101
|
Spironelli C, Borella E. Working Memory Training and Cortical Arousal in Healthy Older Adults: A Resting-State EEG Pilot Study. Front Aging Neurosci 2021; 13:718965. [PMID: 34744685 PMCID: PMC8568069 DOI: 10.3389/fnagi.2021.718965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/20/2021] [Indexed: 01/10/2023] Open
Abstract
The current pilot study aimed to test the gains of working memory (WM) training, both at the short- and long-term, at a behavioral level, and by examining the electrophysiological changes induced by training in resting-state EEG activity among older adults. The study group included 24 older adults (from 64 to 75 years old) who were randomly assigned to a training group (TG) or an active control group (ACG) in a double-blind, repeated-measures experimental design in which open eyes, resting-state EEG recording, followed by a WM task, i.e., the Categorization Working Memory Span (CWMS) task, were collected before and after training, as well as at a 6-month follow-up session. At the behavioral level, medium to large Cohen's d effect sizes was found for the TG in immediate and long-term gains in the WM criterion task, as compared with small gains for the ACG. Regarding intrusion errors committed in the CWMS, an index of inhibitory control representing a transfer effect, results showed that medium to large effect sizes for immediate and long-term gains emerged for the TG, as compared to small effect sizes for the ACG. Spontaneous high-beta/alpha ratio analyses in four regions of interest (ROIs) revealed no pre-training group differences. Significantly greater TG anterior rates, particularly in the left ROI, were found after training, with frontal oscillatory responses being correlated with better post-training CWMS performance in only the TG. The follow-up analysis showed similar results, with greater anterior left high-beta/alpha rates among TG participants. Follow-up frontal high-beta/alpha rates in the right ROI were correlated with lower CWMS follow-up intrusion errors in only the TG. The present findings are further evidence of the efficacy of WM training in enhancing the cognitive functioning of older adults and their frontal oscillatory activity. Overall, these results suggested that WM training also can be a promising approach toward fostering the so-called functional cortical plasticity in aging.
Collapse
Affiliation(s)
- Chiara Spironelli
- Department of General Psychology, University of Padova, Padova, Italy.,Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Erika Borella
- Department of General Psychology, University of Padova, Padova, Italy
| |
Collapse
|
102
|
Beynel L, Dannhauer M, Palmer H, Hilbig SA, Crowell CA, Wang JE, Michael AM, Wood EA, Luber B, Lisanby SH, Peterchev AV, Cabeza R, Davis SW, Appelbaum LG. Network-based rTMS to modulate working memory: The difficult choice of effective parameters for online interventions. Brain Behav 2021; 11:e2361. [PMID: 34651464 PMCID: PMC8613413 DOI: 10.1002/brb3.2361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/06/2021] [Accepted: 09/06/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Online repetitive transcranialmagnetic stimulation (rTMS) has been shown to modulate working memory (WM) performance in a site-specific manner, with behavioral improvements due to stimulation of the dorsolateral prefrontal cortex (DLPFC), and impairment from stimulation to the lateral parietal cortex (LPC). Neurobehavioral studies have demonstrated that subprocesses of WM allowing for the maintenance and manipulation of information in the mind involve unique cortical networks. Despite promising evidence of modulatory effects of rTMS on WM, no studies have yet demonstrated distinct modulatory control of these two subprocesses. The current study therefore sought to explore this possibility through site-specific stimulation during an online task invoking both skills. METHODS Twenty-nine subjects completed a 4-day protocol, in which active or sham 5Hz rTMS was applied over the DLPFC and LPC in separate blocks of trials while participants performed tasks that required either maintenance alone, or both maintenance and manipulation (alphabetization) of information. Stimulation targets were defined individually based on fMRI activation and structural network properties. Stimulation amplitude was adjusted using electric field modeling to equate induced current in the target region across participants. RESULTS Despite the use of advanced techniques, no significant differences or interactions between active and sham stimulation were found. Exploratory analyses testing stimulation amplitude, fMRI activation, and modal controllability showed nonsignificant but interesting trends with rTMS effects. CONCLUSION While this study did not reveal any significant behavioral changes in WM, the results may point to parameters that contribute to positive effects, such as stimulation amplitude and functional activation.
Collapse
Affiliation(s)
- Lysianne Beynel
- Department of Psychiatry and Behavioral ScienceDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Moritz Dannhauer
- Department of Psychiatry and Behavioral ScienceDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Hannah Palmer
- Department of Psychiatry and Behavioral ScienceDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Susan A. Hilbig
- Department of Psychiatry and Behavioral ScienceDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Courtney A. Crowell
- Department of Psychiatry and Behavioral ScienceDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Joyce E‐H. Wang
- Department of Psychiatry and Behavioral ScienceDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Andrew M. Michael
- Duke Institute for Brain SciencesDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Eleanor A. Wood
- Department of Psychiatry and Behavioral ScienceDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Bruce Luber
- Noninvasive Neuromodulation UnitExperimental Therapeutics and Pathophysiology BranchNational Institute of Mental HealthBethesdaMarylandUSA
| | - Sarah H. Lisanby
- Noninvasive Neuromodulation UnitExperimental Therapeutics and Pathophysiology BranchNational Institute of Mental HealthBethesdaMarylandUSA
| | - Angel V. Peterchev
- Department of Psychiatry and Behavioral ScienceDuke University School of MedicineDurhamNorth CarolinaUSA
- Department of Biomedical EngineeringDuke University School of MedicineDurhamNorth CarolinaUSA
- Department of Electrical and Computer EngineeringDuke University School of MedicineDurhamNorth CarolinaUSA
- Department of NeurosurgeryDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Roberto Cabeza
- Center for Cognitive NeuroscienceDuke UniversityDurhamNorth CarolinaUSA
- Department of Psychology & NeuroscienceDuke UniversityDurhamNorth CarolinaUSA
| | - Simon W. Davis
- Center for Cognitive NeuroscienceDuke UniversityDurhamNorth CarolinaUSA
- Department of NeurologyDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Lawrence G. Appelbaum
- Department of Psychiatry and Behavioral ScienceDuke University School of MedicineDurhamNorth CarolinaUSA
| |
Collapse
|
103
|
Pando-Naude V, Patyczek A, Bonetti L, Vuust P. An ALE meta-analytic review of top-down and bottom-up processing of music in the brain. Sci Rep 2021; 11:20813. [PMID: 34675231 PMCID: PMC8531391 DOI: 10.1038/s41598-021-00139-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/06/2021] [Indexed: 12/01/2022] Open
Abstract
A remarkable feature of the human brain is its ability to integrate information from the environment with internally generated content. The integration of top-down and bottom-up processes during complex multi-modal human activities, however, is yet to be fully understood. Music provides an excellent model for understanding this since music listening leads to the urge to move, and music making entails both playing and listening at the same time (i.e., audio-motor coupling). Here, we conducted activation likelihood estimation (ALE) meta-analyses of 130 neuroimaging studies of music perception, production and imagery, with 2660 foci, 139 experiments, and 2516 participants. We found that music perception and production rely on auditory cortices and sensorimotor cortices, while music imagery recruits distinct parietal regions. This indicates that the brain requires different structures to process similar information which is made available either by an interaction with the environment (i.e., bottom-up) or by internally generated content (i.e., top-down).
Collapse
Affiliation(s)
- Victor Pando-Naude
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, Universitetsbyen, 3-0-17, 8000, Aarhus C, Denmark.
| | - Agata Patyczek
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Leonardo Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, Universitetsbyen, 3-0-17, 8000, Aarhus C, Denmark
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, Universitetsbyen, 3-0-17, 8000, Aarhus C, Denmark
| |
Collapse
|
104
|
Gonzalez Alam TRDJ, Mckeown BLA, Gao Z, Bernhardt B, Vos de Wael R, Margulies DS, Smallwood J, Jefferies E. A tale of two gradients: differences between the left and right hemispheres predict semantic cognition. Brain Struct Funct 2021; 227:631-654. [PMID: 34510282 PMCID: PMC8844158 DOI: 10.1007/s00429-021-02374-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/27/2021] [Indexed: 01/21/2023]
Abstract
Decomposition of whole-brain functional connectivity patterns reveals a principal gradient that captures the separation of sensorimotor cortex from heteromodal regions in the default mode network (DMN). Functional homotopy is strongest in sensorimotor areas, and weakest in heteromodal cortices, suggesting there may be differences between the left and right hemispheres (LH/RH) in the principal gradient, especially towards its apex. This study characterised hemispheric differences in the position of large-scale cortical networks along the principal gradient, and their functional significance. We collected resting-state fMRI and semantic, working memory and non-verbal reasoning performance in 175 + healthy volunteers. We then extracted the principal gradient of connectivity for each participant, tested which networks showed significant hemispheric differences on the gradient, and regressed participants’ behavioural efficiency in tasks outside the scanner against interhemispheric gradient differences for each network. LH showed a higher overall principal gradient value, consistent with its role in heteromodal semantic cognition. One frontotemporal control subnetwork was linked to individual differences in semantic cognition: when it was nearer heteromodal DMN on the principal gradient in LH, participants showed more efficient semantic retrieval—and this network also showed a strong hemispheric difference in response to semantic demands but not working memory load in a separate study. In contrast, when a dorsal attention subnetwork was closer to the heteromodal end of the principal gradient in RH, participants showed better visual reasoning. Lateralization of function may reflect differences in connectivity between control and heteromodal regions in LH, and attention and visual regions in RH.
Collapse
Affiliation(s)
| | | | - Zhiyao Gao
- Department of Psychology, University of York, York, UK
| | - Boris Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Reinder Vos de Wael
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Daniel S Margulies
- Centre National de la Recherche Scientifique (CNRS) and Université de Paris, INCC UMR 8002, Paris, France
| | | | | |
Collapse
|
105
|
Gao Z, Zheng L, Chiou R, Gouws A, Krieger-Redwood K, Wang X, Varga D, Ralph MAL, Smallwood J, Jefferies E. Distinct and common neural coding of semantic and non-semantic control demands. Neuroimage 2021; 236:118230. [PMID: 34089873 PMCID: PMC8271095 DOI: 10.1016/j.neuroimage.2021.118230] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/22/2021] [Accepted: 05/31/2021] [Indexed: 12/29/2022] Open
Abstract
The flexible retrieval of knowledge is critical in everyday situations involving problem solving, reasoning and social interaction. Current theories emphasise the importance of a left-lateralised semantic control network (SCN) in supporting flexible semantic behaviour, while a bilateral multiple-demand network (MDN) is implicated in executive functions across domains. No study, however, has examined whether semantic and non-semantic demands are reflected in a common neural code within regions specifically implicated in semantic control. Using functional MRI and univariate parametric modulation analysis as well as multivariate pattern analysis, we found that semantic and non-semantic demands gave rise to both similar and distinct neural responses across control-related networks. Though activity patterns in SCN and MDN could decode the difficulty of both semantic and verbal working memory decisions, there was no shared common neural coding of cognitive demands in SCN regions. In contrast, regions in MDN showed common patterns across manipulations of semantic and working memory control demands, with successful cross-classification of difficulty across tasks. Therefore, SCN and MDN can be dissociated according to the information they maintain about cognitive demands.
Collapse
Affiliation(s)
- Zhiyao Gao
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Li Zheng
- Department of Psychology, University of Arizona, Tucson, AZ 85719, USA
| | - Rocco Chiou
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
| | - André Gouws
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Katya Krieger-Redwood
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Xiuyi Wang
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Dominika Varga
- School of Psychology, University of Sussex, Brighton BN1 9RH, United Kingdom
| | - Matthew A Lambon Ralph
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
| | - Jonathan Smallwood
- Department of Psychology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Elizabeth Jefferies
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom.
| |
Collapse
|
106
|
Petersen JZ, Macoveanu J, Kjærstad HL, Knudsen GM, Kessing LV, Miskowiak KW. Assessment of the neuronal underpinnings of cognitive impairment in bipolar disorder with a picture encoding paradigm and methodological lessons learnt. J Psychopharmacol 2021; 35:983-991. [PMID: 33888002 DOI: 10.1177/02698811211008569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mood disorders are often associated with persistent cognitive impairments. However, pro-cognitive treatments are essentially lacking. This is partially because of poor insight into the neurocircuitry abnormalities underlying these deficits and their change with illness progression. AIMS This functional magnetic resonance imaging (fMRI) study investigates the neuronal underpinnings of cognitive impairments and neuronal change after mood episodes in remitted patients with bipolar disorder (BD) using a hippocampus-based picture encoding paradigm. METHODS Remitted patients with BD (n=153) and healthy controls (n=52) were assessed with neuropsychological tests and underwent fMRI while performing a strategic picture encoding task. A subgroup of patients (n=43) were rescanned after 16 months. We conducted data-driven hierarchical cluster analysis of patients' neuropsychological data and compared encoding-related neuronal activity between the resulting neurocognitive subgroups. For patients with follow-up data, effects of mood episodes were assessed by comparing encoding-related neuronal activity change in BD patients with and without episode(s). RESULTS Two neurocognitive subgroups were revealed: 91 patients displayed cognitive impairments while 62 patients were cognitively normal. No neuronal activity differences were observed between neurocognitive subgroups within the dorsal cognitive control network or hippocampus. However, exploratory whole-brain analysis revealed lower activity within a small region of middle temporal gyrus in impaired patients, which significantly correlated with poorer neuropsychological performance. No changes were observed in encoding-related neuronal activity or picture recall accuracy with the occurrence of mood episode(s) during the follow-up period. CONCLUSION Memory encoding fMRI paradigms may not capture the neuronal underpinnings of cognitive impairment or effects of mood episodes.
