101
|
Ramdas P, Sahu AK, Mishra T, Bhardwaj V, Chande A. From Entry to Egress: Strategic Exploitation of the Cellular Processes by HIV-1. Front Microbiol 2020; 11:559792. [PMID: 33343516 PMCID: PMC7746852 DOI: 10.3389/fmicb.2020.559792] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/05/2020] [Indexed: 01/23/2023] Open
Abstract
HIV-1 employs a rich arsenal of viral factors throughout its life cycle and co-opts intracellular trafficking pathways. This exquisitely coordinated process requires precise manipulation of the host microenvironment, most often within defined subcellular compartments. The virus capitalizes on the host by modulating cell-surface proteins and cleverly exploiting nuclear import pathways for post entry events, among other key processes. Successful virus–cell interactions are indeed crucial in determining the extent of infection. By evolving defenses against host restriction factors, while simultaneously exploiting host dependency factors, the life cycle of HIV-1 presents a fascinating montage of an ongoing host–virus arms race. Herein, we provide an overview of how HIV-1 exploits native functions of the host cell and discuss recent findings that fundamentally change our understanding of the post-entry replication events.
Collapse
Affiliation(s)
- Pavitra Ramdas
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Amit Kumar Sahu
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Tarun Mishra
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Vipin Bhardwaj
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Ajit Chande
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| |
Collapse
|
102
|
Ren L, Du S, Xu W, Li T, Wu S, Jin N, Li C. Current Progress on Host Antiviral Factor IFITMs. Front Immunol 2020; 11:543444. [PMID: 33329509 PMCID: PMC7734444 DOI: 10.3389/fimmu.2020.543444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/26/2020] [Indexed: 11/19/2022] Open
Abstract
Host antiviral factor interferon-induced transmembrane proteins (IFITMs) are a kind of small-molecule transmembrane proteins induced by interferon. Their broad-spectrum antiviral activity and unique ability to inhibit viral invasion have made them a hot molecule in antiviral research in recent years. Since the first demonstration of their natural ability to resist viral infection in 1996, IFITMs have been reported to limit a variety of viral infections, including some major pathogens that seriously endanger human health and social stability, such as influenza A, Ebol, severe acute respiratory syndrome, AIDS, and Zika viruses, etc. Studies show that IFITMs mainly exert antiviral activity during virus entry, specifically interfering with the fusion of the envelope and the endosome membrane or forming fusion micropores to block the virus from entering the cytoplasm. However, their specific mechanism is still unclear. This article mainly reviews the research progress in the structure, evolution, function, and mechanism of IFITMs, which may provide a theoretical basis for clarifying the molecular mechanism of interaction between the molecules and viruses and the research and development of new antiviral drugs based on IFITMs.
Collapse
Affiliation(s)
- Linzhu Ren
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, China
| | - Shouwen Du
- Department of Infectious Diseases, Shenzhen People's Hospital, Second Clinical Hospital of Jinan University, Shenzhen, China
| | - Wang Xu
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Academy of Military Medical Sciences, Changchun, China
| | - Tiyuan Li
- Department of Infectious Diseases, Shenzhen People's Hospital, Second Clinical Hospital of Jinan University, Shenzhen, China
| | - Shipin Wu
- Department of Infectious Diseases, Shenzhen People's Hospital, Second Clinical Hospital of Jinan University, Shenzhen, China
| | - Ningyi Jin
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, China.,Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Academy of Military Medical Sciences, Changchun, China
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Academy of Military Medical Sciences, Changchun, China
| |
Collapse
|
103
|
Xing H, Ye L, Fan J, Fu T, Li C, Zhang S, Ren L, Bai J. IFITMs of African Green Monkey Can Inhibit Replication of SFTSV but Not MNV In Vitro. Viral Immunol 2020; 33:634-641. [PMID: 33185509 DOI: 10.1089/vim.2020.0132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interferon-induced transmembrane proteins (IFITMs) are transmembrane proteins induced by interferon that can provide broad-spectrum antiviral activities. However, there are few reports on the antiviral activity of monkey-derived IFITMs. In this study, the IFITM1 and IFITM3 genes of African green monkey (AGM) were cloned and overexpressed in Vero cells, followed by infection with mouse norovirus (MNV) and severe fever with thrombocytopenia syndrome virus (SFTSV). The results showed that monkey IFITM1 and IFITM3 can be stably overexpressed in Vero cells. Both IFITM1 and IFITM3 from AGM could effectively restrict infection by SFTSV, and the viral inhibition rate of IFITM3 was more obvious compared with IFITM1. However, both monkey IFITM1 and IFITM3 had no significant effect on the replication of MNV. These results indicate that different IFITMs have different functions, which may be related to the structure of the host IFITMs and the types of pathogens.
