriptome analyses to highlight the cellular and molecular dynamics of OSCC response to ionising radiation. RESULTS Our study demonstrates a prominent hybrid epithelial-mesenchymal state in oral squamous cell carcinoma cells and tumour samples. We have further identified a key role for levels of E-cadherin in stratifying the hybrid cells to compartments with varying levels of radiation response and radiation-induced epithelial-mesenchymal transition. The response to radiation further entailed the generation of a new cell population with low expression levels of E-cadherin, and positive for Vimentin (ECADLow/Neg-VIMPos), a phenotypic signature that showed an enhanced capacity for radiation resistance and invasion. At the molecular level, transcriptome analysis of spheroids in response to radiation showed an initial burst of misregulation within the first 30 min that further declined, although still highlighting key alterations in gene signatures. Among others, pathway analysis showed an over-representation for the Wnt signalling pathway that was further confirmed to be functionally involved in the generation of ECADLow/Neg-VIMPos population, acting upstream of radiation resistance and tumour cell invasion. CONCLUSION This study highlights the functional significance and complexity of tumour cell remodelling in response to ionising radiation with links to resistance and invasive capacity. An area of less focus in conventional radiotherapy, with the potential to improve treatment outcomes and relapse-free survival.
Collapse
Affiliation(s)
- Fatemeh Zolghadr
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Nigel Tse
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Dikasya Loka
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - George Joun
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Sreelakshmi Meppat
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Victor Wan
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Hans Zoellner
- Discipline of Oral Surgery, Medicine and Diagnostics, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Munira Xaymardan
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Camile S Farah
- Australian Centre for Oral Oncology Research and Education, Nedlands, WA, Australia.,Maxillofacial, Oral and Dental Surgery, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - J Guy Lyons
- Discipline of Dermatology, Sydney Medical School and Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Cancer Services, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Eric Hau
- Sydney West Radiation Oncology Network, Westmead, NSW, Australia.,The Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Ellis Patrick
- The Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,School of Mathematics, Faculty of Science, University of Sydney, Camperdown, NSW, Australia
| | - Naisana Seyedasli
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia. .,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia. .,The Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.
| |
Collapse
|
142
|
Advani D, Sharma S, Kumari S, Ambasta RK, Kumar P. Precision Oncology, Signaling and Anticancer Agents in Cancer Therapeutics. Anticancer Agents Med Chem 2021; 22:433-468. [PMID: 33687887 DOI: 10.2174/1871520621666210308101029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The global alliance for genomics and healthcare facilities provides innovational solutions to expedite research and clinical practices for complex and incurable health conditions. Precision oncology is an emerging field explicitly tailored to facilitate cancer diagnosis, prevention and treatment based on patients' genetic profile. Advancements in "omics" techniques, next-generation sequencing, artificial intelligence and clinical trial designs provide a platform for assessing the efficacy and safety of combination therapies and diagnostic procedures. METHOD Data were collected from Pubmed and Google scholar using keywords: "Precision medicine", "precision medicine and cancer", "anticancer agents in precision medicine" and reviewed comprehensively. RESULTS Personalized therapeutics including immunotherapy, cancer vaccines, serve as a groundbreaking solution for cancer treatment. Herein, we take a measurable view of precision therapies and novel diagnostic approaches targeting cancer treatment. The contemporary applications of precision medicine have also been described along with various hurdles identified in the successful establishment of precision therapeutics. CONCLUSION This review highlights the key breakthroughs related to immunotherapies, targeted anticancer agents, and target interventions related to cancer signaling mechanisms. The success story of this field in context to drug resistance, safety, patient survival and in improving quality of life is yet to be elucidated. We conclude that, in the near future, the field of individualized treatments may truly revolutionize the nature of cancer patient care.
