101
|
Li M, Tian X, Guo H, Xu X, Liu Y, Hao X, Fei H. A novel lncRNA-mRNA-miRNA signature predicts recurrence and disease-free survival in cervical cancer. Braz J Med Biol Res 2021; 54:e11592. [PMID: 34550275 PMCID: PMC8457683 DOI: 10.1590/1414-431x2021e11592] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/17/2021] [Indexed: 11/22/2022] Open
Abstract
Cervical cancer (CC) patients have a poor prognosis due to the high recurrence rate. However, there are still no effective molecular signatures to predict the recurrence and survival rates for CC patients. Here, we aimed to identify a novel signature based on three types of RNAs [messenger RNA (mRNAs), microRNA (miRNAs), and long non-coding RNAs (lncRNAs)]. A total of 763 differentially expressed mRNAs (DEMs), 46 lncRNAs (DELs), and 22 miRNAs (DEMis) were identified between recurrent and non-recurrent CC patients using the datasets collected from the Gene Expression Omnibus (GSE44001; training) and The Cancer Genome Atlas (RNA- and miRNA-sequencing; testing) databases. A competing endogenous RNA network was constructed based on 23 DELs, 15 DEMis, and 426 DEMs, in which 15 DELs, 13 DEMis, and 390 DEMs were significantly associated with disease-free survival (DFS). A prognostic signature, containing two DELs (CD27-AS1, LINC00683), three DEMis (hsa-miR-146b, hsa-miR-1238, hsa-miR-4648), and seven DEMs (ARMC7, ATRX, FBLN5, GHR, MYLIP, OXCT1, RAB39A), was developed after LASSO analysis. The built risk score could effectively separate the recurrence rate and DFS of patients in the high- and low-risk groups. The accuracy of this risk score model for DFS prediction was better than that of the FIGO (International Federation of Gynecology and Obstetrics) staging (the area under receiver operating characteristic curve: training, 0.954 vs 0.501; testing, 0.882 vs 0.656; and C-index: training, 0.855 vs 0.539; testing, 0.711 vs 0.508). In conclusion, the high predictive accuracy of our signature for DFS indicated its potential clinical application value for CC patients.
Collapse
Affiliation(s)
- Mengxiong Li
- Department of Obstetrics and Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaohui Tian
- Department of Obstetrics and Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hongling Guo
- Department of Obstetrics and Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaoyu Xu
- Department of Obstetrics and Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yun Liu
- Department of Obstetrics and Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiulan Hao
- Department of Obstetrics and Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hui Fei
- Department of Obstetrics and Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
102
|
The functions and potential roles of extracellular vesicle noncoding RNAs in gynecological malignancies. Cell Death Dis 2021; 7:258. [PMID: 34552067 PMCID: PMC8458395 DOI: 10.1038/s41420-021-00645-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/18/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs) are small membranous vesicles secreted by multiple kinds of cells and are widely present in human body fluids. EVs containing various constituents can transfer functional molecules from donor cells to recipient cells, thereby mediating intercellular communication. Noncoding RNAs (ncRNAs) are a type of RNA transcript with limited protein-coding capacity, that have been confirmed to be enriched in EVs in recent years. EV ncRNAs have become a hot topic because of their crucial regulating effect in disease progression, especially in cancer development. In this review, we summarized the biological functions of EV ncRNAs in the occurrence and progression of gynecological malignancies. In addition, we reviewed their potential applications in the diagnosis and treatment of gynecological malignancies.
Collapse
|
103
|
Pan Q, Meng X, Li J, Qin X, Chen H, Li Y. CircSAMD11 facilitates progression of cervical cancer via regulating miR-503/SOX4 axis through Wnt/β-catenin pathway. Clin Exp Pharmacol Physiol 2021; 49:175-187. [PMID: 34546569 DOI: 10.1111/1440-1681.13593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/29/2021] [Accepted: 09/16/2021] [Indexed: 01/15/2023]
Abstract
Cervical cancer (CC) is a common gynaecological malignant tumour with a high mortality rate. Circular RNAs (circRNAs) play a critical role in tumour occurrence and development. This study aimed to investigate the function and molecular basis of hsa_circ_0009189 (circSAMD11) in CC development. RNA levels were determined by qRT-PCR, and protein expression was measured by western blot. Cell proliferation, migration, invasion and apoptosis were detected by Cell Counting Kit-8 (CCK-8), colony formation, Transwell and flow cytometry assays. The relationship between miR-503 and circSAMD11/SOX4 was validated via dual-luciferase reporter assay, RIP or RNA pull-down assay. Xenograft assay was conducted to test tumour growth in vivo. CircSAMD11 and SOX4 levels were elevated, while miR-503 level was reduced in CC tissues and cells. Knockdown of circSAMD11 suppressed CC cell proliferation, migration and invasion and accelerated apoptosis. CircSAMD11 was localised in cytoplasm and directly targeted miR-503. Also, circSAMD11 sponged miR-503 to modulate SOX4 expression. Additionally, circSAMD11 regulated CC progression via absorbing miR-503 or modulating SOX4. Besides, depletion of circSAMD11 hindered tumorigenesis in vivo. CircSAMD11 contributed to CC progression by regulating miR-503/SOX4 signalling and activating Wnt/β-catenin pathway, which provides a promising therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Qiwen Pan
- Department of Gynaecology, Hechi Hospital Affiliated to YouJiang Medical University For Nationalities, The People's Hospital of Hechi, Hechi, China
| | - Xia Meng
- Department of Gynaecology, The First People's Hospital of Hechi, Hechi, China
| | - Jianxiang Li
- Department of Gynaecology, Hechi Hospital Affiliated to YouJiang Medical University For Nationalities, The People's Hospital of Hechi, Hechi, China
| | - Xiaoni Qin
- Department of Gynaecology, Hechi Hospital Affiliated to YouJiang Medical University For Nationalities, The People's Hospital of Hechi, Hechi, China
| | - Huifeng Chen
- Department of Gynaecology, Hechi Hospital Affiliated to YouJiang Medical University For Nationalities, The People's Hospital of Hechi, Hechi, China
| | - Yueqing Li
- Department of Gynaecology, Hechi Hospital Affiliated to YouJiang Medical University For Nationalities, The People's Hospital of Hechi, Hechi, China
| |
Collapse
|
104
|
Luo H, Li Y, Zhao Y, Chang J, Zhang X, Zou B, Gao L, Wang W. Comprehensive Analysis of circRNA Expression Profiles During Cervical Carcinogenesis. Front Oncol 2021; 11:676609. [PMID: 34532284 PMCID: PMC8438239 DOI: 10.3389/fonc.2021.676609] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/03/2021] [Indexed: 01/17/2023] Open
Abstract
Circular RNAs (circRNAs) are regulatory molecules that participate in the occurrence, development and progression of tumors. To obtain a complete blueprint of cervical carcinogenesis, we analyzed the temporal transcriptomic landscapes of mRNAs and circRNAs. Microarrays were performed to identify the circRNA and mRNA expression profiles of cervical squamous cell carcinoma (CSCC) and high-grade squamous intraepithelial lesion (HSIL) patients compared with normal controls (NC). Short time-series expression miner (STEM) was utilized to characterize the time-course expression patterns of circRNAs and mRNAs from NC to HSIL and CSCC. A total of 3 circRNA profiles and 3 mRNA profiles with continuous upregulated patterns were identified and selected for further analysis. Furthermore, functional annotation showed that the mRNAs were associated with DNA repair and cell division. The protein-protein interaction (PPI) network analysis revealed that the ten highest-degree genes were considered to be hub genes. Subsequently, a competing endogenous RNA (ceRNA) network analysis and real-time PCR validation indicated that hsa_circ_0001955/hsa-miR-6719-3p/CDK1, hsa_circ_0001955/hsa-miR-1277-5p/NEDD4L and hsa_circ_0003954/hsa-miR-15a-3p/SYCP2 were highly correlated with cervical carcinogenesis. Silencing of hsa_circ_0003954 inhibited SiHa cell proliferation and perturb the cell cycle in vitro. This study provides insight into the molecular events regulating cervical carcinogenesis, identifies functional circRNAs in CSCC, and improves the understanding of the pathogenesis and molecular biomarkers of CSCC and HSIL.
Collapse
Affiliation(s)
- Haixia Luo
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuanxing Li
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yueyang Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jingjing Chang
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiu Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Binbin Zou
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, Taiyuan, China
| | - Lifang Gao
- Department of Pathology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
105
|
Zhang Y, Liu L, Pillman KA, Hayball J, Su YW, Xian CJ. Differentially expressed miRNAs in bone after methotrexate treatment. J Cell Physiol 2021; 237:965-982. [PMID: 34514592 DOI: 10.1002/jcp.30583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 08/11/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022]
Abstract
Previous studies have shown that administration of antimetabolite methotrexate (MTX) caused a reduced trabecular bone volume and increased marrow adiposity (bone/fat switch), for which the underlying molecular mechanisms and recovery potential are unclear. Altered expression of microRNAs (miRNAs) has been shown to be associated with dysregulation of osteogenic and/or adipogenic differentiation by disrupting target gene expression. First, the current study confirmed the bone/fat switch following MTX treatment in precursor cell culture models in vitro. Then, using a rat intensive 5-once daily MTX treatment model, this study aimed to identify miRNAs associated with bone damage and recovery (in a time course over Days 3, 6, 9, and 14 after the first MTX treatment). RNA isolated from bone samples of treated and control rats were subjected to miRNA array and reverse transcription-polymerase chain reaction validation, which identified five upregulated miRNA candidates, namely, miR-155-5p, miR-154-5p, miR-344g, miR-6215, and miR-6315. Target genes of these miRNAs were predicted using TargetScan and miRDB. Then, the protein-protein network was established via STRING database, after which the miRNA-key messenger RNA (mRNA) network was constructed by Cytoscape. Functional annotation and pathway enrichment analyses for miR-6315 were performed by DAVID database. We found that TGF-β signaling was the most significantly enriched pathway and subsequent dual-luciferase assays suggested that Smad2 was the direct target of miR-6315. Our current study showed that miR-6315 might be a vital regulator involved in bone and marrow fat formation. Also, this study constructed a comprehensive miRNA-mRNA regulatory network, which may contribute to the pathogenesis/prognosis of MTX-associated bone loss and bone marrow adiposity.
