101
|
Piechal A, Jakimiuk A, Mirowska-Guzel D. Sigma receptors and neurological disorders. Pharmacol Rep 2021; 73:1582-1594. [PMID: 34350561 PMCID: PMC8641430 DOI: 10.1007/s43440-021-00310-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/27/2021] [Accepted: 07/09/2021] [Indexed: 11/30/2022]
Abstract
Sigma receptors were identified relatively recently, and their presence has been confirmed in the central nervous system and peripheral organs. Changes in sigma receptor function or expression may be involved in neurological diseases, and thus sigma receptors represent a potential target for treating central nervous system disorders. Many substances that are ligands for sigma receptors are widely used in therapies for neurological disorders. In the present review, we discuss the roles of sigma receptors, especially in the central nervous system disorders, and related therapies.
Collapse
Affiliation(s)
- Agnieszka Piechal
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957, Warsaw, Poland
| | - Alicja Jakimiuk
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
| | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland.
| |
Collapse
|
102
|
Dvorácskó S, Lázár L, Fülöp F, Palkó M, Zalán Z, Penke B, Fülöp L, Tömböly C, Bogár F. Novel High Affinity Sigma-1 Receptor Ligands from Minimal Ensemble Docking-Based Virtual Screening. Int J Mol Sci 2021; 22:8112. [PMID: 34360878 PMCID: PMC8347176 DOI: 10.3390/ijms22158112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Sigma-1 receptor (S1R) is an intracellular, multi-functional, ligand operated protein that also acts as a chaperone. It is considered as a pluripotent drug target in several pathologies. The publication of agonist and antagonist bound receptor structures has paved the way for receptor-based in silico drug design. However, recent studies on this subject payed no attention to the structural differences of agonist and antagonist binding. In this work, we have developed a new ensemble docking-based virtual screening protocol utilizing both agonist and antagonist bound S1R structures. This protocol was used to screen our in-house compound library. The S1R binding affinities of the 40 highest ranked compounds were measured in competitive radioligand binding assays and the sigma-2 receptor (S2R) affinities of the best S1R binders were also determined. This way three novel high affinity S1R ligands were identified and one of them exhibited a notable S1R/S2R selectivity.
Collapse
Affiliation(s)
- Szabolcs Dvorácskó
- Biological Research Centre, Institute of Biochemistry, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary; (S.D.); (C.T.)
| | - László Lázár
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (L.L.); (F.F.); (M.P.); (Z.Z.)
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (L.L.); (F.F.); (M.P.); (Z.Z.)
| | - Márta Palkó
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (L.L.); (F.F.); (M.P.); (Z.Z.)
| | - Zita Zalán
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (L.L.); (F.F.); (M.P.); (Z.Z.)
| | - Botond Penke
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary;
| | - Lívia Fülöp
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary;
| | - Csaba Tömböly
- Biological Research Centre, Institute of Biochemistry, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary; (S.D.); (C.T.)
| | - Ferenc Bogár
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary;
- MTA-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network (ELKH), H-6720 Szeged, Hungary
| |
Collapse
|
103
|
Aishwarya R, Abdullah CS, Morshed M, Remex NS, Bhuiyan MS. Sigmar1's Molecular, Cellular, and Biological Functions in Regulating Cellular Pathophysiology. Front Physiol 2021; 12:705575. [PMID: 34305655 PMCID: PMC8293995 DOI: 10.3389/fphys.2021.705575] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
The Sigma 1 receptor (Sigmar1) is a ubiquitously expressed multifunctional inter-organelle signaling chaperone protein playing a diverse role in cellular survival. Recessive mutation in Sigmar1 have been identified as a causative gene for neuronal and neuromuscular disorder. Since the discovery over 40 years ago, Sigmar1 has been shown to contribute to numerous cellular functions, including ion channel regulation, protein quality control, endoplasmic reticulum-mitochondrial communication, lipid metabolism, mitochondrial function, autophagy activation, and involved in cellular survival. Alterations in Sigmar1’s subcellular localization, expression, and signaling has been implicated in the progression of a wide range of diseases, such as neurodegenerative diseases, ischemic brain injury, cardiovascular diseases, diabetic retinopathy, cancer, and drug addiction. The goal of this review is to summarize the current knowledge of Sigmar1 biology focusing the recent discoveries on Sigmar1’s molecular, cellular, pathophysiological, and biological functions.
Collapse
Affiliation(s)
- Richa Aishwarya
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Mahboob Morshed
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Naznin Sultana Remex
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Md Shenuarin Bhuiyan
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States.,Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| |
Collapse
|
104
|
Boikov SI, Sibarov DA, Karelina TV, Shestakova NN, Antonov SM. The Role of Ryanodine and IP3-receptors
in Calcium Responses to Tricyclic Antidepressants in Rat Neocortical
Neurons. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021030169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
105
|
Koshenov Z, Oflaz FE, Hirtl M, Pilic J, Bachkoenig OA, Gottschalk B, Madreiter-Sokolowski CT, Rost R, Malli R, Graier WF. Sigma-1 Receptor Promotes Mitochondrial Bioenergetics by Orchestrating ER Ca 2+ Leak during Early ER Stress. Metabolites 2021; 11:422. [PMID: 34206832 PMCID: PMC8305890 DOI: 10.3390/metabo11070422] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/11/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum (ER) is a complex, multifunctional organelle of eukaryotic cells and responsible for the trafficking and processing of nearly 30% of all human proteins. Any disturbance to these processes can cause ER stress, which initiates an adaptive mechanism called unfolded protein response (UPR) to restore ER functions and homeostasis. Mitochondrial ATP production is necessary to meet the high energy demand of the UPR, while the molecular mechanisms of ER to mitochondria crosstalk under such stress conditions remain mainly enigmatic. Thus, better understanding the regulation of mitochondrial bioenergetics during ER stress is essential to combat many pathologies involving ER stress, the UPR, and mitochondria. This article investigates the role of Sigma-1 Receptor (S1R), an ER chaperone, has in enhancing mitochondrial bioenergetics during early ER stress using human neuroblastoma cell lines. Our results show that inducing ER stress with tunicamycin, a known ER stressor, greatly enhances mitochondrial bioenergetics in a time- and S1R-dependent manner. This is achieved by enhanced ER Ca2+ leak directed towards mitochondria by S1R during the early phase of ER stress. Our data point to the importance of S1R in promoting mitochondrial bioenergetics and maintaining balanced H2O2 metabolism during early ER stress.