Collapse
Affiliation(s)
- Huanwei Xing
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, China.,PKU-Nanjing Joint Institute of Translational Medicine, Nanjing Raygen Health Molecular Medicine Technology Co., Ltd., Nanjing, China.,Non-Human Primate Research Center, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Li Ye
- Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Junwen Fan
- China Beijing Animal Disease Control and Prevention Center, Beijing, China
| | - Tingting Fu
- PKU-Nanjing Joint Institute of Translational Medicine, Nanjing Raygen Health Molecular Medicine Technology Co., Ltd., Nanjing, China.,Non-Human Primate Research Center, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Chang Li
- Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, China
| | - Suhua Zhang
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, China
| | - Linzhu Ren
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, China
| | - Jieying Bai
- PKU-Nanjing Joint Institute of Translational Medicine, Nanjing Raygen Health Molecular Medicine Technology Co., Ltd., Nanjing, China.,Non-Human Primate Research Center, Institute of Molecular Medicine, Peking University, Beijing, China
| |
Collapse
|
104
|
Yi L, Zheng C. The emerging roles of ZDHHCs-mediated protein palmitoylation in the antiviral innate immune responses. Crit Rev Microbiol 2020; 47:34-43. [PMID: 33100085 DOI: 10.1080/1040841x.2020.1835821] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Post-translational modifications (PTMs) play a pivotal role in expanding functional protein diversity. During viral infection, pathogen-associated molecular patterns derived from viruses are recognized by pattern recognition receptors present in the membrane surface and the cytoplasm of infected cells, which subsequently induces the antiviral innate immunity to protect the host from the invading viruses. Fatty acylation modification is identified as a post-translation lipid modification process. Mounting evidence is presented that lipid modification functions as a novel regulatory mechanism of antiviral innate immunity. In mammalian cells, DHHC (Asp-His-His-Cys) domain is indispensable for most of the palmitoylation modification, which belongs to fatty acylation. ZDHHC family proteins are composed of 23 members in human cells. In this review, we will summarize the recent findings of the regulatory mechanism of the palmitoylation in the process of host antiviral innate immunity against viruses.
Collapse
Affiliation(s)
- Li Yi
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
105
|
Meena M, Swapnil P. A review of contagious Coronavirus (SARS-Cov-2) their clinical features, diagnosis, preventions and treatment. JOURNAL OF HUMAN VIROLOGY & RETROVIROLOGY 2020; 8:99-105. [DOI: 10.15406/jhvrv.2020.08.00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Objectives: This review is focused on recent studies of the global threat caused by novel coronavirus. The aim of this study is to understand the origin of the virus, its classification, morphology, genetic structure and mode of infection mechanism with the view towards using this information to develop a cure or for prevention. Methodology: In Wuhan, China, novel coronavirus pneumonia (SARS-CoV-2) originated and caused a global threat from late December 2019 which afterwards was termed as COVID-19 illness. The genome sequence of this novel coronavirus was found to be very similar with severe acute respiratory syndrome (SARS) and Middle-East respiratory syndrome (MERS) and assigned to betacoronavirus. This novel coronavirus affects the respiratory system of human beings as pneumonia. Results: Due to this novel coronavirus, WHO declared this a global threat and termed it COVID-19. This coronavirus causes severe health issues in people after direct contact. This disease is more severe for people who are suffering from some previous health issues. To cope with this disease some clinical characterisations are being processed to synthesize significant vaccines and antiviral drugs with the combination of different effective drugs. Therefore, it has been suggested that until a medicine is discovered people have to be careful to prevent this infection from spreading. Conclusions: Overall, this study is about the pandemic situation of COVID-19. To prepare any vaccine or medicine we have to study the morphology, genetic structure and its infection mechanism. COVID-19 is more dangerous than previous respiratory viruses. Until a medical or scientific team can synthesize a vaccine, we should follow the guidelines given by WHO to limit spread of the coronavirus from person to person.