Collapse
Affiliation(s)
- Yali Zhang
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Liang Liu
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Katherine A Pillman
- Centre for Cancer Biology, SA Pathology, University of South Australia, Adelaide, South Australia, Australia
| | - John Hayball
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Yu-Wen Su
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Cory J Xian
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
106
|
Yang J, Yan Z, Wang Y, Xu J, Li R, Li C, Liu S, Shi L, Yao Y. Association study of relationships of polymorphisms in the miR-21, miR-26b, miR-221/222 and miR-126 genes with cervical intraepithelial neoplasia and cervical cancer. BMC Cancer 2021; 21:997. [PMID: 34488676 PMCID: PMC8422721 DOI: 10.1186/s12885-021-08743-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/28/2021] [Indexed: 01/15/2023] Open
Abstract
Background miR-21, miR-26b, miR-221/222 and miR-126 play crucial roles in cervical cancer development. Studies have shown that polymorphisms in miRNA genes can affect miRNA expression, which might be associated with cancer development. Methods Ten single-nucleotide polymorphisms (SNPs) in the miR-21, miR-26b, miR-221/222 and miR-126 genes (rs1292037, rs13137 in miR-21; rs2227255, rs2227258 in miR-26b; rs2858061, rs34678647, rs2858060, rs2745709 in miR-221/222; rs2297537, rs2297538 in miR-126) were selected, and genotyped in a total of 2176 individuals, including 435 patients with cervical intraepithelial neoplasia (CIN), 743 patients with cervical cancer (CC) and 998 healthy persons using TaqMan assays, and their associations with CIN and CC were evaluated. Results Our results showed significant differences for the rs2297538 genotypes between the CIN and CC groups (P = 0.001). In addition, our results also showed significant differences for the rs2297537 alleles between the CIN and CC groups (P = 0.003), and the C allele of rs2297537 might be associated with a decreased risk of CC (OR = 0.72, 95%CI: 0.58–0.90). At the inheritance analysis, between the CIN and control groups, the T/T-T/C genotype in rs1292037 and A/A-A/T genotype in rs13137 might be associated with an increased risk of CIN in the recessive model (OR = 1.61, 95% CI: 1.17–2.20 and OR = 1.58, 95% CI: 1.15–2.15). In addition, the C/C-T/T genotype of rs2745709 might be associated with a decreased risk of CIN in the overdominant model (OR = 0.66, 95% CI: 0.52–0.82). Between, CIN and CC group, the T/T-C/C genotype in rs1292037 and A/A-T/T genotype in rs13137 might be associated with an increased risk of CC in the overdominant model (OR = 1.43, 95% CI: 1.12–1.81 and OR = 1.42, 95% CI: 1.12–1.80). The rs2297538 G/G-A/G genotype might be associated with an increased risk of CC in the recessive model (OR = 2.83, 95% CI: 1.52–5.25). The rs2297537 2C/C + C/G genotype might be associated with a decreased risk of CC (OR = 0.71, 95% CI: 0.57–0.89) in the log-additive model. The rs2745709 T/T-C/C genotype might be associated with an increased risk of CC (OR = 1.44, 95% CI: 1.13–1.83) in the overdominant model. Conclusion Our results indicate that rs2297538 and rs2297537 in miR-126, rs1292037 and rs13137 in miR-21, and rs2745709 in miR-221/222, may have important roles in the development of CIN or CC.
Collapse
Affiliation(s)
- Jia Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, Yunnan, China
| | - Zhiling Yan
- Department of Gynaecologic Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Yingying Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, Yunnan, China
| | - Jinmei Xu
- Department of Gynaecologic Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Rui Li
- Department of Obstetrics and Gynaecologic, Kunming Yan'an Hospital, Kunming, 650051, China
| | - Chuanyin Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, Yunnan, China
| | - Shuyuan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, Yunnan, China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, Yunnan, China.
| | - Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, Yunnan, China. .,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, 650118, Yunnan, China.
| |
Collapse
|
107
|
Lamsisi M, Wakrim L, Bouziyane A, Benhessou M, Oudghiri M, Laraqui A, Elkarroumi M, Ennachit M, El Mzibri M, Ennaji MM. The Biological Significance of Long noncoding RNAs Dysregulation and their Mechanism of Regulating Signaling Pathways in Cervical Cancer. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2021; 10:75-101. [PMID: 34703793 PMCID: PMC8496250 DOI: 10.22088/ijmcm.bums.10.2.75] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 08/01/2021] [Indexed: 12/19/2022]
Abstract
Despite the remarkable decrease in cervical cancer incidence due to the availability of the HPV vaccine and implementation of screening programs for early detection in developed countries, this cancer remains a major health problem globally, especially in developing countries where most of the cases and mortality occur. Therefore, more understanding of molecular mechanisms of cervical cancer development might lead to the discovery of more effective diagnosis and treatment options. Research on long noncoding RNAs (lncRNAs) demonstrates the important roles of these molecules in many physiological processes and diseases, especially cancer. In the present review, we discussed the significance of lncRNAs altered expression in cervical cancer, highlighting their roles in regulating highly conserved signaling pathways, such as mitogen-activated protein kinase (MAPK), Wnt/β-catenin, Notch, and phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathways and their association with the progression of cervical cancer in order to bring more insight and understanding of this disease and their potential implications in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Maryame Lamsisi
- Team of Virology, Oncology and Medical Biotechnologies, Laboratory of Virology, Microbiology, Quality, and Biotechnologies/ ETB. Faculty of Science and Techniques Mohammedia, Hassan II University of Casablanca, Morocco.
| | - Lahcen Wakrim
- Laboratory of Virology, Pasteur Institute of Morocco. Casablanca, Morocco.
| | - Amal Bouziyane
- Team of Virology, Oncology and Medical Biotechnologies, Laboratory of Virology, Microbiology, Quality, and Biotechnologies/ ETB. Faculty of Science and Techniques Mohammedia, Hassan II University of Casablanca, Morocco.
- University Mohammed VI of Health Science, Casablanca, Morocco.
| | - Mustapha Benhessou
- Team of Virology, Oncology and Medical Biotechnologies, Laboratory of Virology, Microbiology, Quality, and Biotechnologies/ ETB. Faculty of Science and Techniques Mohammedia, Hassan II University of Casablanca, Morocco.
- School of Medicine and Pharmacy, University Hassan II of Casablanca, Morocco.
| | - Mounia Oudghiri
- Immunology and Biodiversity laboratory, Faculty of Sciences Ain chock, Hassan II University of Casablanca, Morocco.
| | - Abdelilah Laraqui
- Research and Biosafety Laboratory, Mohammed V Military Hospital, University Mohammed V of Rabat, Morocco.
| | - Mohamed Elkarroumi
- School of Medicine and Pharmacy, University Hassan II of Casablanca, Morocco.
| | - Mohammed Ennachit
- School of Medicine and Pharmacy, University Hassan II of Casablanca, Morocco.
| | | | - Moulay Mustapha Ennaji
- Corresponding author: Faculty of Science and Techniques Mohammedia, University Hassan II of Casablanca, Morocco. E-mail:
| |
Collapse
|
108
|
Abi Zamer B, Abumustafa W, Hamad M, Maghazachi AA, Muhammad JS. Genetic Mutations and Non-Coding RNA-Based Epigenetic Alterations Mediating the Warburg Effect in Colorectal Carcinogenesis. BIOLOGY 2021; 10:847. [PMID: 34571724 PMCID: PMC8472255 DOI: 10.3390/biology10090847] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) development is a gradual process defined by the accumulation of numerous genetic mutations and epigenetic alterations leading to the adenoma-carcinoma sequence. Despite significant advances in the diagnosis and treatment of CRC, it continues to be a leading cause of cancer-related deaths worldwide. Even in the presence of oxygen, CRC cells bypass oxidative phosphorylation to produce metabolites that enable them to proliferate and survive-a phenomenon known as the "Warburg effect". Understanding the complex glucose metabolism in CRC cells may support the development of new diagnostic and therapeutic approaches. Here we discuss the most recent findings on genetic mutations and epigenetic modulations that may positively or negatively regulate the Warburg effect in CRC cells. We focus on the non-coding RNA (ncRNA)-based epigenetics, and we present a perspective on the therapeutic relevance of critical molecules and ncRNAs mediating the Warburg effect in CRC cells. All the relevant studies were identified and assessed according to the genes and enzymes mediating the Warburg effect. The findings summarized in this review should provide a better understanding of the relevance of genetic mutations and the ncRNA-based epigenetic alterations to CRC pathogenesis to help overcome chemoresistance.
Collapse
Affiliation(s)
- Batoul Abi Zamer
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (B.A.Z.); (W.A.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (M.H.); (A.A.M.)
| | - Wafaa Abumustafa
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (B.A.Z.); (W.A.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (M.H.); (A.A.M.)
| | - Mawieh Hamad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (M.H.); (A.A.M.)
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Azzam A. Maghazachi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (M.H.); (A.A.M.)
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (B.A.Z.); (W.A.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (M.H.); (A.A.M.)
| |
Collapse
|
109
|
IGF2BP2-modified circular RNA circARHGAP12 promotes cervical cancer progression by interacting m 6A/FOXM1 manner. Cell Death Discov 2021; 7:215. [PMID: 34392306 PMCID: PMC8364552 DOI: 10.1038/s41420-021-00595-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/10/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence indicates that circular RNA (circRNA) and N6-methyladenosine (m6A) play critical roles in cervical cancer. However, the synergistic effect of circRNA and m6A on cervical cancer progression is unclear. In the present study, our sequencing data revealed that a novel m6A-modified circRNA (circARHGAP12, hsa_circ_0000231) upregulated in the cervical cancer tissue and cells. Interestingly, the m6A modification of circARHGAP12 could amplify its enrichment. Functional experiments illustrated that circARHGAP12 promoted the tumor progression of cervical cancer in vivo and vitro. Furthermore, MeRIP-Seq illustrated that there was a remarkable m6A site in FOXM1 mRNA. CircARHGAP12 interacted with m6A reader IGF2BP2 to combine with FOXM1 mRNA, thereby accelerating the stability of FOXM1 mRNA. In conclusion, we found that circARHGAP12 exerted the oncogenic role in cervical cancer progression through m6A-dependent IGF2BP2/FOXM1 pathway. These findings may provide new concepts for cervical cancer biology and pathological physiology.