Collapse
Affiliation(s)
- Zhanat Koshenov
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (Z.K.); (F.E.O.); (M.H.); (J.P.); (O.A.B.); (B.G.); (C.T.M.-S.); (R.R.); (R.M.)
| | - Furkan E. Oflaz
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (Z.K.); (F.E.O.); (M.H.); (J.P.); (O.A.B.); (B.G.); (C.T.M.-S.); (R.R.); (R.M.)
| | - Martin Hirtl
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (Z.K.); (F.E.O.); (M.H.); (J.P.); (O.A.B.); (B.G.); (C.T.M.-S.); (R.R.); (R.M.)
| | - Johannes Pilic
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (Z.K.); (F.E.O.); (M.H.); (J.P.); (O.A.B.); (B.G.); (C.T.M.-S.); (R.R.); (R.M.)
| | - Olaf A. Bachkoenig
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (Z.K.); (F.E.O.); (M.H.); (J.P.); (O.A.B.); (B.G.); (C.T.M.-S.); (R.R.); (R.M.)
| | - Benjamin Gottschalk
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (Z.K.); (F.E.O.); (M.H.); (J.P.); (O.A.B.); (B.G.); (C.T.M.-S.); (R.R.); (R.M.)
| | - Corina T. Madreiter-Sokolowski
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (Z.K.); (F.E.O.); (M.H.); (J.P.); (O.A.B.); (B.G.); (C.T.M.-S.); (R.R.); (R.M.)
| | - Rene Rost
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (Z.K.); (F.E.O.); (M.H.); (J.P.); (O.A.B.); (B.G.); (C.T.M.-S.); (R.R.); (R.M.)
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (Z.K.); (F.E.O.); (M.H.); (J.P.); (O.A.B.); (B.G.); (C.T.M.-S.); (R.R.); (R.M.)
- BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Wolfgang F. Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (Z.K.); (F.E.O.); (M.H.); (J.P.); (O.A.B.); (B.G.); (C.T.M.-S.); (R.R.); (R.M.)
- BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
106
|
Fallica AN, Pittalà V, Modica MN, Salerno L, Romeo G, Marrazzo A, Helal MA, Intagliata S. Recent Advances in the Development of Sigma Receptor Ligands as Cytotoxic Agents: A Medicinal Chemistry Perspective. J Med Chem 2021; 64:7926-7962. [PMID: 34076441 PMCID: PMC8279423 DOI: 10.1021/acs.jmedchem.0c02265] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Since their discovery
as distinct receptor proteins, the specific
physiopathological role of sigma receptors (σRs) has been deeply
investigated. It has been reported that these proteins, classified
into two subtypes indicated as σ1 and σ2, might play a pivotal role in cancer growth, cell proliferation,
and tumor aggressiveness. As a result, the development of selective
σR ligands with potential antitumor properties attracted significant
attention as an emerging theme in cancer research. This perspective
deals with the recent advances of σR ligands as novel cytotoxic
agents, covering articles published between 2010 and 2020. An up-to-date
description of the medicinal chemistry of selective σ1R and σ2R ligands with antiproliferative and cytotoxic
activities has been provided, including major pharmacophore models
and comprehensive structure–activity relationships for each
main class of σR ligands.
Collapse
Affiliation(s)
- Antonino N Fallica
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Maria N Modica
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Loredana Salerno
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giuseppe Romeo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Agostino Marrazzo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Mohamed A Helal
- University of Science and Technology, Biomedical Sciences Program, Zewail City of Science and Technology, October Gardens, sixth of October, Giza 12578, Egypt.,Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Sebastiano Intagliata
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
107
|
Rohr CM, Marchant JS. The sigma 1 receptor: A local media influencer. Cell Calcium 2021; 97:102430. [PMID: 34120081 DOI: 10.1016/j.ceca.2021.102430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022]
Abstract
The endoplasmic reticulum (ER) Ca2+ store contains many rapidly differentiable subdomains with specialized signaling properties. Recent work highlights how an integral ER membrane protein - the sigma 1 receptor (S1R) - nucleates local formation of cholesterol-rich ER subdomains. Biophysical approaches cast new light on S1Rs and how their dynamics is impacted by drugs and disease states.
Collapse
Affiliation(s)
- Claudia M Rohr
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee WI 53226, USA
| | - Jonathan S Marchant
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee WI 53226, USA.
| |
Collapse
|
108
|
Petit-Pedrol M, Groc L. Regulation of membrane NMDA receptors by dynamics and protein interactions. J Cell Biol 2021; 220:211609. [PMID: 33337489 PMCID: PMC7754687 DOI: 10.1083/jcb.202006101] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022] Open
Abstract
Understanding neurotransmitter system crosstalk in the brain is a major challenge in neurobiology. Several intracellular and genomic cascades have been identified in this crosstalk. However, the discovery that neurotransmitter receptors are highly diffusive in the plasma membrane of neurons, where they form heterocomplexes with other proteins, has profoundly changed our view of neurotransmitter signaling. Here, we review new insights into neurotransmitter crosstalk at the plasma membrane. We focus on the membrane organization and interactome of the ionotropic glutamate N-methyl-D-aspartate receptor (NMDAR) that plays a central role in excitatory synaptic and network physiology and is involved in the etiology of several major neuropsychiatric disorders. The nanoscale organization and dynamics of NMDAR is a key regulatory process for glutamate synapse transmission, plasticity, and crosstalk with other neurotransmitter systems, such as the monoaminergic ones. The plasma membrane appears to be a prime regulatory compartment for spatial and temporal crosstalk between neurotransmitter systems in the healthy and diseased brain. Understanding the molecular mechanisms regulating membrane neurotransmitter receptor crosstalk will likely open research avenues for innovative therapeutical strategies.
Collapse
Affiliation(s)
- Mar Petit-Pedrol
- Université de Bordeaux, Centre National de la Recherche Scientifique, Interdisciplinary Institute for Neuroscience, Unité Mixte de Recherche 5297, Bordeaux, France
| | - Laurent Groc
- Université de Bordeaux, Centre National de la Recherche Scientifique, Interdisciplinary Institute for Neuroscience, Unité Mixte de Recherche 5297, Bordeaux, France
| |
Collapse
|
109
|
Zhemkov V, Ditlev JA, Lee WR, Wilson M, Liou J, Rosen MK, Bezprozvanny I. The role of sigma 1 receptor in organization of endoplasmic reticulum signaling microdomains. eLife 2021; 10:e65192. [PMID: 33973848 PMCID: PMC8112866 DOI: 10.7554/elife.65192] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Sigma 1 receptor (S1R) is a 223-amino-acid-long transmembrane endoplasmic reticulum (ER) protein. S1R modulates activity of multiple effector proteins and is a well-established drug target. However, signaling functions of S1R in cells are poorly understood. Here, we test the hypothesis that biological activity of S1R in cells can be explained by its ability to interact with cholesterol and to form cholesterol-enriched microdomains in the ER membrane. By performing experiments in reduced reconstitution systems, we demonstrate direct effects of cholesterol on S1R clustering. We identify a novel cholesterol-binding motif in the transmembrane region of human S1R. Mutations of this motif impair association of recombinant S1R with cholesterol beads, affect S1R clustering in vitro and disrupt S1R subcellular localization. We demonstrate that S1R-induced membrane microdomains have increased local membrane thickness and that increased local cholesterol concentration and/or membrane thickness in these microdomains can modulate signaling of inositol-requiring enzyme 1α in the ER. Further, S1R agonists cause disruption of S1R clusters, suggesting that biological activity of S1R agonists is linked to remodeling of ER membrane microdomains. Our results provide novel insights into S1R-mediated signaling mechanisms in cells.
