101
|
Srinivasan N, Mudumba R. Alpha suppression in the context of cross-frequency interactions between fast and intermediate timescales. Phys Life Rev 2024; 51:11-12. [PMID: 39217781 DOI: 10.1016/j.plrev.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Affiliation(s)
| | - Ramya Mudumba
- Department of Cognitive Science, Indian Institute of Technology Kanpur, India
| |
Collapse
|
102
|
Chikhi S, Matton N, Sanna M, Blanchet S. Effects of one session of theta or high alpha neurofeedback on EEG activity and working memory. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:1065-1083. [PMID: 39322825 DOI: 10.3758/s13415-024-01218-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/27/2024]
Abstract
Neurofeedback techniques provide participants immediate feedback on neuronal signals, enabling them to modulate their brain activity. This technique holds promise to unveil brain-behavior relationship and offers opportunities for neuroenhancement. Establishing causal relationships between modulated brain activity and behavioral improvements requires rigorous experimental designs, including appropriate control groups and large samples. Our primary objective was to examine whether a single neurofeedback session, designed to enhance working memory through the modulation of theta or high-alpha frequencies, elicits specific changes in electrophysiological and cognitive outcomes. Additionally, we explored predictors of successful neuromodulation. A total of 101 healthy adults were assigned to groups trained to increase frontal theta, parietal high alpha, or random frequencies (active control group). We measured resting-state EEG, working memory performance, and self-reported psychological states before and after one neurofeedback session. Although our analyses revealed improvements in electrophysiological and behavioral outcomes, these gains were not specific to the experimental groups. An increase in the frequency targeted by the training has been observed for the theta and high alpha groups, but training designed to increase randomly selected frequencies appears to induce more generalized neuromodulation compared with targeting a specific frequency. Among all the predictors of neuromodulation examined, resting theta and high alpha amplitudes predicted specifically the increase of those frequencies during the training. These results highlight the challenge of integrating a control group based on enhancing randomly selected frequency bands and suggest potential avenues for optimizing interventions (e.g., by including a control group trained in both up- and down-regulation).
Collapse
Affiliation(s)
- Samy Chikhi
- Laboratoire Mémoire, Cerveau et Cognition, Université Paris Cité, F-92100, Boulogne-Billancourt, France.
- Integrative Neuroscience and Cognition Center, Université Paris Cité, F-75006, Paris, France.
| | - Nadine Matton
- CLLE - Cognition, Langues, Langage, Ergonomie, Université de Toulouse, Toulouse, France
- Fédération ENAC ISAE-SUPAERO ONERA, Université de Toulouse, Toulouse, France
| | - Marie Sanna
- Laboratoire Mémoire, Cerveau et Cognition, Université Paris Cité, F-92100, Boulogne-Billancourt, France
| | - Sophie Blanchet
- Laboratoire Mémoire, Cerveau et Cognition, Université Paris Cité, F-92100, Boulogne-Billancourt, France
| |
Collapse
|
103
|
Duda AT, Clarke AR, Barry RJ, De Blasio FM. Mindfulness meditation is associated with global EEG spectral changes in theta, alpha, and beta amplitudes. Int J Psychophysiol 2024; 206:112465. [PMID: 39557128 DOI: 10.1016/j.ijpsycho.2024.112465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Mindfulness meditation is linked to a broad range of psychological and physical health benefits, potentially mediated by changes in neural oscillations. This study explored changes in neural oscillations associated with both immediate and regular mindfulness meditation practice. Electroencephalographic (EEG) data were collected from 40 healthy young adults (Mage = 20.8, 24 females) during eyes-closed resting and mindfulness meditation states in two separate recording sessions, six weeks apart. Participants were novice meditators, and following the first recording session, were randomly assigned to either a daily mindfulness meditation practice or classical music listening as an active control, which they completed until the second recording session. Traditional bands of delta (1.0-3.5 Hz), theta (4.0-7.5 Hz), alpha (8.0-13.0 Hz), beta (13.5-30.0 Hz), and gamma (30.5-45.0 Hz) were used to explore changes in global EEG spectral amplitude. A significant increase in theta between sessions was observed in both groups and states. Alpha decreased significantly during meditation compared with rest, and a three-way interaction indicated a smaller reduction during meditation between sessions in the mindfulness group. There was a similar interaction in beta, which remained stable between sessions during both rest and meditation in the mindfulness group while varying in the classical music listening group. No significant effects were observed in global delta or gamma amplitudes. These findings suggest that changes in neural oscillations associated with breath-focused mindfulness meditation may be related to processes underlying attention and awareness. Further research is necessary to consolidate these findings, particularly in relation to the associated health benefits.
Collapse
Affiliation(s)
- Alexander T Duda
- Brain & Behaviour Research Institute and School of Psychology, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.
| | - Adam R Clarke
- Brain & Behaviour Research Institute and School of Psychology, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Robert J Barry
- Brain & Behaviour Research Institute and School of Psychology, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Frances M De Blasio
- Brain & Behaviour Research Institute and School of Psychology, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| |
Collapse
|
104
|
Parr JVV, Mills R, Kal E, Bronstein AM, Ellmers TJ. A "Conscious" Loss of Balance: Directing Attention to Movement Can Impair the Cortical Response to Postural Perturbations. J Neurosci 2024; 44:e0810242024. [PMID: 39358045 PMCID: PMC11604137 DOI: 10.1523/jneurosci.0810-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/20/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024] Open
Abstract
"Trying too hard" can interfere with skilled movement, such as sports and music playing. Postural control can similarly suffer when conscious attention is directed toward it ("conscious movement processing"; CMP). However, the neural mechanisms through which CMP influences balance remain poorly understood. We explored the effects of CMP on electroencephalographic (EEG) perturbation-evoked cortical responses and subsequent balance performance. Twenty healthy young adults (age = 25.1 ± 5 years; 10 males and 10 females) stood on a force plate-embedded moveable platform while mobile EEG was recorded. Participants completed two blocks of 50 discrete perturbations, containing an even mix of slower (186 mm/s peak velocity) and faster (225 mm/s peak velocity) perturbations. One block was performed under conditions of CMP (i.e., instructions to consciously control balance), while the other was performed under "Control" conditions with no additional instructions. For both slow and fast perturbations, CMP resulted in significantly smaller cortical N1 signals (a perturbation-evoked potential localized to the supplementary motor area) and lower sensorimotor beta EEG activity 200-400 ms postperturbation. Significantly greater peak velocities of the center of pressure (i.e., greater postural instability) were also observed during the CMP condition. Our findings provide the first evidence that disruptions to postural control during CMP may be a consequence of insufficient cortical activation relevant for balance (i.e., insufficient cortical N1 responses followed by enhanced beta suppression). We propose that conscious attempts to minimize postural instability through CMP acts as a cognitive dual-task that dampens the sensitivity of the sensorimotor system for future losses of balance.
Collapse
Affiliation(s)
- Johnny V V Parr
- Manchester Metropolitan University Institute of Sport, Manchester M1 7EL, United Kingdom
| | - Richard Mills
- Manchester Metropolitan University Institute of Sport, Manchester M1 7EL, United Kingdom
| | - Elmar Kal
- Department of Health Sciences, College of Health, Medicine, and Life Sciences, Centre for Cognitive and Clinical Neuroscience, Brunel University London, Uxbridge UB8 3PH, United Kingdom
| | - Adolfo M Bronstein
- Department of Brain Sciences, Centre for Vestibular Neurology, Imperial College, London W6 8RP, United Kingdom
| | - Toby J Ellmers
- Department of Brain Sciences, Centre for Vestibular Neurology, Imperial College, London W6 8RP, United Kingdom
| |
Collapse
|
105
|
López-Madrona VJ, Trébuchon A, Bénar CG, Schön D, Morillon B. Different sustained and induced alpha oscillations emerge in the human auditory cortex during sound processing. Commun Biol 2024; 7:1570. [PMID: 39592826 PMCID: PMC11599602 DOI: 10.1038/s42003-024-07297-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Alpha oscillations in the auditory cortex have been associated with attention and the suppression of irrelevant information. However, their anatomical organization and interaction with other neural processes remain unclear. Do alpha oscillations function as a local mechanism within most neural sources to regulate their internal excitation/inhibition balance, or do they belong to separated inhibitory sources gating information across the auditory network? To address this question, we acquired intracerebral electrophysiological recordings from epilepsy patients during rest and tones listening. Thanks to independent component analysis, we disentangled the different neural sources and labeled them as "oscillatory" if they presented strong alpha oscillations at rest, and/or "evoked" if they displayed a significant evoked response to the stimulation. Our results show that 1) sources are condition-specific and segregated in the auditory cortex, 2) both sources have a high-gamma response followed by an induced alpha suppression, 3) only oscillatory sources present a sustained alpha suppression during all the stimulation period. We hypothesize that there are two different alpha oscillations in the auditory cortex: an induced bottom-up response indicating a selective engagement of the primary cortex to process the stimuli, and a sustained suppression reflecting a general disinhibited state of the network to process sensory information.
Collapse
Affiliation(s)
- Víctor J López-Madrona
- Institute of Language, Communication, and the Brain, Aix-Marseille Univ, Marseille, France.
- Aix-Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.
| | - Agnès Trébuchon
- APHM, Timone Hospital, Epileptology and cerebral rhythmology, Marseille, 13005, France
- APHM, Timone Hospital, Functional and stereotactic neurosurgery, Marseille, 13005, France
| | - Christian G Bénar
- Aix-Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Daniele Schön
- Aix-Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Benjamin Morillon
- Aix-Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| |
Collapse
|
106
|
Li X, Liu Z, Hu Y, Jin R, Lou W, Peng W. Analgesic effects of high-frequency rTMS on pain anticipation and perception. Commun Biol 2024; 7:1573. [PMID: 39592816 PMCID: PMC11599282 DOI: 10.1038/s42003-024-07129-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Previous studies suggest that pain perception is greatly shaped by anticipation, with M1 and DLPFC involved in this process. We hypothesized that high-frequency rTMS targeting these regions could alter pain anticipation and thereby reduce pain perception. In a double-blind, sham-controlled study, healthy participants received 10 Hz rTMS to M1, DLPFC, or a sham treatment. Assessments were conducted before, immediately after, and 60 min after stimulation, including laser-evoked potentials, pain ratings, and anticipatory EEG. M1-rTMS immediately reduced laser-evoked P2 amplitude, increased sensorimotor high-frequency α-oscillation power, and accelerated peak alpha frequency in the midfrontal region during pain anticipation. In contrast, DLPFC-rTMS reduced the N2-P2 complex and pain ratings 60 min post-stimulation, an effect associated with prolonged microstate C duration during pain anticipation-a microstate linked to default mode network activity. Thus, M1-rTMS immediately modulates anticipatory α-oscillations and laser-evoked potentials, while DLPFC-rTMS induces delayed analgesic effects partially by modulating default mode network activity.
Collapse
Affiliation(s)
- Xiaoyun Li
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Zhouan Liu
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Yuzhen Hu
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Richu Jin
- Tech X Academy, Shenzhen Polytechnic University, Shenzhen, China
| | - Wutao Lou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| | - Weiwei Peng
- School of Psychology, Shenzhen University, Shenzhen, China.
| |
Collapse
|
107
|
Gresch D, Boettcher SEP, Gohil C, van Ede F, Nobre AC. Neural dynamics of shifting attention between perception and working-memory contents. Proc Natl Acad Sci U S A 2024; 121:e2406061121. [PMID: 39536078 PMCID: PMC11588118 DOI: 10.1073/pnas.2406061121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
In everyday tasks, our focus of attention shifts seamlessly between contents in the sensory environment and internal memory representations. Yet, research has mainly considered external and internal attention in isolation. We used magnetoencephalography to compare the neural dynamics of shifting attention to visual contents within vs. between the external and internal domains. Participants performed a combined perception and working-memory task in which two sequential cues guided attention to upcoming (external) or memorized (internal) sensory information. Critically, the second cue could redirect attention to visual content within the same or alternative domain as the first cue. Multivariate decoding unveiled distinct patterns of human brain activity when shifting attention within vs. between domains. Brain activity distinguishing within- from between-domain shifts was broadly distributed and highly dynamic. Intriguingly, crossing domains did not invoke an additional stage prior to shifting attention. Alpha lateralization, a canonical marker of shifting spatial attention, showed no delay when cues redirected attention to the same vs. alternative domain. Instead, evidence suggested that neural states associated with a given domain linger and influence subsequent shifts of attention within vs. between domains. Our findings provide critical insights into the neural dynamics that govern attentional shifts between perception and working memory.