Collapse
Affiliation(s)
- J Z Petersen
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - J Macoveanu
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - H L Kjærstad
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - G M Knudsen
- Neurobiology Research Unit and Center for Experimental Medicine Neuropharmacology, Rigshospitalet, Copenhagen, Denmark.,Institute of Clinical Medicine, University of Copenhagen, Copenhagen
| | - L V Kessing
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Institute of Clinical Medicine, University of Copenhagen, Copenhagen
| | - K W Miskowiak
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
107
|
Taing AS, Mundy ME, Ponsford JL, Spitz G. Aberrant modulation of brain activity underlies impaired working memory following traumatic brain injury. Neuroimage Clin 2021; 31:102777. [PMID: 34343728 PMCID: PMC8350067 DOI: 10.1016/j.nicl.2021.102777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 11/19/2022]
Abstract
Impaired working memory is a common and disabling consequence of traumatic brain injury (TBI) that is caused by aberrant brain processing. However, little is known about the extent to which deficits are perpetuated by specific working memory subprocesses. Using a combined functional magnetic resonance imaging (fMRI) and working memory paradigm, we tested the hypothesis that the pattern of brain activation subserving working memory following TBI would interact with both task demands and specific working memory subcomponents: encoding, maintenance, and retrieval. Forty-three patients with moderate-severe TBI, of whom 25 were in the acute phase of recovery (M = 2.16 months, SD = 1.48 months, range = 0.69 - 6.64 months) and 18 in the chronic phase of recovery (M = 23.44 months, SD = 6.76 months, range = 13.35 - 34.82 months), were compared with 38 demographically similar healthy controls. Behaviourally, we found that working memory deficits were confined to the high cognitive load trials in both acute (P = 0.006) and chronic (P = 0.024) cohorts. Furthermore, results for a subset of the sample (18 chronic TBI and 17 healthy controls) who underwent fMRI revealed that the TBI group showed reduced brain activation when simply averaged across all task trials (regardless of cognitive load or subcomponent). However, interrogation of the subcomponents of working memory revealed a more nuanced pattern of activation. When examined more closely, patterns of brain activity following TBI were found to interact with both task demands and the working memory subcomponent: increased activation was observed during encoding in the left inferior occipital gyrus whereas decreased activation was apparent during maintenance in the bilateral cerebellum and left calcarine sulcus. Taken together, findings indicate an inability to appropriately modulate brain activity according to task demand that is specific to working memory encoding and maintenance.
Collapse
Affiliation(s)
- Abbie S Taing
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria 3800, Australia; Monash Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, Australia.
| | - Matthew E Mundy
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Jennie L Ponsford
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria 3800, Australia; Monash Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, Australia
| | - Gershon Spitz
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria 3800, Australia; Monash Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, Australia
| |
Collapse
|
108
|
Al-Saad MSH, Al-Jabri B, Almarzouki AF. A Review of Working Memory Training in the Management of Attention Deficit Hyperactivity Disorder. Front Behav Neurosci 2021; 15:686873. [PMID: 34366803 PMCID: PMC8334010 DOI: 10.3389/fnbeh.2021.686873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders among children. Working memory deficits underlie many of the behavioural symptoms of ADHD. Alongside psychostimulant medications, strategies to improve working memory may play an important adjuvant role in the management of ADHD. In this study, we review the role of working memory deficits in ADHD, the evidence surrounding working memory training strategies in the management of the condition, and the factors affecting the success of these strategies in alleviating ADHD symptoms. More specifically, we review several non-pharmacological interventions that target working memory deficits in ADHD, with special emphasis on cognitive working memory training. We conclude that the development of evidence-based interventions such as computerised cognitive training (CCT) could provide an alternative or adjunct to the use of psychostimulants, especially in cases where side effects are a major issue.
Collapse
Affiliation(s)
- Maha Saleh Habsan Al-Saad
- Faculty of Medicine, Department of Clinical Physiology, King Abdulaziz University, Jeddah, Saudi Arabia.,Public Health Sector, General Directorate of Health Affairs in Najran, Ministry of Health, Najran, Saudi Arabia
| | - Basma Al-Jabri
- Faculty of Medicine, Department of Pediatrics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abeer F Almarzouki
- Faculty of Medicine, Department of Clinical Physiology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
109
|
Valerio KE, Prieto S, Hasselbach AN, Moody JN, Hayes SM, Hayes JP. Machine learning identifies novel markers predicting functional decline in older adults. Brain Commun 2021; 3:fcab140. [PMID: 34286271 PMCID: PMC8286801 DOI: 10.1093/braincomms/fcab140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 04/06/2021] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
The ability to carry out instrumental activities of daily living, such as paying bills, remembering appointments and shopping alone decreases with age, yet there are remarkable individual differences in the rate of decline among older adults. Understanding variables associated with a decline in instrumental activities of daily living is critical to providing appropriate intervention to prolong independence. Prior research suggests that cognitive measures, neuroimaging and fluid-based biomarkers predict functional decline. However, a priori selection of variables can lead to the over-valuation of certain variables and exclusion of others that may be predictive. In this study, we used machine learning techniques to select a wide range of baseline variables that best predicted functional decline in two years in individuals from the Alzheimer's Disease Neuroimaging Initiative dataset. The sample included 398 individuals characterized as cognitively normal or mild cognitive impairment. Support vector machine classification algorithms were used to identify the most predictive modality from five different data modality types (demographics, structural MRI, fluorodeoxyglucose-PET, neurocognitive and genetic/fluid-based biomarkers). In addition, variable selection identified individual variables across all modalities that best predicted functional decline in a testing sample. Of the five modalities examined, neurocognitive measures demonstrated the best accuracy in predicting functional decline (accuracy = 74.2%; area under the curve = 0.77), followed by fluorodeoxyglucose-PET (accuracy = 70.8%; area under the curve = 0.66). The individual variables with the greatest discriminatory ability for predicting functional decline included partner report of language in the Everyday Cognition questionnaire, the ADAS13, and activity of the left angular gyrus using fluorodeoxyglucose-PET. These three variables collectively explained 32% of the total variance in functional decline. Taken together, the machine learning model identified novel biomarkers that may be involved in the processing, retrieval, and conceptual integration of semantic information and which predict functional decline two years after assessment. These findings may be used to explore the clinical utility of the Everyday Cognition as a non-invasive, cost and time effective tool to predict future functional decline.
Collapse
Affiliation(s)
- Kate E Valerio
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
| | - Sarah Prieto
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
| | | | - Jena N Moody
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
| | - Scott M Hayes
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
- Chronic Brain Injury Initiative, The Ohio State University, Columbus, OH 43210, USA
| | - Jasmeet P Hayes
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
- Chronic Brain Injury Initiative, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
110
|
Examining the relationships among adolescent health behaviours, prefrontal function, and academic achievement using fNIRS. Dev Cogn Neurosci 2021; 50:100983. [PMID: 34265630 PMCID: PMC8280512 DOI: 10.1016/j.dcn.2021.100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 05/17/2021] [Accepted: 06/25/2021] [Indexed: 12/05/2022] Open
Abstract
Prior studies document effects of lifestyle behaviors on the brain and academics. Among adolescents we found that activity and eating both predict task performance. Activity also predicts functional activation in the right lateral dlPFC, but not grades. Substance use predicted worse grades but not brain-related mediators.
Several adolescent health behaviours have been hypothesized to improve academic performance via their beneficial impact on cognitive control and functional aspects of the prefrontal cortex (PFC). The primary objective of this study is to examine the association between lifestyle behaviours and academic performance in a sample of adolescents, and to examine the extent to which activity within the PFC and behavioural indices of inhibition may mediate this relationship. Sixty-seven adolescents underwent two study sessions five days apart. Sleep and physical activity were measured using wrist-mounted accelerometry; eating habits, substance use and academic achievement were measured by self-report. Prefrontal function was quantified by Multi-Source Interference Task (MSIT) performance, and task-related activity via functional near-infrared spectroscopy (fNIRS). Higher levels of physical activity predicted higher MSIT accuracy scores (β = .321, ρ = 0.019) as well as greater activation within the right dlPFC (b = .008, SE = .004, ρ = .0322). Frequency of fast-food consumption and substance use were negatively associated with MSIT accuracy scores (β = −0.307, ρ = .023) and Math grades (b = −3.702, SE = 1.563, ρ = .022), respectively. Overall, the results of this study highlight the importance of lifestyle behaviours as predictors of prefrontal function and academic achievement in youth.
Collapse
|
111
|
Cai W, Ryali S, Pasumarthy R, Talasila V, Menon V. Dynamic causal brain circuits during working memory and their functional controllability. Nat Commun 2021; 12:3314. [PMID: 34188024 PMCID: PMC8241851 DOI: 10.1038/s41467-021-23509-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 04/30/2021] [Indexed: 02/04/2023] Open
Abstract
Control processes associated with working memory play a central role in human cognition, but their underlying dynamic brain circuit mechanisms are poorly understood. Here we use system identification, network science, stability analysis, and control theory to probe functional circuit dynamics during working memory task performance. Our results show that dynamic signaling between distributed brain areas encompassing the salience (SN), fronto-parietal (FPN), and default mode networks can distinguish between working memory load and predict performance. Network analysis of directed causal influences suggests the anterior insula node of the SN and dorsolateral prefrontal cortex node of the FPN are causal outflow and inflow hubs, respectively. Network controllability decreases with working memory load and SN nodes show the highest functional controllability. Our findings reveal dissociable roles of the SN and FPN in systems control and provide novel insights into dynamic circuit mechanisms by which cognitive control circuits operate asymmetrically during cognition.
Collapse
Affiliation(s)
- Weidong Cai
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA.
| | - Srikanth Ryali
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Ramkrishna Pasumarthy
- Department of Electrical Engineering, Robert Bosch Center of Data Sciences and Artificial Intelligence, Indian Institute of Technology Madras, Chennai, India
| | - Viswanath Talasila
- Department of Electronics and Telecommunication Engineering, Center for Imaging Technologies, M.S. Ramaiah Institute of Technology, Bengaluru, India
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
112
|
Kobeleva X, Machts J, Veit M, Vielhaber S, Petri S, Schoenfeld MA. Brain activity is contingent on neuropsychological function in a functional magnetic resonance imaging study of verbal working memory in amyotrophic lateral sclerosis. Eur J Neurol 2021; 28:3051-3060. [PMID: 34081813 DOI: 10.1111/ene.14957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that causes progressive degeneration of neurons in motor and non-motor brain regions, affecting multiple cognitive domains such as memory. A functional magnetic resonance imaging (fMRI) study was performed to explore working memory function in ALS. METHODS To contribute to the growing research field that employs structural and functional neuroimaging to investigate the effect of ALS on different working memory components, the localization and intensity of alterations in neural activity was explored using fMRI. Being the first study to specifically address verbal working memory via fMRI in the context of ALS, the verbal n-back task with 0-back and 2-back conditions was employed. RESULTS Despite ALS patients showing unimpaired accuracies (p = 0.724) and reaction times (p = 0.0785), there was significantly increased brain activity of frontotemporal and parietal regions in the 2-back minus 0-back contrast in patients compared to controls (using nonparametric statistics with 5000 permutations and a T threshold of 2.5). DISCUSSION Increased brain activity of the frontotemporal and parietal regions during working memory performance was largely associated with better neuropsychological function within the ALS group, suggesting a compensatory effect during working memory execution. This study therefore adds to the current knowledge on neural correlates of working memory in ALS and contributes to a more nuanced understanding of hyperactivity during cognitive processes in fMRI studies of ALS.
Collapse
Affiliation(s)
- Xenia Kobeleva
- Department of Neurology, University Hospital of Bonn, Bonn, Germany.,Department of Neurology and Clinical Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Judith Machts
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Maria Veit
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.,Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Stefan Vielhaber
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Susanne Petri
- Department of Neurology and Clinical Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Mircea Ariel Schoenfeld
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.,Kliniken Schmieder, Heidelberg, Germany.,Department of behavioral neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
113
|
Chen C, Zhang Y, Zhen Z, Song Y, Hu S, Liu J. Quantifying the variability of neural activation in working memory: A functional probabilistic atlas. Neuroimage 2021; 239:118301. [PMID: 34171499 DOI: 10.1016/j.neuroimage.2021.118301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 11/24/2022] Open
Abstract
Working memory is a fundamental cognitive ability that allows the maintenance and manipulation of information for a brief period of time. Previous studies found a set of brain regions activated during working memory tasks, such as the prefrontal and parietal cortex. However, little is known about the variability of neural activation in working memory. Here, we used functional magnetic resonance imaging to quantify individual, hemispheric, and sex differences of working memory activation in a large cohort of healthy adults (N = 477). We delineated subject-specific activated regions in each individual, including the frontal pole, middle frontal gyrus, frontal eye field, superior parietal lobule, insular, precuneus, and anterior cingulate cortex. A functional probabilistic atlas was created to quantify individual variability in working memory regions. More than 90% of the participants activated all seven regions in both hemispheres, but the intersection of regions across participants was markedly less (50%), indicating significant individual differences in working memory activations. Moreover, we found hemispheric and sex differences in activation location, extent, and magnitude. Most activation regions were larger in the right than in the left hemisphere, but the magnitude of activation did not follow a similar pattern. Men showed more extensive and stronger activations than women. Taken together, our functional probabilistic atlas quantified variabilities of neural activation in working memory, providing a robust spatial reference for standardization of functional localization.