Collapse
Affiliation(s)
- Vladimir Zhemkov
- Department of Physiology, UT Southwestern Medical Center at DallasDallasUnited States
| | - Jonathon A Ditlev
- Department of Biophysics, Howard Hughes Medical Institute, UT Southwestern Medical Center at DallasDallasUnited States
| | - Wan-Ru Lee
- Department of Physiology, UT Southwestern Medical Center at DallasDallasUnited States
| | - Mikaela Wilson
- Department of Physiology, UT Southwestern Medical Center at DallasDallasUnited States
| | - Jen Liou
- Department of Physiology, UT Southwestern Medical Center at DallasDallasUnited States
| | - Michael K Rosen
- Department of Biophysics, Howard Hughes Medical Institute, UT Southwestern Medical Center at DallasDallasUnited States
| | - Ilya Bezprozvanny
- Department of Physiology, UT Southwestern Medical Center at DallasDallasUnited States
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic UniversitySt. PetersburgRussian Federation
| |
Collapse
|
110
|
Bhattacharyya R, Black SE, Lotlikar MS, Fenn RH, Jorfi M, Kovacs DM, Tanzi RE. Axonal generation of amyloid-β from palmitoylated APP in mitochondria-associated endoplasmic reticulum membranes. Cell Rep 2021; 35:109134. [PMID: 34010653 PMCID: PMC8287518 DOI: 10.1016/j.celrep.2021.109134] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/09/2021] [Accepted: 04/23/2021] [Indexed: 11/14/2022] Open
Abstract
Axonal generation of Alzheimer’s disease (AD)-associated amyloid-β (Aβ) plays a key role in AD neuropathology, but the cellular mechanisms involved in its release have remained elusive. We previously reported that palmitoylated APP (palAPP) partitions to lipid rafts where it serves as a preferred substrate for β-secretase. Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) are cholesterol-rich lipid rafts that are upregulated in AD. Here, we show that downregulating MAM assembly by either RNA silencing or pharmacological modulation of the MAM-resident sigma1 receptor (S1R) leads to attenuated β-secretase cleavage of palAPP. Upregulation of MAMs promotes trafficking of palAPP to the cell surface, β-secretase cleavage, and Aβ generation. We develop a microfluidic device and use it to show that MAM levels alter Aβ generation specifically in neuronal processes and axons, but not in cell bodies. These data suggest therapeutic strategies for reducing axonal release of Aβ and attenuating β-amyloid pathology in AD. Bhattacharyya et al. show that the modulation of mitochondrial-associated endoplasmic reticulum membranes (MAMs) via sigma-1 receptor regulates Aβ generation from axons via cell surface trafficking and β-secretase cleavage of MAM-resident palmitoylated APP (palAPP).
Collapse
Affiliation(s)
- Raja Bhattacharyya
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Sophia E Black
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Madhura S Lotlikar
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rebecca H Fenn
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mehdi Jorfi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Dora M Kovacs
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
111
|
Zhemkov V, Geva M, Hayden MR, Bezprozvanny I. Sigma-1 Receptor (S1R) Interaction with Cholesterol: Mechanisms of S1R Activation and Its Role in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:4082. [PMID: 33920913 PMCID: PMC8071319 DOI: 10.3390/ijms22084082] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
The sigma-1 receptor (S1R) is a 223 amino acid-long transmembrane endoplasmic reticulum (ER) protein. The S1R modulates the activity of multiple effector proteins, but its signaling functions are poorly understood. S1R is associated with cholesterol, and in our recent studies we demonstrated that S1R association with cholesterol induces the formation of S1R clusters. We propose that these S1R-cholesterol interactions enable the formation of cholesterol-enriched microdomains in the ER membrane. We hypothesize that a number of secreted and signaling proteins are recruited and retained in these microdomains. This hypothesis is consistent with the results of an unbiased screen for S1R-interacting partners, which we performed using the engineered ascorbate peroxidase 2 (APEX2) technology. We further propose that S1R agonists enable the disassembly of these cholesterol-enriched microdomains and the release of accumulated proteins such as ion channels, signaling receptors, and trophic factors from the ER. This hypothesis may explain the pleotropic signaling functions of the S1R, consistent with previously observed effects of S1R agonists in various experimental systems.
Collapse
Affiliation(s)
- Vladimir Zhemkov
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Michal Geva
- Prilenia Therapeutics Development LTD, Herzliya 4673304, Israel; (M.G.); (M.R.H.)
| | - Michael R. Hayden
- Prilenia Therapeutics Development LTD, Herzliya 4673304, Israel; (M.G.); (M.R.H.)
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC V6H 3V5, Canada
| | - Ilya Bezprozvanny
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
- Laboratory of Molecular Neurodegeneration, Peter the Great St Petersburg State Polytechnic University, 195251 St. Petersburg, Russia
| |
Collapse
|
112
|
Kraskovskaya NA, Bezprozvanny IB. Normalization of Calcium Balance in Striatal Neurons in Huntington's Disease: Sigma 1 Receptor as a Potential Target for Therapy. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:471-479. [PMID: 33941067 DOI: 10.1134/s0006297921040076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 11/23/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative, dominantly inherited genetic disease caused by expansion of the polyglutamine tract in the huntingtin gene. At the cellular level, HD is characterized by the accumulation of mutant huntingtin protein in brain cells, resulting in the development of the HD phenotype, which includes mental disorders, decreased cognitive abilities, and progressive motor impairments in the form of chorea. Despite numerous studies, no unambigous connection between the accumulation of mutant protein and selective death of striatal neurons has yet been established. Recent studies have shown impairments in the calcium homeostasis in striatal neurons in HD. These cells are extremely sensitive to changes in the cytoplasmic concentration of calcium and its excessive increase leads to their death. One of the possible ways to normalize the balance of calcium in striatal neurons is through the sigma 1 receptor (S1R), which act as a calcium sensor that also exhibits modulating chaperone activity upon the cell stress observed during the development of many neurodegenerative diseases. The fact that S1R is a ligand-operated protein makes it a new promising molecular target for the development of drug therapy of HD based on the agonists of this receptor.
Collapse
Affiliation(s)
- Nina A Kraskovskaya
- Laboratory of Molecular Neurodegeneration, Peter the Great Saint-Petersburg Polytechnic University, Saint-Petersburg, 195251, Russia.