Collapse
|
106
|
Iyer GR, Samajder S, Zubeda S, S DSN, Mali V, Pv SK, Sharma A, Abbas NZ, Bora NS, Narravula A, Hasan Q. Infectivity and Progression of COVID-19 Based on Selected Host Candidate Gene Variants. Front Genet 2020; 11:861. [PMID: 33101356 PMCID: PMC7500201 DOI: 10.3389/fgene.2020.00861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/15/2020] [Indexed: 12/30/2022] Open
Abstract
Introduction: Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has spread around the globe. Susceptibility has been associated with age, biological sex, and other prior existing health conditions. However, host genes are involved in viral infectivity and pathogenicity, and polymorphisms in these could be responsible for the interethnic/interindividual variability observed in infection and progression of COVID-19. Materials and Methods: Clinical exome data of 103 individuals was analyzed to identify sequence variants in five selected candidate genes: ACE2, TMPRSS2, CD209, IFITM3, and MUC5B to assess their prevalence and role to understand the COVID-19 infectivity and progression in our population. Results: A total of 497 polymorphisms were identified in the five selected genes in the exomes analyzed. Thirty-eight polymorphisms identified in our cohort have been reported earlier in literature and have functional significance or association with health conditions. These variants were classified into three groups: protective, susceptible, and responsible for comorbidities. Discussion and Conclusion: The two polymorphisms described in literature as risk inducing are rs35705950 in MUC5B gene and TMPRSS2 haplotype (rs463727, rs34624090, rs55964536, rs734056, rs4290734, rs34783969, rs11702475, rs35899679, and rs35041537) were absent in our cohort explaining the slower infectivity of the disease in this part of India. The 38 functional variants identified can be used as a predisposition panel for the COVID-19 infectivity and progression and stratify individuals as "high or low risk," which would help in planning appropriate surveillance and management protocols. A larger study from different regions of India is warranted to validate these results.
Collapse
Affiliation(s)
- Gayatri R Iyer
- Department of Genetics and Molecular Medicine, Kamineni Hospitals, Hyderabad, India.,Department of Genetics, Osmania University, Hyderabad, India
| | - Sayani Samajder
- Department of Genetics and Molecular Medicine, Kamineni Hospitals, Hyderabad, India
| | - Syeda Zubeda
- Department of Genetics and Molecular Medicine, Kamineni Hospitals, Hyderabad, India
| | | | - Vishakha Mali
- Department of Genetics and Molecular Medicine, Kamineni Hospitals, Hyderabad, India
| | - Sharath Krishnan Pv
- Department of Genetics and Molecular Medicine, Kamineni Hospitals, Hyderabad, India
| | - Anuradha Sharma
- Department of Genetics and Molecular Medicine, Kamineni Hospitals, Hyderabad, India
| | | | | | - Amulya Narravula
- Department of Genetics and Molecular Medicine, Kamineni Hospitals, Hyderabad, India
| | - Qurratulain Hasan
- Department of Genetics and Molecular Medicine, Kamineni Hospitals, Hyderabad, India
| |
Collapse
|
107
|
LY6E Restricts Entry of Human Coronaviruses, Including Currently Pandemic SARS-CoV-2. J Virol 2020; 94:JVI.00562-20. [PMID: 32641482 PMCID: PMC7459569 DOI: 10.1128/jvi.00562-20] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/05/2020] [Indexed: 12/26/2022] Open
Abstract
Virus entry into host cells is one of the key determinants of host range and cell tropism and is subjected to the control of host innate and adaptive immune responses. In the last decade, several interferon-inducible cellular proteins, including IFITMs, GILT, ADAP2, 25CH, and LY6E, had been identified to modulate the infectious entry of a variety of viruses. Particularly, LY6E was recently identified as a host factor that facilitates the entry of several human-pathogenic viruses, including human immunodeficiency virus, influenza A virus, and yellow fever virus. Identification of LY6E as a potent restriction factor of coronaviruses expands the biological function of LY6E and sheds new light on the immunopathogenesis of human coronavirus infection. C3A is a subclone of the human hepatoblastoma HepG2 cell line with strong contact inhibition of growth. We fortuitously found that C3A was more susceptible to human coronavirus HCoV-OC43 infection than HepG2, which was attributed to the increased efficiency of virus entry into C3A cells. In an effort to search for the host cellular protein(s) mediating the differential susceptibility of the two cell lines to HCoV-OC43 infection, we found that ArfGAP with dual pleckstrin homology (PH) domains 2 (ADAP2), gamma-interferon-inducible lysosome/endosome-localized thiolreductase (GILT), and lymphocyte antigen 6 family member E (LY6E), the three cellular proteins identified to function in interference with virus entry, were expressed at significantly higher levels in HepG2 cells. Functional analyses revealed that ectopic expression of LY6E, but not GILT or ADAP2, in HEK 293 cells inhibited the entry of HCoV-O43. While overexpression of LY6E in C3A and A549 cells efficiently inhibited the infection of HCoV-OC43, knockdown of LY6E expression in HepG2 significantly increased its susceptibility to HCoV-OC43 infection. Moreover, we found that LY6E also efficiently restricted the entry mediated by the envelope spike proteins of other human coronaviruses, including the currently pandemic SARS-CoV-2. Interestingly, overexpression of serine protease TMPRSS2 or amphotericin treatment significantly neutralized the IFN-inducible transmembrane 3 (IFITM3) restriction of human coronavirus (CoV) entry, but did not compromise the effect of LY6E on the entry of human coronaviruses. The work reported herein thus demonstrates that LY6E is a critical antiviral immune effector that controls CoV infection and pathogenesis via a mechanism distinct from other factors that modulate CoV entry. IMPORTANCE Virus entry into host cells is one of the key determinants of host range and cell tropism and is subjected to the control of host innate and adaptive immune responses. In the last decade, several interferon-inducible cellular proteins, including IFITMs, GILT, ADAP2, 25CH, and LY6E, had been identified to modulate the infectious entry of a variety of viruses. Particularly, LY6E was recently identified as a host factor that facilitates the entry of several human-pathogenic viruses, including human immunodeficiency virus, influenza A virus, and yellow fever virus. Identification of LY6E as a potent restriction factor of coronaviruses expands the biological function of LY6E and sheds new light on the immunopathogenesis of human coronavirus infection.