Collapse
Affiliation(s)
- Chen Chen
- Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Ying Zhang
- Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Zonglei Zhen
- Faculty of Psychology, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Beijing Normal University, Beijing, China
| | - Yiying Song
- Faculty of Psychology, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Beijing Normal University, Beijing, China
| | - Siyuan Hu
- Faculty of Psychology, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Beijing Normal University, Beijing, China.
| | - Jia Liu
- Department of Psychology, Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
| |
Collapse
|
114
|
Fox ME, Turner JA, Crosson B, Morris RD, King TZ. Functional Connectivity Networks and Their Recruitment During Working Memory Tasks in Adult Survivors of Childhood Brain Tumors. Brain Connect 2021; 11:822-837. [PMID: 33858201 DOI: 10.1089/brain.2020.0800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Background: Assessments of functional connectivity of default mode network (DMN) and positive task-related networks (TRNs) using independent component analysis (ICA) may help describe long-term effects of childhood brain tumors and adjuvant treatments. Methods: Aiming to identify potential neuronal markers that may aid in prognosis and inform interventions to optimize outcomes, this study used ICA to evaluate the presence of functional connectivity networks and their recruitment during a letter n-back task in 23 adult survivors of childhood posterior fossa tumors (9 low grade, 14 high grade) at least 5 years past diagnosis compared with 40 age- and sex-matched healthy peers. Results: DMN components generally demonstrated increasing disengagement as task difficulty increased, and relationships between effective DMN disengagement and improved performance were observed in healthy controls (HCs). Low-grade brain tumor survivors (LGS) demonstrated unique patterns in DMN recruitment that suggested increased involvement of the medial prefrontal cortex in LGS during tasks. TRN components generally demonstrated increasing engagement, which was related to improved task performance in HCs for one executive control network (ECN) component. High-grade brain tumor survivors (HGS) demonstrated distinct challenges recruiting an ECN component at more difficult task levels and showed a relationship between recruitment of another ECN component and task performance, indicating a potential compensatory mechanism for some HGS. Conclusions: Findings suggest the importance of cognitive intervention in both survivor groups and the necessity to track LGS despite their cognitive abilities often resembling those of their healthy peers. Impact statement Distinct functional connectivity patterns were identified between both adult survivor of childhood brain tumor groups and peers during attention and working memory tasks, reflecting different damage and recovery from treatment. Survivors of low-grade tumors demonstrated unique patterns of recruitment of default mode network components in the context of similar cognitive abilities, whereas survivors of high-grade tumors demonstrated poorer cognitive abilities and may be utilizing compensatory executive control network components in the face of challenging tasks. Long-term clinical follow-up and cognitive remediation is warranted for both groups, including low grade cerebellar tumor patients who have traditionally not been monitored as closely.
Collapse
Affiliation(s)
- Michelle E Fox
- Department of Psychology, Georgia State University, Atlanta, Georgia, USA
| | - Jessica A Turner
- Department of Psychology, Georgia State University, Atlanta, Georgia, USA.,Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - Bruce Crosson
- Department of Psychology, Georgia State University, Atlanta, Georgia, USA.,Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA.,Departments of Neurology and of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA.,Atlanta VA Center of Excellence for Visual and Neurocognitive Rehabilitation, Decatur, Georgia, USA
| | - Robin D Morris
- Department of Psychology, Georgia State University, Atlanta, Georgia, USA.,Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - Tricia Z King
- Department of Psychology, Georgia State University, Atlanta, Georgia, USA.,Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
115
|
Li Q, Pasquini L, Del Ferraro G, Gene M, Peck KK, Makse HA, Holodny AI. Monolingual and bilingual language networks in healthy subjects using functional MRI and graph theory. Sci Rep 2021; 11:10568. [PMID: 34012006 PMCID: PMC8134560 DOI: 10.1038/s41598-021-90151-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/04/2021] [Indexed: 02/03/2023] Open
Abstract
Bilingualism requires control of multiple language systems, and may lead to architectural differences in language networks obtained from clinical fMRI tasks. Emerging connectivity metrics such as k-core may capture these differences, highlighting crucial network components based on resiliency. We investigated the influence of bilingualism on clinical fMRI language tasks and characterized bilingual networks using connectivity metrics to provide a patient care benchmark. Sixteen right-handed subjects (mean age 42-years; nine males) without neurological history were included: eight native English-speaking monolinguals and eight native Spanish-speaking (L1) bilinguals with acquired English (L2). All subjects underwent fMRI with gold-standard clinical language tasks. Starting from active clusters on fMRI, we inferred the persistent functional network across subjects and ran centrality measures to characterize differences. Our results demonstrated a persistent network "core" consisting of Broca's area, the pre-supplementary motor area, and the premotor area. K-core analysis showed that Wernicke's area was engaged by the "core" with weaker connection in L2 than L1.
Collapse
Affiliation(s)
- Qiongge Li
- grid.254250.40000 0001 2264 7145Levich Institute and Physics Department, City College of New York, New York, NY 10031 USA ,grid.253482.a0000 0001 0170 7903Department of Physics, Graduate Center of City University of New York, New York, NY 10016 USA ,grid.21107.350000 0001 2171 9311Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Luca Pasquini
- grid.51462.340000 0001 2171 9952Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA ,grid.7841.aNeuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, 00189 Rome, RM Italy
| | - Gino Del Ferraro
- grid.254250.40000 0001 2264 7145Levich Institute and Physics Department, City College of New York, New York, NY 10031 USA ,grid.51462.340000 0001 2171 9952Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA ,grid.137628.90000 0004 1936 8753Center for Neural Science, New York University, New York, NY 10003 USA
| | - Madeleine Gene
- grid.51462.340000 0001 2171 9952Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - Kyung K. Peck
- grid.51462.340000 0001 2171 9952Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA ,grid.51462.340000 0001 2171 9952Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - Hernán A. Makse
- grid.254250.40000 0001 2264 7145Levich Institute and Physics Department, City College of New York, New York, NY 10031 USA
| | - Andrei I. Holodny
- grid.51462.340000 0001 2171 9952Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA ,grid.137628.90000 0004 1936 8753New York University School of Medicine, New York, NY 10016 USA ,grid.5386.8000000041936877XDepartment of Neuroscience, Weill Medical College of Cornell University, New York, NY 10065 USA
| |
Collapse
|
116
|
Biagi L, Lenzi S, Cipriano E, Fiori S, Bosco P, Cristofani P, Astrea G, Pini A, Cioni G, Mercuri E, Tosetti M, Battini R. Neural substrates of neuropsychological profiles in dystrophynopathies: A pilot study of diffusion tractography imaging. PLoS One 2021; 16:e0250420. [PMID: 33939732 PMCID: PMC8092766 DOI: 10.1371/journal.pone.0250420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/06/2021] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Cognitive difficulties and neuropsychological alterations in Duchenne and Becker muscular dystrophy (DMD, BMD) boys are not yet sufficiently explored, although this topic could have a relevant impact, finding novel biomarkers of disease both at genetics and neuroimaging point of view. The current study aims to: 1) analyze the neuropsychological profile of a group of DMD and BMD boys without cognitive impairment with an assessment of their executive functions; 2) explore the structural connectivity in DMD, BMD, and age-matched controls focusing on cortico-subcortical tracts that connect frontal cortex, basal ganglia, and cerebellum via the thalamus; 3) explore possible correlations between altered structural connectivity and clinical neuropsychological measures. MATERIALS AND METHODS This pilot study included 15 boys (5 DMD subjects, 5 BMD subjects, and 5 age-matched typically developing, TD). They were assessed using a neuropsychological assessment protocol including cognitive and executive functioning assessment and performed a 1.5T MRI brain exam including advance Diffusion Weighted Imaging (DWI) method for tractography. Structural connectivity measurements were extracted along three specific tracts: Cortico-Ponto-Cerebellar Tract (CPCT), Cerebellar-Thalamic Tract (CTT), and Superior Longitudinal Fasciculus (SLF). Cortical-Spinal Tract (CST) was selected for reference, as control tract. RESULTS Regarding intellectual functioning, a major impairment in executive functions compared to the general intellectual functioning was observed both for DMD (mean score = 86.20; SD = 11.54) and for BMD children (mean score = 88; SD = 3.67). Mean FA resulted tendentially always lower in DMD compared to both BMD and TD groups for all the examined tracts. The differences in FA were statistically significant for the right CTT (DMD vs BMD, p = 0.002, and DMD vs TD, p = 0.0015) and the right CPCT (DMD vs TD, p = 0.008). Concerning DMD, significant correlations emerged between FA-R-CTT and intellectual quotients (FIQ, p = 0.044; ρs = 0.821), and executive functions (Denomination Total, p = 0.044, ρs = 0.821; Inhibition Total, p = 0.019, ρs = 0.900). BMD showed a significant correlation between FA-R-CPCT and working memory index (p = 0.007; ρs = 0.949). DISCUSSION AND CONCLUSION In this pilot study, despite the limitation of sample size, the findings support the hypothesis of the involvement of a cerebellar-thalamo-cortical loop for the neuropsychological profile of DMD, as the CTT and the CPCT are involved in the network and the related brain structures are known to be implied in executive functions. Our results suggest that altered WM connectivity and reduced fibre organization in cerebellar tracts, probably due to the lack of dystrophin in the brain, may render less efficient some neuropsychological functions in children affected by dystrophinopathies. The wider multicentric study could help to better establish the role of cerebellar connectivity in neuropsychological profile for dystrophinopathies, identifying possible novel diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Laura Biagi
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
| | - Sara Lenzi
- Department of Developmental Neuroscience, IRCCS Stella Maris, Calambrone, Pisa, Italy
| | - Emilio Cipriano
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
- Department of Physics, University of Pisa, Pisa, Italy
| | - Simona Fiori
- Department of Developmental Neuroscience, IRCCS Stella Maris, Calambrone, Pisa, Italy
| | - Paolo Bosco
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
| | - Paola Cristofani
- Department of Developmental Neuroscience, IRCCS Stella Maris, Calambrone, Pisa, Italy
| | - Guia Astrea
- Department of Developmental Neuroscience, IRCCS Stella Maris, Calambrone, Pisa, Italy
| | - Antonella Pini
- Department of Developmental Neuroscience, IRCCS Stella Maris, Calambrone, Pisa, Italy
| | - Giovanni Cioni
- Department of Developmental Neuroscience, IRCCS Stella Maris, Calambrone, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eugenio Mercuri
- Pediatric Neurology Unit, Catholic University and Nemo Center, Policlinico Universitario Gemelli, Rome, Italy
| | - Michela Tosetti
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris, Calambrone, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
117
|
Ripp I, Wallenwein LA, Wu Q, Emch M, Koch K, Cumming P, Yakushev I. Working memory task induced neural activation: A simultaneous PET/fMRI study. Neuroimage 2021; 237:118131. [PMID: 33951511 DOI: 10.1016/j.neuroimage.2021.118131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/01/2021] [Accepted: 04/28/2021] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Positron emission tomography (PET) with [18F]fluorodeoxyglucose (FDG) is a powerful method for mapping cerebral glucose metabolism as a proxy of neural activity, assuming a steady-state during the recording interval. We asked if a clinical FDG-PET imaging protocol might also capture changes in neural activity associated with performance of a working memory (WM) task. METHODS To test this concept, we examined hybrid PET/MR data for FDG-PET and simultaneous functional magnetic resonance imaging (fMRI) in a sample of healthy volunteers. The PET image acquisition started 30 min after a bolus injection of approximately 100 MBq FDG, and the WM task was undertaken starting at approximately 60 min post-injection. We reconstructed FDG-PET sum images corresponding to baseline (44-60 min p.i.) and WM tasks (63- 71 min p.i.), each with intensity scaling to the corresponding global mean. RESULTS Compared to the baseline resting condition, relative FDG uptake increased during WM task performance in brain regions previously associated with WM. Furthermore, these metabolically active regions partly overlapped with the regions showing task-dependent increases in BOLD signal in simultaneous fMRI. CONCLUSION We find evidence for WM task-induced neural activation using a clinical FDG-PET imaging protocol. These findings encourage the development of dedicated protocols for tracking neural correlates of cognitive function.
Collapse
Affiliation(s)
- Isabelle Ripp
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany; TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Martinsried, Germany.
| | - Lara A Wallenwein
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Qiong Wu
- Department of Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany; TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Munich, Germany; Institute of Medical Psychology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Monica Emch
- Department of Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany; TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Martinsried, Germany
| | - Kathrin Koch
- Department of Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany; TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Martinsried, Germany
| | - Paul Cumming
- Department of Nuclear Medicine, University Hospital Bern, Bern, Switzerland; School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia
| | - Igor Yakushev
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany; TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Martinsried, Germany
| |
Collapse
|
118
|
Aguirre N, Cruz-Gómez ÁJ, Esbrí SF, Miró-Padilla A, Bueichekú E, Broseta-Torres R, Ávila C, Sanchis-Segura C, Forn C. Enhanced frontoparietal connectivity in multiple sclerosis patients and healthy controls in response to an intensive computerized training focused on working memory. Mult Scler Relat Disord 2021; 52:102976. [PMID: 33964569 DOI: 10.1016/j.msard.2021.102976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Working memory (WM) deficits are common in multiple sclerosis (MS) patients. Computerized cognitive training may enhance WM capabilities but its efficacy in MS patients has not been sufficiently explored. METHODS This study examines the effects of n-back training on cognitive performance and functional connectivity (FC) in 29 MS patients and 29 healthy controls (HC). Baseline (S1) performance on 2- and 3-back tasks and FC within the fronto-parietal network were assessed before randomly splitting the sample into four subgroups: trained MS (MSt, n = 15), trained HC (HCt, n = 14), untrained MS (MSu, n = 14), and untrained HC (HCu, n = 15). The trained subgroups underwent adaptive n-back training (60 min/day; 4 days) and n-back task performance and FC were reassessed in a second session (S2). RESULTS As revealed by mixed two-way ANOVAs, trained participants (MSt and HCt) exhibited a significant increase in the number of correct responses and significantly reduced reaction times in S2. These performance improvements were accompanied by an increase in FC in the fronto-parietal pathways and statistically significant correlations between both effects were found. CONCLUSIONS Computerised WM training results in behavioural and neuroplasticity positive effects that may be useful when trying to prevent or attenuate cognitive decline in MS patients.