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great Saint-Petersburg Polytechnic University, Saint-Petersburg, 195251, Russia.
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| |
Collapse
|
113
|
Agha H, McCurdy CR. In vitro and in vivo sigma 1 receptor imaging studies in different disease states. RSC Med Chem 2021; 12:154-177. [PMID: 34046607 PMCID: PMC8127618 DOI: 10.1039/d0md00186d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
The sigma receptor system has been classified into two distinct subtypes, sigma 1 (σ1R) and sigma 2 (σ2R). Sigma 1 receptors (σ1Rs) are involved in many neurodegenerative diseases and different central nervous system disorders such as Alzheimer's disease, Parkinson's disease, schizophrenia, and drug addiction, and pain. This makes them attractive targets for developing radioligands as tools to gain a better understanding of disease pathophysiology and clinical diagnosis. Over the years, several σ1R radioligands have been developed to image the changes in σ1R distribution and density providing insights into their role in disease development. Moreover, the involvement of both σ1Rs and σ2Rs with cancer make these ligands, especially those that are σ2R selective, great tools for imaging different types of tumors. This review will discuss the principles of molecular imaging using PET and SPECT, known σ1R radioligands and their applications for labelling σ1Rs under different disease conditions. Furthermore, this review will highlight σ1R radioligands that have demonstrated considerable potential as biomarkers, and an opportunity to fulfill the ultimate goal of better healthcare outcomes and improving human health.
Collapse
Affiliation(s)
- Hebaalla Agha
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida Gainesville FL 32610 USA +(352) 273 7705 +1 (352) 294 8691
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida Gainesville FL 32610 USA +(352) 273 7705 +1 (352) 294 8691
- UF Translational Drug Development Core, University of Florida Gainesville FL 32610 USA
| |
Collapse
|
114
|
Kargbo RB. Sigma-1 and Sigma-2 Receptor Modulators as Potential Therapeutics for Alzheimer's Disease. ACS Med Chem Lett 2021; 12:178-179. [PMID: 33603961 PMCID: PMC7883366 DOI: 10.1021/acsmedchemlett.1c00002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Indexed: 12/17/2022] Open
Affiliation(s)
- Robert B. Kargbo
- Usona Institute, 277 Granada Drive, San Luis
Obispo, California 93401-7337, United States
| |
Collapse
|
115
|
Danysz W, Dekundy A, Scheschonka A, Riederer P. Amantadine: reappraisal of the timeless diamond-target updates and novel therapeutic potentials. J Neural Transm (Vienna) 2021; 128:127-169. [PMID: 33624170 PMCID: PMC7901515 DOI: 10.1007/s00702-021-02306-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/13/2021] [Indexed: 12/30/2022]
Abstract
The aim of the current review was to provide a new, in-depth insight into possible pharmacological targets of amantadine to pave the way to extending its therapeutic use to further indications beyond Parkinson's disease symptoms and viral infections. Considering amantadine's affinities in vitro and the expected concentration at targets at therapeutic doses in humans, the following primary targets seem to be most plausible: aromatic amino acids decarboxylase, glial-cell derived neurotrophic factor, sigma-1 receptors, phosphodiesterases, and nicotinic receptors. Further three targets could play a role to a lesser extent: NMDA receptors, 5-HT3 receptors, and potassium channels. Based on published clinical studies, traumatic brain injury, fatigue [e.g., in multiple sclerosis (MS)], and chorea in Huntington's disease should be regarded potential, encouraging indications. Preclinical investigations suggest amantadine's therapeutic potential in several further indications such as: depression, recovery after spinal cord injury, neuroprotection in MS, and cutaneous pain. Query in the database http://www.clinicaltrials.gov reveals research interest in several further indications: cancer, autism, cocaine abuse, MS, diabetes, attention deficit-hyperactivity disorder, obesity, and schizophrenia.
Collapse
Affiliation(s)
- Wojciech Danysz
- Merz Pharmaceuticals GmbH., Eckenheimer Landstraße 100, 60318, Frankfurt am Main, Germany
| | - Andrzej Dekundy
- Merz Pharmaceuticals GmbH., Eckenheimer Landstraße 100, 60318, Frankfurt am Main, Germany
| | - Astrid Scheschonka
- Merz Pharmaceuticals GmbH., Eckenheimer Landstraße 100, 60318, Frankfurt am Main, Germany
| | - Peter Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany.
- Department Psychiatry, University of Southern Denmark Odense, Vinslows Vey 18, 5000, Odense, Denmark.
| |
Collapse
|
116
|
Lara A, Esperante I, Meyer M, Liere P, Di Giorgio N, Schumacher M, Guennoun R, Gargiulo-Monachelli G, De Nicola AF, Gonzalez Deniselle MC. Neuroprotective Effects of Testosterone in Male Wobbler Mouse, a Model of Amyotrophic Lateral Sclerosis. Mol Neurobiol 2021; 58:2088-2106. [PMID: 33411236 DOI: 10.1007/s12035-020-02209-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/12/2020] [Indexed: 11/30/2022]
Abstract
Patients suffering of amyotrophic lateral sclerosis (ALS) present motoneuron degeneration leading to muscle atrophy, dysphagia, and dysarthria. The Wobbler mouse, an animal model of ALS, shows a selective loss of motoneurons, astrocytosis, and microgliosis in the spinal cord. The incidence of ALS is greater in men; however, it increases in women after menopause, suggesting a role of sex steroids in ALS. Testosterone is a complex steroid that exerts its effects directly via androgen (AR) or Sigma-1 receptors and indirectly via estrogen receptors (ER) after aromatization into estradiol. Its reduced-metabolite 5α-dihydrotestosterone acts via AR. This study analyzed the effects of testosterone in male symptomatic Wobblers. Controls or Wobblers received empty or testosterone-filled silastic tubes for 2 months. The cervical spinal cord from testosterone-treated Wobblers showed (1) similar androgen levels to untreated control and (2) increased levels of testosterone, and its 5α-reduced metabolites, 5α- dihydrotestosterone, and 3β-androstanediol, but (3) undetectable levels of estradiol compared to untreated Wobblers. Testosterone-treated controls showed comparable steroid concentrations to its untreated counterpart. In testosterone- treated Wobblers a reduction of AR, ERα, and aromatase and high levels of Sigma-1 receptor mRNAs was demonstrated. Testosterone treatment increased ChAT immunoreactivity and the antiinflammatory mediator TGFβ, while it lessened vacuolated motoneurons, GFAP+ astrogliosis, the density of IBA1+ microgliosis, proinflammatory mediators, and oxidative/nitrosative stress. Clinically, testosterone treatment in Wobblers slowed the progression of paw atrophy and improved rotarod performance. Collectively, our findings indicate an antiinflammatory and protective effect of testosterone in the degenerating spinal cord. These results coincided with a high concentration of androgen-reduced derivatives after testosterone treatment suggesting that the steroid profile may have a beneficial role on disease progression.