Collapse
Affiliation(s)
- Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory Shahbad Daulatpur, Bawana Road, Delhi 110042. India
| | - Sudhanshu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory Shahbad Daulatpur, Bawana Road, Delhi 110042. India
| | - Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory Shahbad Daulatpur, Bawana Road, Delhi 110042. India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory Shahbad Daulatpur, Bawana Road, Delhi 110042. India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory Shahbad Daulatpur, Bawana Road, Delhi 110042. India
| |
Collapse
|
143
|
Fraungruber P, Kaltofen T, Heublein S, Kuhn C, Mayr D, Burges A, Mahner S, Rathert P, Jeschke U, Trillsch F. G Protein-Coupled Estrogen Receptor Correlates With Dkk2 Expression and Has Prognostic Impact in Ovarian Cancer Patients. Front Endocrinol (Lausanne) 2021; 12:564002. [PMID: 33679613 PMCID: PMC7933595 DOI: 10.3389/fendo.2021.564002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 01/05/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose Wnt pathway modulator Dickkopf 2 (Dkk2) and signaling of the G protein-coupled estrogen receptor (GPER) seem to have essential functions in numerous cancer types. For epithelial ovarian cancer (EOC), it has not been proven if either Dkk2 or the GPER on its own have an independent impact on overall survival (OS). So far, the correlation of both factors and their clinical significance has not systematically been investigated before. Methods Expression levels of Dkk2 were immunohistochemically analyzed in 156 patient samples from different histologic subtypes of EOC applying the immune-reactivity score (IRS). Expression analyses were correlated with clinical and pathological parameters to assess for prognostic relevance. Data analysis was performed using Spearman's correlations, Kruskal-Wallis-test and Kaplan-Meier estimates. Results Highest Dkk2 expression of all subtypes was observed in clear cell carcinoma. In addition, Dkk2 expression differed significantly (p<0.001) between low and high grade serous ovarian cancer. A significant correlation of Dkk2 with the cytoplasmic GPER expression was noted (p=0.001) but not for the nuclear estrogen receptor alpha (ERα) or beta (ERβ). Patients exhibiting both, high expression Dkk2 (IRS>4) and GPER (IRS>8), had a significantly better overall survival compared to patients with low expression (61 months vs. 33 months; p=0.024). Conclusion Dkk2 and GPER expression correlates in EOC and combined expression of both is associated with improved OS. These findings underline the clinical significance of both pathways and indicate a possible prognostic impact as well as a potential for treatment strategies addressing interactions between estrogen and Wnt signaling in ovarian cancer.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/diagnosis
- Adenocarcinoma, Clear Cell/genetics
- Adenocarcinoma, Clear Cell/metabolism
- Adenocarcinoma, Clear Cell/mortality
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Ovarian Epithelial/diagnosis
- Carcinoma, Ovarian Epithelial/genetics
- Carcinoma, Ovarian Epithelial/metabolism
- Carcinoma, Ovarian Epithelial/mortality
- Cohort Studies
- Cystadenocarcinoma, Serous/diagnosis
- Cystadenocarcinoma, Serous/genetics
- Cystadenocarcinoma, Serous/metabolism
- Cystadenocarcinoma, Serous/mortality
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Middle Aged
- Ovarian Neoplasms/diagnosis
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/mortality
- Prognosis
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Survival Analysis
Collapse
Affiliation(s)
- Patricia Fraungruber
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Till Kaltofen
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Sabine Heublein
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Doris Mayr
- Department of Pathology, LMU Munich, Munich, Germany
| | - Alexander Burges
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Philipp Rathert
- Department of Biochemistry, University Stuttgart, Stuttgart, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Augsburg, Germany
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| |
Collapse
|
144
|
Kara A, Özgür A, Tekin Ş, Tutar Y. Computational Analysis of Drug Resistance Network in Lung Adenocarcinoma. Anticancer Agents Med Chem 2021; 22:566-578. [PMID: 33602077 DOI: 10.2174/1871520621666210218175439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/14/2020] [Accepted: 01/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lung cancer is a significant health problem and accounts for one-third of the deaths worldwide. A great majority of these deaths are caused by non-small cell lung cancer (NSCLC). Chemotherapy is the leading treatment method for NSCLC, but resistance to chemotherapeutics is an important limiting factor that reduces the treatment success of patients with NSCLC. OBJECTIVE In this study, the relationship between differentially expressed genes affecting the survival of the patients, according to the bioinformatics analyses, and the mechanism of drug resistance is investigated for non-small cell lung adenocarcinoma patients. METHODS Five hundred thirteen patient samples were compared with fifty-nine control samples. The employed dataset was downloaded from The Cancer Genome Atlas (TCGA) database. The information on how the drug activity altered against the expressional diversification of the genes was extracted from the NCI-60 database. Four hundred thirty-three drugs with known mechanism of action (MoA) were analyzed. Diversifications of the activity of these drugs related to genes were considered based on nine lung cancer cell lines virtually. The analyses were performed using R programming language, GDCRNATools, rcellminer, and Cytoscape. RESULTS This work analyzed the common signaling pathways and expressional alterations of the proteins in these pathways associated with survival and drug resistance in lung adenocarcinoma. Deduced computational data demonstrated that proteins of EGFR, JNK/MAPK, NF-κB, PI3K /AKT/mTOR, JAK/STAT, and Wnt signaling pathways were associated with molecular mechanism of resistance to anticancer drugs in NSCLC cells. CONCLUSION To understand the relationships between resistance to anticancer drugs and EGFR, JNK/MAPK, NF-κB, PI3K /AKT/mTOR, JAK/STAT, and Wnt signaling pathways is an important approach to design effective therapeutics for individuals with NSCLC adenocarcinoma.