Collapse
Affiliation(s)
- Naiara Aguirre
- Universitat Jaume I. Departament de Psicología Bàsica, Clínica i Psicobiología, Castelló de la Plana, 12006, Spain
| | - Álvaro Javier Cruz-Gómez
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Grupo de Neuroimagen y Psicofisiología, Spain
| | - Sonia Félix Esbrí
- Universitat Jaume I. Departament de Psicología Bàsica, Clínica i Psicobiología, Castelló de la Plana, 12006, Spain
| | - Anna Miró-Padilla
- Universitat Jaume I. Departament de Psicología Bàsica, Clínica i Psicobiología, Castelló de la Plana, 12006, Spain
| | - Elisenda Bueichekú
- Universitat Jaume I. Departament de Psicología Bàsica, Clínica i Psicobiología, Castelló de la Plana, 12006, Spain
| | | | - César Ávila
- Universitat Jaume I. Departament de Psicología Bàsica, Clínica i Psicobiología, Castelló de la Plana, 12006, Spain
| | - Carla Sanchis-Segura
- Universitat Jaume I. Departament de Psicología Bàsica, Clínica i Psicobiología, Castelló de la Plana, 12006, Spain
| | - Cristina Forn
- Universitat Jaume I. Departament de Psicología Bàsica, Clínica i Psicobiología, Castelló de la Plana, 12006, Spain.
| |
Collapse
|
119
|
Dziemian S, Appenzeller S, von Bastian CC, Jäncke L, Langer N. Working Memory Training Effects on White Matter Integrity in Young and Older Adults. Front Hum Neurosci 2021; 15:605213. [PMID: 33935667 PMCID: PMC8079651 DOI: 10.3389/fnhum.2021.605213] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/15/2021] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES Working memory is essential for daily life skills like reading comprehension, reasoning, and problem-solving. Healthy aging of the brain goes along with working memory decline that can affect older people's independence in everyday life. Interventions in the form of cognitive training are a promising tool for delaying age-related working memory decline, yet the underlying structural plasticity of white matter is hardly studied. METHODS We conducted a longitudinal diffusion tensor imaging study to investigate the effects of an intensive four-week adaptive working memory training on white matter integrity quantified by global and tract-wise mean diffusivity. We compared diffusivity measures of fiber tracts that are associated with working memory of 32 young and 20 older participants that were randomly assigned to a working memory training group or an active control group. RESULTS The behavioral analysis showed an increase in working memory performance after the four-week adaptive working memory training. The neuroanatomical analysis revealed a decrease in mean diffusivity in the working memory training group after the training intervention in the right inferior longitudinal fasciculus for the older adults. There was also a decrease in mean diffusivity in the working memory training group in the right superior longitudinal fasciculus for the older and young participants after the intervention. CONCLUSION This study shows that older people can benefit from working memory training by improving their working memory performance that is also reflected in terms of improved white matter integrity in the superior longitudinal fasciculus and the inferior longitudinal fasciculus, where the first is an essential component of the frontoparietal network known to be essential in working memory.
Collapse
Affiliation(s)
- Sabine Dziemian
- Department of Methods of Plasticity Research, Institute of Psychology, University of Zurich, Zurich, Switzerland
- University Research Priority Program “Dynamic of Healthy Aging”, University of Zurich, Zurich, Switzerland
- Center for Reproducible Science, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), Zurich, Switzerland
| | - Sarah Appenzeller
- Department of Methods of Plasticity Research, Institute of Psychology, University of Zurich, Zurich, Switzerland
| | - Claudia C. von Bastian
- Department of Psychology, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Lutz Jäncke
- Institute of Psychology, Department of Neuropsychology, University of Zurich, Zurich, Switzerland
- University Research Priority Program “Dynamic of Healthy Aging”, University of Zurich, Zurich, Switzerland
| | - Nicolas Langer
- Department of Methods of Plasticity Research, Institute of Psychology, University of Zurich, Zurich, Switzerland
- University Research Priority Program “Dynamic of Healthy Aging”, University of Zurich, Zurich, Switzerland
- Center for Reproducible Science, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), Zurich, Switzerland
| |
Collapse
|
120
|
Verhallen AM, Renken RJ, Marsman JBC, Ter Horst GJ. Working Memory Alterations After a Romantic Relationship Breakup. Front Behav Neurosci 2021; 15:657264. [PMID: 33897388 PMCID: PMC8062740 DOI: 10.3389/fnbeh.2021.657264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/15/2021] [Indexed: 11/27/2022] Open
Abstract
Experiencing stress can have a disadvantageous effect on mental well-being. Additional to the relation between suffering from chronic stress and depression, both stress (acute and chronic) and depression are associated with cognitive alterations, including working memory. The breakup of a relationship is considered to be a stressful event that can lead to symptoms of depression in otherwise healthy people. Additional to elevated depression scores, stress-related cognitive alterations may occur in this population as well. Therefore, in the present fMRI study we investigated whether experiencing a relationship breakup is associated with working memory alterations and whether this is related to depressive symptom severity. A three workload version of the n-back task (0-back, 1-back, 2-back) was used to measure working memory in subjects who experienced a breakup in the preceding 6 months (“heartbreak group”, n = 70) and subjects in a romantic relationship (“relationship group”, n = 46). Behavioral task performance was compared between the two groups. Functional MRI scans were analyzed using General Linear Model (GLM) activation analyses. Workload conditions were contrasted to each other and to baseline and group differences were assessed. To investigate whether brain networks are associated with depressive symptom severity within the heartbreak group specifically, a post hoc feature-based Independent Component Analysis was performed on the 2-back > 0-back contrast images to identify brain regions that covaried across subjects. Behaviorally, the heartbreak group performed similar at high workload (i.e., 2-back) and better at moderate workload (i.e., 1-back) than the relationship group. GLM analysis revealed an interaction between group and 2-back > 0-back, 2-back > 1-back and 2-back > baseline; the heartbreak group showed less precuneus activation compared to the relationship group. Furthermore, within the heartbreak group, we found a negative association between depressive symptom severity and a brain network representing mostly the precuneus, anterior cingulate gyrus and supplementary motor cortex. Our findings suggest that the effect of a breakup is accompanied by workload-dependent working memory alterations. Therefore, we propose that this population can potentially be used to investigate the interplay between stress, cognitive functioning and depression.
Collapse
Affiliation(s)
- Anne M Verhallen
- Cognitive Neuroscience Center, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, Groningen, Netherlands
| | - Remco J Renken
- Cognitive Neuroscience Center, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, Groningen, Netherlands
| | - Jan-Bernard C Marsman
- Cognitive Neuroscience Center, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, Groningen, Netherlands
| | - Gert J Ter Horst
- Cognitive Neuroscience Center, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
121
|
Zhang L, Shao Y, Jin X, Cai X, Du F. Decreased effective connectivity between insula and anterior cingulate cortex during a working memory task after prolonged sleep deprivation. Behav Brain Res 2021; 409:113263. [PMID: 33775776 DOI: 10.1016/j.bbr.2021.113263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/05/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Total sleep deprivation (TSD) causes a decline in almost all cognitive domains, especially working memory. However, we do not have a clear understanding of the degree working memory is impaired under prolonged TSD, nor do we know the underlying neurophysiological mechanism. In this study, we recorded EEG data from 64 subjects while they performed a working memory task during resting wakefulness, after 24 h TSD, and after 30 h TSD. ANOVA was used to verify performance differences between 24 h and 30 h TSD in working memory tasks: (1) reaction time and accuracy hit rates, (2) P200, N200, and P300 amplitude and latency in measurements of event-related potential, as well as (3) effective connectivity strength between brain areas associated with working memory. Compared to 24 h TSD, 30 h TSD significantly decreased accuracy hit rates and induced a larger N200 difference waveform. The effective connectivity analysis showed that 30 h TSD also decreased beta frequency in effective connection strength from the right insular lobe to the left anterior cingulate cortex (ACC). Effective connection from the left ventrolateral prefrontal cortex to the left dorsolateral prefrontal cortex increased in the match condition of the 2-back task. In conclusion, 30 h TSD had a greater negative impact on working memory than 24 h TSD. This impairment of working memory is associated with decreased strength in the effective connection from the right insula to the left ACC.
Collapse
Affiliation(s)
- Liwei Zhang
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongcong Shao
- Department of Psychology, Beijing Sport University, Beijing, 100084, China
| | - Xueguang Jin
- College of Software and Big Data, Changzhou College of Information Technology, Changzhou, 213164, China
| | - Xiaoping Cai
- Department of Cadra Word 3 Division, PLA Army General Hospital, Beijing, 100700, China
| | - Feng Du
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
122
|
Wu Q, Ripp I, Emch M, Koch K. Cortical and subcortical responsiveness to intensive adaptive working memory training: An MRI surface-based analysis. Hum Brain Mapp 2021; 42:2907-2920. [PMID: 33724600 PMCID: PMC8127158 DOI: 10.1002/hbm.25412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/31/2022] Open
Abstract
Working memory training (WMT) has been shown to have effects on cognitive performance, the precise effects and the underlying neurobiological mechanisms are, however, still a matter of debate. In particular, the impact of WMT on gray matter morphology is still rather unclear. In the present study, 59 healthy middle‐aged participants (age range 50–65 years) were pseudo‐randomly single‐blinded allocated to an 8‐week adaptive WMT or an 8‐week nonadaptive intervention. Before and after the intervention, high resolution magnetic resonance imaging (MRI) was performed and cognitive test performance was assessed in all participants. Vertex‐wise cortical volume, thickness, surface area, and cortical folding was calculated. Seven subcortical volumes of interest and global mean cortical thickness were also measured. Comparisons of symmetrized percent change (SPC) between groups were conducted to identify group by time interactions. Greater increases in cortical gyrification in bilateral parietal regions, including superior parietal cortex and inferior parietal lobule as well as precuneus, greater increases in cortical volume and thickness in bilateral primary motor cortex, and changes in surface area in bilateral occipital cortex (medial and lateral occipital cortex) were detected in WMT group after training compared to active controls. Structural training‐induced changes in WM‐related regions, especially parietal regions, might provide a better brain processing environment for higher WM load.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, School of MedicineTechnical University of MunichMunichGermany
- TUM‐Neuroimaging Center (TUM‐NIC)Technical University of MunichMunichGermany
- Institute of Medical PsychologyLudwig‐Maximilians‐UniversitätMunichGermany
| | - Isabelle Ripp
- TUM‐Neuroimaging Center (TUM‐NIC)Technical University of MunichMunichGermany
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der IsarTechnical University of MunichMunichGermany
- Graduate School of Systemic NeurosciencesLudwig‐Maximilians‐UniversitätMartinsriedGermany
| | - Mónica Emch
- Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, School of MedicineTechnical University of MunichMunichGermany
- TUM‐Neuroimaging Center (TUM‐NIC)Technical University of MunichMunichGermany
- Graduate School of Systemic NeurosciencesLudwig‐Maximilians‐UniversitätMartinsriedGermany
| | - Kathrin Koch
- Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, School of MedicineTechnical University of MunichMunichGermany
- TUM‐Neuroimaging Center (TUM‐NIC)Technical University of MunichMunichGermany
- Graduate School of Systemic NeurosciencesLudwig‐Maximilians‐UniversitätMartinsriedGermany
| |
Collapse
|
123
|
Faraza S, Waldenmaier J, Dyrba M, Wolf D, Fischer FU, Knaepen K, Kollmann B, Tüscher O, Binder H, Mierau A, Riedel D, Fellgiebel A, Teipel S. Dorsolateral Prefrontal Functional Connectivity Predicts Working Memory Training Gains. Front Aging Neurosci 2021; 13:592261. [PMID: 33732134 PMCID: PMC7956962 DOI: 10.3389/fnagi.2021.592261] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Normal aging is associated with working memory decline. A decrease in working memory performance is associated with age-related changes in functional activation patterns in the dorsolateral prefrontal cortex (DLPFC). Cognitive training can improve cognitive performance in healthy older adults. We implemented a cognitive training study to assess determinants of generalization of training gains to untrained tasks, a key indicator for the effectiveness of cognitive training. We aimed to investigate the association of resting-state functional connectivity (FC) of DLPFC with working memory performance improvement and cognitive gains after the training. Method: A sample of 60 healthy older adults (mean age: 68 years) underwent a 4-week neuropsychological training, entailing a working memory task. Baseline resting-state functional MRI (rs-fMRI) images were acquired in order to investigate the FC of DLPFC. To evaluate training effects, participants underwent a neuropsychological assessment before and after the training. A second follow-up assessment was applied 12 weeks after the training. We used cognitive scores of digit span backward and visual block span backward tasks representing working memory function. The training group was divided into subjects who had and who did not have training gains, which was defined as a higher improvement in working memory tasks than the control group (N = 19). Results: A high FC of DLPFC of the right hemisphere was significantly associated with training gains and performance improvement in the visuospatial task. The maintenance of cognitive gains was restricted to the time period directly after the training. The training group showed performance improvement in the digit span backward task. Conclusion: Functional activation patterns of the DLPFC were associated with the degree of working memory training gains and visuospatial performance improvement. Although improvement through cognitive training and acquisition of training gains are possible in aging, they remain limited.