Collapse
Affiliation(s)
- Daniela Gresch
- Department of Experimental Psychology, University of Oxford, OxfordOX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, OxfordOX3 7JX, United Kingdom
- Department of Psychology, Yale University, New Haven, CT06510
| | - Sage E. P. Boettcher
- Department of Experimental Psychology, University of Oxford, OxfordOX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, OxfordOX3 7JX, United Kingdom
| | - Chetan Gohil
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, OxfordOX3 7JX, United Kingdom
| | - Freek van Ede
- Institute for Brain and Behaviour Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Anna C. Nobre
- Department of Experimental Psychology, University of Oxford, OxfordOX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, OxfordOX3 7JX, United Kingdom
- Department of Psychology, Yale University, New Haven, CT06510
- Wu Tsai Institute, Yale University, New Haven, CT06510
| |
Collapse
|
108
|
Al Dahhan NZ, Tseng J, de Medeiros C, Narayanan S, Arnold DL, Coe BC, Munoz DP, Yeh EA, Mabbott DJ. Compensatory mechanisms amidst demyelinating disorders: insights into cognitive preservation. Brain Commun 2024; 6:fcae353. [PMID: 39534724 PMCID: PMC11554762 DOI: 10.1093/braincomms/fcae353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/28/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Demyelination disrupts the transmission of electrical signals in the brain and affects neurodevelopment in children with disorders such as multiple sclerosis and myelin oligodendrocyte glycoprotein-associated disorders. Although cognitive impairments are prevalent in these conditions, some children maintain cognitive function despite substantial structural injury. These findings raise an important question: in addition to the degenerative process, do compensatory neural mechanisms exist to mitigate the effects of myelin loss? We propose that a multi-dimensional approach integrating multiple neuroimaging modalities, including diffusion tensor imaging, magnetoencephalography and eye-tracking, is key to investigating this question. We examine the structural and functional connectivity of the default mode and executive control networks due to their significant roles in supporting higher-order cognitive processes. As cognitive proxies, we examine saccade reaction times and direction errors during an interleaved pro- (eye movement towards a target) and anti-saccade (eye movement away from a target) task. 28 typically developing children, 18 children with multiple sclerosis and 14 children with myelin oligodendrocyte glycoprotein-associated disorders between 5 and 18.9 years old were scanned at the Hospital for Sick Children. Tractography of diffusion MRI data examined structural connectivity. Intracellular and extracellular microstructural parameters were extracted using a white matter tract integrity model to provide specific inferences on myelin and axon structure. Magnetoencephalography scanning was conducted to examine functional connectivity. Within groups, participants had longer saccade reaction times and greater direction errors on the anti- versus pro-saccade task; there were no group differences on either task. Despite similar behavioural performance, children with demyelinating disorders had significant structural compromise and lower bilateral high gamma, higher left-hemisphere theta and higher right-hemisphere alpha synchrony relative to typically developing children. Children diagnosed with multiple sclerosis had greater structural compromise relative to children with myelin oligodendrocyte glycoprotein-associated disorders; there were no group differences in neural synchrony. For both patient groups, increased disease disability predicted greater structural compromise, which predicted longer saccade reaction times and greater direction errors on both tasks. Structural compromise also predicted increased functional connectivity, highlighting potential adaptive functional reorganisation in response to structural compromise. In turn, increased functional connectivity predicted faster saccade reaction times and fewer direction errors. These findings suggest that increased functional connectivity, indicated by increased alpha and theta synchrony, may be necessary to compensate for structural compromise and preserve cognitive abilities. Further understanding these compensatory neural mechanisms could pave the way for the development of targeted therapeutic interventions aimed at enhancing these mechanisms, ultimately improving cognitive outcomes for affected individuals.
Collapse
Affiliation(s)
- Noor Z Al Dahhan
- Neurosciences and Mental Health Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Julie Tseng
- Neurosciences and Mental Health Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Cynthia de Medeiros
- Neurosciences and Mental Health Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Sridar Narayanan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, H3A 2B4, Canada
| | - Douglas L Arnold
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, H3A 2B4, Canada
| | - Brian C Coe
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, K7L 3N6, Canada
| | - Douglas P Munoz
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, K7L 3N6, Canada
| | - E Ann Yeh
- Neurosciences and Mental Health Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
- Department of Neurology, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, M5G 1X8, Canada
| | - Donald J Mabbott
- Neurosciences and Mental Health Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, M5S 3G3, Canada
| |
Collapse
|
109
|
Szaszkó B, Schmid RR, Pomper U, Maiworm M, Laiber S, Lange MJ, Tschenett H, Nater UM, Ansorge U. Testing the impact of hatha yoga on task switching: a randomized controlled trial. Front Hum Neurosci 2024; 18:1438017. [PMID: 39568547 PMCID: PMC11577087 DOI: 10.3389/fnhum.2024.1438017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024] Open
Abstract
Switching attention between or within tasks is part of the implementation and maintenance of executive control processes and plays an indispensable role in our daily lives: It allows us to perform on distinct tasks and with variable objects, enabling us to adapt to and respond in dynamically changing environments. Here, we tested if yoga could benefit switching of attention between distinct objects of one’s focus (e.g., through practicing switching between one’s own body, feelings, and different postures) in particular and executive control in general. We therefore conducted a randomized controlled trial with 98 participants and a waitlisted control group. In the intervention group, healthy yoga novices practiced Hatha yoga 3x a week, for 8 weeks. We conducted two experiments: A purely behavioral task investigating changes in behavioral costs during switching between attentional control sets (74 participants analyzed), and a modality-switching task focusing on electrophysiology (EEG data of 47 participants analyzed). At the electrophysiological level, frequency-tagging indicated no interventional effect on participants’ ability to switch between the auditory and visual modalities. However, increases in task-related frontocentral theta activity, resulting from the intervention, indicated an ability to increasingly deploy executive resources to the prioritized task when needed. At the behavioral level, our intervention resulted in more efficient holding of target representations in working memory, indicated by decreased mixing costs. Again, however, intervention effects on switching costs were missing. We, thus, conclude that Hatha yoga has a positive influence on executive control, potentially through improvements in working memory rather than directly on switching.Clinical trial registrationclinicaltrials.gov, identifier [NCT05232422].
Collapse
Affiliation(s)
- Bence Szaszkó
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
| | - Rebecca Rosa Schmid
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
| | - Ulrich Pomper
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
| | - Mira Maiworm
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
| | - Sophia Laiber
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
| | - Max Josef Lange
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
| | - Hannah Tschenett
- Department of Clinical and Health Psychology, University of Vienna, Vienna, Austria
- University Research Platform "The Stress of Life-Processes and Mechanisms Underlying Everyday Life Stress", University of Vienna, Vienna, Austria
| | - Urs Markus Nater
- Department of Clinical and Health Psychology, University of Vienna, Vienna, Austria
- University Research Platform "The Stress of Life-Processes and Mechanisms Underlying Everyday Life Stress", University of Vienna, Vienna, Austria
| | - Ulrich Ansorge
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
- Research Platform Mediatised Lifeworlds, University of Vienna, Vienna, Austria
| |
Collapse
|
110
|
Sattelberger J, Haque H, Juvonen JJ, Siebenhühner F, Palva JM, Palva S. Local and interareal alpha and low-beta band oscillation dynamics underlie the bilateral field advantage in visual working memory. Cereb Cortex 2024; 34:bhae448. [PMID: 39540759 PMCID: PMC11561930 DOI: 10.1093/cercor/bhae448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Visual working memory has a limited maximum capacity, which can be larger if stimuli are presented bilaterally vs. unilaterally. However, the neuronal mechanisms underlying this bilateral field advantage are not known. Visual working memory capacity is predicted by oscillatory delay-period activity, specifically, by a decrease in alpha (8 to 12 Hz) band amplitudes in posterior brain regions reflecting attentional deployment and related shifts in excitation, as well as a concurrent increase of prefrontal oscillation amplitudes and interareal synchronization in multiple frequencies reflecting active maintenance of information. Here, we asked whether posterior alpha suppression or prefrontal oscillation enhancement explains the bilateral field advantage. We recorded brain activity with high-density electroencephalography, while subjects (n = 26, 14 males) performed a visual working memory task with uni- and bilateral visual stimuli. The bilateral field advantage was associated with early suppression of low-alpha (6 to 10 Hz) and alpha-beta (10 to 17 Hz) band amplitudes, and a subsequent alpha-beta amplitude increase, which, along with a concurrent load-dependent interareal synchronization in the high-alpha band (10 to 15 Hz), correlated with hit rates and reaction times and thus predicted higher maximum capacities in bilateral than unilateral visual working memory. These results demonstrate that the electrophysiological basis of the bilateral field advantage in visual working memory is both in the changes in attentional deployment and enhanced interareal integration.
Collapse
Affiliation(s)
- Judith Sattelberger
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 3 (Fabianinkatu 33), FI-00014 Helsinki, Finland
| | - Hamed Haque
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 3 (Fabianinkatu 33), FI-00014 Helsinki, Finland
| | - Joonas J Juvonen
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 3 (Fabianinkatu 33), FI-00014 Helsinki, Finland
- Department of Neuroscience and Bioengineering (NBE), Aalto University, P.O. Box 11000 (Otakaari 1B), FI-00076 Espoo, Finland
| | - Felix Siebenhühner
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 3 (Fabianinkatu 33), FI-00014 Helsinki, Finland
| | - Jaakko Matias Palva
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 3 (Fabianinkatu 33), FI-00014 Helsinki, Finland
- Department of Neuroscience and Bioengineering (NBE), Aalto University, P.O. Box 11000 (Otakaari 1B), FI-00076 Espoo, Finland
| | - Satu Palva
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 3 (Fabianinkatu 33), FI-00014 Helsinki, Finland
- Centre for Cognitive Neuroimaging (CCNi), School of Psychology and Neuroscience, University of Glasgow, G12 8QB Glasgow, United Kingdom
| |
Collapse
|
111
|
Yang X, Fiebelkorn IC, Jensen O, Knight RT, Kastner S. Differential neural mechanisms underlie cortical gating of visual spatial attention mediated by alpha-band oscillations. Proc Natl Acad Sci U S A 2024; 121:e2313304121. [PMID: 39471220 PMCID: PMC11551340 DOI: 10.1073/pnas.2313304121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 07/18/2024] [Indexed: 11/01/2024] Open
Abstract
Selective attention relies on neural mechanisms that facilitate processing of behaviorally relevant sensory information while suppressing irrelevant information, consistently linked to alpha-band oscillations in human M/EEG studies. We analyzed cortical alpha responses from intracranial electrodes implanted in eight epilepsy patients, who performed a visual spatial attention task. Electrocorticographic data revealed a spatiotemporal dissociation between attention-modulated alpha desynchronization, associated with the enhancement of sensory processing, and alpha synchronization, associated with the suppression of sensory processing, during the cue-target interval. Dorsal intraparietal areas contralateral to the attended hemifield primarily exhibited a delayed and sustained alpha desynchronization, while ventrolateral extrastriatal areas ipsilateral to the attended hemifield primarily exhibited an earlier and sustained alpha synchronization. Analyses of cross-frequency coupling between alpha phase and broadband high-frequency activity (HFA) further revealed cross-frequency interactions along the visual hierarchy contralateral to the attended locations. Directionality analyses indicate that alpha phase in early and extrastriatal visual areas modulated HFA power in downstream visual areas, thus potentially facilitating the feedforward processing of an upcoming, spatially predictable target. In contrast, in areas ipsilateral to the attended locations, HFA power modulated local alpha phase in early and extrastriatal visual areas, with suppressed interareal interactions, potentially attenuating the processing of distractors. Our findings reveal divergent alpha-mediated neural mechanisms underlying target enhancement and distractor suppression during the deployment of spatial attention, reflecting enhanced functional connectivity at attended locations, while suppressed functional connectivity at unattended locations. The collective dynamics of these alpha-mediated neural mechanisms play complementary roles in the efficient gating of sensory information.
Collapse
Affiliation(s)
- Xiaofang Yang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ08544
- Department of Psychology, Princeton University, Princeton, NJ08544
| | - Ian C. Fiebelkorn
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ08544
- Department of Neuroscience and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY14627
| | - Ole Jensen
- Department of Experimental Psychology, University of Oxford, OxfordOX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, OxfordOX3 7JX, United Kingdom
| | - Robert T. Knight
- Helen Wills Neuroscience Institute and Department of Psychology, University of California at Berkeley, Berkeley, CA94720
| | - Sabine Kastner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ08544
- Department of Psychology, Princeton University, Princeton, NJ08544
| |
Collapse
|
112
|
Meyyappan S, Ding M, Mangun GR. Hierarchical Organization of Visual Feature Attention Control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.02.615879. [PMID: 39554008 PMCID: PMC11566002 DOI: 10.1101/2024.10.02.615879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Attention can be deployed in anticipation of visual stimuli based on features such as their color or direction of motion. This anticipatory feature-based attention involves top-down neural control signals from the frontoparietal network that bias visual cortex to enhance the processing of attended information and suppress distraction. So, for example, anticipatory attention control can enable effective selection based on stimulus color while ignoring distracting information about stimulus motion. But as well, anticipatory attention can be focused more narrowly, for example, to select specific colors or motion directions that define task-relevant events and objects. One important question that remains open is whether anticipatory attention control first biases broad feature dimensions such as color versus motion before biasing the specific feature attributes (e.g., blue vs. green). To investigate this, we recorded EEG activity during a task where participants were cued to either attend to a color (blue or green) or a motion direction (up or down) on a trial-by-trial basis. Applying multivariate decoding approaches to the EEG alpha band (8-12 Hz) activity during the attention control period (cue-target interval), we observed significant decoding for both the attended dimensions (color vs. motion) and specific feature attributes (blue vs. green; up vs. down). Importantly, the temporal onset of the dimension-level biasing (color vs. motion) preceded that of the attribute-level biasing (e.g., blue vs. green). These findings demonstrate that the top-down control of feature-based attention proceeds in a hierarchical fashion, first biasing the broad feature dimension, and then narrowing to the specific feature attribute. Significance Statement During voluntary feature-based attention, electrophysiological and neuroimaging studies have highlighted the role of anticipatory (top-down) biasing of the sensory cortex in enhancing the selection of attended stimulus attributes, but little is known about how this is achieved. In particular, it is not clear whether attending to an attribute such as a color (blue vs. green) or motion direction (up vs. down) first biases all neural structures coding that dimension (color/motion) before biasing the specific attribute, or if the top-down signals directly bias only the attended attribute. Using EEG and multivariate decoding, we report that top-down attention control follows a hierarchical organization: first, the broader attended feature dimension is biased, which is followed by the biasing of the specific feature attribute.