Collapse
Affiliation(s)
- Altan Kara
- TUBITAK Marmara Research Center, Gene Engineering and Biotechnology Institute, Gebze, . Turkey
| | - Aykut Özgür
- Tokat Gaziosmanpaşa University, Artova Vocational School, Department of Veterinary Medicine, Laboratory and Veterinary Health Program, Tokat, . Turkey
| | - Şaban Tekin
- University of Health Sciences, Turkey, Hamidiye Faculty of Medicine, Department of Basic Medical Sciences, Division of Biology, İstanbul, . Turkey
| | - Yusuf Tutar
- University of Health Sciences, Hamidiye Institute of Health Sciences, Department of Molecular Oncology, Istanbul, . Turkey
| |
Collapse
|
145
|
Mao C, Zeng X, Zhang C, Yang Y, Xiao X, Luan S, Zhang Y, Yuan Y. Mechanisms of Pharmaceutical Therapy and Drug Resistance in Esophageal Cancer. Front Cell Dev Biol 2021; 9:612451. [PMID: 33644048 PMCID: PMC7905099 DOI: 10.3389/fcell.2021.612451] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/04/2021] [Indexed: 02/05/2023] Open
Abstract
Pharmaceutical therapies are essential for esophageal cancer (EC). For the advanced EC, the neoadjuvant therapy regimen, including chemotherapy plus radiotherapy and/or immunotherapy, is effective to achieve clinical benefit, even pathological complete response. For the unresectable, recurrent, and metastatic EC, the pharmaceutical therapy is the limited effective regimen to alleviate the disease and prolong the progression-free survival and overall survival. In this review, we focus on the pharmaceutical applications in EC treatment including cytotoxic agents, molecular targeted antibodies, and immune checkpoint inhibitors (ICIs). The chemotherapy regimen is based on cytotoxic agents such as platinum-based complexes, fluorinated pyrimidines and taxenes. Although the cytotoxic agents have been developed in past decades, the standard chemotherapy regimen is still the cisplatin and 5-FU or paclitaxel because the derived drugs have no significant advantages of overcoming the shortcomings of side effects and drug resistance. The targeted molecular therapy is an essential supplement for chemotherapy; however, there are only a few targeted therapies available in clinical practice. Trastuzumab and ramucirumab are the only two molecular therapy drugs which are approved by the US Food and Drug Administration to treat advanced and/or metastatic EC. Although the targeted therapy usually achieves effective benefits in the early stage therapy of EC, the patients will always develop drug resistance during treatment. ICIs have had a significant impact on routine clinical practice in cancer treatment. The anti-programmed cell death-1 monoclonal antibodies pembrolizumab and nivolumab, as the ICIs, are recommended for advanced EC by several clinical trials. However, the significant issues of pharmaceutical treatment are still the dose-limiting side effects and primary or secondary drug resistance. These defects of pharmaceutical therapy restrain the clinical application and diminish the effectiveness of treatment.