Collapse
|
108
|
The Characterization of chIFITMs in Avian Coronavirus Infection In Vivo, Ex Vivo and In Vitro. Genes (Basel) 2020; 11:genes11080918. [PMID: 32785186 PMCID: PMC7464837 DOI: 10.3390/genes11080918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 01/11/2023] Open
Abstract
The coronaviruses are a large family of enveloped RNA viruses that commonly cause gastrointestinal or respiratory illnesses in the infected host. Avian coronavirus infectious bronchitis virus (IBV) is a highly contagious respiratory pathogen of chickens that can affect the kidneys and reproductive systems resulting in bird mortality and decreased reproductivity. The interferon-inducible transmembrane (IFITM) proteins are activated in response to viral infections and represent a class of cellular restriction factors that restrict the replication of many viral pathogens. Here, we characterize the relative mRNA expression of the chicken IFITM genes in response to IBV infection, in vivo, ex vivo and in vitro using the pathogenic M41-CK strain, the nephropathogenic QX strain and the nonpathogenic Beaudette strain. In vivo we demonstrate a significant upregulation of chIFITM1, 2, 3 and 5 in M41-CK- and QX-infected trachea two days post-infection. In vitro infection with Beaudette, M41-CK and QX results in a significant upregulation of chIFITM1, 2 and 3 at 24 h post-infection. We confirmed a differential innate response following infection with distinct IBV strains and believe that our data provide new insights into the possible role of chIFITMs in early IBV infection.
Collapse
|
109
|
Xie J, Bi Y, Xu S, Han Y, Idris A, Zhang H, Li X, Bai J, Zhang Y, Feng R. Host antiviral protein IFITM2 restricts pseudorabies virus replication. Virus Res 2020; 287:198105. [PMID: 32745511 PMCID: PMC7834200 DOI: 10.1016/j.virusres.2020.198105] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 12/20/2022]
Abstract
Type I IFN and IFITMs showed marked upregulation following PRV infection in PK15 cells. IFITM proteins restricted PRV infection by interfering virus binding and entry. IFITM2-mediated inhibition of PRV entry requires the cholesterol pathway.
Pseudorabies virus (PRV) is one of the most destructive swine pathogens and leads to huge economic losses to the global pig industry. Type I interferons (IFNs) plays a pivotal role in the innate immune response to virus infection via induction of a series of interferon-stimulated genes (ISGs) expression. IFN-induced transmembrane (IFITM) proteins, a group of ISGs, are important host self-restriction factors, possessing a broad spectrum of antiviral effects. They are known confer resistance to a variety of RNA and DNA viruses. However, little is known about the role of IFITMs in PRV infection. In this study, we show that IFITM is crucial for controlling PRV infection and that IFITM proteins can interfere with PRV cell binding and entry. Furthermore, we showed that IFITM2-mediated inhibition of PRV entry requires the cholesterol pathway. Collectively, these results provide insight into the anti-PRV role of IFITM proteins and this inhibition possible associated with the change of cholesterol in the endosome, further underlying the importance of cholesterol in virus infection.
Collapse
Affiliation(s)
- Jingying Xie
- College of Veterinary Medicine, Gansu Agricultural University, No.1 Yingmencun, Lanzhou, 730070, China; Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Yingjie Bi
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Shujuan Xu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Yumei Han
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Adi Idris
- Menzies Health Institute Queensland, School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Haixia Zhang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Xiangrong Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Jialin Bai
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, No.1 Yingmencun, Lanzhou, 730070, China.
| | - Ruofei Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China.