Collapse
Affiliation(s)
- Sofia Faraza
- Department of Psychosomatic Medicine and Psychotherapy, Rostock University Medical Center, Rostock, Germany
| | - Julia Waldenmaier
- Department of Psychosomatic Medicine and Psychotherapy, Rostock University Medical Center, Rostock, Germany
| | - Martin Dyrba
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Dominik Wolf
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany.,Center for Mental Health in Old Age, Mainz, Germany
| | - Florian U Fischer
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany.,Center for Mental Health in Old Age, Mainz, Germany
| | - Kristel Knaepen
- Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany
| | - Bianca Kollmann
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany.,Leibnitz Institute for Resilience Research (LIR), Mainz, Germany
| | - Oliver Tüscher
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany.,Leibnitz Institute for Resilience Research (LIR), Mainz, Germany
| | - Harald Binder
- Institute of Medical Biometry and Statistics (IMBI), Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Andreas Mierau
- Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany.,Department of Exercise and Sport Science, LUNEX International University of Health, Exercise and Sports, Differdange, Luxembourg
| | - David Riedel
- Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany
| | - Andreas Fellgiebel
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany.,Center for Mental Health in Old Age, Mainz, Germany
| | - Stefan Teipel
- Department of Psychosomatic Medicine and Psychotherapy, Rostock University Medical Center, Rostock, Germany.,German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| |
Collapse
|
124
|
Narita N, Kamiya K, Iwaki S, Ishii T, Endo H, Shimosaka M, Uchida T, Kantake I, Shibutani K. Activation of Prefrontal Cortex in Process of Oral and Finger Shape Discrimination: fNIRS Study. Front Neurosci 2021; 15:588593. [PMID: 33633532 PMCID: PMC7901927 DOI: 10.3389/fnins.2021.588593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/04/2021] [Indexed: 11/24/2022] Open
Abstract
Background The differences in the brain activities of the insular and the visual association cortices have been reported between oral and manual stereognosis. However, these results were not conclusive because of the inherent differences in the task performance-related motor sequence conditions. We hypothesized that the involvement of the prefrontal cortex may be different between finger and oral shape discrimination. This study was conducted to clarify temporal changes in prefrontal activities occurring in the processes of oral and finger tactual shape discrimination using prefrontal functional near-infrared spectroscopy (fNIRS). Methods Six healthy right-handed males [aged 30.8 ± 8.2 years (mean ± SD)] were enrolled. Measurements of prefrontal activities were performed using a 22-channel fNIRS device (ETG-100, Hitachi Medical Co., Chiba, Japan) during experimental blocks that included resting state (REST), nonsense shape discrimination (SHAM), and shape discrimination (SHAPE). Results No significant difference was presented with regard to the number of correct answers during trials between oral and finger SHAPE discrimination. Additionally, a statistical difference for the prefrontal fNIRS activity between oral and finger shape discrimination was noted in CH 1. Finger SHAPE, as compared with SHAM, presented a temporally shifting onset and burst in the prefrontal activities from the frontopolar area (FPA) to the orbitofrontal cortex (OFC). In contrast, oral SHAPE as compared with SHAM was shown to be temporally overlapped in the onset and burst of the prefrontal activities in the dorsolateral prefrontal cortex (DLPFC)/FPA/OFC. Conclusion The prefrontal activities temporally shifting from the FPA to the OFC during SHAPE as compared with SHAM may suggest the segregated serial prefrontal processing from the manipulation of a target image to the decision making during the process of finger shape discrimination. In contrast, the temporally overlapped prefrontal activities of the DLPFC/FPA/OFC in the oral SHAPE block may suggest the parallel procession of the repetitive involvement of generation, manipulation, and decision making in order to form a reliable representation of target objects.
Collapse
Affiliation(s)
- Noriyuki Narita
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Kazunobu Kamiya
- Department of Removable Prosthodontics, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Sunao Iwaki
- Mental and Physical Functions Modeling Group, Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Tomohiro Ishii
- Department of Removable Prosthodontics, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Hiroshi Endo
- Physical Fitness Technology Group, Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Michiharu Shimosaka
- Department of Anesthesiology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | | | | | - Koh Shibutani
- Department of Anesthesiology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| |
Collapse
|
125
|
Blodgett JM, Cooper R, Davis DHJ, Kuh D, Hardy R. Bidirectional associations between word memory and one-legged balance performance in mid and later life. Exp Gerontol 2021; 144:111176. [PMID: 33279666 PMCID: PMC7840581 DOI: 10.1016/j.exger.2020.111176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Age-related changes in cognitive and balance capabilities are well-established, as is their correlation with one another. Given limited evidence regarding the directionality of associations, we aimed to explore the direction and potential explanations of associations between word memory and one-legged balance performance in mid-later life. METHODS A total of 3062 participants in the Medical Research Council National Survey of Health and Development, a British birth cohort study, were included. One-legged balance times (eyes closed) were measured at ages 53, 60-64 and 69 years. Word memory was assessed at ages 43, 53, 60-64 and 69 with three 15-item word-recall trials. Autoregressive cross-lagged and dual change score models assessed bidirectional associations between word memory and balance. Random-effects models quantified the extent to which these associations were explained by adjustment for anthropometric, socioeconomic, behavioural and health status indicators. RESULTS Autoregressive cross-lagged and dual change score models suggested a unidirectional association between word memory and subsequent balance performance. In a sex-adjusted random-effects model, 1 standard deviation increase in word memory was associated with 9% (7,12%) higher balance performance at age 53. This association decreased with age (-0.4% /year (-0.6,-0.1%). Education partially attenuated the association, although it remained in the fully-adjusted model (3% (0.1,6%)). CONCLUSIONS There was consistent evidence that word memory is associated with subsequent balance performance but no evidence of the reverse association. Cognitive processing plays an important role in the balance process, with educational attainment providing some contribution. These findings have important implications for understanding cognitive-motor associations and for interventions aimed at improving cognitive and physical capability in the ageing population.
Collapse
Affiliation(s)
| | - Rachel Cooper
- Musculoskeletal Science and Sports Medicine Research Centre, Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, UK
| | | | - Diana Kuh
- MRC Unit for Lifelong Health and Ageing at UCL, London, UK
| | | |
Collapse
|
126
|
Clark SV, Semmel ES, Aleksonis HA, Steinberg SN, King TZ. Cerebellar-Subcortical-Cortical Systems as Modulators of Cognitive Functions. Neuropsychol Rev 2021; 31:422-446. [PMID: 33515170 DOI: 10.1007/s11065-020-09465-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Over the past few decades, research has established that the cerebellum is involved in executive functions; however, its specific role remains unclear. There are numerous theories of cerebellar function and numerous cognitive processes falling under the umbrella of executive function, making investigations of the cerebellum's role in executive functioning challenging. In this review, we explored the role of the cerebellum in executive functioning through clinical and cognitive neuroscience frameworks. We reviewed the neuroanatomical systems and theoretical models of cerebellar functions and the multifaceted nature of executive functions. Using attention deficit hyperactivity disorder and cerebellar tumor as clinical developmental models of cerebellar dysfunction, and the functional magnetic resonance imaging literature, we reviewed evidence for cerebellar involvement in specific components of executive function in childhood, adolescence, and adulthood. There is evidence for posterior cerebellar contributions to working memory, planning, inhibition, and flexibility, but the heterogeneous literature that largely was not designed to study the cerebellum makes it difficult to determine specific functions of the cerebellum or cerebellar regions. In addition, while it is clear that cerebellar insult in childhood affects executive function performance later in life, more work is needed to elucidate the mechanisms by which executive dysfunction occurs and its developmental course. The limitations of the current literature are discussed and potential directions for future research are provided.
Collapse
Affiliation(s)
- Sarah V Clark
- Department of Psychology, Georgia State University, GA, 30303, Atlanta, USA
| | - Eric S Semmel
- Department of Psychology, Georgia State University, GA, 30303, Atlanta, USA
| | - Holly A Aleksonis
- Department of Psychology, Georgia State University, GA, 30303, Atlanta, USA
| | | | - Tricia Z King
- Department of Psychology, Georgia State University, GA, 30303, Atlanta, USA. .,Neuroscience Institute, Georgia State University, GA, 30303, Atlanta, USA.
| |
Collapse
|
127
|
Moreno-Alcázar A, Ramos-Quiroga JA, Ribases M, Sánchez-Mora C, Palomar G, Bosch R, Salavert J, Fortea L, Monté-Rubio GC, Canales-Rodríguez EJ, Milham MP, Castellanos FX, Casas M, Pomarol-Clotet E, Radua J. Brain structural and functional substrates of ADGRL3 (latrophilin 3) haplotype in attention-deficit/hyperactivity disorder. Sci Rep 2021; 11:2373. [PMID: 33504901 PMCID: PMC7840726 DOI: 10.1038/s41598-021-81915-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/11/2021] [Indexed: 11/17/2022] Open
Abstract
Previous studies have shown that the gene encoding the adhesion G protein-coupled receptor L3 (ADGRL3; formerly latrophilin 3, LPHN3) is associated with Attention-Deficit/Hyperactivity Disorder (ADHD). Conversely, no studies have investigated the anatomical or functional brain substrates of ADGRL3 risk variants. We examined here whether individuals with different ADGRL3 haplotypes, including both patients with ADHD and healthy controls, showed differences in brain anatomy and function. We recruited and genotyped adult patients with combined type ADHD and healthy controls to achieve a sample balanced for age, sex, premorbid IQ, and three ADGRL3 haplotype groups (risk, protective, and others). The final sample (n = 128) underwent structural and functional brain imaging (voxel-based morphometry and n-back working memory fMRI). We analyzed the brain structural and functional effects of ADHD, haplotypes, and their interaction, covarying for age, sex, and medication. Individuals (patients or controls) with the protective haplotype showed strong, widespread hypo-activation in the frontal cortex extending to inferior temporal and fusiform gyri. Individuals (patients or controls) with the risk haplotype also showed hypo-activation, more focused in the right temporal cortex. Patients showed parietal hyper-activation. Disorder-haplotype interactions, as well as structural findings, were not statistically significant. To sum up, both protective and risk ADGRL3 haplotypes are associated with substantial brain hypo-activation during working memory tasks, stressing this gene's relevance in cognitive brain function. Conversely, we did not find brain effects of the interactions between adult ADHD and ADGRL3 haplotypes.
Collapse
Affiliation(s)
- Ana Moreno-Alcázar
- FIDMAG Research Foundation, C/. Dr. Antoni Pujadas, 38, Sant Boi de Llobregat, 08830, Barcelona, Spain
- Centre Forum Research Unit, Institute of Neuropsychiatry and Addictions (INAD), Hospital del Mar, Barcelona, Spain
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Josep A Ramos-Quiroga
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
- Servei de Psiquiatria, Vall d'Hebron Hospital Universitari, Vall D'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Marta Ribases
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
- Servei de Psiquiatria, Vall d'Hebron Hospital Universitari, Vall D'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Genetics, Microbiology & Statistics, University of Barcelona, Barcelona, Spain
| | - Cristina Sánchez-Mora
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
- Servei de Psiquiatria, Vall d'Hebron Hospital Universitari, Vall D'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Genetics, Microbiology & Statistics, University of Barcelona, Barcelona, Spain
| | - Gloria Palomar
- Servei de Psiquiatria, Vall d'Hebron Hospital Universitari, Vall D'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Rosa Bosch
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
- Servei de Psiquiatria, Vall d'Hebron Hospital Universitari, Vall D'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Josep Salavert
- FIDMAG Research Foundation, C/. Dr. Antoni Pujadas, 38, Sant Boi de Llobregat, 08830, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Sant Rafael Hospital, Barcelona, Spain
| | - Lydia Fortea
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/. Rosselló, 149, 08036, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Gemma C Monté-Rubio
- FIDMAG Research Foundation, C/. Dr. Antoni Pujadas, 38, Sant Boi de Llobregat, 08830, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Erick J Canales-Rodríguez
- FIDMAG Research Foundation, C/. Dr. Antoni Pujadas, 38, Sant Boi de Llobregat, 08830, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Signal Processing Lab (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Michael P Milham
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA
| | - F Xavier Castellanos
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Child and Adolescent Psychiatry, Hassenfeld Children's Hospital at NYU Langone, New York, NY, USA
| | - Miquel Casas
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
- Servei de Psiquiatria, Vall d'Hebron Hospital Universitari, Vall D'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Research Foundation, C/. Dr. Antoni Pujadas, 38, Sant Boi de Llobregat, 08830, Barcelona, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| | - Joaquim Radua
- FIDMAG Research Foundation, C/. Dr. Antoni Pujadas, 38, Sant Boi de Llobregat, 08830, Barcelona, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/. Rosselló, 149, 08036, Barcelona, Spain.