Collapse
|
110
|
Cafforio P, Palmirotta R, Lovero D, Cicinelli E, Cormio G, Silvestris E, Porta C, D’Oronzo S. Liquid Biopsy in Cervical Cancer: Hopes and Pitfalls. Cancers (Basel) 2021; 13:3968. [PMID: 34439120 PMCID: PMC8394398 DOI: 10.3390/cancers13163968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022] Open
Abstract
Cervical cancer (CC) is the fourth most common cancer in women worldwide, with about 90% of cancer-related deaths occurring in developing countries. The geographical influence on disease evolution reflects differences in the prevalence of human papilloma virus (HPV) infection, which is the main cause of CC, as well as in the access and quality of services for CC prevention and diagnosis. At present, the most diffused screening and diagnostic tools for CC are Papanicolaou test and the more sensitive HPV-DNA test, even if both methods require gynecological practices whose acceptance relies on the woman's cultural and religious background. An alternative (or complimentary) tool for CC screening, diagnosis, and follow-up might be represented by liquid biopsy. Here, we summarize the main methodologies developed in this context, including circulating tumor cell detection and isolation, cell tumor DNA sequencing, coding and non-coding RNA detection, and exosomal miRNA identification. Moreover, the pros and cons of each method are discussed, and their potential applications in diagnosis and prognosis of CC, as well as their role in treatment monitoring, are explored. In conclusion, it is evident that despite many advances obtained in this field, further effort is needed to validate and standardize the proposed methodologies before any clinical use.
Collapse
Affiliation(s)
- Paola Cafforio
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70124 Bari, Italy; (P.C.); (C.P.)
| | - Raffaele Palmirotta
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Domenica Lovero
- MASMEC Biomed—MASMEC S.p.A. Division, Modugno, 70026 Bari, Italy;
| | - Ettore Cicinelli
- Obstetrics and Gynecology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70124 Bari, Italy; (E.C.); (G.C.)
| | - Gennaro Cormio
- Obstetrics and Gynecology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70124 Bari, Italy; (E.C.); (G.C.)
| | - Erica Silvestris
- Gynecologic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
| | - Camillo Porta
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70124 Bari, Italy; (P.C.); (C.P.)
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, 70124 Bari, Italy
| | - Stella D’Oronzo
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70124 Bari, Italy; (P.C.); (C.P.)
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, 70124 Bari, Italy
| |
Collapse
|
111
|
Pietropaolo V, Prezioso C, Moens U. Role of Virus-Induced Host Cell Epigenetic Changes in Cancer. Int J Mol Sci 2021; 22:ijms22158346. [PMID: 34361112 PMCID: PMC8346956 DOI: 10.3390/ijms22158346] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor viruses human T-lymphotropic virus 1 (HTLV-1), hepatitis C virus (HCV), Merkel cell polyomavirus (MCPyV), high-risk human papillomaviruses (HR-HPVs), Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpes virus (KSHV) and hepatitis B virus (HBV) account for approximately 15% of all human cancers. Although the oncoproteins of these tumor viruses display no sequence similarity to one another, they use the same mechanisms to convey cancer hallmarks on the infected cell. Perturbed gene expression is one of the underlying mechanisms to induce cancer hallmarks. Epigenetic processes, including DNA methylation, histone modification and chromatin remodeling, microRNA, long noncoding RNA, and circular RNA affect gene expression without introducing changes in the DNA sequence. Increasing evidence demonstrates that oncoviruses cause epigenetic modifications, which play a pivotal role in carcinogenesis. In this review, recent advances in the role of host cell epigenetic changes in virus-induced cancers are summarized.
Collapse
Affiliation(s)
- Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy;
- Correspondence: (V.P.); (U.M.)
| | - Carla Prezioso
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy;
- IRCSS San Raffaele Roma, Microbiology of Chronic Neuro-Degenerative Pathologies, 00161 Rome, Italy
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway
- Correspondence: (V.P.); (U.M.)
| |
Collapse
|
112
|
Zhou Y, Wang Y, Lin M, Wu D, Zhao M. LncRNA HOTAIR promotes proliferation and inhibits apoptosis by sponging miR-214-3p in HPV16 positive cervical cancer cells. Cancer Cell Int 2021; 21:400. [PMID: 34320988 PMCID: PMC8317292 DOI: 10.1186/s12935-021-02103-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 07/19/2021] [Indexed: 11/10/2022] Open
Abstract
Background Cervical cancer (CC) is one of the most common gynaecological malignancies all around the world. The mechanisms of cervical carcinoma formation remain under close scrutiny. The long non-coding RNAs (lncRNA) and microRNAs (miRNAs) play important roles in controlling gene expression and promoting the development and progression of cervical cancer by acting as competitive endogenous RNA (ceRNA). However, the roles of lncRNA associated with ceRNAs in cervical carcinogenesis remains unknown. In this study, the expression of long non-coding RNA HOTAIR was investigated in HPV16 positive cervical cancer cells, the candidate miRNAs and target genes were identified to clarify putative ceRNAs of HOTAIR/miRNA in cervical cancer cells. Methods The proliferation ability of cells was measured by CCK8 and EdU incorporation assays and cell apoptosis was analyzed by flow cytometry. The expression of HOTAIR, miR-214-3p, HPV16 E7 mRNA were detected by qRT-PCR. As for searching for the interaction between miR-214-3p and HOTAIR, the binding sites for miR-214-3p on HOTAIR was predicted by starbase v2.0 database, then dual-luciferase assay was used to verify the binding sites. In addition, Gene Ontology (GO) and protein–protein interaction (PPI) network analysis of target genes of miR-214-3p were performed with bioinformatics analysis. The potential signal pathway regulated by HOTAIR/miR-214-3p was predicted by KEGG enrichment analysis and confirmed by qPCR and WB analysis in cervical cancer cells. Results Our results showed that expression of HOTAIR was up-regulated, while that of miR-214-3p was down-regulated in HPV16-positive cervical cancer cells. The expression status of HPV16 E7 played an important role in regulating expression of HOTAIR or miR-214-3p in cervical cancer cells. HOTAIR knockdown could significantly inhibited cell proliferate ability and promote cellular apoptosis, whereas the inhibition of miR-214-3p expression partially reversed such results. Bioinformatics analysis identified 1451 genes as target genes of miR-214-3p. The Gene ontology (GO) and KEGG Pathway enrichment analysis showed that these target genes were mainly related to regulation of cell communication, protein binding, enzyme binding and transferase activity, and Wnt ligand biogenesis. Pathway enrichment analysis results showed that the predicted target genes were significantly enriched in Wnt/β-catenin signaling pathway. Finally, our results confirmed that miR-214-3p could significantly inhibit β-catenin expression in HPV16 positive cancer cells by qPCR and WB analysis. Conclusion HOTAIR could act as a ceRNA through binding to miR-214-3p, promote cell proliferation and inhibit the apoptosis of HPV16 positive cervical cancer. HOTAIR/miR-214-3p/Wnt/β-catenin signal pathway might played important regulated roles in HPV16 positive cervical cancer. Our results provided new insight into defining novel biomarkers for cervical cancer.
Collapse
Affiliation(s)
- Yu Zhou
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Yuqing Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Mingying Lin
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Daiqian Wu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Min Zhao
- Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China.
| |
Collapse
|
113
|
Di Fiore R, Suleiman S, Drago-Ferrante R, Felix A, O’Toole SA, O’Leary JJ, Ward MP, Beirne J, Yordanov A, Vasileva-Slaveva M, Subbannayya Y, Pentimalli F, Giordano A, Calleja-Agius J. LncRNA MORT (ZNF667-AS1) in Cancer-Is There a Possible Role in Gynecological Malignancies? Int J Mol Sci 2021; 22:7829. [PMID: 34360598 PMCID: PMC8346052 DOI: 10.3390/ijms22157829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/09/2021] [Accepted: 07/17/2021] [Indexed: 01/21/2023] Open
Abstract
Gynecological cancers (GCs) are currently among the major threats to female health. Moreover, there are different histologic subtypes of these cancers, which are defined as 'rare' due to an annual incidence of <6 per 100,000 women. The majority of these tend to be associated with a poor prognosis. Long non-coding RNAs (lncRNAs) play a critical role in the normal development of organisms as well as in tumorigenesis. LncRNAs can be classified into tumor suppressor genes or oncogenes, depending on their function within the cellular context and the signaling pathways in which they are involved. These regulatory RNAs are potential therapeutic targets for cancer due to their tissue and tumor specificity. However, there still needs to be a deeper understanding of the mechanisms by which lncRNAs are involved in the regulation of numerous biological functions in humans, both in normal health and disease. The lncRNA Mortal Obligate RNA Transcript (MORT; alias ZNF667-AS1) has been identified as a tumor-related lncRNA. ZNF667-AS1 gene, located in the human chromosome region 19q13.43, has been shown to be silenced by DNA hypermethylation in several cancers. In this review, we report on the biological functions of ZNF667-AS1 from recent studies and describe the regulatory functions of ZNF667-AS1 in human disease, including cancer. Furthermore, we discuss the emerging insights into the potential role of ZNF667-AS1 as a biomarker and novel therapeutic target in cancer, including GCs (ovarian, cervical, and endometrial cancers).