| |
Collapse
|
110
|
Zheng M, Zhao X, Zheng S, Chen D, Du P, Li X, Jiang D, Guo JT, Zeng H, Lin H. Bat SARS-Like WIV1 coronavirus uses the ACE2 of multiple animal species as receptor and evades IFITM3 restriction via TMPRSS2 activation of membrane fusion. Emerg Microbes Infect 2020; 9:1567-1579. [PMID: 32602823 PMCID: PMC7473123 DOI: 10.1080/22221751.2020.1787797] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Diverse SARS-like coronaviruses (SL-CoVs) have been identified from bats and other animal species. Like SARS-CoV, some bat SL-CoVs, such as WIV1, also use angiotensin converting enzyme 2 (ACE2) from human and bat as entry receptor. However, whether these viruses can also use the ACE2 of other animal species as their receptor remains to be determined. We report herein that WIV1 has a broader tropism to ACE2 orthologs than SARS-CoV isolate Tor2. Among the 9 ACE2 orthologs examined, human ACE2 exhibited the highest efficiency to mediate the infection of WIV1 pseudotyped virus. Our findings thus imply that WIV1 has the potential to infect a wide range of wild animals and may directly jump to humans. We also showed that cell entry of WIV1 could be restricted by interferon-induced transmembrane proteins (IFITMs). However, WIV1 could exploit the airway protease TMPRSS2 to partially evade the IFITM3 restriction. Interestingly, we also found that amphotericin B could enhance the infectious entry of SARS-CoVs and SL-CoVs by evading IFITM3-mediated restriction. Collectively, our findings further underscore the risk of exposure to animal SL-CoVs and highlight the vulnerability of patients who take amphotericin B to infection by SL-CoVs, including the most recently emerging (SARS-CoV-2).
Collapse
Affiliation(s)
- Mei Zheng
- Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China.,Beijing Key Laboratory of Emerging Infectious Disease, Beijing, People's Republic of China
| | - Xuesen Zhao
- Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China.,Beijing Key Laboratory of Emerging Infectious Disease, Beijing, People's Republic of China
| | - Shuangli Zheng
- Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China.,Beijing Key Laboratory of Emerging Infectious Disease, Beijing, People's Republic of China
| | - Danying Chen
- Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China.,Beijing Key Laboratory of Emerging Infectious Disease, Beijing, People's Republic of China
| | - Pengcheng Du
- Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China.,Beijing Key Laboratory of Emerging Infectious Disease, Beijing, People's Republic of China
| | - Xinglin Li
- Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China.,Beijing Key Laboratory of Emerging Infectious Disease, Beijing, People's Republic of China
| | - Dong Jiang
- Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China.,Beijing Key Laboratory of Emerging Infectious Disease, Beijing, People's Republic of China
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - Hui Zeng
- Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China.,Beijing Key Laboratory of Emerging Infectious Disease, Beijing, People's Republic of China
| | - Hanxin Lin
- Department of Pathology and Laboratory Medicine, Western University, London, Canada
| |
Collapse
|
111
|
Interferon-Induced Transmembrane Protein 1 (IFITM1) Promotes Distant Metastasis of Small Cell Lung Cancer. Int J Mol Sci 2020; 21:ijms21144934. [PMID: 32668617 PMCID: PMC7404048 DOI: 10.3390/ijms21144934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 12/31/2022] Open
Abstract
Small cell lung cancer (SCLC) is a severe malignancy associated with early and widespread metastasis. To study SCLC metastasis, we previously developed an orthotopic transplantation model using the human SCLC cell line DMS273. In the model, metastatic foci were found in distant tissues such as bone and the adrenal gland, similarly as observed in patients with SCLC. In this study, we evaluated the differentially expressed genes between orthotopic and metastatic tumors in the model. We isolated tumor cells from orthotopic and metastatic sites, and the tumor cell RNA was analyzed using DNA microarray analysis. We found that 19 genes in metastatic tumors were upregulated by more than 4-fold compared with their expression in orthotopic tumors. One of these genes encodes a transmembrane protein, interferon (IFN)-induced transmembrane protein 1 (IFITM1), and immunohistochemical analysis confirmed the higher expression of the protein in metastatic sites than in orthotopic sites. IFITM1 was also detected in some SCLC cell lines and lung tumors from patients with SCLC. The overexpression of IFITM1 in DMS273 cells increased their metastatic formation in the orthotopic model and in an experimental metastasis model. Conversely, the silencing of IFITM1 suppressed metastatic formation by DMS273 cells. We also found that IFITM1 overexpression promoted the metastatic formation of NCI-H69 human SCLC cells. These results demonstrate that IFITM1 promotes distant metastasis in xenograft models of human SCLC.
Collapse
|
112
|
Xu Z, Li X, Xue J, Shen L, Zheng W, Yin S, Xu J. S-palmitoylation of swine interferon-inducible transmembrane protein is essential for its anti-JEV activity. Virology 2020; 548:82-92. [PMID: 32838949 PMCID: PMC7301829 DOI: 10.1016/j.virol.2020.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 12/16/2022]
Abstract
Japanese encephalitis virus (JEV) is an infectious pathogen spreading in a wide range of vertebrate species. Pigs are amplifying hosts of JEV and thought to be maintained in nature predominantly by avian-mosquito cycles. In the innate immune system, interferon-inducible transmembrane protein (IFITM) is a small transmembrane protein family and has been identified as the first line of defense against a broad range of RNA virus invasion. In this paper, we found that swine IFITM (sIFITM) could restrict the replication of both JEV vaccine strain and wild strain NJ-2008. The cysteine S-palmitoylation modification of sIFITM plays important roles in their anti-JEV effects and intracellular distributions. Our findings show the anti-JEV activities of swine interferon-inducible transmembrane proteins and broaden the antiviral spectrum of IFITM protein family. The preliminary exploration of S-palmitoylation modification of sIFITM may contribute to understanding of the antiviral molecular mechanism of sIFITM.