- Centre for Psychiatric Research and Education, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
128
|
Rovetti J, Goy H, Nurgitz R, Russo FA. Comparing verbal working memory load in auditory and visual modalities using functional near-infrared spectroscopy. Behav Brain Res 2021; 402:113102. [PMID: 33422594 DOI: 10.1016/j.bbr.2020.113102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/29/2020] [Accepted: 12/27/2020] [Indexed: 10/22/2022]
Abstract
The verbal identity n-back task is commonly used to assess verbal working memory (VWM) capacity. Only three studies have compared brain activation during the n-back when using auditory and visual stimuli. The earliest study, a positron emission tomography study of the 3-back, found no differences in VWM-related brain activation between n-back modalities. In contrast, two subsequent functional magnetic resonance imaging (fMRI) studies of the 2-back found that auditory VWM was associated with greater left dorsolateral prefrontal cortex (DL-PFC) activation than visual VWM, perhaps suggesting that auditory VWM requires more cognitive effort than its visual counterpart. The current study aimed to assess whether DL-PFC activation (i.e., cognitive effort) differs by VWM modality. To do this, 16 younger adults completed an auditory and visual n-back, both at four levels of VWM load. Concurrently, activation of the PFC was measured using functional near-infrared spectroscopy (fNIRS), a silent neuroimaging method. We found that DL-PFC activation increased with VWM load, but it was not affected by VWM modality or the interaction between load and modality. This supports the view that both VWM modalities require similar cognitive effort, and perhaps that previous fMRI results were an artefact of scanner noise. We also found that, across conditions, DL-PFC activation was positively correlated with reaction time. This may further support DL-PFC activation as an index of cognitive effort, and fNIRS as a method to measure it.
Collapse
Affiliation(s)
- Joseph Rovetti
- Department of Psychology, Ryerson University, 350 Victoria St, Toronto, ON M5B 2K3, Canada.
| | - Huiwen Goy
- Department of Psychology, Ryerson University, 350 Victoria St, Toronto, ON M5B 2K3, Canada.
| | - Rebecca Nurgitz
- Department of Psychology, Ryerson University, 350 Victoria St, Toronto, ON M5B 2K3, Canada.
| | - Frank A Russo
- Department of Psychology, Ryerson University, 350 Victoria St, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|
129
|
Salmi J, Soveri A, Salmela V, Alho K, Leppämäki S, Tani P, Koski A, Jaeggi SM, Laine M. Working memory training restores aberrant brain activity in adult attention-deficit hyperactivity disorder. Hum Brain Mapp 2020; 41:4876-4891. [PMID: 32813290 PMCID: PMC7643386 DOI: 10.1002/hbm.25164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 01/01/2023] Open
Abstract
The development of treatments for attention impairments is hampered by limited knowledge about the malleability of underlying neural functions. We conducted the first randomized controlled trial to determine the modulations of brain activity associated with working memory (WM) training in adults with attention-deficit hyperactivity disorder (ADHD). At baseline, we assessed the aberrant functional brain activity in the n-back WM task by comparing 44 adults with ADHD with 18 healthy controls using fMRI. Participants with ADHD were then randomized to train on an adaptive dual n-back task or an active control task. We tested whether WM training elicits redistribution of brain activity as observed in healthy controls, and whether it might further restore aberrant activity related to ADHD. As expected, activity in areas of the default-mode (DMN), salience (SN), sensory-motor (SMN), frontoparietal (FPN), and subcortical (SCN) networks was decreased in participants with ADHD at pretest as compared with healthy controls, especially when the cognitive load was high. WM training modulated widespread FPN and SN areas, restoring some of the aberrant activity. Training effects were mainly observed as decreased brain activity during the trained task and increased activity during the untrained task, suggesting different neural mechanisms for trained and transfer tasks.
Collapse
Affiliation(s)
- Juha Salmi
- Department of Neuroscience and Biomedical EngineeringAalto UniversityEspooFinland
- Department of Psychology and Speech‐Language PathologyUniversity of TurkuTurkuFinland
- Turku Institute for Advanced StudiesUniversity of TurkuTurkuFinland
| | - Anna Soveri
- Department of Clinical MedicineUniversity of TurkuTurkuFinland
| | - Viljami Salmela
- Department of Psychology and LogopedicsUniversity of HelsinkiHelsinkiFinland
- AMI Centre, Aalto NeuroimagingAalto UniversityEspooFinland
| | - Kimmo Alho
- Department of Psychology and LogopedicsUniversity of HelsinkiHelsinkiFinland
- AMI Centre, Aalto NeuroimagingAalto UniversityEspooFinland
| | - Sami Leppämäki
- Department of PsychiatryHelsinki University HospitalHelsinkiFinland
| | - Pekka Tani
- Department of PsychiatryHelsinki University HospitalHelsinkiFinland
| | - Anniina Koski
- Department of PsychiatryHelsinki University HospitalHelsinkiFinland
| | - Susanne M. Jaeggi
- School of EducationUniversity of California IrvineIrvineCaliforniaUSA
- Department of Cognitive SciencesUniversity of California IrvineIrvineCaliforniaUSA
| | - Matti Laine
- Department of PsychologyÅbo Akademi UniversityTurkuFinland
- Brain and Mind CenterUniversity of TurkuTurkuFinland
| |
Collapse
|
130
|
Deldar Z, Gevers-Montoro C, Khatibi A, Ghazi-Saidi L. The interaction between language and working memory: a systematic review of fMRI studies in the past two decades. AIMS Neurosci 2020; 8:1-32. [PMID: 33490370 PMCID: PMC7815476 DOI: 10.3934/neuroscience.2021001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Language processing involves other cognitive domains, including Working Memory (WM). Much detail about the neural correlates of language and WM interaction remains unclear. This review summarizes the evidence for the interaction between WM and language obtained via functional Magnetic Resonance Imaging (fMRI) in the past two decades. The search was limited to PubMed, Google Scholar, Science direct and Neurosynth for working memory, language, fMRI, neuroimaging, cognition, attention, network, connectome keywords. The exclusion criteria consisted of studies including children, older adults, bilingual or multilingual population, clinical cases, music, sign language, speech, motor processing, review papers, meta-analyses, electroencephalography/event-related potential, and positron emission tomography. A total of 20 articles were included and discussed in four categories: language comprehension, language production, syntax, and networks. Studies on neural correlates of WM and language interaction are rare. Language tasks that involve WM activate common neural systems. Activated areas can be associated with cognitive concepts proposed by Baddeley and Hitch (1974), including the phonological loop of WM (mainly Broca and Wernicke's areas), other prefrontal cortex and right hemispheric regions linked to the visuospatial sketchpad. There is a clear, dynamic interaction between language and WM, reflected in the involvement of subcortical structures, particularly the basal ganglia (caudate), and of widespread right hemispheric regions. WM involvement is levered by cognitive demand in response to task complexity. High WM capacity readers draw upon buffer memory systems in midline cortical areas to decrease the WM demands for efficiency. Different dynamic networks are involved in WM and language interaction in response to the task in hand for an ultimate brain function efficiency, modulated by language modality and attention.
Collapse
Affiliation(s)
- Zoha Deldar
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Language and Cognition Laboratory, Department of Communication Disorders, College of Education, University of Nebraska at Kearney, USA
| | - Carlos Gevers-Montoro
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Madrid College of Chiropractic, Real Centro Universitario María Cristina, San Lorenzo de El Escorial, Madrid, Spain
| | - Ali Khatibi
- Centre of Precision Rehabilitation for Spinal Pain, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Ladan Ghazi-Saidi
- Language and Cognition Laboratory, Department of Communication Disorders, College of Education, University of Nebraska at Kearney, USA
| |
Collapse
|
131
|
Sar-El R, Sharon H, Lubianiker N, Hendler T, Raz G. Inducing a Functional-Pharmacological Coupling in the Human Brain to Achieve Improved Drug Effect. Front Neurosci 2020; 14:557874. [PMID: 33154714 PMCID: PMC7586318 DOI: 10.3389/fnins.2020.557874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/07/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Roy Sar-El
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Roy Sar-El,
| | - Haggai Sharon
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nitzan Lubianiker
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- The School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Talma Hendler
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Gal Raz
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Steve Tisch School of Film and Television, Tel Aviv University, Tel Aviv, Israel
- Gal Raz,
| |
Collapse
|
132
|
Kır Y, Baskak B, Kuşman A, Sayar-Akaslan D, Özdemir F, Sedes-Baskak N, Süzen HS, Baran Z. The relationship between plasma levels of clozapine and N-desmethyclozapine as well as M1 receptor polymorphism with cognitive functioning and associated cortical activity in schizophrenia. Psychiatry Res Neuroimaging 2020; 303:111128. [PMID: 32593951 DOI: 10.1016/j.pscychresns.2020.111128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/06/2020] [Accepted: 06/12/2020] [Indexed: 11/19/2022]
Abstract
Studies that examined the effect of clozapine on cognitive functions in schizophrenia provided contradictory results. N-desmethylclozapine (NDMC) is the major metabolite of clozapine and have procognitive effects via agonistic activity in the M1 cholinergic receptors. The rs2067477 polymorphism in the M1 receptors may play role in cognitive profile in schizophrenia. We investigated the association of plasma clozapine (PClz), NDMC (PNdmc) levels and the rs2067477 polymorphism with cognitive functions and cortical activity measured by functional near infrared spectroscopy during the N-Back task in subjects with schizophrenia (N = 50) who are under antipsychotic monotherapy with clozapine. We found that PClz and PNdmc levels were negatively, PNdmc/PClz ratio was positively correlated with immediate recall score in the Rey Auditory Verbal Learning Test. PNdmc/PClz ratio was positively correlated with cortical activity during the N-back task. M1 wild-type group (CC: wild-type) produced higher cortical activity than M1 non wild-type group (CA: heterozygote / AA: mutant) in cortical regions associated with working memory (WM). These results suggest that individual differences in clozapine's effect on short term episodic memory may be associated with PClz and PNdmc. Higher activity in the M1 wild-type group may indicate inefficient use of cortical resources and/or excessive use of certain cognitive strategies during WM performance.
Collapse
Affiliation(s)
- Yağmur Kır
- Ankara University, Brain Research Center, Ankara, Turkey
| | - Bora Baskak
- Ankara University, Department of Psychiatry, Brain Research Center, Ankara, Turkey.
| | - Adnan Kuşman
- Ankara University, Department of Psychiatry, Brain Research Center, Ankara, Turkey
| | - Damla Sayar-Akaslan
- Ankara University, Department of Psychiatry, Brain Research Center, Ankara, Turkey
| | - Fezile Özdemir
- Ankara University, Institute of Forensic Sciences, Department of Forensic Toxicology, Ankara, Turkey
| | - Nilay Sedes-Baskak
- Yildirim Beyazit University, Yenimahalle Training and Research Hospital, Department of Psychiatry, Ankara, Turkey
| | | | - Zeynel Baran
- Hacettepe University, Department of Psychology, Ankara, Turkey
| |
Collapse
|
133
|
Bartha-Doering L, Kollndorfer K, Schwartz E, Fischmeister FPS, Alexopoulos J, Langs G, Prayer D, Kasprian G, Seidl R. The role of the corpus callosum in language network connectivity in children. Dev Sci 2020; 24:e13031. [PMID: 32790079 PMCID: PMC7988581 DOI: 10.1111/desc.13031] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 05/15/2020] [Accepted: 08/07/2020] [Indexed: 11/30/2022]
Abstract
The specific role of the corpus callosum (CC) in language network organization remains unclear, two contrasting models have been proposed: inhibition of homotopic areas allowing for independent functioning of the hemispheres versus integration of information from both hemispheres. This study aimed to add to this discussion with the first investigation of language network connectivity in combination with CC volume measures. In 38 healthy children aged 6–12, we performed task‐based functional magnetic resonance imaging to measure language network connectivity, used structural magnetic resonance imaging to quantify CC subsection volumes, and administered various language tests to examine language abilities. We found an increase in left intrahemispheric and bilateral language network connectivity and a decrease in right intrahemispheric connectivity associated with larger volumes of the posterior, mid‐posterior, and central subsections of the CC. Consistent with that, larger volumes of the posterior parts of the CC were significantly associated with better verbal fluency and vocabulary, the anterior CC volume was positively correlated with verbal span. Thus, children with larger volumes of CC subsections showed increased interhemispheric language network connectivity and were better in different language domains. This study presents the first evidence that the CC is directly linked to language network connectivity and underlines the excitatory role of the CC in the integration of information from both hemispheres.