Collapse
Affiliation(s)
- Riccardo Di Fiore
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Sherif Suleiman
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
| | | | - Ana Felix
- Department of Pathology, Instituto Portugues de Oncologia de Lisboa, NOVA Medical School, University NOVA of Lisbon, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal;
| | - Sharon A. O’Toole
- Departments of Obstetrics and Gynaecology, Trinity St James’s Cancer Institute, Trinity College Dublin, D08 HD53 Dublin, Ireland;
| | - John J. O’Leary
- Department of Histopathology, Trinity St James’s Cancer Institute, Emer Casey Molecular Pathology Laboratory, Trinity College Dublin and Coombe Women’s and Infants University Hospital, D08 RX0X Dublin, Ireland; (J.J.O.); (M.P.W.)
| | - Mark P. Ward
- Department of Histopathology, Trinity St James’s Cancer Institute, Emer Casey Molecular Pathology Laboratory, Trinity College Dublin and Coombe Women’s and Infants University Hospital, D08 RX0X Dublin, Ireland; (J.J.O.); (M.P.W.)
| | - James Beirne
- Department of Gynaecological Oncology, Trinity St James’s Cancer Institute, St James Hospital, Trinity College Dublin, D08 X4RX Dublin, Ireland;
| | - Angel Yordanov
- Department of Gynecologic Oncology, Medical University Pleven, 5800 Pleven, Bulgaria;
| | | | - Yashwanth Subbannayya
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway;
| | - Francesca Pentimalli
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy;
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
| |
Collapse
|
114
|
Song H, Liu Y, Liang H, Jin X, Liu L. SPINT1-AS1 Drives Cervical Cancer Progression via Repressing miR-214 Biogenesis. Front Cell Dev Biol 2021; 9:691140. [PMID: 34350182 PMCID: PMC8326843 DOI: 10.3389/fcell.2021.691140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/28/2021] [Indexed: 01/15/2023] Open
Abstract
Accumulating evidences have revealed the dysregulated expressions and critical roles of non-coding RNAs in various malignancies, including cervical cancer. Nevertheless, our knowledge about the vast majority of non-coding RNAs is still lacking. Here we identified long non-coding RNA (lncRNA) SPINT1-AS1 as a novel cervical cancer-associated lncRNA. SPINT1-AS1 was increased in cervical cancer and correlated with advanced stage and poor prognosis. SPINT1-AS1 was a direct downstream target of miR-214, a well-known tumor suppressive microRNA (miRNA) in cervical cancer. Intriguingly, SPINT1-AS1 was also found to repress miR-214 biogenesis via binding DNM3OS, the primary transcript of miR-214. The interaction between SPINT1-AS1 and DNM3OS repressed the binding of DROSHA and DGCR8 to DNM3OS, blocked DNM3OS cleavage, and therefore repressed mature miR-214 biogenesis. The expression of SPINT1-AS1 was significantly negatively correlated with miR-214 in cervical cancer tissues, supporting the reciprocal repression between SPINT1-AS1 and miR-214 in vivo. Through downregulating mature miR-214 level, SPINT1-AS1 upregulated the expression of β-catenin, a target of miR-214. Thus, SPINT1-AS1 further activated Wnt/β-catenin signaling in cervical cancer. Functionally, SPINT1-AS1 drove cervical cancer cellular proliferation, migration, and invasion in vitro, and also tumorigenesis in vivo. Deletion of the region mediating the interaction between SPINT1-AS1 and DNM3OS, overexpression of miR-214, and inhibition of Wnt/β-catenin signaling all reversed the roles of SPINT1-AS1 in cervical cancer. Collectively, these findings identified SPINT1-AS1 as a novel cervical cancer-associated oncogenic lncRNA which represses miR-214 biogenesis and activates Wnt/β-catenin signaling, highlighting its potential as prognostic biomarker and therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Hongjuan Song
- Department of Gynecology, Xuzhou Maternal and Child Health Care Hospital, Xuzhou, China.,Department of Gynecology, Xuzhou Renci Hospital, Xuzhou, China
| | - Yuan Liu
- Department of Gynecology, Xuzhou Maternal and Child Health Care Hospital, Xuzhou, China
| | - Hui Liang
- Department of Cervical Disease, Xuzhou Maternal and Child Health Care Hospital, Xuzhou, China
| | - Xin Jin
- Medical Department, Xuzhou Central Hospital, Xuzhou, China
| | - Liping Liu
- Department of Research and Development, Shanghai Lichun Biotechnology Co., Ltd., Shanghai, China
| |
Collapse
|
115
|
Long non-coding RNA MIR200CHG promotes breast cancer proliferation, invasion, and drug resistance by interacting with and stabilizing YB-1. NPJ Breast Cancer 2021; 7:94. [PMID: 34272387 PMCID: PMC8285504 DOI: 10.1038/s41523-021-00293-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/09/2021] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNA) have been identified as key regulators of tumorigenesis and development. We aim to explore the biological functions and molecular mechanisms of lncRNA MIR200CHG in breast cancer. We found that MIR200CHG is highly expressed in breast cancer tissues and is related to the tumor size and histopathological grade. In vitro and in vivo experiments confirmed that MIR200CHG can promote breast cancer proliferation, invasion, and drug resistance. MIR200CHG directly binds to the transcription factor Y-box binding protein-1 (YB-1), and inhibits its ubiquitination and degradation. MIR200CHG regulates YB-1 phosphorylation at serine 102, thereby affecting the expression of genes related to tumor cell proliferation, apoptosis, invasion, and drug resistance. Additionally, MIR200CHG partially affects the expression of miR-200c/141-3p encoded by its intron region. Therefore, MIR200CHG can promote the proliferation, invasion, and drug resistance of breast cancer by interacting with and stabilizing YB-1, and has the potential to become a target for breast cancer treatment.
Collapse
|
116
|
Zhang YL, Liu L, Peymanfar Y, Anderson P, Xian CJ. Roles of MicroRNAs in Osteogenesis or Adipogenesis Differentiation of Bone Marrow Stromal Progenitor Cells. Int J Mol Sci 2021; 22:ijms22137210. [PMID: 34281266 PMCID: PMC8269269 DOI: 10.3390/ijms22137210] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022] Open
Abstract
Bone marrow stromal cells (BMSCs) are multipotent cells which can differentiate into chondrocytes, osteoblasts, and fat cells. Under pathological stress, reduced bone formation in favour of fat formation in the bone marrow has been observed through a switch in the differentiation of BMSCs. The bone/fat switch causes bone growth defects and disordered bone metabolism in bone marrow, for which the mechanisms remain unclear, and treatments are lacking. Studies suggest that small non-coding RNAs (microRNAs) could participate in regulating BMSC differentiation by disrupting the post-transcription of target genes, leading to bone/fat formation changes. This review presents an emerging concept of microRNA regulation in the bone/fat formation switch in bone marrow, the evidence for which is assembled mainly from in vivo and in vitro human or animal models. Characterization of changes to microRNAs reveals novel networks that mediate signalling and factors in regulating bone/fat switch and homeostasis. Recent advances in our understanding of microRNAs in their control in BMSC differentiation have provided valuable insights into underlying mechanisms and may have significant potential in development of new therapeutics.
Collapse
|
117
|
miR-17-5p accelerates cervical cancer cells migration and invasion via the TIMP2/MMPs signaling cascade. Cytotechnology 2021; 73:619-627. [PMID: 34349351 DOI: 10.1007/s10616-021-00482-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/13/2021] [Indexed: 12/11/2022] Open
Abstract
Cervical cancer (CC) is a common gynecological tumor, ranking second in the female reproductive system tumor. The work aims to study the function of miR-17-5p in the occurrence and pathogenesis of CC. We collected 36 cases of CC tissues for clinical analysis, and two CC cell lines (C33a and HCC94) were obtained for cellular analysis. As expected, the up-regulated miR-17-5p and down-regulated TIMP2 were detected in CC tissues and cell lines by RT-qPCR, in contrast with their normal counterparts. Then, overexpression of miR-17-5p significantly increased the CC cells viability and colonies formation abilities. Moreover, the Transwell analysis revealed that miR-17-5p promoted the capability of invasion and migration. Meanwhile, the expression levels of MMP2 and MMP9 was inhibited by the inhibition of miR-17-5p. The luciferase analysis demonstrated that TIMP2 was the target of miR-17-5p. In addition, cell proliferation, invasion and migration in HCC94 cells were repressed by silencing miR-17-5p, which were reversed by TIMP2 knockdown. In summary, all results indicated that miR-17-5p targeted TIMP2 to modulate CC cells' proliferation, invasion and migration through MMPs signaling pathway; and the miR-17-5p/TIMP2/MMPs signaling pathway had the potential to become a therapeutic target of CC for clinical utilization.
Collapse
|
118
|
Di Fiore R, Suleiman S, Felix A, O’Toole SA, O’Leary JJ, Ward MP, Beirne J, Sabol M, Ozretić P, Yordanov A, Vasileva-Slaveva M, Kostov S, Nikolova M, Said-Huntingford I, Ayers D, Ellul B, Pentimalli F, Giordano A, Calleja-Agius J. An Overview of the Role of Long Non-Coding RNAs in Human Choriocarcinoma. Int J Mol Sci 2021; 22:6506. [PMID: 34204445 PMCID: PMC8235025 DOI: 10.3390/ijms22126506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023] Open
Abstract
Choriocarcinoma (CC), a subtype of trophoblastic disease, is a rare and highly aggressive neoplasm. There are two main CC subtypes: gestational and non-gestational, (so called when it develops as a component of a germ cell tumor or is related to a somatic mutation of a poorly differentiated carcinoma), each with very diverse biological activity. A therapeutic approach is highly effective in patients with early-stage CC. The advanced stage of the disease also has a good prognosis with around 95% of patients cured following chemotherapy. However, advancements in diagnosis and treatment are always needed to improve outcomes for patients with CC. Long non-coding (lnc) RNAs are non-coding transcripts that are longer than 200 nucleotides. LncRNAs can act as oncogenes or tumor suppressor genes. Deregulation of their expression has a key role in tumor development, angiogenesis, differentiation, migration, apoptosis, and proliferation. Furthermore, detection of cancer-associated lncRNAs in body fluids, such as blood, saliva, and urine of cancer patients, is emerging as a novel method for cancer diagnosis. Although there is evidence for the potential role of lncRNAs in a number of cancers of the female genital tract, their role in CC is poorly understood. This review summarizes the current knowledge of lncRNAs in gestational CC and how this may be applied to future therapeutic strategies in the treatment of this rare cancer.