Collapse
|
113
|
Kim N, Bloom PA, Rosellini AJ, Webb CA, Pizzagalli DA, Auerbach RP. Probing Neurophysiological Processes Related to Self-Referential Processing to Predict Improvement in Adolescents With Depression Receiving Cognitive Behavioral Therapy. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00309-4. [PMID: 39491787 DOI: 10.1016/j.bpsc.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/18/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Cognitive behavioral therapy (CBT) is a gold-standard approach for treating major depressive disorder in adolescents. However, nearly half of adolescents receiving CBT do not improve. To personalize treatment, it is essential to identify objective markers that predict treatment responsiveness. To address this aim, we investigated neurophysiological processes related to self-referential processing that predicted CBT response among female adolescents with depression. METHODS At baseline, female adolescents ages 13 to 18 years (N = 80) completed a comprehensive clinical assessment, and a self-referential encoding task was administered while electroencephalographic data were recorded. Baseline electroencephalographic data were utilized to identify oscillatory differences between healthy adolescents (n = 42) and adolescents with depression (n = 38). Following the baseline assessment, adolescents with depression received up to 12 weeks of CBT. Baseline differences in electroencephalographic oscillations between healthy adolescents and those with depression were used to guide CBT prediction analysis. Cluster-based event-related spectral perturbation analysis was used to probe theta and alpha event-related synchronization (ERS)/event-related desynchronization (ERD) response to negative and positive words. RESULTS Baseline analyses showed that, relative to the healthy adolescents, adolescents with depression exhibited higher levels of frontal theta ERS and greater posterior alpha ERD. Multilevel modeling identified primary neural pretreatment predictors of treatment response: greater theta ERS in the right prefrontal cortex after the onset of negative words and lower alpha ERD in both the right prefrontal cortex and posterior cingulate cortex. ERS and ERD associations with treatment response remained significant, with baseline depressive and anxiety symptoms included as covariates in all analyses. CONCLUSIONS Consistent with prior research, results highlighted that relative to healthy adolescents, adolescents with depression are characterized by prominent theta synchronization and alpha desynchronization over the prefrontal cortex and posterior cingulate cortex, respectively. Cluster-based event-related spectral perturbation analysis also identified key mechanisms underlying depression-related self-referential processing that predicted improved symptoms during the course of CBT. Ultimately, a better characterization of the neural underpinnings of adolescent depression and its treatment may lead to more personalized interventions.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of Psychiatry, Columbia University, New York, New York; Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, New York
| | - Paul A Bloom
- Department of Psychiatry, Columbia University, New York, New York; Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, New York
| | - Anthony J Rosellini
- Department of Psychological, Boston and Brain Sciences, Boston University, Boston, Massachusetts; Department of Epidemiology, School of Public Health, Boston University, Boston, Massachusetts
| | - Christian A Webb
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; McLean Hospital, Center for Depression, Anxiety & Stress Research, Belmont, Massachusetts
| | - Diego A Pizzagalli
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; McLean Hospital, Center for Depression, Anxiety & Stress Research, Belmont, Massachusetts
| | - Randy P Auerbach
- Department of Psychiatry, Columbia University, New York, New York; Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, New York.
| |
Collapse
|
114
|
El-Sayed R, Davis KD. Regional and interregional functional and structural brain abnormalities in neuropathic pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:91-123. [PMID: 39580223 DOI: 10.1016/bs.irn.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Neuropathic pain is a severe form of chronic pain due to a lesion or disease of the somatosensory nervous system. Here we provide an overview of the neuroimaging approaches that can be used to assess brain abnormalities in a chronic pain condition, with particular focus on people with neuropathic pain and then summarize the findings of studies that applied these methodologies to study neuropathic pain. First, we review the most commonly used approaches to examine grey and white matter abnormalities using magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) and then review functional neuroimaging techniques to measure regional activity and inter-regional communication using functional MRI, electroencephalography (EEG) and magnetoencephalography (MEG). In neuropathic pain the most prominent structural abnormalities have been found to be in the primary somatosensory cortex, insula, anterior cingulate cortex and thalamus, with differences in volume directionality linked to neuropathic pain symptomology. Functional connectivity findings related to treatment outcome point to a potential clinical utility. Some prominent abnormalities in neuropathic pain identified with EEG and MEG throughout the dynamic pain connectome are slowing of alpha activity and higher regional oscillatory activity in the theta and alpha band, lower low beta and higher high beta band power. Finally, connectivity and coupling findings placed into context how regional abnormalities impact the networks and pathways of the dynamic pain connectome. Overall, functional and structural neuroimaging have the potential to identify predictive biomarkers that can be used to guide development of personalized pain management of neuropathic pain.
Collapse
Affiliation(s)
- Rima El-Sayed
- Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Karen Deborah Davis
- Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Surgery, University of Toronto, Toronto, Canada.
| |
Collapse
|
115
|
Zebarjadi N, Kluge A, Adler E, Levy J. New Vistas for the Relationship between Empathy and Political Ideology. eNeuro 2024; 11:ENEURO.0086-24.2024. [PMID: 39528303 PMCID: PMC11573492 DOI: 10.1523/eneuro.0086-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
The study of ideological asymmetries in empathy has consistently yielded inconclusive findings. Yet, until recently these inconsistencies relied exclusively on self-reports, which are known to be prone to biases and inaccuracies when evaluating empathy levels. Very recently, we reported ideological asymmetries in cognitive-affective empathy while relying on neuroimaging for the first time to address this question. In the present investigation which sampled a large cohort of human individuals from two distant countries and neuroimaging sites, we re-examine this question, but this time from the perspective of empathy to physical pain. The results are unambiguous at the neural and behavioral levels and showcase no asymmetry. This finding raises a novel premise: the question of whether empathy is ideologically asymmetrical depends on the targeted component of empathy (e.g., physical pain vs cognitive-affective) and requires explicit but also unobtrusive techniques for the measure of empathy. Moreover, the findings shed new light on another line of research investigating ideological (a)symmetries in physiological responses to vicarious pain, disgust, and threat.
Collapse
Affiliation(s)
- Niloufar Zebarjadi
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo 02150, Finland
| | - Annika Kluge
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo 02150, Finland
| | - Eliyahu Adler
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo 02150, Finland
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
| | - Jonathan Levy
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo 02150, Finland
- Department of Criminology and Gonda Brain Research Center, Bar Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
116
|
Hall MC, Rempe MP, Glesinger RJ, Horne LK, Okelberry HJ, John JA, Embury CM, Heinrichs-Graham E, Wilson TW. Oscillatory activity in bilateral prefrontal cortices is altered by distractor strength during working memory processing. Neuroimage 2024; 301:120878. [PMID: 39357689 PMCID: PMC11531322 DOI: 10.1016/j.neuroimage.2024.120878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/29/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024] Open
Abstract
Working memory (WM) enables the temporary storage of limited information and is a central component of higher order cognitive function. Irrelevant and/or distracting information can have a negative impact on WM processing and suppressing such incoming stimuli is critical to maintaining adequate performance. However, the neural mechanisms and dynamics underlying such distractor inhibition remain poorly understood. In the current study, we enrolled 46 healthy adults (Mage: 27.92, Nfemale: 28) who completed a Sternberg type WM task with high- and low-distractor conditions during magnetoencephalography (MEG). MEG data were transformed into the time-frequency domain and significant task-related oscillatory responses were imaged to identify the underlying anatomical areas. Whole-brain paired t-tests, with cluster-based permutation testing for multiple comparisons correction, were performed to assess differences between the low- and high-distractor conditions for each oscillatory response. Across conditions, we found strong alpha and beta oscillations (i.e., decreases relative to baseline) and increases in theta power throughout the encoding and maintenance periods. Whole-brain contrasts revealed significantly stronger alpha and beta oscillations in bilateral prefrontal regions during maintenance in high- compared to low-distractor trials, with the stronger beta oscillations being centered on the left dorsolateral prefrontal cortex and right inferior frontal gyrus, while those for alpha being within the right anterior prefrontal cortices and the right middle frontal gyrus. These findings suggest that alpha and beta oscillations in the bilateral prefrontal cortices play a major role in the inhibition of distracting information during WM maintenance. Our results also contribute to prior research on cognitive control and functional inhibition, in which prefrontal regions have been widely implicated.
Collapse
Affiliation(s)
- Megan C Hall
- Institute for Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Lane, Boys Town, NE, 68010, USA
| | - Maggie P Rempe
- Institute for Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Lane, Boys Town, NE, 68010, USA; College of Medicine, University of Nebraska Medical Center (UNMC), 42nd and Emile, Omaha, NE, 68198, USA
| | - Ryan J Glesinger
- Institute for Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Lane, Boys Town, NE, 68010, USA
| | - Lucy K Horne
- Institute for Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Lane, Boys Town, NE, 68010, USA
| | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Lane, Boys Town, NE, 68010, USA
| | - Jason A John
- Institute for Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Lane, Boys Town, NE, 68010, USA
| | - Christine M Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Lane, Boys Town, NE, 68010, USA
| | - Elizabeth Heinrichs-Graham
- Institute for Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Lane, Boys Town, NE, 68010, USA; Department of Pharmacology & Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Lane, Boys Town, NE, 68010, USA; Department of Pharmacology & Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
117
|
Pagnotta MF, Riddle J, D'Esposito M. Multimodal neuroimaging of hierarchical cognitive control. Biol Psychol 2024; 193:108896. [PMID: 39488242 DOI: 10.1016/j.biopsycho.2024.108896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/04/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Cognitive control enables us to translate our knowledge into actions, allowing us to flexibly adjust our behavior, according to environmental contexts, our internal goals, and future plans. Multimodal neuroimaging and neurostimulation techniques have proven essential for advancing our understanding of how cognitive control emerges from the coordination of distributed neuronal activities in the brain. In this review, we examine the literature on multimodal studies of cognitive control. We explore how these studies provide converging evidence for a novel, multiplexed model of cognitive control, in which neural oscillations support different levels of control processing along a functionally hierarchical organization of distinct frontoparietal networks.
Collapse
Affiliation(s)
- Mattia F Pagnotta
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| | - Justin Riddle
- Department of Psychology, Florida State University, FL, USA; Program in Neuroscience, Florida State University, FL, USA
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA; Department of Psychology, University of California, Berkeley, CA, USA
| |
Collapse
|
118
|
Thiele C, Rufener KS, Repplinger S, Zaehle T, Ruhnau P. Transcranial temporal interference stimulation (tTIS) influences event-related alpha activity during mental rotation. Psychophysiology 2024; 61:e14651. [PMID: 38997805 DOI: 10.1111/psyp.14651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/14/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Non-invasive brain stimulation techniques offer therapeutic potential for neurological and psychiatric disorders. However, current methods are often limited in their stimulation depth. The novel transcranial temporal interference stimulation (tTIS) aims to overcome this limitation by non-invasively targeting deeper brain regions. In this study, we aimed to evaluate the efficacy of tTIS in modulating alpha activity during a mental rotation task. The effects of tTIS were compared with transcranial alternating current stimulation (tACS) and a sham control. Participants were randomly assigned to a tTIS, tACS, or sham group. They performed alternating blocks of resting and mental rotation tasks before, during, and after stimulation. During the stimulation blocks, participants received 20 min of stimulation adjusted to their individual alpha frequency (IAF). We assessed shifts in resting state alpha power, event-related desynchronization (ERD) of alpha activity during mental rotation, as well as resulting improvements in behavioral performance. Our results indicate tTIS and tACS to be effective in modulating cortical alpha activity during mental rotation, leading to an increase in ERD from pre- to poststimulation as well as compared to sham stimulation. However, this increase in ERD was not correlated with enhanced mental rotation performance, and resting state alpha power remained unchanged. Our findings underscore the complex nature of tTIS and tACS efficacy, indicating that stimulation effects are more observable during active cognitive tasks, while their impacts are less pronounced on resting neuronal systems.