Collapse
Affiliation(s)
- Agustina Lara
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
| | - Iván Esperante
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
| | - Maria Meyer
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
| | - Philippe Liere
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, Le Kremlin-Bicêtre, 94276, France
| | - Noelia Di Giorgio
- Laboratory of Neuroendocrinology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, Buenos Aires, 1428, Argentina
| | - Michael Schumacher
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, Le Kremlin-Bicêtre, 94276, France
| | - Rachida Guennoun
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, Le Kremlin-Bicêtre, 94276, France
| | - Gisella Gargiulo-Monachelli
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
| | - Alejandro Federico De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina.,Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1121, Buenos Aires, Argentina
| | - Maria Claudia Gonzalez Deniselle
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina. .,Department of Physiology, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, Buenos Aires, 1121, Argentina.
| |
Collapse
|
117
|
Mitochondria Associated Membranes (MAMs): Architecture and physiopathological role. Cell Calcium 2021; 94:102343. [PMID: 33418313 DOI: 10.1016/j.ceca.2020.102343] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/27/2020] [Accepted: 12/27/2020] [Indexed: 12/17/2022]
Abstract
In the last decades, the communication between the Endoplasmic reticulum (ER) and mitochondria has obtained great attention: mitochondria-associated membranes (MAMs), which represent the contact sites between the two organelles, have indeed emerged as central hub involved in different fundamental cell processes, such as calcium signalling, apoptosis, autophagy and lipid biosynthesis. Consistently, dysregulation of ER-mitochondria crosstalk has been associated with different pathological conditions, ranging from diabetes to cancer and neurodegenerative diseases. In this review, we will try to summarize the current knowledge on MAMs' structure and functions in health and their relevance for human diseases.
Collapse
|
118
|
Ye N, Qin W, Tian S, Xu Q, Wold EA, Zhou J, Zhen XC. Small Molecules Selectively Targeting Sigma-1 Receptor for the Treatment of Neurological Diseases. J Med Chem 2020; 63:15187-15217. [PMID: 33111525 DOI: 10.1021/acs.jmedchem.0c01192] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The sigma-1 (σ1) receptor, an enigmatic protein originally classified as an opioid receptor subtype, is now understood to possess unique structural and functional features of its own and play critical roles to widely impact signaling transduction by interacting with receptors, ion channels, lipids, and kinases. The σ1 receptor is implicated in modulating learning, memory, emotion, sensory systems, neuronal development, and cognition and accordingly is now an actively pursued drug target for various neurological and neuropsychiatric disorders. Evaluation of the five selective σ1 receptor drug candidates (pridopidine, ANAVEX2-73, SA4503, S1RA, and T-817MA) that have entered clinical trials has shown that reaching clinical approval remains an evasive and important goal. This review provides up-to-date information on the selective targeting of σ1 receptors, including their history, function, reported crystal structures, and roles in neurological diseases, as well as a useful collation of new chemical entities as σ1 selective orthosteric ligands or allosteric modulators.
Collapse
Affiliation(s)
- Na Ye
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wangzhi Qin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Sheng Tian
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qingfeng Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Eric A Wold
- Chemical Biology Program, Department of Pharmacology and Toxicology, and Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, and Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Xue-Chu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
119
|
Czeredys M. Dysregulation of Neuronal Calcium Signaling via Store-Operated Channels in Huntington's Disease. Front Cell Dev Biol 2020; 8:611735. [PMID: 33425919 PMCID: PMC7785827 DOI: 10.3389/fcell.2020.611735] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder that is characterized by motor, cognitive, and psychiatric problems. It is caused by a polyglutamine expansion in the huntingtin protein that leads to striatal degeneration via the transcriptional dysregulation of several genes, including genes that are involved in the calcium (Ca2+) signalosome. Recent research has shown that one of the major Ca2+ signaling pathways, store-operated Ca2+ entry (SOCE), is significantly elevated in HD. SOCE refers to Ca2+ flow into cells in response to the depletion of endoplasmic reticulum Ca2+ stores. The dysregulation of Ca2+ homeostasis is postulated to be a cause of HD progression because the SOCE pathway is indirectly and abnormally activated by mutant huntingtin (HTT) in γ-aminobutyric acid (GABA)ergic medium spiny neurons (MSNs) from the striatum in HD models before the first symptoms of the disease appear. The present review summarizes recent studies that revealed a relationship between HD pathology and elevations of SOCE in different models of HD, including YAC128 mice (a transgenic model of HD), cellular HD models, and induced pluripotent stem cell (iPSC)-based GABAergic medium spiny neurons (MSNs) that are obtained from adult HD patient fibroblasts. SOCE in MSNs was shown to be mediated by currents through at least two different channel groups, Ca2+ release-activated Ca2+ current (ICRAC) and store-operated Ca2+ current (ISOC), which are composed of stromal interaction molecule (STIM) proteins and Orai or transient receptor potential channel (TRPC) channels. Their role under physiological and pathological conditions in HD are discussed. The role of Huntingtin-associated protein 1 isoform A in elevations of SOCE in HD MSNs and potential compounds that may stabilize elevations of SOCE in HD are also summarized. Evidence is presented that shows that the dysregulation of molecular components of SOCE or pathways upstream of SOCE in HD MSN neurons is a hallmark of HD, and these changes could lead to HD pathology, making them potential therapeutic targets.
Collapse
Affiliation(s)
- Magdalena Czeredys
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
120
|
Molecular Dysfunctions of Mitochondria-Associated Membranes (MAMs) in Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21249521. [PMID: 33327665 PMCID: PMC7765134 DOI: 10.3390/ijms21249521] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD) is a multifactorial neurodegenerative pathology characterized by a progressive decline of cognitive functions. Alteration of various signaling cascades affecting distinct subcellular compartment functions and their communication likely contribute to AD progression. Among others, the alteration of the physical association between the endoplasmic reticulum (ER) and mitochondria, also referred as mitochondria-associated membranes (MAMs), impacts various cellular housekeeping functions such as phospholipids-, glucose-, cholesterol-, and fatty-acid-metabolism, as well as calcium signaling, which are all altered in AD. Our review describes the physical and functional proteome crosstalk between the ER and mitochondria and highlights the contribution of distinct molecular components of MAMs to mitochondrial and ER dysfunctions in AD progression. We also discuss potential strategies targeting MAMs to improve mitochondria and ER functions in AD.