Collapse
Affiliation(s)
- Riccardo Di Fiore
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Sherif Suleiman
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
| | - Ana Felix
- Department of Pathology, Campo dos Mártires da Pátria, Instituto Portugues de Oncologia de Lisboa, NOVA Medical School, UNL, 130, 1169-056 Lisboa, Portugal;
| | - Sharon A. O’Toole
- Departments of Obstetrics and Gynaecology and Histopathology, Trinity St James’s Cancer Institute, Trinity College Dublin, 8 Dublin, Ireland;
| | - John J. O’Leary
- Department of Histopathology, Trinity College Dublin, Trinity St James’s Cancer Institute, 8 Dublin, Ireland; (J.J.O.); (M.P.W.)
| | - Mark P. Ward
- Department of Histopathology, Trinity College Dublin, Trinity St James’s Cancer Institute, 8 Dublin, Ireland; (J.J.O.); (M.P.W.)
| | - James Beirne
- Department of Gynaecological Oncology, Trinity St James Cancer Institute, St James Hospital, 8 Dublin, Ireland;
| | - Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.S.); (P.O.)
| | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.S.); (P.O.)
| | - Angel Yordanov
- Department of Gynecologic Oncology, Medical University Pleven, 5800 Pleven, Bulgaria;
| | | | - Stoyan Kostov
- Department of Gynecology, Medical University Varna “Prof. Dr. Paraskev Stoyanov”, 9002 Varna, Bulgaria;
| | - Margarita Nikolova
- Saint Marina University Hospital—Pleven, Medical University Pleven, 5800 Pleven, Bulgaria;
| | - Ian Said-Huntingford
- Department of Histopathology, Mater Dei Hospital, Birkirkara Bypass, MSD 2090 Msida, Malta;
| | - Duncan Ayers
- Centre for Molecular Medicine & Biobanking, University of Malta, MSD 2080 Msida, Malta; (D.A.); (B.E.)
- Faculty of Biology, Medicine and Human Sciences, The University of Manchester, Manchester M1 7DN, UK
| | - Bridget Ellul
- Centre for Molecular Medicine & Biobanking, University of Malta, MSD 2080 Msida, Malta; (D.A.); (B.E.)
| | - Francesca Pentimalli
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy;
| | - Antonio Giordano
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
| |
Collapse
|
119
|
Huang C, Liang J, Lin S, Wang D, Xie Q, Lin Z, Yao T. N 6-Methyladenosine Associated Silencing of miR-193b Promotes Cervical Cancer Aggressiveness by Targeting CCND1. Front Oncol 2021; 11:666597. [PMID: 34178650 PMCID: PMC8222573 DOI: 10.3389/fonc.2021.666597] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/17/2021] [Indexed: 12/31/2022] Open
Abstract
Objective Cervical cancer is a frequently encountered gynecological malignancy as a major contributor to cancer-related deaths in women. This study focuses on how miR-193b promotes cervical cancer aggressiveness as well as the role of m6A in miR-193b silencing. Methods Cervical cancer samples and the matching adjacent normal cervical tissues were used to determine the significance of miR-193b in cervical cancer. The CCK-8 assay, cell cycle analysis, qRT-PCR, Western blot assay, IHC, RIP, and xenograft models were utilized to explore the impact of miR-193b in cervical cancer and how m6A regulates miR-193b expression. Luciferase reporter assays, qRT-PCR, and Western blotting were enlisted to study the interaction between miR-193b and CCND1. Results Our study suggested that lower miR-193b expressions were strongly linked to more advanced cervical cancer stages and the presence of deeper stromal invasion. miR-193b functions as a tumor suppressor that is regulated by m6A methylation in cervical tumors. METTL3 modulates miR-193b mature process in an m6A-dependent manner. Reintroduction of miR-193b profoundly inhibits tumorigenesis of cervical cancer cells both in vivo and in vitro through CCND1 targeting. Conclusions m6A associated downregulation of miR-193b promotes cervical cancer aggressiveness by targeting CCND1.
Collapse
Affiliation(s)
- Chunxian Huang
- Department of Gynecological Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jinxiao Liang
- Department of Gynecological Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shaodan Lin
- Department of Gynecological Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dongyan Wang
- Department of Gynecological Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qingsheng Xie
- Department of Gynecological Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhongqiu Lin
- Department of Gynecological Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tingting Yao
- Department of Gynecological Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
120
|
Zheng Q, Jia J, Zhou Z, Chu Q, Lian W, Chen Z. The Emerging Role of Thymopoietin-Antisense RNA 1 as Long Noncoding RNA in the Pathogenesis of Human Cancers. DNA Cell Biol 2021; 40:848-857. [PMID: 34096793 DOI: 10.1089/dna.2021.0024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play essential roles in the occurrence and development of multiple human cancers. An accumulating body of researches have investigated thymopoietin antisense RNA 1 (TMPO-AS1) as a newly discovered lncRNA, which functions as an oncogenic lncRNA that is upregulated in various human malignancies and associated with poor prognosis. Many studies have detected abnormally high expression levels of TMPO-AS1 in multiple cancers, such as lung cancer, breast cancer, colorectal cancer (CRC), hepatocellular carcinoma, CRC, gastric cancer, ovarian cancer, thyroid cancer, esophageal cancer, Wilms tumor, cervical cancer, retinoblastoma, bladder cancer, osteosarcoma, and prostate cancer. TMPO-AS1 has been subsequently demonstrated to play a pivotal role in tumorigenesis and progression. The aberrantly expressed TMPO-AS1 acts as a competing endogenous RNA (ceRNA) that inhibits miRNA expression, thus activating the expression of downstream oncogenes. This study comprehensively summarizes the aberrant expressions of TMPO-AS1 as reported in the current literature and explains the relevant biological regulation mechanisms in carcinogenesis and tumor progression. Corresponding studies have indicated that TMPO-AS1 has a potential value as a promising biomarker or a target for cancer therapy.
Collapse
Affiliation(s)
- Qiuxian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junjun Jia
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ziyuan Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenwen Lian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
121
|
Competing Endogenous RNAs in Cervical Carcinogenesis: A New Layer of Complexity. Processes (Basel) 2021. [DOI: 10.3390/pr9060991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression by binding to complementary sequences within target mRNAs. Apart from working ‘solo’, miRNAs may interact in important molecular networks such as competing endogenous RNA (ceRNA) axes. By competing for a limited pool of miRNAs, transcripts such as long noncoding RNAs (lncRNAs) and mRNAs can regulate each other, fine-tuning gene expression. Several ceRNA networks led by different lncRNAs—described here as lncRNA-mediated ceRNAs—seem to play essential roles in cervical cancer (CC). By conducting an extensive search, we summarized networks involved in CC, highlighting the major impacts of such dynamic molecular changes over multiple cellular processes. Through the sponging of distinct miRNAs, some lncRNAs as HOTAIR, MALAT1, NEAT1, OIP5-AS1, and XIST trigger crucial molecular changes, ultimately increasing cell proliferation, migration, invasion, and inhibiting apoptosis. Likewise, several lncRNAs seem to be a sponge for important tumor-suppressive miRNAs (as miR-140-5p, miR-143-3p, miR-148a-3p, and miR-206), impairing such molecules from exerting a negative post-transcriptional regulation over target mRNAs. Curiously, some of the involved mRNAs code for important proteins such as PTEN, ROCK1, and MAPK1, known to modulate cell growth, proliferation, apoptosis, and adhesion in CC. Overall, we highlight important lncRNA-mediated functional interactions occurring in cervical cells and their closely related impact on cervical carcinogenesis.
Collapse
|
122
|
Chu J, Gao J, Wang J, Li L, Chen G, Dang J, Wang Z, Jin Z, Liu X. Mechanism of hydrogen on cervical cancer suppression revealed by high‑throughput RNA sequencing. Oncol Rep 2021; 46:141. [PMID: 34080660 PMCID: PMC8165587 DOI: 10.3892/or.2021.8092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/14/2021] [Indexed: 12/09/2022] Open
Abstract
Cervical cancer is considered one of the diseases with the highest mortality among women and with limited treatment options. Hydrogen (H2) inhalation has been reported to have a variety of tumor-suppressive effects, but the exact mechanism remains unclear. In the present study, HeLa cervical cancer cells and HaCaT keratinocytes treated with H2, and a HeLa xenograft mouse model subjected to H2 inhalation were established. TUNEL, Cell Counting Kit-8 and Ki67 staining assays were used to detect cell apoptosis and proliferation. Oxidative stress was determined according to the levels of reactive oxygen species, malondialdehyde and superoxide dismutase. Tumor growth was recorded every 3 days, and the excised tumors were stained with hematoxylin and eosin. High-throughput RNA sequencing and subsequent Gene Ontology (GO) enrichment analysis were performed in HeLa-treated and un-treated HeLa cells. The expression of hypoxia-inducible factor (HIF)-1α and NF-κB p65 was verified by western blotting, immunohistochemistry and reverse transcription-quantitative PCR. The results revealed an increased apoptosis rate, and reduced cell proliferation and oxidative stress in H2-treated HeLa cells but not in HaCaT cells. Similarly, decreased tumor growth and cell proliferation, and enhanced cell apoptosis were observed in H2-treated HeLa tumors. RNA sequencing and GO analysis suggest that downregulated HIF1A (HIF-1α mRNA) and RelA (NF-κB p65) levels, and reduced NF-κB signaling were associated with the antitumor effect of H2. Finally, decreased HIF-1α and NF-κB p65 expression both at the transcriptional and translational levels were observed in H2-treated HeLa cells and in HeLa-derived tumors. In conclusion, the present study reveals a novel mechanism of H2 against cervical cancer, which may serve as a potential therapeutic target in clinical practice.