Collapse
Affiliation(s)
- Carsten Thiele
- Department of Neurology, Otto-von-Guericke-University, University Clinic of Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | - Katharina S Rufener
- Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine of Childhood and Adolescents, Otto-von-Guericke-University, University Clinic of Magdeburg, Magdeburg, Germany
| | - Stefan Repplinger
- Department of Neurology, Otto-von-Guericke-University, University Clinic of Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | - Tino Zaehle
- Department of Neurology, Otto-von-Guericke-University, University Clinic of Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | - Philipp Ruhnau
- Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
- School of Psychology and Humanities, University of Central Lancashire, Preston, UK
| |
Collapse
|
119
|
Lu X, Franz EA, Robertson SP, Markie D. Aberrant connectivity of the lateralized readiness system in non-syndromic congenital mirror movements. Clin Neurophysiol 2024; 167:61-73. [PMID: 39293386 DOI: 10.1016/j.clinph.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/20/2024]
Abstract
OBJECTIVES Non-syndromic CMM has a complex phenotype. Abnormal corpus callosum and corticospinal tract processes are suggested mechanisms of the mirror movements. To further explore behavioural and neural phenotype(s) the present study tests the hypothesis that the response readiness network comprising supplementary motor area (SMA) and connections with motor cortex (M1) functions abnormally in CMM. METHODS Twelve participants with (non-syndromic) CMM and a control group (n = 28) were tested on a probabilistic Go-NoGo task while electroencephalography (EEG) was recorded to assess possible group differences in lateralized readiness of voluntary hand movements together with measures of SMA-M1 functional connectivity. RESULTS The CMM group demonstrated delayed lateralized readiness and stronger functional connectivity between left-brain SMA-M1 regions. Connectivity strength was correlated with measures of behavioural performance but not with extent of mirroring. CONCLUSIONS Abnormalities in brain processes upstream of movement output likely reflect neurocompensation as a result of lifelong experience with mirroring in CMM. SIGNIFICANCE These findings extend the known neural abnormalities in CMM to include brain networks upstream from those involved in motor output and raise the question of whether neurocompensatory plasticity might be involved.
Collapse
Affiliation(s)
- Xueyao Lu
- Action Brain and Cognition Lab, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Elizabeth A Franz
- Action Brain and Cognition Lab, Department of Psychology, University of Otago, Dunedin, New Zealand.
| | - Stephen P Robertson
- Clinical Genetics Group, Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand
| | - David Markie
- Department of Pathology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
120
|
Bonnefond M, Jensen O, Clausner T. Visual Processing by Hierarchical and Dynamic Multiplexing. eNeuro 2024; 11:ENEURO.0282-24.2024. [PMID: 39537353 PMCID: PMC11574700 DOI: 10.1523/eneuro.0282-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/27/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
The complexity of natural environments requires highly flexible mechanisms for adaptive processing of single and multiple stimuli. Neuronal oscillations could be an ideal candidate for implementing such flexibility in neural systems. Here, we present a framework for structuring attention-guided processing of complex visual scenes in humans, based on multiplexing and phase coding schemes. Importantly, we suggest that the dynamic fluctuations of excitability vary rapidly in terms of magnitude, frequency and wave-form over time, i.e., they are not necessarily sinusoidal or sustained oscillations. Different elements of single objects would be processed within a single cycle (burst) of alpha activity (7-14 Hz), allowing for the formation of coherent object representations while separating multiple objects across multiple cycles. Each element of an object would be processed separately in time-expressed as different gamma band bursts (>30 Hz)-along the alpha phase. Since the processing capacity per alpha cycle is limited, an inverse relationship between object resolution and size of attentional spotlight ensures independence of the proposed mechanism from absolute object complexity. Frequency and wave-shape of those fluctuations would depend on the nature of the object that is processed and on cognitive demands. Multiple objects would further be organized along the phase of slower fluctuations (e.g., theta), potentially driven by saccades. Complex scene processing, involving covert attention and eye movements, would therefore be associated with multiple frequency changes in the alpha and lower frequency range. This framework embraces the idea of a hierarchical organization of visual processing, independent of environmental temporal dynamics.
Collapse
Affiliation(s)
- Mathilde Bonnefond
- Lyon Neuroscience Research Center, Computation, Cognition and Neurophysiology (Cophy) team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Bron Cedex 69675, France
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Tommy Clausner
- Lyon Neuroscience Research Center, Computation, Cognition and Neurophysiology (Cophy) team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Bron Cedex 69675, France
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
121
|
Doval S, López-Sanz D, Bruña R, Cuesta P, Antón-Toro L, Taguas I, Torres-Simón L, Chino B, Maestú F. When Maturation is Not Linear: Brain Oscillatory Activity in the Process of Aging as Measured by Electrophysiology. Brain Topogr 2024; 37:1068-1088. [PMID: 38900389 DOI: 10.1007/s10548-024-01064-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Changes in brain oscillatory activity are commonly used as biomarkers both in cognitive neuroscience and in neuropsychiatric conditions. However, little is known about how its profile changes across maturation. Here we use regression models to characterize magnetoencephalography power changes within classical frequency bands in a sample of 792 healthy participants, covering the range 13 to 80 years old. Our findings unveil complex, non-linear power trajectories that defy the traditional linear paradigm, with notable cortical region variations. Interestingly, slow wave activity increases correlate with improved cognitive performance throughout life and larger gray matter volume in the elderly. Conversely, fast wave activity diminishes in adulthood. Elevated low-frequency activity during aging, traditionally seen as compensatory, may also signify neural deterioration. This dual interpretation, highlighted by our study, reveals the intricate dynamics between brain oscillations, cognitive performance, and aging. It advances our understanding of neurodevelopment and aging by emphasizing the regional specificity and complexity of brain rhythm changes, with implications for cognitive and structural integrity.
Collapse
Affiliation(s)
- Sandra Doval
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, 28015, Spain.
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, 28223, Spain.
| | - David López-Sanz
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, 28223, Spain
| | - Ricardo Bruña
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, 28015, Spain
- Department of Radiology, Rehabilitation and Physiotherapy, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Pablo Cuesta
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, 28015, Spain
- Department of Radiology, Rehabilitation and Physiotherapy, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Luis Antón-Toro
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, 28015, Spain
- Department of Psychology, University Camilo José Cela (UCJC), Madrid, 28692, Spain
| | - Ignacio Taguas
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, 28015, Spain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, 28223, Spain
| | - Lucía Torres-Simón
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, 28015, Spain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, 28223, Spain
| | - Brenda Chino
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, 28015, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Vicaya, 48940, Spain
| | - Fernando Maestú
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, 28015, Spain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, 28223, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, 28040, Spain
| |
Collapse
|
122
|
Baldini S, Sartori A, Rossi L, Favero A, Pasquin F, Dinoto A, Bratina A, Bosco A, Manganotti P. Fatigue in Multiple Sclerosis: A Resting-State EEG Microstate Study. Brain Topogr 2024; 37:1203-1216. [PMID: 38847997 PMCID: PMC11408556 DOI: 10.1007/s10548-024-01053-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/16/2024] [Indexed: 09/18/2024]
Abstract
Fatigue affects approximately 80% of people with Multiple Sclerosis (PwMS) and can impact several domains of daily life. However, the neural underpinnings of fatigue in MS are still not completely clear. The aim of our study was to investigate the spontaneous large-scale networks functioning associated with fatigue in PwMS using the EEG microstate approach with a spectral decomposition. Forty-three relapsing-remitting MS patients and twenty-four healthy controls (HCs) were recruited. All participants underwent an administration of Modified Fatigue Impact scale (MFIS) and a 15-min resting-state high-density EEG recording. We compared the microstates of healthy subjects, fatigued (F-MS) and non-fatigued (nF-MS) patients with MS; correlations with clinical and behavioral fatigue scores were also analyzed. Microstates analysis showed six templates across groups and frequencies. We found that in the F-MS emerged a significant decrease of microstate F, associated to the salience network, in the broadband and in the beta band. Moreover, the microstate B, associated to the visual network, showed a significant increase in fatigued patients than healthy subjects in broadband and beta bands. The multiple linear regression showed that the high cognitive fatigue was predicted by both an increase and decrease, respectively, in delta band microstate B and beta band microstate F. On the other hand, higher physical fatigue was predicted with lower occurrence microstate F in beta band. The current findings suggest that in MS the higher level of fatigue might be related to a maladaptive functioning of the salience and visual network.
Collapse
Affiliation(s)
- Sara Baldini
- Department of Medicine, Surgery and Health Sciences, Neurology Unit, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy.
| | - Arianna Sartori
- Department of Medicine, Surgery and Health Sciences, Neurology Unit, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy
| | - Lucrezia Rossi
- Department of Medicine, Surgery and Health Sciences, Neurology Unit, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy
| | - Anna Favero
- Department of Medicine, Surgery and Health Sciences, Neurology Unit, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy
| | - Fulvio Pasquin
- Neurology Unit, Hospital of Gorizia, ASUGI, Gorizia, Italy
| | - Alessandro Dinoto
- Department of Neuroscience, Biomedicine and Movement Sciences, Neurology Unit, University of Verona, Verona, Italy
| | - Alessio Bratina
- Department of Medicine, Surgery and Health Sciences, Neurology Unit, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy
| | - Antonio Bosco
- Department of Medicine, Surgery and Health Sciences, Neurology Unit, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy
| | - Paolo Manganotti
- Department of Medicine, Surgery and Health Sciences, Neurology Unit, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy
| |
Collapse
|
123
|
Karimi H, Boudewyn M, van den Heever D, Diaz M. Age-related differences in memory encoding and retrieval during referential processing: A time-frequency analysis. Psychol Aging 2024; 39:731-749. [PMID: 39495563 PMCID: PMC11537493 DOI: 10.1037/pag0000857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
We investigated how lexical form similarity of referential candidates and ambiguity of following pronouns impact the encoding and retrieval of words from memory during sentence processing in younger and older adults. Critical sentences included two noun phrases (henceforth NPs) that were either phonologically and orthographically similar (Jason and Jacob/Jade) or dissimilar (Jason and Matt/Hannah), followed by a pronoun (e.g., he) that was either ambiguous or unambiguous (depending on the genders of the preceding NPs). We analyzed brain activity time-locked to the onsets of the second NP (NP2) and the pronoun to investigate the encoding and the retrieval of the NPs, respectively. During encoding NP2, older adults exhibited greater alpha power when NP1 had the same-gender, whereas younger adults showed no such effect, suggesting an increased need for inhibition for older adults during encoding. Moreover, although both groups exhibited an increase in alpha power for similar NPs, only younger adults exhibited a theta power increase, suggesting similarity-induced inhibition for both groups, but an additional maintenance cost only for younger adults. During retrieval (i.e., on the pronoun), we found that both pronominal ambiguity and form similarity resulted in greater theta power for younger adults, suggesting full pronominal processing and therefore more difficult retrieval, but smaller theta/alpha power for older adults, suggesting good-enough processing and therefore easier retrieval. Together with complementary behavioral results, our findings suggest that older adults resort to good-enough referential processing when the retrieval of relevant representations is cognitively demanding. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
|
124
|
Kraus F, Ross B, Herrmann B, Obleser J. Neurophysiology of Effortful Listening: Decoupling Motivational Modulation from Task Demands. J Neurosci 2024; 44:e0589242024. [PMID: 39261007 PMCID: PMC11529814 DOI: 10.1523/jneurosci.0589-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024] Open
Abstract
In demanding listening situations, a listener's motivational state may affect their cognitive investment. Here, we aim to delineate how domain-specific sensory processing, domain-general neural alpha power, and pupil size as a proxy for cognitive investment encode influences of motivational state under demanding listening. Participants (male and female) performed an auditory gap-detection task while the pupil size and the magnetoencephalogram were simultaneously recorded. Task demand and a listener's motivational state were orthogonally manipulated through changes in gap duration and monetary-reward prospect, respectively. Whereas task difficulty impaired performance, reward prospect enhanced it. The pupil size reliably indicated the modulatory impact of an individual's motivational state. At the neural level, the motivational state did not affect auditory sensory processing directly but impacted attentional postprocessing of an auditory event as reflected in the late evoked-response field and alpha-power change. Both pregap pupil dilation and higher parietal alpha power predicted better performance at the single-trial level. The current data support a framework wherein the motivational state acts as an attentional top-down neural means of postprocessing the auditory input in challenging listening situations.