Collapse
|
121
|
Sigma-2 Receptor-A Potential Target for Cancer/Alzheimer's Disease Treatment via Its Regulation of Cholesterol Homeostasis. Molecules 2020; 25:molecules25225439. [PMID: 33233619 PMCID: PMC7699687 DOI: 10.3390/molecules25225439] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/10/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
The sigma receptors were classified into sigma-1 and sigma-2 receptor based on their different pharmacological profiles. In the past two decades, our understanding of the biological and pharmacological properties of the sigma-1 receptor is increasing; however, little is known about the sigma-2 receptor. Recently, the molecular identity of the sigma-2 receptor has been identified as TMEM97. Although more and more evidence has showed that sigma-2 ligands have the ability to treat cancer and Alzheimer’s disease (AD), the mechanisms connecting these two diseases are unknown. Data obtained over the past few years from human and animal models indicate that cholesterol homeostasis is altered in AD and cancer, underscoring the importance of cholesterol homeostasis in AD and cancer. In this review, based on accumulated evidence, we proposed that the beneficial roles of sigma-2 ligands in cancer and AD might be mediated by their regulation of cholesterol homeostasis.
Collapse
|
122
|
Abdullah CS, Aishwarya R, Alam S, Morshed M, Remex NS, Nitu S, Kolluru GK, Traylor J, Miriyala S, Panchatcharam M, Hartman B, King J, Bhuiyan MAN, Chandran S, Woolard MD, Yu X, Goeders NE, Dominic P, Arnold CL, Stokes K, Kevil CG, Orr AW, Bhuiyan MS. Methamphetamine induces cardiomyopathy by Sigmar1 inhibition-dependent impairment of mitochondrial dynamics and function. Commun Biol 2020; 3:682. [PMID: 33203971 PMCID: PMC7673131 DOI: 10.1038/s42003-020-01408-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Methamphetamine-associated cardiomyopathy is the leading cause of death linked with illicit drug use. Here we show that Sigmar1 is a therapeutic target for methamphetamine-associated cardiomyopathy and defined the molecular mechanisms using autopsy samples of human hearts, and a mouse model of "binge and crash" methamphetamine administration. Sigmar1 expression is significantly decreased in the hearts of human methamphetamine users and those of "binge and crash" methamphetamine-treated mice. The hearts of methamphetamine users also show signs of cardiomyopathy, including cellular injury, fibrosis, and enlargement of the heart. In addition, mice expose to "binge and crash" methamphetamine develop cardiac hypertrophy, fibrotic remodeling, and mitochondrial dysfunction leading to contractile dysfunction. Methamphetamine treatment inhibits Sigmar1, resulting in inactivation of the cAMP response element-binding protein (CREB), decreased expression of mitochondrial fission 1 protein (FIS1), and ultimately alteration of mitochondrial dynamics and function. Therefore, Sigmar1 is a viable therapeutic agent for protection against methamphetamine-associated cardiomyopathy.
Collapse
Affiliation(s)
- Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Richa Aishwarya
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Shafiul Alam
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Mahboob Morshed
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Naznin Sultana Remex
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Sadia Nitu
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Gopi K Kolluru
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - James Traylor
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Sumitra Miriyala
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Manikandan Panchatcharam
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Brandon Hartman
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Judy King
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | | | - Sunitha Chandran
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Matthew D Woolard
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Xiuping Yu
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Nicholas E Goeders
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Paari Dominic
- Department of Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Connie L Arnold
- Department of Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Karen Stokes
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Christopher G Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - A Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Md Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA.
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA.
| |
Collapse
|
123
|
Mangiatordi GF, Intranuovo F, Delre P, Abatematteo FS, Abate C, Niso M, Creanza TM, Ancona N, Stefanachi A, Contino M. Cannabinoid Receptor Subtype 2 (CB2R) in a Multitarget Approach: Perspective of an Innovative Strategy in Cancer and Neurodegeneration. J Med Chem 2020; 63:14448-14469. [PMID: 33094613 DOI: 10.1021/acs.jmedchem.0c01357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cannabinoid receptor subtype 2 (CB2R) represents an interesting and new therapeutic target for its involvement in the first steps of neurodegeneration as well as in cancer onset and progression. Several studies, focused on different types of tumors, report a promising anticancer activity induced by CB2R agonists due to their ability to reduce inflammation and cell proliferation. Moreover, in neuroinflammation, the stimulation of CB2R, overexpressed in microglial cells, exerts beneficial effects in neurodegenerative disorders. With the aim to overcome current treatment limitations, new drugs can be developed by specifically modulating, together with CB2R, other targets involved in such multifactorial disorders. Building on successful case studies of already developed multitarget strategies involving CB2R, in this Perspective we aim at prompting the scientific community to consider new promising target associations involving HDACs (histone deacetylases) and σ receptors by employing modern approaches based on molecular hybridization, computational polypharmacology, and machine learning algorithms.
Collapse
Affiliation(s)
| | - Francesca Intranuovo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Pietro Delre
- CNR-Institute of Crystallography, Via Amendola 122/o, 70126 Bari, Italy.,Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Francesca Serena Abatematteo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Mauro Niso
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Teresa Maria Creanza
- CNR-Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Via Amendola 122/o, 70126 Bari, Italy
| | - Nicola Ancona
- CNR-Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Via Amendola 122/o, 70126 Bari, Italy
| | - Angela Stefanachi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Marialessandra Contino
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
124
|
Rossino G, Rui M, Pozzetti L, Schepmann D, Wünsch B, Zampieri D, Pellavio G, Laforenza U, Rinaldi S, Colombo G, Morelli L, Linciano P, Rossi D, Collina S. Setup and Validation of a Reliable Docking Protocol for the Development of Neuroprotective Agents by Targeting the Sigma-1 Receptor (S1R). Int J Mol Sci 2020; 21:E7708. [PMID: 33081037 PMCID: PMC7589021 DOI: 10.3390/ijms21207708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/06/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022] Open
Abstract
Sigma-1 receptor (S1R) is a promising molecular target for the development of novel effective therapies against neurodegenerative diseases. To speed up the discovery of new S1R modulators, herein we report the development of a reliable in silico protocol suitable to predict the affinity of small molecules against S1R. The docking method was validated by comparing the computational calculated Ki values of a test set of new aryl-aminoalkyl-ketone with experimental determined binding affinity. The druggability profile of the new compounds, with particular reference to the ability to cross the blood-brain barrier (BBB) was further predicted in silico. Moreover, the selectivity over Sigma-2 receptor (S2R) and N-methyl-D-aspartate (NMDA) receptor, another protein involved in neurodegeneration, was evaluated. 1-([1,1'-biphenyl]-4-yl)-4-(piperidin-1-yl)butan-1-one (12) performed as the best compound and was further investigated for acetylcholinesterase (AchE) inhibitor activity and determination of antioxidant activity mediated by aquaporins (AQPs). With a good affinity against both S1R and NMDA receptor, good selectivity over S2R and favorable BBB penetration potential together with its AChE inhibitory activity and its ability to exert antioxidant effects through modulation of AQPs, 12 represents a viable candidate for further development as a neuroprotective agent.