Collapse
Affiliation(s)
- Jing Chu
- Department of Obstetrics and Gynaecology, Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Jinghai Gao
- Department of Obstetrics and Gynaecology, Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Jing Wang
- Department of Obstetrics and Gynaecology, Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Lingling Li
- Department of Obstetrics and Gynaecology, Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Guoqiang Chen
- Department of Obstetrics and Gynaecology, Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Jianhong Dang
- Department of Obstetrics and Gynaecology, Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Zhifeng Wang
- Department of Obstetrics and Gynaecology, Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Zhijun Jin
- Department of Obstetrics and Gynaecology, Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Xiaojun Liu
- Department of Obstetrics and Gynaecology, Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
123
|
Fu S, Zheng Y, Sun Y, Lai M, Qiu J, Gui F, Zeng Q, Liu F. Suppressing long noncoding RNA OGRU ameliorates diabetic retinopathy by inhibition of oxidative stress and inflammation via miR-320/USP14 axis. Free Radic Biol Med 2021; 169:361-381. [PMID: 33762162 DOI: 10.1016/j.freeradbiomed.2021.03.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) are important regulators in various diseases including diabetic retinopathy (DR). In this study, DR patients exhibited significantly increased expression of serum LncRNA-OGRU compared with normal individuals. Streptozotocin (STZ)-challenged rats with DR also had higher OGRU expression in retinas than that of the control group, which was confirmed in Müller cells upon high glucose (HG) stimulation. OGRU knockdown remarkably decreased vascular endothelial growth factor (VEGF) and transforming growth factor-β1 (TGF-β1) expression in HG-incubated Müller cells. HG-induced inflammatory response and oxidative stress in vitro were markedly mitigated by OGRU knockdown through restraining IκBɑ/nuclear factor kappa beta (NF-κB) and improving nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways, respectively. Further studies indicated that OGRU suppression greatly restored miR-320 expression, and a negative correlation between them was detected in DR patients. We also found that miR-320 over-expression considerably restrained TGF-β1 signaling, and hindered inflammation and reactive oxygen species (ROS) production in HG-stimulated Müller cells. Additionally, OGRU knockdown or miR-320 over-expression could dramatically down-regulate ubiquitin-specific peptidase 14 (USP14) expression levels in HG-incubated Müller cells, and miR-320 could directly target USP14. Notably, OGRU/miR-320 axis-mediated TGF-β1 signaling, inflammation and ROS were largely dependent on USP14. Intriguingly, our results showed that USP14 directly interacted with transforming growth factor-beta type 1 receptor (TβR1), and impeded TβR1 ubiquitination and degradation. Furthermore, USP14 could also facilitate IκBɑ deubiquitination and degradation, exacerbating IκBɑ phosphorylation and NF-κB activation. Finally, our in vivo studies confirmed that OGRU knockdown considerably ameliorated DR progression in STZ-challenged rats through mediating the mechanisms observed in vitro. Collectively, these findings implicated that LncRNA-OGRU mediated DR progression through competing for miR-320 to regulate USP14 expression, and thus LncRNA-OGRU/miR-320/USP14 axis may be considered as a therapeutic target for DR treatment.
Collapse
Affiliation(s)
- Shuhua Fu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Minde Road, Nanchang, 330006, PR China.
| | - Yunyao Zheng
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Minde Road, Nanchang, 330006, PR China
| | - Yawen Sun
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Minde Road, Nanchang, 330006, PR China
| | - Meichen Lai
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Minde Road, Nanchang, 330006, PR China
| | - Jingjing Qiu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Minde Road, Nanchang, 330006, PR China
| | - Fu Gui
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Minde Road, Nanchang, 330006, PR China
| | - Qinqin Zeng
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Minde Road, Nanchang, 330006, PR China
| | - Fei Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Minde Road, Nanchang, 330006, PR China
| |
Collapse
|
124
|
Silencing of hsa_circ_0009035 Suppresses Cervical Cancer Progression and Enhances Radiosensitivity through MicroRNA 889-3p-Dependent Regulation of HOXB7. Mol Cell Biol 2021; 41:e0063120. [PMID: 33782039 PMCID: PMC8316008 DOI: 10.1128/mcb.00631-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Circular RNAs (circRNAs), a novel type of endogenous noncoding RNAs, have been identified as critical regulators in human carcinogenesis. Here, we investigated the precise actions of hsa_circ_0009035 in the progression and radioresistance of cervical cancer (CC). The levels of hsa_circ_0009035, microRNA 889-3p (miR-889-3p), and homeobox B7 (HOXB7) were detected by quantitative real-time PCR (qRT-PCR) or Western blotting. RNase R and actinomycin D assays were used to assess the stability of hsa_circ_0009035. Cell proliferation, cell cycle progression, apoptosis, migration, and invasion were gauged with Cell Counting Kit-8 (CCK-8), flow cytometry, and transwell assays. Cell colony formation and survival were determined by the colony formation assay. Targeted correlations among hsa_circ_0009035, miR-889-3p, and HOXB7 were examined by the dual-luciferase reporter, RNA immunoprecipitation (RIP), or RNA pulldown assay. Animal studies were performed to evaluate the impact of hsa_circ_0009035 on tumor growth. We found that hsa_circ_0009035 was highly expressed in CC tissues and cells, and it was associated with the radioresistance of CC patients. Moreover, the silencing of hsa_circ_0009035 inhibited CC cell proliferation, migration, invasion, and it enhanced apoptosis and radiosensitivity in vitro and weakened tumor growth in vivo. Mechanistically, hsa_circ_0009035 directly targeted miR-889-3p by binding to miR-889-3p, and hsa_circ_0009035 modulated HOXB7 expression through miR-889-3p. HOXB7 was a functional target of miR-889-3p in regulating CC progression and radioresistance in vitro, and hsa_circ_0009035 modulated CC progression and radioresistance in vitro by miR-889-3p. Our current study first identified hsa_circ_0009035 as an important regulator of CC progression and radioresistance at least in part through targeting the miR-889-3p/HOXB7 axis, highlighting its significance as a potential therapeutic target for CC treatment.
Collapse
|
125
|
Bispo S, Farias TDJ, de Araujo-Souza PS, Cintra R, Dos Santos HG, Jorge NAN, Castro MAA, Wajnberg G, Scherer NDM, Genta MLND, Carvalho JP, Villa LL, Sichero L, Passetti F. Dysregulation of Transcription Factor Networks Unveils Different Pathways in Human Papillomavirus 16-Positive Squamous Cell Carcinoma and Adenocarcinoma of the Uterine Cervix. Front Oncol 2021; 11:626187. [PMID: 34094909 PMCID: PMC8170088 DOI: 10.3389/fonc.2021.626187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/17/2021] [Indexed: 12/24/2022] Open
Abstract
Squamous cell carcinoma (SCC) and adenocarcinoma (ADC) are the most common histological types of cervical cancer (CC). The worse prognosis of ADC cases highlights the need for better molecular characterization regarding differences between these CC types. RNA-Seq analysis of seven SCC and three ADC human papillomavirus 16-positive samples and the comparison with public data from non-tumoral human papillomavirus-negative cervical tissue samples revealed pathways exclusive to each histological type, such as the epithelial maintenance in SCC and the maturity-onset diabetes of the young (MODY) pathway in ADC. The transcriptional regulatory network analysis of cervical SCC samples unveiled a set of six transcription factor (TF) genes with the potential to positively regulate long non-coding RNA genes DSG1-AS1, CALML3-AS1, IGFL2-AS1, and TINCR. Additional analysis revealed a set of MODY TFs regulated in the sequence predicted to be repressed by miR-96-5p or miR-28-3p in ADC. These microRNAs were previously described to target LINC02381, which was predicted to be positively regulated by two MODY TFs upregulated in cervical ADC. Therefore, we hypothesize LINC02381 might act by decreasing the levels of miR-96-5p and miR-28-3p, promoting the MODY activation in cervical ADC. The novel TF networks here described should be explored for the development of more efficient diagnostic tools.
Collapse
Affiliation(s)
- Saloe Bispo
- Instituto Carlos Chagas, FIOCRUZ, Curitiba, Brazil
| | | | - Patricia Savio de Araujo-Souza
- Department of Immunobiology, Biology Institute, Universidade Federal Fluminense (UFF), Niterói, Brazil.,Laboratory of Immunogenetics and Histocompatibility, Department of Genetics, Universidade Federal do Paraná, Curitiba, Brazil
| | - Ricardo Cintra
- Department of Biochemistry, Instituto de Quimica, Universidade de São Paulo, São Paulo, Brazil
| | | | - Natasha Andressa Nogueira Jorge
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | | | - Gabriel Wajnberg
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Nicole de Miranda Scherer
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Maria Luiza Nogueira Dias Genta
- Discipline of Gynecology, Department of Obstetrics and Gynecology, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Jesus Paula Carvalho
- Discipline of Gynecology, Department of Obstetrics and Gynecology, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luisa Lina Villa
- Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,Center for Translational Research in Oncology, Instituto do Cancer do Estado de São Paulo ICESP, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo FMUSP HC, São Paulo, Brazil
| | - Laura Sichero
- Center for Translational Research in Oncology, Instituto do Cancer do Estado de São Paulo ICESP, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo FMUSP HC, São Paulo, Brazil
| | - Fabio Passetti
- Instituto Carlos Chagas, FIOCRUZ, Curitiba, Brazil.,Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
126
|
Aftab M, Poojary SS, Seshan V, Kumar S, Agarwal P, Tandon S, Zutshi V, Das BC. Urine miRNA signature as a potential non-invasive diagnostic and prognostic biomarker in cervical cancer. Sci Rep 2021; 11:10323. [PMID: 33990639 PMCID: PMC8121812 DOI: 10.1038/s41598-021-89388-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/23/2021] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs as cancer biomarkers in serum, plasma, and other body fluids are often used but analysis of miRNA in urine is limited. We investigated the expression of selected miRNAs in the paired urine, serum, cervical scrape, and tumor tissue specimens from the women with cervical precancer and cancer with a view to identify if urine miRNAs could be used as reliable non-invasive biomarkers for an early diagnosis and prognosis of cervical cancer. Expression of three oncomiRs (miR-21, miR-199a, and miR-155-5p) and three tumor suppressors (miR-34a, miR-145, and miR-218) as selected by database search in cervical pre-cancer, cancer, and normal controls including cervical cancer cell lines were analyzed using qRT-PCR. The expression of miRNAs was correlated with various clinicopathological parameters, including HPV infection and survival outcome. We observed a significant overexpression of the oncomiRs and the downregulation of tumor suppressor miRNAs. A combination of miR-145-5p, miR-218-5p, and miR-34a-5p in urine yielded 100% sensitivity and 92.8% specificity in distinguishing precancer and cancer patients from healthy controls and it well correlates with those of serum and tumor tissues. The expression of miR-34a-5p and miR-218-5p were found to be independent prognostic factors for the overall survival of cervical cancer patients. We conclude that the evaluation of the above specific miRNA expression in non-invasive urine samples may serve as a reliable biomarker for early detection and prognosis of cervical cancer.