Collapse
Affiliation(s)
- Zhao Xu
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Xiaoling Li
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Jichu Xue
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Lingyi Shen
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Wenming Zheng
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Sugai Yin
- Molecular Biology Laboratory Center, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou, 450046, China
| | - Jun Xu
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China.
| |
Collapse
|
113
|
Domingo-Gonzalez R, Zanini F, Che X, Liu M, Jones RC, Swift MA, Quake SR, Cornfield DN, Alvira CM. Diverse homeostatic and immunomodulatory roles of immune cells in the developing mouse lung at single cell resolution. eLife 2020; 9:e56890. [PMID: 32484158 PMCID: PMC7358008 DOI: 10.7554/elife.56890] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
At birth, the lungs rapidly transition from a pathogen-free, hypoxic environment to a pathogen-rich, rhythmically distended air-liquid interface. Although many studies have focused on the adult lung, the perinatal lung remains unexplored. Here, we present an atlas of the murine lung immune compartment during early postnatal development. We show that the late embryonic lung is dominated by specialized proliferative macrophages with a surprising physical interaction with the developing vasculature. These macrophages disappear after birth and are replaced by a dynamic mixture of macrophage subtypes, dendritic cells, granulocytes, and lymphocytes. Detailed characterization of macrophage diversity revealed an orchestration of distinct subpopulations across postnatal development to fill context-specific functions in tissue remodeling, angiogenesis, and immunity. These data both broaden the putative roles for immune cells in the developing lung and provide a framework for understanding how external insults alter immune cell phenotype during a period of rapid lung growth and heightened vulnerability.
Collapse
Affiliation(s)
- Racquel Domingo-Gonzalez
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
- Center for Excellence in Pulmonary Biology, Stanford University School of MedicineStanfordUnited States
| | - Fabio Zanini
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South WalesSydneyAustralia
| | - Xibing Che
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
- Center for Excellence in Pulmonary Biology, Stanford University School of MedicineStanfordUnited States
- Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
| | - Min Liu
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
- Center for Excellence in Pulmonary Biology, Stanford University School of MedicineStanfordUnited States
| | - Robert C Jones
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Michael A Swift
- Department of Chemical and Systems Biology, Stanford UniversityStanfordUnited States
| | - Stephen R Quake
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
- Department of Applied Physics, Stanford UniversityStanfordUnited States
| | - David N Cornfield
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
- Center for Excellence in Pulmonary Biology, Stanford University School of MedicineStanfordUnited States
- Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
| | - Cristina M Alvira
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
- Center for Excellence in Pulmonary Biology, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
114
|
Chen D, Hou Z, Jiang D, Zheng M, Li G, Zhang Y, Li R, Lin H, Chang J, Zeng H, Guo JT, Zhao X. GILT restricts the cellular entry mediated by the envelope glycoproteins of SARS-CoV, Ebola virus and Lassa fever virus. Emerg Microbes Infect 2020; 8:1511-1523. [PMID: 31631785 PMCID: PMC6818130 DOI: 10.1080/22221751.2019.1677446] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Interferons (IFNs) control viral infections by inducing expression of IFN-stimulated genes (ISGs) that restrict distinct steps of viral replication. We report herein that gamma-interferon-inducible lysosomal thiol reductase (GILT), a lysosome-associated ISG, restricts the infectious entry of selected enveloped RNA viruses. Specifically, we demonstrated that GILT was constitutively expressed in lung epithelial cells and fibroblasts and its expression could be further induced by type II interferon. While overexpression of GILT inhibited the entry mediated by envelope glycoproteins of SARS coronavirus (SARS-CoV), Ebola virus (EBOV) and Lassa fever virus (LASV), depletion of GILT enhanced the entry mediated by these viral envelope glycoproteins. Furthermore, mutations that impaired the thiol reductase activity or disrupted the N-linked glycosylation, a posttranslational modification essential for its lysosomal localization, largely compromised GILT restriction of viral entry. We also found that the induction of GILT expression reduced the level and activity of cathepsin L, which is required for the entry of these RNA viruses in lysosomes. Our data indicate that GILT is a novel antiviral ISG that specifically inhibits the entry of selected enveloped RNA viruses in lysosomes via disruption of cathepsin L metabolism and function and may play a role in immune control and pathogenesis of these viruses.