Collapse
Affiliation(s)
- Lisa Bartha-Doering
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Kathrin Kollndorfer
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria.,Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Ernst Schwartz
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Johanna Alexopoulos
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria.,Department of Psychoanalysis and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Georg Langs
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Daniela Prayer
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Rainer Seidl
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
134
|
Giehl K, Ophey A, Hammes J, Rehberg S, Lichtenstein T, Reker P, Eggers C, Kalbe E, van Eimeren T. Working memory training increases neural efficiency in Parkinson's disease: a randomized controlled trial. Brain Commun 2020; 2:fcaa115. [PMID: 32954349 PMCID: PMC7472906 DOI: 10.1093/braincomms/fcaa115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022] Open
Abstract
Impairment of working memory and executive functions is already frequently observed in early stages of Parkinson's disease. Improvements in working memory performance in this cohort could potentially be achieved via working memory training. However, the specific neural mechanisms underlying different working memory processes such as maintenance as opposed to manipulation are largely under-investigated in Parkinson's disease. Moreover, the plasticity of these correlates as a function of working memory training is currently unknown in this population. Thus, the working memory subprocesses of maintenance and manipulation were assessed in 41 cognitively healthy patients with Parkinson's disease using a newly developed working memory paradigm and functional MRI. Nineteen patients were randomized to a 5-week home-based digital working memory training intervention while the remaining patients entered a control, wait list condition. Working memory task-related activation patterns and context-dependent functional connectivity, as well as the change of these neural correlates as a function of training, were assessed. While both working memory processes activated an extended frontoparietal-cerebellar network, only the manipulation of items within working memory also recruited the anterior striatum. The intervention effect on the neural correlates was small, but decreased activation in areas relevant for working memory could be observed, with activation changes correlating with behavioural change. Moreover, training seemed to result in decreased functional connectivity when pure maintenance was required, and in a reorganization of functional connectivity when items had to be manipulated. In accordance with the neural efficacy hypothesis, training resulted in overall reduced activation and reorganized functional connectivity, with a differential effect on the different working memory processes under investigation. Now, larger trials including follow-up examinations are needed to further explore the long-term effects of such interventions on a neural level and to estimate the clinical relevance to potentially delay cognitive decline in cognitively healthy patients with Parkinson's disease.
Collapse
Affiliation(s)
- Kathrin Giehl
- Faculty of Medicine and University Hospital of Cologne, Department of Nuclear Medicine, University of Cologne, Cologne, Germany
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-2), Jülich, Germany
| | - Anja Ophey
- Faculty of Medicine and University Hospital of Cologne, Department of Medical Psychology, Neuropsychology and Gender Studies and Center for Neuropsychological Diagnostics and Intervention (CeNDI), University of Cologne, Cologne, Germany
| | - Jochen Hammes
- Faculty of Medicine and University Hospital of Cologne, Department of Nuclear Medicine, University of Cologne, Cologne, Germany
| | - Sarah Rehberg
- Faculty of Medicine and University Hospital of Cologne, Department of Medical Psychology, Neuropsychology and Gender Studies and Center for Neuropsychological Diagnostics and Intervention (CeNDI), University of Cologne, Cologne, Germany
| | - Thorsten Lichtenstein
- Faculty of Medicine and University Hospital of Cologne, Department for Radiology, University of Cologne, Cologne, Germany
| | - Paul Reker
- Faculty of Medicine and University Hospital of Cologne, Department of Neurology, University of Cologne, Cologne, Germany
| | - Carsten Eggers
- Faculty of Medicine and University Hospital of Marburg, Department of Neurology and Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Elke Kalbe
- Faculty of Medicine and University Hospital of Cologne, Department of Medical Psychology, Neuropsychology and Gender Studies and Center for Neuropsychological Diagnostics and Intervention (CeNDI), University of Cologne, Cologne, Germany
| | - Thilo van Eimeren
- Faculty of Medicine and University Hospital of Cologne, Department of Nuclear Medicine, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital of Cologne, Department of Neurology, University of Cologne, Cologne, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany
| |
Collapse
|
135
|
Ciumas C, Montavont A, Ilski F, Laurent A, Saignavongs M, Lachaux JP, de Bellescize J, Panagiotakaki E, Ostrowsky-Coste K, Herbillon V, Ibarrola D, Hermier M, Arzimanoglou A, Ryvlin P. Neural correlates of verbal working memory in children with epilepsy with centro-temporal spikes. NEUROIMAGE-CLINICAL 2020; 28:102392. [PMID: 32927234 PMCID: PMC7495114 DOI: 10.1016/j.nicl.2020.102392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Previous functional magnetic resonance imaging (fMRI) studies have identified brain systems underlying different components of working memory (WM) in healthy subjects. The aim of this study was to compare the functional integrity of these neural networks in children with self-limited childhood epilepsy with centro-temporal spikes (ECTS) as compared to healthy controls, using a verbal working memory task (WMT). METHODS Functional MRI of WM in seventeen 6-to-13 year-old children, diagnosed with ECTS, and 17 sex- and age-matched healthy controls were conducted at 3 T. To estimate BOLD responses during the maintenance of low, medium, and high WMT loads, we used a Sternberg verbal WMT. Neuropsychological testing prior to scanning and behavioral data during scanning were also acquired. RESULTS Behavioral performances during WMT, in particular accuracy and response time, were poorer in children with ECTS than in controls. Increased WM load was associated with increased BOLD signal in all subjects, with significant clusters detected in frontal and parietal regions, predominantly in the left hemisphere. However, under the high load condition, patients showed reduced activation in the frontal, temporal and parietal regions as compared to controls. In brain regions where WM-triggered BOLD activation differed between groups, this activation correlated with neuropsychological performances in healthy controls but not in patients with ECTS, further suggesting WM network dysfunction in the latter. CONCLUSION Children with ECTS differ from healthy controls in how they control WM processes during tasks with increasing difficulty level, notably for high WM load where patients demonstrate both reduced BOLD activation and behavioral performances.
Collapse
Affiliation(s)
- Carolina Ciumas
- Translational and Integrative Group in Epilepsy Research (TIGER), INSERM U1028, CNRS UMR5292, Centre de Recherche en Neuroscience de Lyon, Université Lyon1, Lyon, France; Institute of Epilepsies (IDEE), Lyon, France; Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland.
| | - Alexandra Montavont
- University Hospitals of Lyon (HCL), Department of Clinical Epileptology, Sleep Disorders and Functional Neurology in Children, Member of the ERN EpiCARE, Lyon, France
| | - Faustine Ilski
- University Hospitals of Lyon (HCL), Department of Clinical Epileptology, Sleep Disorders and Functional Neurology in Children, Member of the ERN EpiCARE, Lyon, France
| | - Agathe Laurent
- Department of Neurosurgery, Sainte-Anne Hospital, 75014 Paris, France
| | - Mani Saignavongs
- Translational and Integrative Group in Epilepsy Research (TIGER), INSERM U1028, CNRS UMR5292, Centre de Recherche en Neuroscience de Lyon, Université Lyon1, Lyon, France
| | - Jean-Philippe Lachaux
- Brain Dynamics and Cognition team (DYCOG), INSERM U1028, CNRS UMR5292, Centre de Recherche en Neuroscience de Lyon, Lyon, France
| | - Julitta de Bellescize
- University Hospitals of Lyon (HCL), Department of Clinical Epileptology, Sleep Disorders and Functional Neurology in Children, Member of the ERN EpiCARE, Lyon, France
| | - Eleni Panagiotakaki
- University Hospitals of Lyon (HCL), Department of Clinical Epileptology, Sleep Disorders and Functional Neurology in Children, Member of the ERN EpiCARE, Lyon, France
| | - Karine Ostrowsky-Coste
- University Hospitals of Lyon (HCL), Department of Clinical Epileptology, Sleep Disorders and Functional Neurology in Children, Member of the ERN EpiCARE, Lyon, France
| | - Vania Herbillon
- University Hospitals of Lyon (HCL), Department of Clinical Epileptology, Sleep Disorders and Functional Neurology in Children, Member of the ERN EpiCARE, Lyon, France; Department of Neurosurgery, Sainte-Anne Hospital, 75014 Paris, France
| | | | - Marc Hermier
- University Hospitals of Lyon (HCL), Department of Diagnostic and Functional Neuroradiology, Hôpital Neurologique & Neurochirurgical P. Wertheimer, Bron, France
| | - Alexis Arzimanoglou
- University Hospitals of Lyon (HCL), Department of Clinical Epileptology, Sleep Disorders and Functional Neurology in Children, Member of the ERN EpiCARE, Lyon, France; Department of Neurosurgery, Sainte-Anne Hospital, 75014 Paris, France
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland
| |
Collapse
|
136
|
Seese RR. Working Memory Impairments in Cerebellar Disorders of Childhood. Pediatr Neurol 2020; 107:16-23. [PMID: 32276741 DOI: 10.1016/j.pediatrneurol.2020.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/17/2020] [Accepted: 02/19/2020] [Indexed: 12/20/2022]
Abstract
The cerebellum is a crucial center for motor control and integration. Increasing evidence supports the notion that the cerebellum is also involved in nonmotor functions. Along these lines, multiple cerebellar disorders of childhood and adulthood are associated with behavioral and cognitive symptoms, including impairments in memory. One form of memory commonly affected in cerebellar disorders is working memory, which uses attention to manipulate information that is immediately available to execute cognitive tasks. This article reviews the literature illustrating that working memory impairments are frequently observed in acquired, congenital, and genetic/developmental cerebellar disorders of childhood. Functional neuroimaging studies demonstrate that working memory tasks engage many posterior regions of the cerebellar hemispheres and vermis. Thus, the cerebellum acts as one important node in the working memory circuit, and when the cerebellum is involved in childhood disorders, deficits in working memory commonly occur.
Collapse
Affiliation(s)
- Ronald R Seese
- Division of Child Neurology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
137
|
Task-merging for finer separation of functional brain networks in working memory. Cortex 2020; 125:246-271. [DOI: 10.1016/j.cortex.2019.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/25/2019] [Accepted: 12/18/2019] [Indexed: 01/21/2023]
|
138
|
Effects of white noise on word recall performance and brain activity in healthy adolescents with normal and low auditory working memory. Exp Brain Res 2020; 238:945-956. [PMID: 32179941 DOI: 10.1007/s00221-020-05765-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/29/2020] [Indexed: 10/24/2022]
Abstract
The present study examined the impact of white noise on word recall performance and brain activity in 40 healthy adolescents, split in two groups (normal and low) depending on their auditory working memory capacity (AWMC). Using functional magnetic resonance imaging, participants performed a backward recall task under four different signal-to-noise ratio (SNR) conditions: 15, 10, 5, and 0-dB SNR. Behaviorally, normal AWMC individuals scored significantly higher than low AWMC individuals across noise levels. Whole-brain analyses showed brain activation not to be statistically different between groups across noise levels. In the normal group, a significant positive relationship was found between performance and number of activated voxels in the right superior frontal gyrus. In the low group, significant positive correlations were found between performance and number of activated voxels in left superior frontal gyrus, left inferior frontal gyrus, and left anterior cingulate cortex. These findings suggest that the strategic structure involved in the enhancement of AWM performance may differ in normal and low AWMC individuals.
Collapse
|
139
|
Bakulin I, Zabirova A, Kopnin P, Sinitsyn D, Poydasheva A, Fedorov M, Gnedovskaya E, Suponeva N, Piradov M. Cerebral cortex activation during the Sternberg verbal working memory task. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2020. [DOI: 10.24075/brsmu.2020.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite intensive study, the data regarding functional role of specific brain regions in the working memory processes still remain controversial. The study was aimed to determine the activation of cerebral cortex regions at different stages of the working memory task (information encoding, maintenance and retrieval). Functional magnetic resonance imaging (fMRI) with the modified Sternberg task was applied to 19 healthy volunteers. The objective of the task was to memorize and retain in memory the sequence of 7 letters with the subsequent comparison of one letter with the sequence. Activation was analyzed during three periods of the task compared to the rest period, as well as temporal dynamics of changes in BOLD signal intensity in three regions: left dorsolateral prefrontal, left posterior parietal and left occipital cortex. According to the results, significant activation of the regions in prefrontal and posterior parietal cortex was observed during all periods of the task (p < 0.05), but there were changes in its localization and lateralization. The activation pattern during the maintenance period corresponded to the fronto-parietal control network components. According to the analysis of temporal dynamics of changes in BOLD signal intensity, the most prominent activation of the dorsolateral prefrontal cortex and parietal cortex was observed in the end of the encoding period, during the maintenance period and in the beginning of the retrieval period, which confirmed the role of those areas in the working memory processes. The maximum of occipital cortex activation was observed during encoding period. The study confirmed the functional role of the dorsolateral prefrontal cortex and posterior parietal cortex in the working memory mechanisms during all stages of the Sternberg task.
Collapse
Affiliation(s)
| | | | - P.N. Kopnin
- Research Center of Neurology, Moscow, Russia
| | | | | | | | - E.V. Gnedovskaya
- Research Center of Neurology, Moscow, Russia; Skoltech, Moscow, Russia
| | | | | |
Collapse
|
140
|
Bakulin I, Zabirova A, Lagoda D, Poydasheva A, Cherkasova A, Pavlov N, Kopnin P, Sinitsyn D, Kremneva E, Fedorov M, Gnedovskaya E, Suponeva N, Piradov M. Combining HF rTMS over the Left DLPFC with Concurrent Cognitive Activity for the Offline Modulation of Working Memory in Healthy Volunteers: A Proof-of-Concept Study. Brain Sci 2020; 10:brainsci10020083. [PMID: 32033106 PMCID: PMC7071618 DOI: 10.3390/brainsci10020083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 01/28/2023] Open
Abstract
It has been proposed that the effectiveness of non-invasive brain stimulation (NIBS) as a cognitive enhancement technique may be enhanced by combining the stimulation with concurrent cognitive activity. However, the benefits of such a combination in comparison to protocols without ongoing cognitive activity have not yet been studied. In the present study, we investigate the effects of fMRI-guided high-frequency repetitive transcranial magnetic stimulation (HF rTMS) over the left dorsolateral prefrontal cortex (DLPFC) on working memory (WM) in healthy volunteers, using an n-back task with spatial and verbal stimuli and a spatial span task. In two combined protocols (TMS + WM + (maintenance) and TMS + WM + (rest)) trains of stimuli were applied in the maintenance and rest periods of the modified Sternberg task, respectively. We compared them to HF rTMS without a cognitive load (TMS + WM −) and control stimulation (TMS − WM + (maintenance)). No serious adverse effects appeared in this study. Among all protocols, significant effects on WM were shown only for the TMS + WM − with oppositely directed influences of this protocol on storage and manipulation in spatial WM. Moreover, there was a significant difference between the effects of TMS + WM − and TMS + WM + (maintenance), suggesting that simultaneous cognitive activity does not necessarily lead to an increase in TMS effects.