Collapse
Affiliation(s)
- Giacomo Rossino
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy; (G.R.); (M.R.); (L.P.); (P.L.); (D.R.)
| | - Marta Rui
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy; (G.R.); (M.R.); (L.P.); (P.L.); (D.R.)
| | - Luca Pozzetti
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy; (G.R.); (M.R.); (L.P.); (P.L.); (D.R.)
| | - Dirk Schepmann
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany; (D.S.); (B.W.)
| | - Bernhard Wünsch
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany; (D.S.); (B.W.)
| | - Daniele Zampieri
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 30126 Trieste, Italy;
| | - Giorgia Pellavio
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, via Forlanini 6, 27100 Pavia, Italy; (G.P.); (U.L.)
| | - Umberto Laforenza
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, via Forlanini 6, 27100 Pavia, Italy; (G.P.); (U.L.)
| | | | - Giorgio Colombo
- Dipartimento di Chimica, Università di Pavia, V.le Taramelli 12, 27100 Pavia, Italy;
| | - Laura Morelli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Saldini 50, 20133 Milan, Italy;
| | - Pasquale Linciano
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy; (G.R.); (M.R.); (L.P.); (P.L.); (D.R.)
| | - Daniela Rossi
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy; (G.R.); (M.R.); (L.P.); (P.L.); (D.R.)
| | - Simona Collina
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy; (G.R.); (M.R.); (L.P.); (P.L.); (D.R.)
| |
Collapse
|
125
|
Crouzier L, Couly S, Roques C, Peter C, Belkhiter R, Arguel Jacquemin M, Bonetto A, Delprat B, Maurice T. Sigma-1 (σ 1) receptor activity is necessary for physiological brain plasticity in mice. Eur Neuropsychopharmacol 2020; 39:29-45. [PMID: 32893057 DOI: 10.1016/j.euroneuro.2020.08.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/24/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
The sigma-1 receptor (S1R) is a membrane-associated protein expressed in neurons and glia at mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs). S1R interacts with different partners to regulate cellular responses, including ER stress, mitochondrial physiology and Ca2+ fluxes. S1R shapes cellular plasticity by directly modulating signaling pathways involved in inflammatory responses, cell survival and death. We here analyzed its impact on brain plasticity in vivo, in mice trained in a complex maze, the Hamlet test. The device, providing strong enriched environment (EE) conditions, mimics a small village. It has a central agora and streets expanding from it, leading to functionalized houses where animals can Drink, Eat, Hide, Run, or Interact. Animals were trained in groups, 4 h/day for two weeks, and their maze exploration and topographic memory could be analyzed. Several groups of mice were considered: non-trained vs. trained; repeatedly administered with saline vs. NE-100, a selective S1R antagonist; and wildtype vs. S1R KO mice. S1R inactivation altered maze exploration and prevented topographic learning. EE induced a strong plasticity measured through resilience to behavioral despair or to the amnesic effects of scopolamine, and increases in S1R expression and bdnf mRNA levels in the hippocampus; increases in neurogenesis (proliferation and maturation); and increases of histone acetylation in the hippocampus and cortex. S1R inactivation altered all these parameters significantly, showing that S1R activity plays a major role in physiological brain plasticity. As S1R is a major resident protein in MAMs, modulating ER responses and mitochondrial homeostasy, MAM physiology appeared impacted by enriched environment.
Collapse
Affiliation(s)
- Lucie Crouzier
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | - Simon Couly
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | - Chloé Roques
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | - Coralie Peter
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | | | | | - Anna Bonetto
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | | | - Tangui Maurice
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France.
| |
Collapse
|
126
|
Srinivasan V, Korhonen L, Lindholm D. The Unfolded Protein Response and Autophagy as Drug Targets in Neuropsychiatric Disorders. Front Cell Neurosci 2020; 14:554548. [PMID: 33132844 PMCID: PMC7550790 DOI: 10.3389/fncel.2020.554548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Neurons are polarized in structure with a cytoplasmic compartment extending into dendrites and a long axon that terminates at the synapse. The high level of compartmentalization imposes specific challenges for protein quality control in neurons making them vulnerable to disturbances that may lead to neurological dysfunctions including neuropsychiatric diseases. Synapse and dendrites undergo structural modulations regulated by neuronal activity involve key proteins requiring strict control of their turnover rates and degradation pathways. Recent advances in the study of the unfolded protein response (UPR) and autophagy processes have brought novel insights into the specific roles of these processes in neuronal physiology and synaptic signaling. In this review, we highlight recent data and concepts about UPR and autophagy in neuropsychiatric disorders and synaptic plasticity including a brief outline of possible therapeutic approaches to influence UPR and autophagy signaling in these diseases.
Collapse
Affiliation(s)
- Vignesh Srinivasan
- Medicum, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Helsinki, Finland
| | - Laura Korhonen
- Department of Biochemical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden.,Department of Child and Adolescent Psychiatry, Region Östergötland, Linköping, Sweden
| | - Dan Lindholm
- Medicum, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Helsinki, Finland
| |
Collapse
|
127
|
Voronin MV, Vakhitova YV, Seredenin SB. Chaperone Sigma1R and Antidepressant Effect. Int J Mol Sci 2020; 21:E7088. [PMID: 32992988 PMCID: PMC7582751 DOI: 10.3390/ijms21197088] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
This review analyzes the current scientific literature on the role of the Sigma1R chaperone in the pathogenesis of depressive disorders and pharmacodynamics of antidepressants. As a result of ligand activation, Sigma1R is capable of intracellular translocation from the endoplasmic reticulum (ER) into the region of nuclear and cellular membranes, where it interacts with resident proteins. This unique property of Sigma1R provides regulation of various receptors, ion channels, enzymes, and transcriptional factors. The current review demonstrates the contribution of the Sigma1R chaperone to the regulation of molecular mechanisms involved in the antidepressant effect.