Collapse
Affiliation(s)
- Chengyi Mao
- Department of Thoracic Surgery West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxi Zeng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Zhang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yushang Yang
- Department of Thoracic Surgery West China Hospital, Sichuan University, Chengdu, China
| | - Xin Xiao
- Department of Thoracic Surgery West China Hospital, Sichuan University, Chengdu, China
| | - Siyuan Luan
- Department of Thoracic Surgery West China Hospital, Sichuan University, Chengdu, China
| | - Yonggang Zhang
- Department of Periodical Press, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Nursing Key Laboratory of Sichuan Province, Chengdu, China
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Yuan
- Department of Thoracic Surgery West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
146
|
Tucker SJ, Zorn AJ. The role of Popeye domain-containing protein 1 (POPDC1) in the progression of the malignant phenotype. Br J Pharmacol 2021; 179:2829-2843. [PMID: 33533478 DOI: 10.1111/bph.15403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/14/2022] Open
Abstract
The Popeye domain-containing protein 1 (POPDC1), a tight junction-associated transmembrane protein with a unique binding site for cAMP, has been shown to act as a tumour suppressor in cancer cells. Through interaction with many downstream effectors and signalling pathways, POPDC1 promotes cell adhesion and inhibits uncontrolled cell proliferation, epithelial-to-mesenchymal transition and metastasis. However, POPDC1 expression is down-regulated in many types of cancer, thereby reducing its tumour-suppressive actions. This review discusses the role of POPDC1 in the progression of the malignant phenotype and highlights the broad range of benefits POPDC1 stabilisation may achieve therapeutically. Cancer stem cells (CSCs) are a key hallmark of malignancies and commonly promote treatment resistance. This article provides a comprehensive overview of CSC signalling mechanisms, many of which have been shown to be regulated by POPDC1 in other cell types, thus suggesting an additional therapeutic benefit for POPDC1-stabilising anti-cancer drugs.
Collapse
Affiliation(s)
- Steven J Tucker
- School of Medicine, Medical Science and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Alina J Zorn
- School of Medicine, Medical Science and Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
147
|
Kinosada H, Okada-Iwasaki R, Kunieda K, Suzuki-Imaizumi M, Takahashi Y, Miyagi H, Suzuki M, Motosawa K, Watanabe M, Mie M, Ishii T, Ishida H, Saito JI, Nakai R. The dual pocket binding novel tankyrase inhibitor K-476 enhances the efficacy of immune checkpoint inhibitor by attracting CD8 + T cells to tumors. Am J Cancer Res 2021; 11:264-276. [PMID: 33520373 PMCID: PMC7840722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/21/2020] [Indexed: 06/12/2023] Open
Abstract
The Wnt/β-catenin pathway, which is associated with disease progression, is activated in many cancers. Tankyrase (TNKS) has received attention as a target molecule for Wnt/β-catenin pathway inhibition. We identified K-476, a novel TNKS inhibitor, a dual pocket binder that binds to both the nicotinamide and ADP-ribose pockets. In a human colon cancer cell line, K-476 specifically and potently inhibited TNKS and led to stabilization of the Axin protein, resulting in Wnt/β-catenin pathway suppression. Aberrant Wnt/β-catenin pathway activation was recently reported as a possible mechanism of ineffectiveness in immune checkpoint inhibitor (ICI) treatment. Because the Wnt/β-catenin pathway activation causes dendritic cell inactivation and suppresses chemokine production, resulting in a paucity of CD8+ T cells in tumor tissue, which is an important effector of ICIs. Thus, TNKS inhibitors may enhance the efficacy of ICIs. To examine whether K-476 enhances the antitumor effect of anti-PD-L1 antibodies, K-476 was administered orally with an anti-PD-L1 antibody to melanoma-bearing C57BL/6J mice. Although K-476 was ineffective as a monotherapy, it significantly enhanced the antitumor effect in combination with anti-PD-L1 antibody. In mice, intra-tumor infiltration of CD8+ T cells was increased by combination treatment. K-476 upregulated the chemokine expression (e.g., Ccl3 and Ccl4), which attracted CD8+ T cells. This was considered to contribute to the increased CD8+ T cells in the tumor microenvironment. Furthermore, while the potential gastrointestinal toxicity of TNKS inhibitors has been reported, it was not observed at effective doses. Thus, K-476 could be an attractive therapeutic option to enhance the efficacy of ICIs.