Collapse
Affiliation(s)
- Ilya Bakulin
- Research Center of Neurology, Volokolamskoe Shosse, 80, Moscow 125367, Russia; (A.Z.); (D.L.); (A.P.); (A.C.); (N.P.); (P.K.); (D.S.); (E.K.); (E.G.); (N.S.); (M.P.)
- Correspondence: ; Tel.: +7-495-490-2010
| | - Alfiia Zabirova
- Research Center of Neurology, Volokolamskoe Shosse, 80, Moscow 125367, Russia; (A.Z.); (D.L.); (A.P.); (A.C.); (N.P.); (P.K.); (D.S.); (E.K.); (E.G.); (N.S.); (M.P.)
| | - Dmitry Lagoda
- Research Center of Neurology, Volokolamskoe Shosse, 80, Moscow 125367, Russia; (A.Z.); (D.L.); (A.P.); (A.C.); (N.P.); (P.K.); (D.S.); (E.K.); (E.G.); (N.S.); (M.P.)
| | - Alexandra Poydasheva
- Research Center of Neurology, Volokolamskoe Shosse, 80, Moscow 125367, Russia; (A.Z.); (D.L.); (A.P.); (A.C.); (N.P.); (P.K.); (D.S.); (E.K.); (E.G.); (N.S.); (M.P.)
| | - Anastasiia Cherkasova
- Research Center of Neurology, Volokolamskoe Shosse, 80, Moscow 125367, Russia; (A.Z.); (D.L.); (A.P.); (A.C.); (N.P.); (P.K.); (D.S.); (E.K.); (E.G.); (N.S.); (M.P.)
| | - Nikolay Pavlov
- Research Center of Neurology, Volokolamskoe Shosse, 80, Moscow 125367, Russia; (A.Z.); (D.L.); (A.P.); (A.C.); (N.P.); (P.K.); (D.S.); (E.K.); (E.G.); (N.S.); (M.P.)
| | - Peter Kopnin
- Research Center of Neurology, Volokolamskoe Shosse, 80, Moscow 125367, Russia; (A.Z.); (D.L.); (A.P.); (A.C.); (N.P.); (P.K.); (D.S.); (E.K.); (E.G.); (N.S.); (M.P.)
| | - Dmitry Sinitsyn
- Research Center of Neurology, Volokolamskoe Shosse, 80, Moscow 125367, Russia; (A.Z.); (D.L.); (A.P.); (A.C.); (N.P.); (P.K.); (D.S.); (E.K.); (E.G.); (N.S.); (M.P.)
| | - Elena Kremneva
- Research Center of Neurology, Volokolamskoe Shosse, 80, Moscow 125367, Russia; (A.Z.); (D.L.); (A.P.); (A.C.); (N.P.); (P.K.); (D.S.); (E.K.); (E.G.); (N.S.); (M.P.)
| | - Maxim Fedorov
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30, bld. 1, Territory of Innovation Center «Skolkovo», Moscow 121205, Russia;
| | - Elena Gnedovskaya
- Research Center of Neurology, Volokolamskoe Shosse, 80, Moscow 125367, Russia; (A.Z.); (D.L.); (A.P.); (A.C.); (N.P.); (P.K.); (D.S.); (E.K.); (E.G.); (N.S.); (M.P.)
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30, bld. 1, Territory of Innovation Center «Skolkovo», Moscow 121205, Russia;
| | - Natalia Suponeva
- Research Center of Neurology, Volokolamskoe Shosse, 80, Moscow 125367, Russia; (A.Z.); (D.L.); (A.P.); (A.C.); (N.P.); (P.K.); (D.S.); (E.K.); (E.G.); (N.S.); (M.P.)
| | - Michael Piradov
- Research Center of Neurology, Volokolamskoe Shosse, 80, Moscow 125367, Russia; (A.Z.); (D.L.); (A.P.); (A.C.); (N.P.); (P.K.); (D.S.); (E.K.); (E.G.); (N.S.); (M.P.)
| |
Collapse
|
141
|
Cui D, Zhang L, Zheng F, Wang H, Meng Q, Lu W, Liu Z, Yin T, Qiu J. Volumetric reduction of cerebellar lobules associated with memory decline across the adult lifespan. Quant Imaging Med Surg 2020; 10:148-159. [PMID: 31956538 DOI: 10.21037/qims.2019.10.19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background The human cerebellum plays an essential role in motor control, is involved in cognitive function and helps to regulate emotional responses. However, little is known about the relationship between cerebellar lobules and age-related memory decline. We aimed to investigate volume alterations in cerebellar lobules at different ages and assess their correlations with reduced memory recall abilities. Methods A sample of 275 individuals were divided into the following four groups: 20-35 years (young), 36-50 years (early-middle age), 51-65 years (late-middle age), and 66-89 years (old). Volumes of the cerebellar lobules were obtained using volBrain software. Analysis of covariance and post hoc analysis were used to analyze group differences in cerebellar lobular volumes, and multiple comparisons were performed using the Bonferroni method. Spearman correlation was used to investigate the relationship between lobular volumes and memory recall scores. Results In this study, we found that older adults had smaller cerebellar volumes than the other subjects. Volumetric decreases in size were noted in bilateral lobule VI and lobule crus I. Moreover, the volumes of bilateral lobule crus I, lobule VI, and right lobule IV were significantly associated with memory recall scores. Conclusions In the present study, we found that some lobules of the cerebellum appear more predisposed to age-related changes than other lobules. These findings provide further evidence that specific regions of the cerebellum could be used to assess the risk of memory decline across the adult lifespan.
Collapse
Affiliation(s)
- Dong Cui
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.,College of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Li Zhang
- College of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China.,Medical Engineering and Technology Research Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China.,Imaging-X Joint Laboratory, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Fenglian Zheng
- College of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China.,Medical Engineering and Technology Research Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China.,Imaging-X Joint Laboratory, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Huiqin Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Qingjian Meng
- College of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Wen Lu
- College of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Zhipeng Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Tao Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jianfeng Qiu
- College of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China.,Medical Engineering and Technology Research Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China.,Imaging-X Joint Laboratory, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| |
Collapse
|
142
|
Yuk V, Urbain C, Anagnostou E, Taylor MJ. Frontoparietal Network Connectivity During an N-Back Task in Adults With Autism Spectrum Disorder. Front Psychiatry 2020; 11:551808. [PMID: 33033481 PMCID: PMC7509600 DOI: 10.3389/fpsyt.2020.551808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/13/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Short-term and working memory (STM and WM) deficits have been demonstrated in individuals with autism spectrum disorder (ASD) and may emerge through atypical functional activity and connectivity of the frontoparietal network, which exerts top-down control necessary for successful STM and WM processes. Little is known regarding the spectral properties of the frontoparietal network during STM or WM processes in ASD, although certain neural frequencies have been linked to specific neural mechanisms. METHODS We analysed magnetoencephalographic data from 39 control adults (26 males; 27.15 ± 5.91 years old) and 40 adults with ASD (26 males; 27.17 ± 6.27 years old) during a 1-back condition (STM) of an n-back task, and from a subset of this sample during a 2-back condition (WM). We performed seed-based connectivity analyses using regions of the frontoparietal network. Interregional synchrony in theta, alpha, and beta bands was assessed with the phase difference derivative and compared between groups during periods of maintenance and recognition. RESULTS During maintenance of newly presented vs. repeated stimuli, the two groups did not differ significantly in theta, alpha, or beta phase synchrony for either condition. Adults with ASD showed alpha-band synchrony in a network containing the right dorsolateral prefrontal cortex, bilateral inferior parietal lobules (IPL), and precuneus in both 1- and 2-back tasks, whereas controls demonstrated alpha-band synchrony in a sparser set of regions, including the left insula and IPL, in only the 1-back task. During recognition of repeated vs. newly presented stimuli, adults with ASD exhibited decreased theta-band connectivity compared to controls in a network with hubs in the right inferior frontal gyrus and left IPL in the 1-back condition. Whilst there were no group differences in connectivity in the 2-back condition, adults with ASD showed no frontoparietal network recruitment during recognition, whilst controls activated networks in the theta and beta bands. CONCLUSIONS Our findings suggest that since adults with ASD performed well on the n-back task, their appropriate, but effortful recruitment of alpha-band mechanisms in the frontoparietal network to maintain items in STM and WM may compensate for atypical modulation of this network in the theta band to recognise previously presented items in STM.
Collapse
Affiliation(s)
- Veronica Yuk
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada.,Neurosciences & Mental Health Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Charline Urbain
- Neuropsychology and Functional Neuroimaging Research Group, Center for Research in Cognition & Neurosciences and ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Laboratoire de Cartographie Fonctionnelle du Cerveau, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.,Department of Neurology, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada.,Neurosciences & Mental Health Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
143
|
Altered frontal white matter microstructure is associated with working memory impairments in adolescents with congenital heart disease: A diffusion tensor imaging study. NEUROIMAGE-CLINICAL 2019; 25:102123. [PMID: 31869770 PMCID: PMC6933217 DOI: 10.1016/j.nicl.2019.102123] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/18/2019] [Accepted: 12/10/2019] [Indexed: 12/22/2022]
Abstract
Children and adolescents with congenital heart disease (CHD) are at risk for mild to moderate cognitive impairments. In particular, impaired working memory performance has been found in CHD patients of all ages. Working memory is an important domain of higher order cognitive function and is crucial for everyday activities, with emerging importance in adolescence. However, the underlying neural correlate of working memory impairments in CHD is not yet fully understood. Diffusion tensor imaging and tract based spatial statistics analyses were conducted in 47 adolescent survivors of childhood cardiopulmonary bypass surgery (24 females) and in 44 healthy controls (24 females) between 11 and 16 years of age (mean age = 13.9, SD = 1.6). Fractional anisotropy (FA) of white matter diffusion was compared between groups and was correlated with working memory performance, derived from the Wechsler Intelligence Scale for Children-IV. CHD patients had significantly poorer working memory compared to controls (p = 0.001). Widespread bilateral reduction in FA was observed in CHD patients compared to healthy controls (threshold-free cluster enhancement (TFCE) corrected p < 0.05). This reduction in FA was present both in cyanotic and acyanotic CHD patients compared to healthy controls (both p < 0.001). The FA reduction in the frontal lobe, mainly in the forceps minor, was associated with poorer working memory performance in both patients with CHD and healthy controls (TFCE corrected p < 0.05). The current findings underline that in CHD patients, irrespective of disease severity, disrupted or delayed maturation of white matter may persist into adolescence and is associated with working memory impairments, particularly if present in the frontal lobe. Adolescence, which is a crucial period for prefrontal brain maturation, may offer a window of opportunity for intervention in order to support the maturation of frontal brain regions and therefore improve higher order cognitive function in patients with CHD.
Collapse
|
144
|
Emch M, Ripp I, Wu Q, Yakushev I, Koch K. Neural and Behavioral Effects of an Adaptive Online Verbal Working Memory Training in Healthy Middle-Aged Adults. Front Aging Neurosci 2019; 11:300. [PMID: 31736741 PMCID: PMC6838657 DOI: 10.3389/fnagi.2019.00300] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/18/2019] [Indexed: 12/22/2022] Open
Abstract
Neural correlates of working memory (WM) training remain a matter of debate, especially in older adults. We used functional magnetic resonance imaging (fMRI) together with an n-back task to measure brain plasticity in healthy middle-aged adults following an 8-week adaptive online verbal WM training. Participants performed 32 sessions of this training on their personal computers. In addition, we assessed direct effects of the training by applying a verbal WM task before and after the training. Participants (mean age 55.85 ± 4.24 years) were pseudo-randomly assigned to the experimental group (n = 30) or an active control group (n = 27). Training resulted in an activity decrease in regions known to be involved in verbal WM (i.e., fronto-parieto-cerebellar circuitry and subcortical regions), indicating that the brain became potentially more efficient after the training. These activation decreases were associated with a significant performance improvement in the n-back task inside the scanner reflecting considerable practice effects. In addition, there were training-associated direct effects in the additional, external verbal WM task (i.e., HAWIE-R digit span forward task), and indicating that the training generally improved performance in this cognitive domain. These results led us to conclude that even at advanced age cognitive training can improve WM capacity and increase neural efficiency in specific regions or networks.
Collapse
Affiliation(s)
- Mónica Emch
- Department of Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Martinsried, Germany
| | - Isabelle Ripp
- TUM-Neuroimaging Center, Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Martinsried, Germany
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Qiong Wu
- Department of Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Technical University of Munich, Munich, Germany
| | - Igor Yakushev
- TUM-Neuroimaging Center, Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Martinsried, Germany
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Kathrin Koch
- Department of Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Martinsried, Germany
| |
Collapse
|