Collapse
Affiliation(s)
- Frauke Kraus
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
- Center of Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Bernhard Ross
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Ontario M6A 2E1, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Björn Herrmann
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Ontario M6A 2E1, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
- Center of Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
125
|
Liljefors J, Almeida R, Rane G, Lundström JN, Herman P, Lundqvist M. Distinct functions for beta and alpha bursts in gating of human working memory. Nat Commun 2024; 15:8950. [PMID: 39419974 PMCID: PMC11486900 DOI: 10.1038/s41467-024-53257-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Multiple neural mechanisms underlying gating to working memory have been proposed with divergent results obtained in human and animal studies. Previous findings from non-human primates suggest prefrontal beta frequency bursts as a correlate of transient inhibition during selective encoding. Human studies instead suggest a similar role for sensory alpha power fluctuations. To cast light on these discrepancies we employed a sequential working memory task with distractors for human participants. In particular, we examined their whole-brain electrophysiological activity in both alpha and beta bands with the same single-trial burst analysis earlier performed on non-human primates. Our results reconcile earlier findings by demonstrating that both alpha and beta bursts in humans correlate with the filtering and control of memory items, but with region and task-specific differences between the two rhythms. Occipital beta burst patterns were selectively modulated during the transition from sensory processing to memory retention whereas prefrontal and parietal beta bursts tracked sequence order and were proactively upregulated prior to upcoming target encoding. Occipital alpha bursts instead increased during the actual presentation of unwanted sensory stimuli. Source reconstruction additionally suggested the involvement of striatal and thalamic alpha and beta. Thus, specific whole-brain burst patterns correlate with different aspects of working memory control.
Collapse
Affiliation(s)
- Johan Liljefors
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Rita Almeida
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Stockholm University Brain Imaging Centre, Stockholm University, Stockholm, Sweden
| | - Gustaf Rane
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Johan N Lundström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Monell Chemical Senses Center, Philadelphia, PA, United States of America
| | - Pawel Herman
- School of Electrical Engineering and Computer Science, and Digital Futures, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Mikael Lundqvist
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
126
|
Xiong Y(S, Donoghue JA, Lundqvist M, Mahnke M, Major AJ, Brown EN, Miller EK, Bastos AM. Propofol-mediated loss of consciousness disrupts predictive routing and local field phase modulation of neural activity. Proc Natl Acad Sci U S A 2024; 121:e2315160121. [PMID: 39374396 PMCID: PMC11494327 DOI: 10.1073/pnas.2315160121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 08/27/2024] [Indexed: 10/09/2024] Open
Abstract
Predictive coding is a fundamental function of the cortex. The predictive routing model proposes a neurophysiological implementation for predictive coding. Predictions are fed back from the deep-layer cortex via alpha/beta (8 to 30 Hz) oscillations. They inhibit the gamma (40 to 100 Hz) and spiking that feed sensory inputs forward. Unpredicted inputs arrive in circuits unprepared by alpha/beta, resulting in enhanced gamma and spiking. To test the predictive routing model and its role in consciousness, we collected data from intracranial recordings of macaque monkeys during passive presentation of auditory oddballs before and after propofol-mediated loss of consciousness (LOC). In line with the predictive routing model, alpha/beta oscillations in the awake state served to inhibit the processing of predictable stimuli. Propofol-mediated LOC eliminated alpha/beta modulation by a predictable stimulus in the sensory cortex and alpha/beta coherence between sensory and frontal areas. As a result, oddball stimuli evoked enhanced gamma power, late period (>200 ms from stimulus onset) spiking, and superficial layer sinks in the sensory cortex. LOC also resulted in diminished decodability of pattern-level prediction error signals in the higher-order cortex. Therefore, the auditory cortex was in a disinhibited state during propofol-mediated LOC. However, despite these enhanced feedforward responses in the auditory cortex, there was a loss of differential spiking to oddballs in the higher-order cortex. This may be a consequence of a loss of within-area and interareal spike-field coupling in the alpha/beta and gamma frequency bands. These results provide strong constraints for current theories of consciousness.
Collapse
Affiliation(s)
| | - Jacob A. Donoghue
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Mikael Lundqvist
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institute, Stockholm171 77, Sweden
| | - Meredith Mahnke
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Alex James Major
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Emery N. Brown
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- The Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA02114
- The Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Earl K. Miller
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - André M. Bastos
- Department of Psychology, Vanderbilt University, Nashville, TN37235
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN37240
| |
Collapse
|
127
|
Magosso E, Borra D. The strength of anticipated distractors shapes EEG alpha and theta oscillations in a Working Memory task. Neuroimage 2024; 300:120835. [PMID: 39245399 DOI: 10.1016/j.neuroimage.2024.120835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/10/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024] Open
Abstract
Working Memory (WM) requires maintenance of task-relevant information and suppression of task-irrelevant/distracting information. Alpha and theta oscillations have been extensively investigated in relation to WM. However, studies that examine both theta and alpha bands in relation to distractors, encompassing not only power modulation but also connectivity modulation, remain scarce. Here, we depicted, at the EEG-source level, the increase in power and connectivity in theta and alpha bands induced by strong relative to weak distractors during a visual Sternberg-like WM task involving the encoding of verbal items. During retention, a strong or weak distractor was presented, predictable in time and nature. Analysis focused on the encoding and retention phases before distractor presentation. Theta and alpha power were computed in cortical regions of interest, and connectivity networks estimated via spectral Granger causality and synthetized using in/out degree indices. The following modulations were observed for strong vs. weak distractors. In theta band during encoding, the power in frontal regions increased, together with frontal-to-frontal and bottom-up occipital-to-temporal-to-frontal connectivity; even during retention, bottom-up theta connectivity increased. In alpha band during retention, but not during encoding, the power in temporal-occipital regions increased, together with top-down frontal-to-occipital and temporal-to-occipital connectivity. From our results, we postulate a proactive cooperation between theta and alpha mechanisms: the first would mediate enhancement of target representation both during encoding and retention, and the second would mediate increased inhibition of sensory areas during retention only, to suppress the processing of imminent distractor without interfering with the processing of ongoing target stimulus during encoding.
Collapse
Affiliation(s)
- Elisa Magosso
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, Cesena Campus, Cesena, 47521, Italy; Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Bologna, 40126, Italy.
| | - Davide Borra
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, Cesena Campus, Cesena, 47521, Italy
| |
Collapse
|
128
|
Lago S, Zago S, Bambini V, Arcara G. Pre-Stimulus Activity of Left and Right TPJ in Linguistic Predictive Processing: A MEG Study. Brain Sci 2024; 14:1014. [PMID: 39452027 PMCID: PMC11505736 DOI: 10.3390/brainsci14101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The left and right temporoparietal junctions (TPJs) are two brain areas involved in several brain networks, largely studied for their diverse roles, from attentional orientation to theory of mind and, recently, predictive processing. In predictive processing, one crucial concept is prior precision, that is, the reliability of the predictions of incoming stimuli. This has been linked with modulations of alpha power as measured with electrophysiological techniques, but TPJs have seldom been studied in this framework. METHODS The present article investigates, using magnetoencephalography, whether spontaneous oscillations in pre-stimulus alpha power in the left and right TPJs can modulate brain responses during a linguistic task that requires predictive processing in literal and non-literal sentences. RESULTS Overall, results show that pre-stimulus alpha power in the rTPJ was associated with post-stimulus responses only in the left superior temporal gyrus, while lTPJ pre-stimulus alpha power was associated with post-stimulus activity in Broca's area, left middle temporal gyrus, and left superior temporal gyrus. CONCLUSIONS We conclude that both the right and left TPJs have a role in linguistic prediction, involving a network of core language regions, with differences across brain areas and linguistic conditions that can be parsimoniously explained in the context of predictive processing.
Collapse
Affiliation(s)
- Sara Lago
- IRCCS San Camillo Hospital, 30126 Venice, Italy; (S.L.); (S.Z.)
- Padova Neuroscience Center, University of Padua, 35129 Padua, Italy
| | - Sara Zago
- IRCCS San Camillo Hospital, 30126 Venice, Italy; (S.L.); (S.Z.)
| | - Valentina Bambini
- Laboratory of Neurolinguistics and Experimental Pragmatics (NEPLab), Department of Humanities and Life Sciences, University School for Advanced Studies IUSS, 27100 Pavia, Italy;
| | - Giorgio Arcara
- IRCCS San Camillo Hospital, 30126 Venice, Italy; (S.L.); (S.Z.)
- Padova Neuroscience Center, University of Padua, 35129 Padua, Italy
| |
Collapse
|
129
|
Liu Y, van Hell JG. Neural correlates of listening to nonnative-accented speech in multi-talker background noise. Neuropsychologia 2024; 203:108968. [PMID: 39117064 DOI: 10.1016/j.neuropsychologia.2024.108968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
We examined the neural correlates underlying the semantic processing of native- and nonnative-accented sentences, presented in quiet or embedded in multi-talker noise. Implementing a semantic violation paradigm, 36 English monolingual young adults listened to American-accented (native) and Chinese-accented (nonnative) English sentences with or without semantic anomalies, presented in quiet or embedded in multi-talker noise, while EEG was recorded. After hearing each sentence, participants verbally repeated the sentence, which was coded and scored as an offline comprehension accuracy measure. In line with earlier behavioral studies, the negative impact of background noise on sentence repetition accuracy was higher for nonnative-accented than for native-accented sentences. At the neural level, the N400 effect for semantic anomaly was larger for native-accented than for nonnative-accented sentences, and was also larger for sentences presented in quiet than in noise, indicating impaired lexical-semantic access when listening to nonnative-accented speech or sentences embedded in noise. No semantic N400 effect was observed for nonnative-accented sentences presented in noise. Furthermore, the frequency of neural oscillations in the alpha frequency band (an index of online cognitive listening effort) was higher when listening to sentences in noise versus in quiet, but no difference was observed across the accent conditions. Semantic anomalies presented in background noise also elicited higher theta activity, whereas processing nonnative-accented anomalies was associated with decreased theta activity. Taken together, we found that listening to nonnative accents or background noise is associated with processing challenges during online semantic access, leading to decreased comprehension accuracy. However, the underlying cognitive mechanism (e.g., associated listening efforts) might manifest differently across accented speech processing and speech in noise processing.
Collapse
Affiliation(s)
- Yushuang Liu
- Department of Psychology and Center for Language Science, The Pennsylvania State University, University Park, PA, USA.
| | - Janet G van Hell
- Department of Psychology and Center for Language Science, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
130
|
Dundon NM, Stuber A, Bullock T, Garcia JO, Babenko V, Rizor E, Yang D, Giesbrecht B, Grafton ST. Cardiac-Sympathetic Contractility and Neural Alpha-Band Power: Cross-Modal Collaboration during Approach-Avoidance Conflict. J Neurosci 2024; 44:e2008232024. [PMID: 39214705 PMCID: PMC11466073 DOI: 10.1523/jneurosci.2008-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
As evidence mounts that the cardiac-sympathetic nervous system reacts to challenging cognitive settings, we ask if these responses are epiphenomenal companions or if there is evidence suggesting a more intertwined role of this system with cognitive function. Healthy male and female human participants performed an approach-avoidance paradigm, trading off monetary reward for painful electric shock, while we recorded simultaneous electroencephalographic and cardiac-sympathetic signals. Participants were reward sensitive but also experienced approach-avoidance "conflict" when the subjective appeal of the reward was near equivalent to the revulsion of the cost. Drift-diffusion model parameters suggested that participants managed conflict in part by integrating larger volumes of evidence into choices (wider decision boundaries). Late alpha-band (neural) dynamics were consistent with widening decision boundaries serving to combat reward sensitivity and spread attention more fairly to all dimensions of available information. Independently, wider boundaries were also associated with cardiac "contractility" (an index of sympathetically mediated positive inotropy). We also saw evidence of conflict-specific "collaboration" between the neural and cardiac-sympathetic signals. In states of high conflict, the alignment (i.e., product) of alpha dynamics and contractility were associated with a further widening of the boundary, independent of either signal's singular association. Cross-trial coherence analyses provided additional evidence that the autonomic systems controlling cardiac-sympathetics might influence the assessment of information streams during conflict by disrupting or overriding reward processing. We conclude that cardiac-sympathetic control might play a critical role, in collaboration with cognitive processes, during the approach-avoidance conflict in humans.
Collapse
Affiliation(s)
- Neil M Dundon
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, California 93106
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University of Freiburg, Freiburg 79104, Germany
| | - Alexander Stuber
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, California 93106
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California 93106
| | - Tom Bullock
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, California 93106
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California 93106
| | - Javier O Garcia
- Humans in Complex Systems Division, US DEVCOM Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005
| | - Viktoriya Babenko
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, California 93106
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California 93106
- BIOPAC Systems Inc., Goleta, California 93117
| | - Elizabeth Rizor
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, California 93106
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California 93106
- Interdepartmental Graduate Program in Dynamical Neuroscience, University of California, Santa Barbara, California 93106
| | - Dengxian Yang
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California 93106
- Department of Computer Science, University of California, Santa Barbara, California 93106
| | - Barry Giesbrecht
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, California 93106
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California 93106
- Interdepartmental Graduate Program in Dynamical Neuroscience, University of California, Santa Barbara, California 93106
| | - Scott T Grafton
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, California 93106
| |
Collapse
|
131
|
Duecker K, Doelling KB, Breska A, Coffey EBJ, Sivarao DV, Zoefel B. Challenges and Approaches in the Study of Neural Entrainment. J Neurosci 2024; 44:e1234242024. [PMID: 39358026 PMCID: PMC11450538 DOI: 10.1523/jneurosci.1234-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 10/04/2024] Open
Abstract
When exposed to rhythmic stimulation, the human brain displays rhythmic activity across sensory modalities and regions. Given the ubiquity of this phenomenon, how sensory rhythms are transformed into neural rhythms remains surprisingly inconclusive. An influential model posits that endogenous oscillations entrain to external rhythms, thereby encoding environmental dynamics and shaping perception. However, research on neural entrainment faces multiple challenges, from ambiguous definitions to methodological difficulties when endogenous oscillations need to be identified and disentangled from other stimulus-related mechanisms that can lead to similar phase-locked responses. Yet, recent years have seen novel approaches to overcome these challenges, including computational modeling, insights from dynamical systems theory, sophisticated stimulus designs, and study of neuropsychological impairments. This review outlines key challenges in neural entrainment research, delineates state-of-the-art approaches, and integrates findings from human and animal neurophysiology to provide a broad perspective on the usefulness, validity, and constraints of oscillatory models in brain-environment interaction.