Collapse
Affiliation(s)
- Mehreen Aftab
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Campus, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Satish S Poojary
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Campus, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Vaishnavi Seshan
- Department of Gynecology and Obstetrics, Safdarjung Hospital, New Delhi, 110029, India
| | - Sachin Kumar
- Depatment of Medical Oncology, Dr. B R Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Pallavi Agarwal
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Campus, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Simran Tandon
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Campus, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Vijay Zutshi
- Department of Gynecology and Obstetrics, Safdarjung Hospital, New Delhi, 110029, India
| | - Bhudev C Das
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Campus, Sector-125, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
127
|
Zuccherato LW, Machado CMT, Magalhães WCS, Martins PR, Campos LS, Braga LC, Teixeira-Carvalho A, Martins-Filho OA, Franco TMRF, Paula SOC, da Silva IT, Drummond R, Gollob KJ, Salles PGO. Cervical Cancer Stem-Like Cell Transcriptome Profiles Predict Response to Chemoradiotherapy. Front Oncol 2021; 11:639339. [PMID: 34026616 PMCID: PMC8138064 DOI: 10.3389/fonc.2021.639339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer (CC) represents a major global health issue, particularly impacting women from resource constrained regions worldwide. Treatment refractoriness to standard chemoradiotheraphy has identified cancer stem cells as critical coordinators behind the biological mechanisms of resistance, contributing to CC recurrence. In this work, we evaluated differential gene expression in cervical cancer stem-like cells (CCSC) as biomarkers related to intrinsic chemoradioresistance in CC. A total of 31 patients with locally advanced CC and referred to Mário Penna Institute (Belo Horizonte, Brazil) from August 2017 to May 2018 were recruited for the study. Fluorescence-activated cell sorting was used to enrich CD34+/CD45- CCSC from tumor biopsies. Transcriptome was performed using ultra-low input RNA sequencing and differentially expressed genes (DEGs) using Log2 fold differences and adjusted p-value < 0.05 were determined. The analysis returned 1050 DEGs when comparing the Non-Responder (NR) (n=10) and Responder (R) (n=21) groups to chemoradiotherapy. These included a wide-ranging pattern of underexpressed coding genes in the NR vs. R patients and a panel of lncRNAs and miRNAs with implications for CC tumorigenesis. A panel of biomarkers was selected using the rank-based AUC (Area Under the ROC Curve) and pAUC (partial AUC) measurements for diagnostic sensitivity and specificity. Genes overlapping between the 21 highest AUC and pAUC loci revealed seven genes with a strong capacity for identifying NR vs. R patients (ILF2, RBM22P2, ACO16722.1, AL360175.1 and AC092354.1), of which four also returned significant survival Hazard Ratios. This study identifies DEG signatures that provide potential biomarkers in CC prognosis and treatment outcome, as well as identifies potential alternative targets for cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | - Larissa S. Campos
- Núcleo de Ensino e Pesquisa - Instituto Mário Penna, Belo Horizonte, Brazil
| | - Letícia C. Braga
- Núcleo de Ensino e Pesquisa - Instituto Mário Penna, Belo Horizonte, Brazil
| | | | | | | | | | | | - Rodrigo Drummond
- International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Kenneth J. Gollob
- Núcleo de Ensino e Pesquisa - Instituto Mário Penna, Belo Horizonte, Brazil
- Translational Immuno-Oncology Laboratory, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
| | | |
Collapse
|
128
|
Li D, Yang J, Yang Y, Liu J, Li H, Li R, Cao C, Shi L, Wu W, He K. A Timely Review of Cross-Kingdom Regulation of Plant-Derived MicroRNAs. Front Genet 2021; 12:613197. [PMID: 34012461 PMCID: PMC8126714 DOI: 10.3389/fgene.2021.613197] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/12/2021] [Indexed: 11/26/2022] Open
Abstract
MicroRNAs (miRNAs) belong to a class of non-coding RNAs that suppress gene expression by complementary oligonucleotide binding to the sites in target messenger RNAs. Numerous studies have demonstrated that miRNAs play crucial role in virtually all cellular processes of both plants and animals, such as cell growth, cell division, differentiation, proliferation and apoptosis. The study of rice MIR168a has demonstrated for the first time that exogenous plant MIR168a influences cholesterol transport in mice by inhibiting low-density lipoprotein receptor adapter protein 1 expression. Inspired by this finding, the cross-kingdom regulation of plant-derived miRNAs has drawn a lot of attention because of its capability to provide novel therapeutic agents in the treatment of miRNA deregulation-related diseases. Notably, unlike mRNA, some plant miRNAs are robust because of their 3′ end modification, high G, C content, and the protection by microvesicles, miRNAs protein cofactors or plant ingredients. The stability of these small molecules guarantees the reliability of plant miRNAs in clinical application. Although the function of endogenous miRNAs has been widely investigated, the cross-kingdom regulation of plant-derived miRNAs is still in its infancy. Herein, this review summarizes the current knowledge regarding the anti-virus, anti-tumor, anti-inflammatory, anti-apoptosis, immune modulation, and intestinal function regulation effects of plant-derived miRNAs in mammals. It is expected that exploring the versatile role of plant-derived miRNAs may lay the foundation for further study and application of these newly recognized, non-toxic, and inexpensive plant active ingredients.
Collapse
Affiliation(s)
- Dan Li
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Jianhui Yang
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Yong Yang
- School of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Jianxin Liu
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China.,Hunan Provincial Key Laboratory of Dong Medicine, Huaihua, China
| | - Hui Li
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Rongfei Li
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Chunya Cao
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Liping Shi
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Weihua Wu
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China.,Hunan Provincial Key Laboratory of Dong Medicine, Huaihua, China
| | - Kai He
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China.,Hunan Provincial Key Laboratory of Dong Medicine, Huaihua, China
| |
Collapse
|
129
|
Mishra SK, Wang H. Computational Analysis Predicts Hundreds of Coding lncRNAs in Zebrafish. BIOLOGY 2021; 10:biology10050371. [PMID: 33925925 PMCID: PMC8145020 DOI: 10.3390/biology10050371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022]
Abstract
Simple Summary Noncoding RNAs (ncRNAs) regulate a variety of fundamental life processes such as development, physiology, metabolism and circadian rhythmicity. RNA-sequencing (RNA-seq) technology has facilitated the sequencing of the whole transcriptome, thereby capturing and quantifying the dynamism of transcriptome-wide RNA expression profiles. However, much remains unrevealed in the huge noncoding RNA datasets that require further bioinformatic analysis. In this study, we applied six bioinformatic tools to investigate coding potentials of approximately 21,000 lncRNAs. A total of 313 lncRNAs are predicted to be coded by all the six tools. Our findings provide insights into the regulatory roles of lncRNAs and set the stage for the functional investigation of these lncRNAs and their encoded micropeptides. Abstract Recent studies have demonstrated that numerous long noncoding RNAs (ncRNAs having more than 200 nucleotide base pairs (lncRNAs)) actually encode functional micropeptides, which likely represents the next regulatory biology frontier. Thus, identification of coding lncRNAs from ever-increasing lncRNA databases would be a bioinformatic challenge. Here we employed the Coding Potential Alignment Tool (CPAT), Coding Potential Calculator 2 (CPC2), LGC web server, Coding-Non-Coding Identifying Tool (CNIT), RNAsamba, and MicroPeptide identification tool (MiPepid) to analyze approximately 21,000 zebrafish lncRNAs and computationally to identify 2730–6676 zebrafish lncRNAs with high coding potentials, including 313 coding lncRNAs predicted by all the six bioinformatic tools. We also compared the sensitivity and specificity of these six bioinformatic tools for identifying lncRNAs with coding potentials and summarized their strengths and weaknesses. These predicted zebrafish coding lncRNAs set the stage for further experimental studies.
Collapse
Affiliation(s)
- Shital Kumar Mishra
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China;
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China;
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
- Correspondence: or ; Tel.: +86-512-6588-2115
| |
Collapse
|
130
|
Targeted delivery system using silica nanoparticles coated with chitosan and AS1411 for combination therapy of doxorubicin and antimiR-21. Carbohydr Polym 2021; 266:118111. [PMID: 34044928 DOI: 10.1016/j.carbpol.2021.118111] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/04/2021] [Accepted: 04/18/2021] [Indexed: 12/22/2022]
Abstract
Herein, a novel targeted delivery system was developed for intracellular co-delivery of doxorubicin (DOX) as a chemotherapeutic drug, antimiR-21 as an oncogenic antagomiR. In this system, DOX was loaded into mesoporous silica nanoparticles (MSNs) and chitosan was applied to cover the surface of MSNs. AS1411 aptamer as targeting nucleolin and antimiR-21 were electrostatically attached onto the surface of the chitosan-coated MSNs and formed the final nanocomplex (AACS nanocomplex). The study of drug release was based on DOX release under pH 7.4 and 5.5. Cellular toxicity and cellular uptake assessments of AACS nanocomplex were carried out in nucleolin positive (C26, MCF-7, and 4T1) and nucleolin negative (CHO) cell lines using MTT assay and flow cytometry analysis, respectively. Also, Anti-tumor efficacy of AACS nanocomplex was evaluated in C26 tumor-bearing mice. Overall, the results show that the combination therapy of DOX and antimiR-21, using AACS nanocomplex, could combat the cancer cell growth rate.