Collapse
Affiliation(s)
- Danying Chen
- Institute of Infectious disease, Beijing Ditan Hospital, Capital Medical University , Beijing , People's Republic of China.,Beijing Key Laboratory of Emerging Infectious Disease , Beijing , People's Republic of China
| | - Zhifei Hou
- Institute of Infectious disease, Beijing Ditan Hospital, Capital Medical University , Beijing , People's Republic of China.,Beijing Key Laboratory of Emerging Infectious Disease , Beijing , People's Republic of China.,Department of Pulmonary and Critical Care Medicine, General Hospital of Datong Coal Mine Group Co., Ltd. , People's Republic of China
| | - Dong Jiang
- Institute of Infectious disease, Beijing Ditan Hospital, Capital Medical University , Beijing , People's Republic of China.,Beijing Key Laboratory of Emerging Infectious Disease , Beijing , People's Republic of China
| | - Mei Zheng
- Institute of Infectious disease, Beijing Ditan Hospital, Capital Medical University , Beijing , People's Republic of China.,Beijing Key Laboratory of Emerging Infectious Disease , Beijing , People's Republic of China
| | - Guoli Li
- Institute of Infectious disease, Beijing Ditan Hospital, Capital Medical University , Beijing , People's Republic of China.,Beijing Key Laboratory of Emerging Infectious Disease , Beijing , People's Republic of China
| | - Yue Zhang
- Institute of Infectious disease, Beijing Ditan Hospital, Capital Medical University , Beijing , People's Republic of China.,Beijing Key Laboratory of Emerging Infectious Disease , Beijing , People's Republic of China
| | - Rui Li
- Institute of Infectious disease, Beijing Ditan Hospital, Capital Medical University , Beijing , People's Republic of China.,Beijing Key Laboratory of Emerging Infectious Disease , Beijing , People's Republic of China
| | - Hanxin Lin
- Department of Pathology and Laboratory Medicine, Western University , London , Ontario , Canada
| | - Jinhong Chang
- Baruch S. Blumberg Institute, Hepatitis B Foundation , Doylestown , PA , USA
| | - Hui Zeng
- Institute of Infectious disease, Beijing Ditan Hospital, Capital Medical University , Beijing , People's Republic of China.,Beijing Key Laboratory of Emerging Infectious Disease , Beijing , People's Republic of China
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Hepatitis B Foundation , Doylestown , PA , USA
| | - Xuesen Zhao
- Institute of Infectious disease, Beijing Ditan Hospital, Capital Medical University , Beijing , People's Republic of China.,Beijing Key Laboratory of Emerging Infectious Disease , Beijing , People's Republic of China
| |
Collapse
|
115
|
Benfield CT, MacKenzie F, Ritzefeld M, Mazzon M, Weston S, Tate EW, Teo BH, Smith SE, Kellam P, Holmes EC, Marsh M. Bat IFITM3 restriction depends on S-palmitoylation and a polymorphic site within the CD225 domain. Life Sci Alliance 2020; 3:e201900542. [PMID: 31826928 PMCID: PMC6907390 DOI: 10.26508/lsa.201900542] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022] Open
Abstract
Host interferon-induced transmembrane proteins (IFITMs) are broad-spectrum antiviral restriction factors. Of these, IFITM3 potently inhibits viruses that enter cells through acidic endosomes, many of which are zoonotic and emerging viruses with bats (order Chiroptera) as their natural hosts. We previously demonstrated that microbat IFITM3 is antiviral. Here, we show that bat IFITMs are characterized by strong adaptive evolution and identify a highly variable and functionally important site-codon 70-within the conserved CD225 domain of IFITMs. Mutation of this residue in microbat IFITM3 impairs restriction of representatives of four different virus families that enter cells via endosomes. This mutant shows altered subcellular localization and reduced S-palmitoylation, a phenotype copied by mutation of conserved cysteine residues in microbat IFITM3. Furthermore, we show that microbat IFITM3 is S-palmitoylated on cysteine residues C71, C72, and C105, mutation of each cysteine individually impairs virus restriction, and a triple C71A-C72A-C105A mutant loses all restriction activity, concomitant with subcellular re-localization of microbat IFITM3 to Golgi-associated sites. Thus, we propose that S-palmitoylation is critical for Chiropteran IFITM3 function and identify a key molecular determinant of IFITM3 S-palmitoylation.