Collapse
Affiliation(s)
- Mikhail V. Voronin
- Department of Pharmacogenetics, FSBI “Zakusov Institute of Pharmacology”, Baltiyskaya Street 8, 125315 Moscow, Russia;
| | | | - Sergei B. Seredenin
- Department of Pharmacogenetics, FSBI “Zakusov Institute of Pharmacology”, Baltiyskaya Street 8, 125315 Moscow, Russia;
| |
Collapse
|
128
|
Brimson JM, Brimson S, Chomchoei C, Tencomnao T. Using sigma-ligands as part of a multi-receptor approach to target diseases of the brain. Expert Opin Ther Targets 2020; 24:1009-1028. [PMID: 32746649 DOI: 10.1080/14728222.2020.1805435] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The sigma receptors are found abundantly in the central nervous system and are targets for the treatment of various diseases, including Alzheimer's (AD), Parkinson's (PD), Huntington's disease (HD), depression, amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). However, for many of these diseases, other receptors and targets have been the focus of the most, such as acetylcholine esterase inhibitors in Alzheimer's and dopamine replacement in Parkinson's. The currently available drugs for these diseases have limited success resulting in the requirement of an alternative approach to their treatment. AREAS COVERED In this review, we discuss the potential role of the sigma receptors and their ligands as part of a multi receptor approach in the treatment of the diseases mentioned above. The literature reviewed was obtained through searches in databases, including PubMed, Web of Science, Google Scholar, and Scopus. EXPERT OPINION Given sigma receptor agonists provide neuroprotection along with other benefits such as potentiating the effects of other receptors, further development of multi-receptor targeting ligands, and or the development of multi-drug combinations to target multiple receptors may prove beneficial in the future treatment of degenerative diseases of the CNS, especially when coupled with better diagnostic techniques.
Collapse
Affiliation(s)
- James Michael Brimson
- Age-related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University , Bangkok, Thailand
| | - Sirikalaya Brimson
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University , Bangkok, Thailand
| | - Chanichon Chomchoei
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University , Bangkok, Thailand
| | - Tewin Tencomnao
- Age-related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University , Bangkok, Thailand
| |
Collapse
|
129
|
Huang Y, Alsabbagh MW. Comparative risk of cardiac arrhythmias associated with acetylcholinesterase inhibitors used in treatment of dementias - A narrative review. Pharmacol Res Perspect 2020; 8:e00622. [PMID: 32691984 PMCID: PMC7372915 DOI: 10.1002/prp2.622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022] Open
Abstract
Donepezil, galantamine, and rivastigmine are the three acetylcholinesterase inhibitors (AChEIs), out of a total of only four medications prescribed in the treatment of Alzheimer's Disease (AD) and related dementias. These medications are known to be associated with bradycardia given their mechanism of action of increasing acetylcholine (ACh). However, in March 2015, donepezil was added to the CredibleMeds "known-risk" category, a list where medications have a documented risk for acquired long-QT syndrome (ALQTS) and torsades de pointes (TdP) - a malignant ventricular arrhythmia that is a different adverse event than bradycardia (and is not necessarily associated with ACh action). The purpose of this article is to review the three AChEIs, especially with regards to mechanistic differences that may explain why only donepezil poses this risk; several pharmacological mechanisms may explain why. However, from an empirical point-of-view, aside from some case-reports, only a limited number of studies have generated relevant information regarding AChEIs' and electrocardiogram findings; none have specifically compared donepezil against galantamine or rivastigmine for malignant arrhythmias such as TdP. Currently, the choice of one of the three AChEIs for treatment of AD symptoms is primarily dependent upon clinician and patient preference. However, clinicians should be aware of the potential increased risk associated with donepezil. There is a need to examine the comparative risk of malignant arrhythmias among AChEIs users in real-world practice; this may have important implications with regards to changes in AChEI prescribing patterns.
Collapse
Affiliation(s)
- Yichang Huang
- School of PharmacyFaculty of ScienceUniversity of WaterlooKitchenerCanada
| | | |
Collapse
|
130
|
Tian J, He Y, Deuther-Conrad W, Fu H, Xie F, Zhang Y, Wang T, Zhang X, Zhang J, Brust P, Huang Y, Jia H. Synthesis and evaluation of new 1-oxa-8-azaspiro[4.5]decane derivatives as candidate radioligands for sigma-1 receptors. Bioorg Med Chem 2020; 28:115560. [PMID: 32616183 DOI: 10.1016/j.bmc.2020.115560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/12/2020] [Accepted: 05/16/2020] [Indexed: 01/01/2023]
Abstract
We report the design, synthesis, and evaluation of a series of 1-oxa-8-azaspiro[4.5]decane and 1,5-dioxa-9-azaspiro[5.5]undecane derivatives as selective σ1 receptor ligands. All seven ligands exhibited nanomolar affinity for σ1 receptors (Ki(σ1) = 0.47 - 12.1 nM) and moderate selectivity over σ2 receptors (Ki(σ2)/ Ki(σ1) = 2 - 44). Compound 8, with the best selectivity among these ligands, was selected for radiolabeling and further evaluation. Radioligand [18F]8 was prepared via nucleophilic 18F-substitution of the corresponding tosylate precursor, with an overall isolated radiochemical yield of 12-35%, a radiochemical purity of greater than 99%, and molar activity of 94 - 121 GBq/μmol. Biodistribution studies of [18F]8 in mice demonstrated high initial brain uptake at 2 min. Pretreatment with SA4503 resulted in significantly reduced brain-to-blood ratio (70% - 75% at 30 min). Ex vivo autoradiography in ICR mice demonstrated high accumulation of the radiotracer in σ1 receptor-rich brain areas. These findings suggest that [18F]8 could be a lead compound for further structural modifications to develop potential brain imaging agents for σ1 receptors.
Collapse
Affiliation(s)
- Jiale Tian
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yingfang He
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, 04318 Leipzig, Germany
| | - Hualong Fu
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Fang Xie
- PET Center, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ying Zhang
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Tao Wang
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiaojun Zhang
- Nuclear Medicine Department, Chinese PLA General Hospital, Beijing 100853, China
| | - Jinming Zhang
- Nuclear Medicine Department, Chinese PLA General Hospital, Beijing 100853, China.
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, 04318 Leipzig, Germany
| | - Yiyun Huang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Hongmei Jia
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
131
|
Multitarget Therapeutic Strategies for Alzheimer's Disease: Review on Emerging Target Combinations. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5120230. [PMID: 32714977 PMCID: PMC7354643 DOI: 10.1155/2020/5120230] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/12/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases represent nowadays one of the major health problems. Despite the efforts made to unveil the mechanism leading to neurodegeneration, it is still not entirely clear what triggers this phenomenon and what allows its progression. Nevertheless, it is accepted that neurodegeneration is a consequence of several detrimental processes, such as protein aggregation, oxidative stress, and neuroinflammation, finally resulting in the loss of neuronal functions. Starting from these evidences, there has been a wide search for novel agents able to address more than a single event at the same time, the so-called multitarget-directed ligands (MTDLs). These compounds originated from the combination of different pharmacophoric elements which endowed them with the ability to interfere with different enzymatic and/or receptor systems, or to exert neuroprotective effects by modulating proteins and metal homeostasis. MTDLs have been the focus of the latest strategies to discover a new treatment for Alzheimer's disease (AD), which is considered the most common form of dementia characterized by neurodegeneration and cognitive dysfunctions. This review is aimed at collecting the latest and most interesting target combinations for the treatment of AD, with a detailed discussion on new agents with favorable in vitro properties and on optimized structures that have already been assessed in vivo in animal models of dementia.
Collapse
|