Collapse
|
148
|
Lin TC, Germagian A, Liu Z. The NF-
κ
B Signaling and Wnt/
β
-catenin Signaling in MCF-7 Breast Cancer Cells in Response to Bioactive Components from Mushroom Antrodia Camphorata. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 49:199-215. [PMID: 33371814 DOI: 10.1142/s0192415x21500117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Breast cancer is the leading cancer, accounting for approximately 15% cancer deaths in women worldwide. This study investigated the anti-inflammation and anticancer properties of two bioactive components from Antrodia camphorata(AC), a rare medicinal mushroom natively grown in Taiwan and commonly used in Chinese traditional medicine. The anti-inflammatory and antitumorigenic functions of Antroquinonol (AQ) and 4-Acetylantroquinonol B (4-AAQB) from AC were examined on breast cancer cell line MCF-7 with/without TNF-α stimulation. Among nine inflammatory mediators (IL6, IL10, IL1β , IFNγ , PTGS2, TGFβ 1, TNF-α , CCL2 andCSF1) examined, AQ inhibited two of them (IL-10 and PTGS2), while 4-AAQB inhibited three of them (IL-10, PTGS2 and TNF-α ) (p ¡ 0.05). TNF-α stimulated expressions of five mediators (IL6, IL10, IFNγ , PTGS2, and CCL2), and AQ and 4-AAQB inhibited IL6 elevation (p ¡ 0.05). Both components inhibited aromatase expression with/without TNF-α stimulation, with 4-AAQB to be more effective (p ¡ 0.05). For immune checkpoint CD47, both components inhibited CD47 expression (p ¡ 0.05), but it did not respond to TNF-α stimulation. For Wnt/β - catenin signaling downstream genes (CCND1, C-MYC and AXIN2), both components have significant or marginal inhibitory effect on C-MYC in the condition with/without TNF-α stimulation. The luciferase assay demonstrated that both components exhibited inhibitory effect on NF-κ B signaling and Wnt/β -catenin signaling in the condition without TNF-α stimulation. In conclusion, our results displayed an overall pattern that AQ and 4-AAQB possess potential anti-inflammatory and antitumorigenic functions in MCF-7 breast cancer cells and warranted further in vivo pre-clinical and clinical studies to explore their anticancer properties.
Collapse
Affiliation(s)
- Ting-Chun Lin
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Alison Germagian
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Zhenhua Liu
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003, USA
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| |
Collapse
|
149
|
Rotman J, den Otter LAS, Bleeker MCG, Samuels SS, Heeren AM, Roemer MGM, Kenter GG, Zijlmans HJMAA, van Trommel NE, de Gruijl TD, Jordanova ES. PD-L1 and PD-L2 Expression in Cervical Cancer: Regulation and Biomarker Potential. Front Immunol 2020; 11:596825. [PMID: 33424844 PMCID: PMC7793653 DOI: 10.3389/fimmu.2020.596825] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/16/2020] [Indexed: 12/27/2022] Open
Abstract
PD-1/PD-L1 immune checkpoint inhibitors show potential for cervical cancer treatment. However, low response rates suggest that patient selection based on PD-L1 protein expression is not optimal. Here, we evaluated different PD-L1 detection methods and studied transcriptional regulation of PD-L1/PD-L2 expression by The Cancer Genome Atlas (TCGA) mRNAseq analysis. First, we determined the copy number of the PD-L1/PD-L2 locus by fluorescence in situ hybridization (FISH), PD-L1 mRNA expression by RNA in situ hybridization (RNAish), and PD-L1/PD-L2 protein expression by immunohistochemistry (IHC) on tissue microarrays containing a cohort of 60 patients. Additionally, distribution of PD-L1/PD-L2 was visualized based on flow cytometry analysis of single-cell suspensions (n = 10). PD-L1/PD-L2 locus amplification was rare (2%). PD-L1 mRNA expression in tumor cells was detected in 56% of cases, while 41% expressed PD-L1 protein. Discordant scores for PD-L1 protein expression on tumor cells between cores from one patient were observed in 27% of cases. Interestingly, with RNAish, PD-L1 heterogeneity was observed in only 11% of the cases. PD-L2 protein expression was found in 53%. PD-L1 mRNA and protein expression on tumor cells were strongly correlated (p < 0.001). PD-L1 and PD-L2 protein expression showed no correlation on tumor cells (p = 0.837), but a strong correlation on cells in stromal fields (p < 0.001). Co-expression of PD-L1 and PD-L2 on macrophage-like populations was also observed with flow cytometry analysis. Both PD-L1 and PD-L2 TCGA transcript levels strongly correlated in the TCGA data, and both PD-L1 and PD-L2 strongly correlated with interferon gamma (IFNG) expression/transcript levels (p < 0.0001). Importantly, patients with high PD-L1/PD-L2/IFNG transcript levels had a survival advantage over patients with high PD-L1/PD-L2 and low IFNG expression. Based on these findings, we conclude that PD-L1/PD-L2 expression in cervical cancer is mainly associated with interferon induction and not gene amplification, which makes FISH unsuitable as biomarker. The heterogeneous PD-L1 and PD-L2 expression patterns suggest IHC unreliable for patient selection. RNAish, in conjunction with interferon signaling evaluation, seems a promising technique for immune checkpoint detection. These results warrant further investigation into their prognostic and predictive potential.