Collapse
Affiliation(s)
- Camilla To Benfield
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, UK
| | - Farrell MacKenzie
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | | | - Michela Mazzon
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Stuart Weston
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Edward W Tate
- Department of Chemistry, Imperial College London, London, UK
| | - Boon Han Teo
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, UK
| | - Sarah E Smith
- Kymab Ltd, The Bennet Building (B930), Babraham Research Campus, Cambridge, UK
| | - Paul Kellam
- Department of Infectious Disease, Imperial College Faculty of Medicine, Wright Fleming Institute, St Mary's Campus, London, UK
- Kymab Ltd, The Bennet Building (B930), Babraham Research Campus, Cambridge, UK
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Mark Marsh
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
116
|
Yánez DC, Ross S, Crompton T. The IFITM protein family in adaptive immunity. Immunology 2019; 159:365-372. [PMID: 31792954 PMCID: PMC7078001 DOI: 10.1111/imm.13163] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/06/2019] [Accepted: 11/23/2019] [Indexed: 12/13/2022] Open
Abstract
Interferon‐inducible transmembrane (IFITM) proteins are a family of small homologous proteins, localized in the plasma and endolysosomal membranes, which confer cellular resistance to many viruses. In addition, several distinct functions have been associated with different IFITM family members, including germ cell specification (IFITM1–IFITM3), osteoblast function and bone mineralization (IFITM5) and immune functions (IFITM1–3, IFITM6). IFITM1–3 are expressed by T cells and recent experiments have shown that the IFITM proteins are directly involved in adaptive immunity and that they regulate CD4+ T helper cell differentiation in a T‐cell‐intrinsic manner. Here we review the role of the IFITM proteins in T‐cell differentiation and function.
Collapse
Affiliation(s)
- Diana C Yánez
- UCL Great Ormond Street Institute of Child Health, London, UK.,School of Medicine, Universidad San Francisco de Quito, Quito, Ecuador
| | - Susan Ross
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Tessa Crompton
- UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
117
|
Londrigan SL, Wakim LM, Smith J, Haverkate AJ, Brooks AG, Reading PC. IFITM3 and type I interferons are important for the control of influenza A virus replication in murine macrophages. Virology 2019; 540:17-22. [PMID: 31731106 DOI: 10.1016/j.virol.2019.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/23/2022]
Abstract
Abortive infection of macrophages serves as a "dead end" for most seasonal influenza A virus (IAV) strains, and it is likely to contribute to effective host defence. Interferon (IFN)-induced transmembrane protein 3 (IFITM3) restricts the early stages of IAV replication in epithelial cells, but IFITM3 restriction of IAV replication in macrophages has not been previously investigated. Herein, macrophages isolated from IFITM3-deficient mice were more susceptible to initial IAV infection, but late-stage viral replication was still controlled through abortive infection. Strikingly, IFNα/β receptor (IFNAR)-deficient macrophages infected with IAV were not only more susceptible to initial infection, but these cells also supported productive viral replication. Significantly, we have established that abortive IAV infection in macrophages is controlled through a type I IFN-dependent mechanism, where late-stage IAV replication can proceed in the absence of type I IFN responses. These findings provide novel mechanistic insight into macrophage-specific processes that potently shut down IAV replication.
Collapse
Affiliation(s)
- Sarah L Londrigan
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia.
| | - Linda M Wakim
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Jeffrey Smith
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Anne J Haverkate
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Patrick C Reading
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia; WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| |
Collapse
|
118
|
Arabyan E, Kotsynyan A, Hakobyan A, Zakaryan H. Antiviral agents against African swine fever virus. Virus Res 2019; 270:197669. [DOI: 10.1016/j.virusres.2019.197669] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 02/03/2023]
|
119
|
Interplay between Intrinsic and Innate Immunity during HIV Infection. Cells 2019; 8:cells8080922. [PMID: 31426525 PMCID: PMC6721663 DOI: 10.3390/cells8080922] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
Restriction factors are antiviral components of intrinsic immunity which constitute a first line of defense by blocking different steps of the human immunodeficiency virus (HIV) replication cycle. In immune cells, HIV infection is also sensed by several pattern recognition receptors (PRRs), leading to type I interferon (IFN-I) and inflammatory cytokines production that upregulate antiviral interferon-stimulated genes (ISGs). Several studies suggest a link between these two types of immunity. Indeed, restriction factors, that are generally interferon-inducible, are able to modulate immune responses. This review highlights recent knowledge of the interplay between restriction factors and immunity inducing antiviral defenses. Counteraction of this intrinsic and innate immunity by HIV viral proteins will also be discussed.
Collapse
|
120
|
Kellam P, Weiss RA. Protecting fetal development. SCIENCE (NEW YORK, N.Y.) 2019; 365:118-119. [PMID: 31296753 DOI: 10.1126/science.aay2054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Paul Kellam
- Department of Medicine, Division of Infectious Diseases, Imperial College London, London, UK.
| | - Robin A Weiss
- Division of Infection and Immunity, University College London, London, UK.
| |
Collapse
|