Collapse
Affiliation(s)
- Katharina Duecker
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - Keith B Doelling
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, Paris F-75012, France
| | - Assaf Breska
- Max-Planck Institute for Biological Cybernetics, D-72076 Tübingen, Germany
| | | | - Digavalli V Sivarao
- Department of Pharmaceutical Sciences, East Tennessee State University, Johnson City, Tennessee 37614
| | - Benedikt Zoefel
- Centre de Recherche Cerveau et Cognition (CerCo), UMR 5549 CNRS - Université Paul Sabatier Toulouse III, Toulouse F-31052, France
| |
Collapse
|
132
|
Zavecz Z, Janacsek K, Simor P, Cohen MX, Nemeth D. Similarity of brain activity patterns during learning and subsequent resting state predicts memory consolidation. Cortex 2024; 179:168-190. [PMID: 39197408 DOI: 10.1016/j.cortex.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 05/28/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024]
Abstract
Spontaneous reactivation of brain activity from learning to a subsequent off-line period has been implicated as a neural mechanism underlying memory consolidation. However, similarities in brain activity may also emerge as a result of individual, trait-like characteristics. Here, we introduced a novel approach for analyzing continuous electroencephalography (EEG) data to investigate learning-induced changes as well as trait-like characteristics in brain activity underlying memory consolidation. Thirty-one healthy young adults performed a learning task, and their performance was retested after a short (∼1 h) delay. Consolidation of two distinct types of information (serial-order and probability) embedded in the task were tested to reveal similarities in functional networks that uniquely predict the changes in the respective memory performance. EEG was recorded during learning and pre- and post-learning rest periods. To investigate brain activity associated with consolidation, we quantified similarities in EEG functional connectivity between learning and pre-learning rest (baseline similarity) and learning and post-learning rest (post-learning similarity). While comparable patterns of these two could indicate trait-like similarities, changes from baseline to post-learning similarity could indicate learning-induced changes, possibly spontaneous reactivation. Higher learning-induced changes in alpha frequency connectivity (8.5-9.5 Hz) were associated with better consolidation of serial-order information, particularly for long-range connections across central and parietal sites. The consolidation of probability information was associated with learning-induced changes in delta frequency connectivity (2.5-3 Hz) specifically for more local, short-range connections. Furthermore, there was a substantial overlap between the baseline and post-learning similarities and their associations with consolidation performance, suggesting robust (trait-like) differences in functional connectivity networks underlying memory processes.
Collapse
Affiliation(s)
- Zsófia Zavecz
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Department of Psychology, University of Cambridge, Cambridge, United Kingdom.
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Centre of Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, University of Greenwich, London, United Kingdom.
| | - Peter Simor
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Michael X Cohen
- Donders Centre for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dezso Nemeth
- INSERM, Université Claude Bernard Lyon 1, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Bron, France; NAP Research Group, Institute of Psychology, Eötvös Loránd University & Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary; Department of Education and Psychology, University of Atlántico Medio, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
133
|
Opie GM, Hughes JM, Puri R. Age-related differences in how the shape of alpha and beta oscillations change during reaction time tasks. Neurobiol Aging 2024; 142:52-64. [PMID: 39153461 DOI: 10.1016/j.neurobiolaging.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
While the shape of cortical oscillations is increasingly recognised to be physiologically and functionally informative, its relevance to the aging motor system has not been established. We therefore examined the shape of alpha and beta band oscillations recorded at rest, as well as during performance of simple and go/no-go reaction time tasks, in 33 young (23.3 ± 2.9 years, 27 females) and 27 older (60.0 ± 5.2 years, 23 females) adults. The shape of individual oscillatory cycles was characterised using a recently developed pipeline involving empirical mode decomposition, before being decomposed into waveform motifs using principal component analysis. This revealed four principal components that were uniquely influenced by task and/or age. These described specific dimensions of shape and tended to be modulated during the reaction phase of each task. Our results suggest that although oscillation shape is task-dependent, the nature of this effect is altered by advancing age, possibly reflecting alterations in cortical activity. These outcomes demonstrate the utility of this approach for understanding the neurophysiological effects of ageing.
Collapse
Affiliation(s)
- George M Opie
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia.
| | - James M Hughes
- School of Mechanical Engineering, The University of Adelaide, Adelaide, Australia
| | - Rohan Puri
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
134
|
Hüche Larsen H, Justiniano MD, Frisk RF, Lundbye-Jensen J, Farmer SF, Nielsen JB. Task difficulty of visually guided gait modifications involves differences in central drive to spinal motor neurons. J Neurophysiol 2024; 132:1126-1141. [PMID: 39196679 DOI: 10.1152/jn.00466.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 08/30/2024] Open
Abstract
Walking in natural environments requires visually guided modifications, which can be more challenging when involving sideways steps rather than longer steps. This exploratory study investigated whether these two types of modifications involve different changes in the central drive to spinal motor neurons of leg muscles. Fifteen adults [age: 36 ± 6 (SD) years] walked on a treadmill (4 km/h) while observing a screen displaying the real-time position of their toes. At the beginning of the swing phase, a visual target appeared in front (forward) or medial-lateral (sideways) of the ground contact in random step cycles (approximately every third step). We measured three-dimensional kinematics and electromyographic activity from leg muscles bilaterally. Intermuscular coherence was calculated in the alpha (5-15 Hz), beta (15-30 Hz), and gamma bands (30-45 Hz) approximately 230 ms before and after ground contact in control and target steps. Results showed that adjustments toward sideways targets were associated with significantly higher error, lower foot lift, and higher cocontraction between antagonist ankle muscles. Movements toward sideways targets were associated with larger beta-band soleus (SOL): medial gastrocnemius (MG) coherence and a more narrow and larger peak of synchronization in the cumulant density before ground contact. In contrast, movements toward forward targets showed no significant differences in coherence or synchronization compared with control steps. Larger SOL:MG beta-band coherence and short-term synchronization were observed during sideways, but not forward, gait modifications. This suggests that visually guided gait modifications may involve differences in the central drive to spinal ankle motor neurons dependent on the level of task difficulty.NEW & NOTEWORTHY This exploratory study suggests a specific and temporally restricted increase of central (likely corticospinal) drive to ankle muscles in relation to visually guided gait modifications. The findings indicate that a high level of visual attention to control the position of the ankle joint precisely before ground contact may involve increased central drive to ankle muscles. These findings are important for understanding the neural mechanisms underlying visually guided gait and may help develop rehabilitation interventions.
Collapse
Affiliation(s)
- Helle Hüche Larsen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Elsass Foundation, Charlottenlund, Denmark
| | | | - Rasmus Feld Frisk
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Elsass Foundation, Charlottenlund, Denmark
| | - Jesper Lundbye-Jensen
- Movement and Neuroscience, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Simon Francis Farmer
- Department of Clinical and Movement Neuroscience, Institute of Neurology, University College London, London, United Kingdom
- Department of Clinical Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Jens Bo Nielsen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Elsass Foundation, Charlottenlund, Denmark
| |
Collapse
|
135
|
Mottaz A, Savic B, Allaman L, Guggisberg AG. Neural correlates of motor learning: Network communication versus local oscillations. Netw Neurosci 2024; 8:714-733. [PMID: 39355447 PMCID: PMC11340994 DOI: 10.1162/netn_a_00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/18/2024] [Indexed: 10/03/2024] Open
Abstract
Learning new motor skills through training, also termed motor learning, is central for everyday life. Current training strategies recommend intensive task-repetitions aimed at inducing local activation of motor areas, associated with changes in oscillation amplitudes ("event-related power") during training. More recently, another neural mechanism was suggested to influence motor learning: modulation of functional connectivity (FC), that is, how much spatially separated brain regions communicate with each other before and during training. The goal of the present study was to compare the impact of these two neural processing types on motor learning. We measured EEG before, during, and after a finger-tapping task (FTT) in 20 healthy subjects. The results showed that training gain, long-term expertise (i.e., average motor performance), and consolidation were all predicted by whole-brain alpha- and beta-band FC at motor areas, striatum, and mediotemporal lobe (MTL). Local power changes during training did not predict any dependent variable. Thus, network dynamics seem more crucial than local activity for motor sequence learning, and training techniques should attempt to facilitate network interactions rather than local cortical activation.
Collapse
Affiliation(s)
- Anaïs Mottaz
- Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital of Geneva, University of Geneva, Switzerland
- SIB Text Mining Group, Swiss Institute of Bioinformatics, Carouge, Switzerland
- BiTeM Group, Information Sciences, HES-SO/HEG, Carouge, Switzerland
| | - Branislav Savic
- Division of Neurorehabilitation, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Leslie Allaman
- Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital of Geneva, University of Geneva, Switzerland
| | - Adrian G. Guggisberg
- Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital of Geneva, University of Geneva, Switzerland
- Division of Neurorehabilitation, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| |
Collapse
|
136
|
Braunsmann L, Beermann F, Strüder HK, Abeln V. Self-selected versus imposed running intensity and the acute effects on mood, cognition, and (a)periodic brain activity. Cogn Neurodyn 2024; 18:2221-2241. [PMID: 39555283 PMCID: PMC11564500 DOI: 10.1007/s11571-024-10084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/13/2024] [Accepted: 01/31/2024] [Indexed: 11/19/2024] Open
Abstract
The beneficial psychological effects of exercise might be explained by self-determination theory and autonomy. However, the underlying neurophysiological mechanisms are even less elucidated. Previously neglected, aperiodic (1/f) brain activity is suggested to indicate enhanced cortical inhibition when the slope is steeper. This is thought to be associated with an increased cognitive performance. Therefore, we hypothesize that running with a self-selected intensity and thus given autonomy leads to stronger neural inhibition accompanied by psychological improvements. Twenty-nine runners performed two 30-min runs. First, they chose their individual feel-good intensity (self-selected run; SR). After a 4-weeks washout, the same speed was blindly prescribed (imposed run; IR). Acute effects on mood (Feeling Scale, Felt Arousal Scale, MoodMeter®), cognition (d2-R, digit span test) and electrocortical activity (slope, offset, 1/f-corrected alpha and low beta band) were analyzed before and after the runs. Both runs had an equal physical workload and improved mood in the Felt Arousal Scale, but not in the Feeling Scale or MoodMeter®. Cognitive performance improved after both runs in the d2-R, while it remained stable in the digit span test after SR, but decreased after IR. After running, the aperiodic slope was steeper, and the offset was reduced. Alpha activity increased after SR only, while low beta activity decreased after both conditions. The aperiodic features partially correlated with mood and cognition. SR was not clearly superior regarding psychological effects. Reduced aperiodic brain activity indicates enhanced neural inhibition after both runs. The 1/f-corrected alpha band may emphasize a different neural processing between both runs. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-024-10084-2.
Collapse
Affiliation(s)
- Leonard Braunsmann
- Institute of Movement and Neurosciences, German Sport University Cologne, Am Sportpark Muengersdorf 6, 50933 Cologne, Germany
| | - Finja Beermann
- Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Heiko K. Strüder
- Institute of Movement and Neurosciences, German Sport University Cologne, Am Sportpark Muengersdorf 6, 50933 Cologne, Germany
| | - Vera Abeln
- Institute of Movement and Neurosciences, German Sport University Cologne, Am Sportpark Muengersdorf 6, 50933 Cologne, Germany
| |
Collapse
|
137
|
Bittar A, Garner PN. Exploring neural oscillations during speech perception via surrogate gradient spiking neural networks. Front Neurosci 2024; 18:1449181. [PMID: 39385848 PMCID: PMC11461475 DOI: 10.3389/fnins.2024.1449181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/28/2024] [Indexed: 10/12/2024] Open
Abstract
Understanding cognitive processes in the brain demands sophisticated models capable of replicating neural dynamics at large scales. We present a physiologically inspired speech recognition architecture, compatible and scalable with deep learning frameworks, and demonstrate that end-to-end gradient descent training leads to the emergence of neural oscillations in the central spiking neural network. Significant cross-frequency couplings, indicative of these oscillations, are measured within and across network layers during speech processing, whereas no such interactions are observed when handling background noise inputs. Furthermore, our findings highlight the crucial inhibitory role of feedback mechanisms, such as spike frequency adaptation and recurrent connections, in regulating and synchronizing neural activity to improve recognition performance. Overall, on top of developing our understanding of synchronization phenomena notably observed in the human auditory pathway, our architecture exhibits dynamic and efficient information processing, with relevance to neuromorphic technology.