Collapse
Affiliation(s)
- Jossie Rotman
- Center for Gynecologic Oncology Amsterdam (CGOA), Amsterdam University Medical Center (UMC), Cancer Center Amsterdam (CCA), Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Medical Oncology Amsterdam UMC, Cancer Center Amsterdam (CCA), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Leontine A S den Otter
- Center for Gynecologic Oncology Amsterdam (CGOA), Amsterdam University Medical Center (UMC), Cancer Center Amsterdam (CCA), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Maaike C G Bleeker
- Department of Pathology, Cancer Center Amsterdam (CCA), Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sanne S Samuels
- Center for Gynecologic Oncology Amsterdam (CGOA), Amsterdam University Medical Center (UMC), Cancer Center Amsterdam (CCA), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - A Marijne Heeren
- Department of Medical Oncology Amsterdam UMC, Cancer Center Amsterdam (CCA), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Margaretha G M Roemer
- Department of Pathology, Cancer Center Amsterdam (CCA), Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Gemma G Kenter
- Center for Gynecologic Oncology Amsterdam (CGOA), Amsterdam University Medical Center (UMC), Cancer Center Amsterdam (CCA), Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Center for Gynecologic Oncology Amsterdam (CGOA), Netherlands Cancer Institute-Antoni van Leeuwenhoek (NKI-AVL), Amsterdam, Netherlands
| | - Henry J M A A Zijlmans
- Center for Gynecologic Oncology Amsterdam (CGOA), Netherlands Cancer Institute-Antoni van Leeuwenhoek (NKI-AVL), Amsterdam, Netherlands
| | - Nienke E van Trommel
- Center for Gynecologic Oncology Amsterdam (CGOA), Netherlands Cancer Institute-Antoni van Leeuwenhoek (NKI-AVL), Amsterdam, Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology Amsterdam UMC, Cancer Center Amsterdam (CCA), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ekaterina S Jordanova
- Center for Gynecologic Oncology Amsterdam (CGOA), Amsterdam University Medical Center (UMC), Cancer Center Amsterdam (CCA), Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
150
|
Zhu GX, Gao D, Shao ZZ, Chen L, Ding WJ, Yu QF. Wnt/β‑catenin signaling: Causes and treatment targets of drug resistance in colorectal cancer (Review). Mol Med Rep 2020; 23:105. [PMID: 33300082 PMCID: PMC7723170 DOI: 10.3892/mmr.2020.11744] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor in humans. Chemotherapy is used for the treatment of CRC. However, the effect of chemotherapy remains unsatisfactory due to drug resistance. Growing evidence has shown that the presence of highly metastatic tumor stem cells, regulation of non-coding RNAs and the tumor microenvironment contributes to drug resistance mechanisms in CRC. Wnt/β-catenin signaling mediates the chemoresistance of CRC in these three aspects. Therefore, the present study analyzed the abundant evidence of the contribution of Wnt/β-catenin signaling to the development of drug resistance in CRC and discussed its possible role in improving the chemosensitivity of CRC, which may provide guidelines for its clinical treatment.
Collapse
Affiliation(s)
- Gui-Xian Zhu
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Dian Gao
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhao-Zhao Shao
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Li Chen
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wen-Jie Ding
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiong-Fang Yu
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|