Collapse
Affiliation(s)
- Alexandre Bittar
- Idiap Research Institute, Audio Inference, Martigny, Switzerland
- École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
138
|
Pourdavood P, Jacob M. EEG spectral attractors identify a geometric core of brain dynamics. PATTERNS (NEW YORK, N.Y.) 2024; 5:101025. [PMID: 39568645 PMCID: PMC11573925 DOI: 10.1016/j.patter.2024.101025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/28/2024] [Accepted: 06/19/2024] [Indexed: 11/22/2024]
Abstract
Multidimensional reconstruction of brain attractors from electroencephalography (EEG) data enables the analysis of geometric complexity and interactions between signals in state space. Utilizing resting-state data from young and older adults, we characterize periodic (traditional frequency bands) and aperiodic (broadband exponent) attractors according to their geometric complexity and shared dynamical signatures, which we refer to as a geometric cross-parameter coupling. Alpha and aperiodic attractors are the least complex, and their global shapes are shared among all other frequency bands, affording alpha and aperiodic greater predictive power. Older adults show lower geometric complexity but greater coupling, resulting from dedifferentiation of gamma activity. The form and content of resting-state thoughts were further associated with the complexity of attractor dynamics. These findings support a process-developmental perspective on the brain's dynamic core, whereby more complex information differentiates out of an integrative and global geometric core.
Collapse
Affiliation(s)
- Parham Pourdavood
- Mental Health Service, San Francisco VA Medical Center, 4150 Clement St., San Francisco, CA 94121, USA
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Michael Jacob
- Mental Health Service, San Francisco VA Medical Center, 4150 Clement St., San Francisco, CA 94121, USA
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
139
|
Kasten FH, Busson Q, Zoefel B. Opposing neural processing modes alternate rhythmically during sustained auditory attention. Commun Biol 2024; 7:1125. [PMID: 39266696 PMCID: PMC11393317 DOI: 10.1038/s42003-024-06834-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
During continuous tasks, humans show spontaneous fluctuations in performance, putatively caused by varying attentional resources allocated to process external information. If neural resources are used to process other, presumably "internal" information, sensory input can be missed and explain an apparent dichotomy of "internal" versus "external" attention. In the current study, we extract presumed neural signatures of these attentional modes in human electroencephalography (EEG): neural entrainment and α-oscillations (~10-Hz), linked to the processing and suppression of sensory information, respectively. We test whether they exhibit structured fluctuations over time, while listeners attend to an ecologically relevant stimulus, like speech, and complete a task that requires full and continuous attention. Results show an antagonistic relation between neural entrainment to speech and spontaneous α-oscillations in two distinct brain networks-one specialized in the processing of external information, the other reminiscent of the dorsal attention network. These opposing neural modes undergo slow, periodic fluctuations around ~0.07 Hz and are related to the detection of auditory targets. Our study might have tapped into a general attentional mechanism that is conserved across species and has important implications for situations in which sustained attention to sensory information is critical.
Collapse
Affiliation(s)
- Florian H Kasten
- Department for Cognitive, Affective, Behavioral Neuroscience with Focus Neurostimulation, Institute of Psychology, University of Trier, Trier, Germany.
- Centre de Recherche Cerveau & Cognition, CNRS, Toulouse, France.
- Université Toulouse III Paul Sabatier, Toulouse, France.
| | | | - Benedikt Zoefel
- Centre de Recherche Cerveau & Cognition, CNRS, Toulouse, France.
- Université Toulouse III Paul Sabatier, Toulouse, France.
| |
Collapse
|
140
|
McNally M, Byczynski G, Vanneste S. An overview of the effects and mechanisms of transcranial stimulation frequency on motor learning. J Neuroeng Rehabil 2024; 21:157. [PMID: 39267118 PMCID: PMC11391832 DOI: 10.1186/s12984-024-01464-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024] Open
Abstract
Many studies over the recent decades have attempted the modulation of motor learning using brain stimulation. Alternating currents allow for researchers not only to electrically stimulate the brain, but to further investigate the effects of specific frequencies, in and beyond the context of their endogenous associations. Transcranial alternating current stimulation (tACS) has therefore been used during motor learning to modulate aspects of acquisition, consolidation and performance of a learned motor skill. Despite numerous reviews on the effects of tACS, and its role in motor learning, there are few studies which synthesize the numerous frequencies and their respective theoretical mechanisms as they relate to motor and perceptual processes. Here we provide a short overview of the main stimulation frequencies used in motor learning modulation (e.g., alpha, beta, and gamma), and discuss the effect and proposed mechanisms of these studies. We summarize with the current state of the field, the effectiveness and variability in motor learning modulation, and novel mechanistic proposals from other fields.
Collapse
Affiliation(s)
- Michelle McNally
- Department of Physiology, Trinity College Dublin, Dublin, D02 PN40, Ireland
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Gabriel Byczynski
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland
- School of Psychology, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland.
- School of Psychology, Trinity College Dublin, Dublin, D02 PN40, Ireland.
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, D02 PN40, Ireland.
| |
Collapse
|
141
|
Lohani M, Cooper JM, McDonnell AS, Erickson GG, Simmons TG, Carriero AE, Crabtree KW, Strayer DL. Reliable but multi-dimensional cognitive demand in operating partially automated vehicles: implications for real-world automation research. Cogn Res Princ Implic 2024; 9:60. [PMID: 39256243 PMCID: PMC11387569 DOI: 10.1186/s41235-024-00591-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
The reliability of cognitive demand measures in controlled laboratory settings is well-documented; however, limited research has directly established their stability under real-life and high-stakes conditions, such as operating automated technology on actual highways. Partially automated vehicles have advanced to become an everyday mode of transportation, and research on driving these advanced vehicles requires reliable tools for evaluating the cognitive demand on motorists to sustain optimal engagement in the driving process. This study examined the reliability of five cognitive demand measures, while participants operated partially automated vehicles on real roads across four occasions. Seventy-one participants (aged 18-64 years) drove on actual highways while their heart rate, heart rate variability, electroencephalogram (EEG) alpha power, and behavioral performance on the Detection Response Task were measured simultaneously. Findings revealed that EEG alpha power had excellent test-retest reliability, heart rate and its variability were good, and Detection Response Task reaction time and hit-rate had moderate reliabilities. Thus, the current study addresses concerns regarding the reliability of these measures in assessing cognitive demand in real-world automation research, as acceptable test-retest reliabilities were found across all measures for drivers across occasions. Despite the high reliability of each measure, low intercorrelations among measures were observed, and internal consistency was better when cognitive demand was estimated as a multi-factorial construct. This suggests that they tap into different aspects of cognitive demand while operating automation in real life. The findings highlight that a combination of psychophysiological and behavioral methods can reliably capture multi-faceted cognitive demand in real-world automation research.
Collapse
Affiliation(s)
- Monika Lohani
- Department of Psychology, University of Utah, 380 S 1530 E BEHS 1003, Salt Lake City, UT, 84112, USA.
| | | | - Amy S McDonnell
- Department of Psychology, University of Utah, 380 S 1530 E BEHS 1003, Salt Lake City, UT, 84112, USA
| | - Gus G Erickson
- Department of Psychology, University of Utah, 380 S 1530 E BEHS 1003, Salt Lake City, UT, 84112, USA
| | - Trent G Simmons
- Department of Psychology, University of Utah, 380 S 1530 E BEHS 1003, Salt Lake City, UT, 84112, USA
| | - Amanda E Carriero
- Department of Psychology, University of Utah, 380 S 1530 E BEHS 1003, Salt Lake City, UT, 84112, USA
| | - Kaedyn W Crabtree
- Department of Psychology, University of Utah, 380 S 1530 E BEHS 1003, Salt Lake City, UT, 84112, USA
| | - David L Strayer
- Department of Psychology, University of Utah, 380 S 1530 E BEHS 1003, Salt Lake City, UT, 84112, USA
| |
Collapse
|
142
|
Hammer J, Kajsova M, Kalina A, Krysl D, Fabera P, Kudr M, Jezdik P, Janca R, Krsek P, Marusic P. Antagonistic behavior of brain networks mediated by low-frequency oscillations: electrophysiological dynamics during internal-external attention switching. Commun Biol 2024; 7:1105. [PMID: 39251869 PMCID: PMC11385230 DOI: 10.1038/s42003-024-06732-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Antagonistic activity of brain networks likely plays a fundamental role in how the brain optimizes its performance by efficient allocation of computational resources. A prominent example involves externally/internally oriented attention tasks, implicating two anticorrelated, intrinsic brain networks: the default mode network (DMN) and the dorsal attention network (DAN). To elucidate electrophysiological underpinnings and causal interplay during attention switching, we recorded intracranial EEG (iEEG) from 25 epilepsy patients with electrode contacts localized in the DMN and DAN. We show antagonistic network dynamics of activation-related changes in high-frequency (> 50 Hz) and low-frequency (< 30 Hz) power. The temporal profile of information flow between the networks estimated by functional connectivity suggests that the activated network inhibits the other one, gating its activity by increasing the amplitude of the low-frequency oscillations. Insights about inter-network communication may have profound implications for various brain disorders in which these dynamics are compromised.
Collapse
Affiliation(s)
- Jiri Hammer
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic.
| | - Michaela Kajsova
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Adam Kalina
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - David Krysl
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Petr Fabera
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Martin Kudr
- Department of Pediatric Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Petr Jezdik
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Radek Janca
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Pavel Krsek
- Department of Pediatric Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Petr Marusic
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic.
| |
Collapse
|
143
|
Cho H, Adamek M, Willie JT, Brunner P. Novel cyclic homogeneous oscillation detection method for high accuracy and specific characterization of neural dynamics. eLife 2024; 12:RP91605. [PMID: 39240267 PMCID: PMC11379461 DOI: 10.7554/elife.91605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Determining the presence and frequency of neural oscillations is essential to understanding dynamic brain function. Traditional methods that detect peaks over 1/f noise within the power spectrum fail to distinguish between the fundamental frequency and harmonics of often highly non-sinusoidal neural oscillations. To overcome this limitation, we define fundamental criteria that characterize neural oscillations and introduce the cyclic homogeneous oscillation (CHO) detection method. We implemented these criteria based on an autocorrelation approach to determine an oscillation's fundamental frequency. We evaluated CHO by verifying its performance on simulated non-sinusoidal oscillatory bursts and validated its ability to determine the fundamental frequency of neural oscillations in electrocorticographic (ECoG), electroencephalographic (EEG), and stereoelectroencephalographic (SEEG) signals recorded from 27 human subjects. Our results demonstrate that CHO outperforms conventional techniques in accurately detecting oscillations. In summary, CHO demonstrates high precision and specificity in detecting neural oscillations in time and frequency domains. The method's specificity enables the detailed study of non-sinusoidal characteristics of oscillations, such as the degree of asymmetry and waveform of an oscillation. Furthermore, CHO can be applied to identify how neural oscillations govern interactions throughout the brain and to determine oscillatory biomarkers that index abnormal brain function.
Collapse
Affiliation(s)
- Hohyun Cho
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, United States
- National Center for Adaptive Neurotechnologies, St. Louis, United States
| | - Markus Adamek
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, United States
- National Center for Adaptive Neurotechnologies, St. Louis, United States
| | - Jon T Willie
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, United States
- National Center for Adaptive Neurotechnologies, St. Louis, United States
| | - Peter Brunner
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, United States
- National Center for Adaptive Neurotechnologies, St. Louis, United States
| |
Collapse
|
144
|
Kim M, Kim SP. Distraction impact of concurrent conversation on event-related potential based brain-computer interfaces. J Neural Eng 2024; 21:056004. [PMID: 39178898 DOI: 10.1088/1741-2552/ad731e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024]
Abstract
Objective.This study investigates the impact of conversation on the performance of visual event-related potential (ERP)-based brain-computer interfaces (BCIs), considering distractions in real life environment. The research aims to understand how cognitive distractions from speaking and listening activities affect ERP-BCI performance.Approach.The experiment employs a dual-task paradigm where participants control a smart light using visual ERP-BCIs while simultaneously conducting speaking or listening tasks.Main results.The findings reveal that speaking notably degrades BCI accuracy and the amplitude of ERP components, while increases the latency variability of ERP components and occipital alpha power. In contrast, listening and simple syllable repetition tasks have a lesser impact on these variables. The results suggest that speaking activity significantly distracts visual attentional processes critical for BCI operationSignificance. This study highlights the need to take distractions by daily conversation into account of the design and implementation of ERP-BCIs.
Collapse
Affiliation(s)
- Minju Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
145
|
Balconi M, Rovelli K, Angioletti L, Allegretta RA. Working Memory Workload When Making Complex Decisions: A Behavioral and EEG Study. SENSORS (BASEL, SWITZERLAND) 2024; 24:5754. [PMID: 39275665 PMCID: PMC11397910 DOI: 10.3390/s24175754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024]
Abstract
Working memory (WM) is crucial for adequate performance execution in effective decision-making, enabling individuals to identify patterns and link information by focusing on current and past situations. This work explored behavioral and electrophysiological (EEG) WM correlates through a novel decision-making task, based on real-life situations, assessing WM workload related to contextual variables. A total of 24 participants performed three task phases (encoding, retrieval, and metacognition) while their EEG activity (delta, theta, alpha, and beta frequency bands) was continuously recorded. From the three phases, three main behavioral indices were computed: Efficiency in complex Decision-making, Tolerance of Decisional Complexity, and Metacognition of Difficulties. Results showed the central role of alpha and beta bands during encoding and retrieval: decreased alpha/beta activity in temporoparietal areas during encoding might indicate activation of regions related to verbal WM performance and a load-related effect, while decreased alpha activity in the same areas and increased beta activity over posterior areas during retrieval might indicate, respectively, active information processing and focused attention. Evidence from correlational analysis between the three indices and EEG bands are also discussed. Integration of behavioral and metacognitive data gathered through this novel task and their interrelation with EEG correlates during task performance proves useful to assess WM workload during complex managerial decision-making.
Collapse
Affiliation(s)
- Michela Balconi
- International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, 20123 Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| | - Katia Rovelli
- International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, 20123 Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| | - Laura Angioletti
- International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, 20123 Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| | - Roberta A Allegretta
- International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, 20123 Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| |
Collapse
|
146
|
Huang YN, Liang WK, Juan CH. Spatial prediction modulates the rhythm of attentional sampling. Cereb Cortex 2024; 34:bhae392. [PMID: 39329361 DOI: 10.1093/cercor/bhae392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Recent studies demonstrate that behavioral performance during visual spatial attention fluctuates at theta (4 to 8 Hz) and alpha (8 to 16 Hz) frequencies, linked to phase-amplitude coupling of neural oscillations within the visual and attentional system depending on task demands. To investigate the influence of prior spatial prediction, we employed an adaptive discrimination task with variable cue-target onset asynchronies (300 to 1,300 ms) and different cue validity (100% & 50%). We recorded electroencephalography concurrently and adopted adaptive electroencephalography data analytical methods, namely, Holo-Holo-Hilbert spectral analysis and Holo-Hilbert cross-frequency phase clustering. Our findings indicate that response precision for near-threshold Landolt rings fluctuates at the theta band (4 Hz) under certain predictions and at alpha & beta bands (15 & 19 Hz) with uncertain predictions. Furthermore, spatial prediction strengthens theta-alpha modulations at parietal-occipital areas, frontal theta/parietal-occipital alpha phase-amplitude coupling, and within frontal theta-alpha phase-amplitude coupling. Notably, during the pretarget period, beta-modulated gamma oscillations in parietal-occipital areas predict response precision under uncertain prediction, while frontal theta/parietal-occipital alpha phase-amplitude coupling predicts response precision in spatially certain conditions. In conclusion, our study highlights the critical role of spatial prediction in attentional sampling rhythms with both behavioral and electroencephalography evidence.
Collapse
Affiliation(s)
- Yih-Ning Huang
- Institute of Cognitive Neuroscience, National Central University, No. 300, Jhongda Rd, Jhongli District, Taoyuan City 320, Taiwan
| | - Wei-Kuang Liang
- Institute of Cognitive Neuroscience, National Central University, No. 300, Jhongda Rd, Jhongli District, Taoyuan City 320, Taiwan
- Cognitive Intelligence and Precision Healthcare Research Center, National Central University, No. 300, Jhongda Rd, Jhongli District, Taoyuan City 320, Taiwan
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, No. 300, Jhongda Rd, Jhongli District, Taoyuan City 320, Taiwan
- Cognitive Intelligence and Precision Healthcare Research Center, National Central University, No. 300, Jhongda Rd, Jhongli District, Taoyuan City 320, Taiwan
| |
Collapse
|
147
|
Woods SJ, Silcox JW, Payne BR. Evaluating aperiodic and periodic neural activity as markers of listening effort in speech perception. AUDITORY PERCEPTION & COGNITION 2024; 7:203-218. [PMID: 39397860 PMCID: PMC11469580 DOI: 10.1080/25742442.2024.2395217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/08/2024] [Indexed: 10/15/2024]
Abstract
Listening effort (LE) is critical to understanding speech perception in acoustically challenging environments. EEG alpha power has emerged as a potential neural correlate of LE. However, the magnitude and direction of the relationship between acoustic challenge and alpha power has been inconsistent in the literature. In the current study, a secondary data analysis of Silcox and Payne (2021), we examine the broadband 1/f-like exponent and offset of the EEG power spectrum as measures of aperiodic neural activity during effortful speech perception and the influence of this aperiodic activity on reliable estimation of periodic (i.e., alpha) neural activity. EEG was continuously recorded during sentence listening and the broadband (1-40 Hz) EEG power spectrum was computed for each participant for quiet and noise trials separately. Using the specparam algorithm, we decomposed the power spectrum into both aperiodic and periodic components and found that broadband aperiodic activity was sensitive to background noise during speech perception and additionally impacted the measurement of noise-induced changes on alpha oscillations. We discuss the implications of these results for the LE and neural speech processing literatures.
Collapse
Affiliation(s)
| | | | - Brennan R Payne
- Department of Psychology, University of Utah
- Department of Communication Sciences and Disorders, University of Utah
- Interdepartmental Program in Neuroscience, University of Utah
| |
Collapse
|
148
|
Kopf M, Martini J, Stier C, Ethofer S, Braun C, Li Hegner Y, Focke NK, Marquetand J, Helfrich RF. Aperiodic Activity Indexes Neural Hyperexcitability in Generalized Epilepsy. eNeuro 2024; 11:ENEURO.0242-24.2024. [PMID: 39137987 PMCID: PMC11376430 DOI: 10.1523/eneuro.0242-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
Generalized epilepsy (GE) encompasses a heterogeneous group of hyperexcitability disorders that clinically manifest as seizures. At the whole-brain level, distinct seizure patterns as well as interictal epileptic discharges (IEDs) reflect key signatures of hyperexcitability in magneto- and electroencephalographic (M/EEG) recordings. Moreover, it had been suggested that aperiodic activity, specifically the slope of the 1/ƒx decay function of the power spectrum, might index neural excitability. However, it remained unclear if hyperexcitability as encountered at the cellular level directly translates to putative large-scale excitability signatures, amenable to M/EEG. In order to test whether the power spectrum is altered in hyperexcitable states, we recorded resting-state MEG from male and female GE patients (n = 51; 29 females; 28.82 ± 12.18 years; mean ± SD) and age-matched healthy controls (n = 49; 22 females; 32.10 ± 12.09 years). We parametrized the power spectra using FOOOF ("fitting oscillations and one over f") to separate oscillatory from aperiodic activity to directly test whether aperiodic activity is systematically altered in GE patients. We further identified IEDs to quantify the temporal dynamics of aperiodic activity around overt epileptic activity. The results demonstrate that aperiodic activity indexes hyperexcitability in GE at the whole-brain level, especially during epochs when no IEDs were present (p = 0.0130; d = 0.52). Upon IEDs, large-scale circuits transiently shifted to a less excitable network state (p = 0.001; d = 0.68). In sum, these results uncover that MEG background activity might index hyperexcitability based on the current brain state and does not rely on the presence of epileptic waveforms.
Collapse
Affiliation(s)
- Markus Kopf
- Hertie Institute for Clinical Brain Research, University Medical Center Tübingen, Tübingen 72076, Germany
| | - Jan Martini
- Hertie Institute for Clinical Brain Research, University Medical Center Tübingen, Tübingen 72076, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen 72076, Germany
| | - Christina Stier
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster 48149, Germany
| | - Silke Ethofer
- Department of Neurosurgery, University Medical Center Tübingen, Tübingen 72076, Germany
| | - Christoph Braun
- Hertie Institute for Clinical Brain Research, University Medical Center Tübingen, Tübingen 72076, Germany
- Magnetoencephalography (MEG) Center, University of Tübingen, Tübingen 72076, Germany
- CIMeC Center for Mind/Brain Sciences, University of Trento, Rovereto 38068, Italy
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - Yiwen Li Hegner
- Hertie Institute for Clinical Brain Research, University Medical Center Tübingen, Tübingen 72076, Germany
- Magnetoencephalography (MEG) Center, University of Tübingen, Tübingen 72076, Germany
| | - Niels K Focke
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Justus Marquetand
- Hertie Institute for Clinical Brain Research, University Medical Center Tübingen, Tübingen 72076, Germany
- Magnetoencephalography (MEG) Center, University of Tübingen, Tübingen 72076, Germany
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
- Department of Neurology and Epileptology, University Medical Center Tübingen, Tübingen 72076, Germany
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart 70569, Germany
| | - Randolph F Helfrich
- Hertie Institute for Clinical Brain Research, University Medical Center Tübingen, Tübingen 72076, Germany
- Department of Neurology and Epileptology, University Medical Center Tübingen, Tübingen 72076, Germany
| |
Collapse
|
149
|
Çelik S, Yıldırım E, Güntekin B. Electrophysiological and Cognitive Changes in Hard Coal Miners Associated with Working Underground. Clin EEG Neurosci 2024; 55:561-571. [PMID: 38483843 DOI: 10.1177/15500594241237912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Miners working underground face some risk factors that affect the nervous system-such as high noise, dark environment, chronic stress, and exposure to toxic gases. However, it is not known whether these risk factors affect the cognition of miners. In this study, the cognitive changes of miners were examined through event-related oscillations via electroencephalogram (EEG). Twenty underground miners and control groups, equal to each other in age, education level, and working duration, participated in this study. Neuropsychological tests were applied to all participants to examine their cognitive characteristics. Then, 20-channel EEG was recorded for electrophysiological changes during visual oddball paradigm. Event-related power spectrum and phase locking were analyzed in delta (0.5-3.5), theta (4-7), and alpha (8-13 Hz) frequency bands. It was determined that the delta responses that emerged during the target stimulus differed between the two groups in terms of phase locking (p < 0.05). Considering event-related alpha responses, a statistical difference was found regarding power spectrum and phase locking (p < 0.05). Moreover, the alpha power spectrum in the miners was found to be negatively statistically correlated with working duration (p < 0.05). This study determined that the event-related electrophysiological responses of the miners were negatively affected depending on the working conditions. In addition, neuropsychological assessment determined miners had deficiencies in learning and memory skills and many other cognitive functions such as attention, behavioral inhibition, and visual perception.
Collapse
Affiliation(s)
- Samet Çelik
- Department of Psychology, Bartin University, Bartin, Türkiye
| | - Ebru Yıldırım
- Vocational School, Program of Electroneurophysiology, Istanbul Medipol University, Istanbul, Turkey
- Research Institute for Health Sciences and Technologies (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Turkey
| | - Bahar Güntekin
- Research Institute for Health Sciences and Technologies (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Turkey
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
150
|
Nunez MD, Fernandez K, Srinivasan R, Vandekerckhove J. A tutorial on fitting joint models of M/EEG and behavior to understand cognition. Behav Res Methods 2024; 56:6020-6050. [PMID: 38409458 PMCID: PMC11335833 DOI: 10.3758/s13428-023-02331-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 02/28/2024]
Abstract
We present motivation and practical steps necessary to find parameter estimates of joint models of behavior and neural electrophysiological data. This tutorial is written for researchers wishing to build joint models of human behavior and scalp and intracranial electroencephalographic (EEG) or magnetoencephalographic (MEG) data, and more specifically those researchers who seek to understand human cognition. Although these techniques could easily be applied to animal models, the focus of this tutorial is on human participants. Joint modeling of M/EEG and behavior requires some knowledge of existing computational and cognitive theories, M/EEG artifact correction, M/EEG analysis techniques, cognitive modeling, and programming for statistical modeling implementation. This paper seeks to give an introduction to these techniques as they apply to estimating parameters from neurocognitive models of M/EEG and human behavior, and to evaluate model results and compare models. Due to our research and knowledge on the subject matter, our examples in this paper will focus on testing specific hypotheses in human decision-making theory. However, most of the motivation and discussion of this paper applies across many modeling procedures and applications. We provide Python (and linked R) code examples in the tutorial and appendix. Readers are encouraged to try the exercises at the end of the document.
Collapse
Affiliation(s)
- Michael D Nunez
- Psychological Methods, University of Amsterdam, Amsterdam, The Netherlands.
| | - Kianté Fernandez
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Ramesh Srinivasan
- Department of Cognitive Sciences, University of California, Irvine, CA, USA
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
- Institute of Mathematical Behavioral Sciences, University of California, Irvine, CA, USA
| | - Joachim Vandekerckhove
- Department of Cognitive Sciences, University of California, Irvine, CA, USA
- Institute of Mathematical Behavioral Sciences, University of California, Irvine, CA, USA
- Department of Statistics, University of California, Irvine, CA, USA
| |
Collapse
|