Collapse
|
131
|
Goyal B, Yadav SRM, Awasthee N, Gupta S, Kunnumakkara AB, Gupta SC. Diagnostic, prognostic, and therapeutic significance of long non-coding RNA MALAT1 in cancer. Biochim Biophys Acta Rev Cancer 2021; 1875:188502. [PMID: 33428963 DOI: 10.1016/j.bbcan.2021.188502] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 12/20/2022]
Abstract
Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1) is a widely studied lncRNA in cancer. Although dispensable for normal physiology, MALAT1 is important for cancer-related pathways regulation. It is localized in the nuclear speckles periphery along with centrally located pre-RNA splicing factors. MALAT1 associated cancer signaling pathways include MAPK/ERK, PI3K/AKT, β-catenin/Wnt, Hippo, VEGF, YAP, etc. Molecular tools such as immunoprecipitation, RNA pull-down, reporter assay, Northern blotting, microarray, and q-RT-PCR has been used to elucidate MALAT1's function in cancer pathogenesis. MALAT1 can regulate multiple steps in the development of tumours. The diagnostic and prognostic significance of MALAT1 has been demonstrated in cancers of the breast, cervix, colorectum, gallbladder, lung, ovary, pancreas, prostate, glioma, hepatocellular carcinoma, and multiple myeloma. MALAT1 has also emerged as a novel therapeutic target for solid as well as hematological malignancies. In experimental models, siRNA and antisense oligonucleotide (ASO) based strategy has been used for targeting MALAT1. The lncRNA has also been targeted for the chemosensitization and radiosensitization of cancer cells. However, most studies have been performed in preclinical models. How the cross-talk of MALAT1 with other signaling pathways affect cancer pathogenesis is the focus of this article. The diagnostic, prognostic, and therapeutic significance of MALAT1 in multiple cancer types are discussed.
Collapse
Affiliation(s)
- Bela Goyal
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Shashi Ranjan Mani Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Nikee Awasthee
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sweety Gupta
- Department of Radiation Oncology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Ajaikumar B Kunnumakkara
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, India
| | - Subash Chandra Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
132
|
Sherafat Y, Bautista M, Fowler CD. Multidimensional Intersection of Nicotine, Gene Expression, and Behavior. Front Behav Neurosci 2021; 15:649129. [PMID: 33828466 PMCID: PMC8019722 DOI: 10.3389/fnbeh.2021.649129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
The cholinergic system plays a crucial role in nervous system function with important effects on developmental processes, cognition, attention, motivation, reward, learning, and memory. Nicotine, the reinforcing component of tobacco and e-cigarettes, directly acts on the cholinergic system by targeting nicotinic acetylcholine receptors (nAChRs) in the brain. Activation of nAChRs leads to a multitude of immediate and long-lasting effects in specific cellular populations, thereby affecting the addictive properties of the drug. In addition to the direct actions of nicotine in binding to and opening nAChRs, the subsequent activation of circuits and downstream signaling cascades leads to a wide range of changes in gene expression, which can subsequently alter further behavioral expression. In this review, we provide an overview of the actions of nicotine that lead to changes in gene expression and further highlight evidence supporting how these changes can often be bidirectional, thereby inducing subsequent changes in behaviors associated with further drug intake.
Collapse
Affiliation(s)
- Yasmine Sherafat
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, Unites States
| | - Malia Bautista
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, Unites States
| | - Christie D Fowler
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, Unites States
| |
Collapse
|
133
|
Bonelli P, Borrelli A, Tuccillo FM, Buonaguro FM, Tornesello ML. The Role of circRNAs in Human Papillomavirus (HPV)-Associated Cancers. Cancers (Basel) 2021; 13:1173. [PMID: 33803232 PMCID: PMC7963196 DOI: 10.3390/cancers13051173] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/28/2022] Open
Abstract
Circular RNAs (circRNAs) are a new class of "non-coding RNAs" that originate from non-sequential back-splicing of exons and/or introns of precursor messenger RNAs (pre-mRNAs). These molecules are generally produced at low levels in a cell-type-specific manner in mammalian tissues, but due to their circular conformation they are unaffected by the cell mRNA decay machinery. circRNAs can sponge multiple microRNAs or RNA-binding proteins and play a crucial role in the regulation of gene expression and protein translation. Many circRNAs have been shown to be aberrantly expressed in several cancer types, and to sustain specific oncogenic processes. Particularly, in virus-associated malignancies such as human papillomavirus (HPV)-associated anogenital carcinoma and oropharyngeal and oral cancers, circRNAs have been shown to be involved in tumorigenesis and cancer progression, as well as in drug resistance, and some are useful diagnostic and prognostic markers. HPV-derived circRNAs, encompassing the HPV E7 oncogene, have been shown to be expressed and to serve as transcript for synthesis of the E7 oncoprotein, thus reinforcing the virus oncogenic activity in HPV-associated cancers. In this review, we summarize research advances in the biogenesis of cell and viral circRNAs, their features and functions in the pathophysiology of HPV-associated tumors, and their importance as diagnostic, prognostic, and therapeutic targets in anogenital and oropharyngeal and oral cancers.
Collapse
Affiliation(s)
- Patrizia Bonelli
- Molecular Biology and Viral Oncology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy; (F.M.T.); (F.M.B.); (M.L.T.)
| | - Antonella Borrelli
- Innovative Immunological Models, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy;
| | - Franca Maria Tuccillo
- Molecular Biology and Viral Oncology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy; (F.M.T.); (F.M.B.); (M.L.T.)
| | - Franco Maria Buonaguro
- Molecular Biology and Viral Oncology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy; (F.M.T.); (F.M.B.); (M.L.T.)
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy; (F.M.T.); (F.M.B.); (M.L.T.)
| |
Collapse
|
134
|
Wang J, Zhang C. Identification and validation of potential mRNA- microRNA- long-noncoding RNA (mRNA-miRNA-lncRNA) prognostic signature for cervical cancer. Bioengineered 2021; 12:898-913. [PMID: 33682613 PMCID: PMC8806317 DOI: 10.1080/21655979.2021.1890377] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cervical cancer is one of the most common causes of cancer deaths in women due to poor prognosis and high mortality rates. A novel mRNA-miRNA-lncRNA signature linked to prognosis of cervical cancer is needed to help clinicians judge the prognosis of individual patients more accurately. On the basis of GEO datasets, a total of 161 upregulated and 242 downregulated DE-mRNAs were identified firstly. Among them, eight potential biomarkers were found to have prognostic values with cervical cancer and miRNAs-lncRNAs related to these biomarkers were then analyzed to create mRNA-miRNA-lncRNA networks in cervical cancer. Moreover, in vitro experiments such as qRT-PCR, western blot and Edu assays were also performed to validate these promising targets. On the basis of these findings, a total of eight mRNA-miRNA-lncRNA subnetworks were finally established as a novel mRNA-miRNA-lncRNA signature and independent prognostic indicator of clinically relevant parameters by ROC analysis, univariate and multivariate Cox regression. Since some work of validation was done, it is believed that this mRNA-miRNA-lncRNA prognostic signature may be applied as a potential clinical judgment to estimate the prognosis of cervical cancer.
Collapse
Affiliation(s)
- Jie Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Chen Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
135
|
LncRNA DLEU2 promotes cervical cancer cell proliferation by regulating cell cycle and NOTCH pathway. Exp Cell Res 2021; 402:112551. [PMID: 33675808 DOI: 10.1016/j.yexcr.2021.112551] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 12/28/2022]
Abstract
Long noncoding RNAs (lncRNAs) are known to play a crucial role in the onset and progression of cervical cancer (CC). Here, the results of RNA microarray and RNA-sequencing dataset analysis showed that lncRNA DLEU2 was significantly upregulated in CC tissues. Clinicopathologic analysis indicated that lncRNA DLEU2 was closely related to tumor topography. Functional experiments and bioinformatics analysis revealed that lncRNA DLEU2 promoted CC cell proliferation and accelerated the cell cycle. Mechanistically, lncRNA DLEU2 promoted the progression of the cell cycle and inhibited the activity of the Notch signaling pathway by inhibiting p53 expression. Additionally, lncRNA DLEU2 probably interacted with ZFP36 Ring Finger Protein (ZFP36) to inhibit the expression of p53. In conclusion, this study revealed the function of lncRNA DLEU2 in CC tumorigenesis, suggesting new therapeutic targets in CC.
Collapse
|
136
|
Scarth JA, Patterson MR, Morgan EL, Macdonald A. The human papillomavirus oncoproteins: a review of the host pathways targeted on the road to transformation. J Gen Virol 2021; 102:001540. [PMID: 33427604 PMCID: PMC8148304 DOI: 10.1099/jgv.0.001540] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022] Open
Abstract
Persistent infection with high-risk human papillomaviruses (HR-HPVs) is the causal factor in over 99 % of cervical cancer cases, and a significant proportion of oropharyngeal and anogenital cancers. The key drivers of HPV-mediated transformation are the oncoproteins E5, E6 and E7. Together, they act to prolong cell-cycle progression, delay differentiation and inhibit apoptosis in the host keratinocyte cell in order to generate an environment permissive for viral replication. The oncoproteins also have key roles in mediating evasion of the host immune response, enabling infection to persist. Moreover, prolonged infection within the cellular environment established by the HR-HPV oncoproteins can lead to the acquisition of host genetic mutations, eventually culminating in transformation to malignancy. In this review, we outline the many ways in which the HR-HPV oncoproteins manipulate the host cellular environment, focusing on how these activities can contribute to carcinogenesis.
Collapse
Affiliation(s)
- James A. Scarth
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - Molly R. Patterson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - Ethan L. Morgan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Present address: Tumour Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institute of Health, Bethesda, MD 20892, USA
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| |
Collapse
|
137
|
Liang LC, Liu LQ, Liu L, Liu DL, He YR, Wan X, Zhu ZQ, Zhang BG, Liu SJ, Wu H, Hu L. Long non-coding RNA BX357664 inhibits gastric cancer progression by sponging miR-183a-3p to regulate the PTEN expression and PI3K/AKT pathway. Food Chem Toxicol 2021; 150:112069. [PMID: 33607219 DOI: 10.1016/j.fct.2021.112069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/22/2021] [Accepted: 02/12/2021] [Indexed: 12/24/2022]
Abstract
Lately, long non-coding RNA (lncRNA) is recognized as a key regulator of gastric cancer (GC) which has aroused great interest in the fields of medicine, toxicology, and functional food. Studies related to LncRNA expression microarray data indicate that BX357664 is down-regulated in GC specimens. However, the expression pattern and molecular mechanism of BX357664 in GC have not been studied so far. The purpose of this study was to investigate the expression of lncRNA BX357664 in GC and its function in GC cell lines. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the level of BX357664 in 50 pairs of cancer tissues and adjacent non-cancer tissues collected from GC patients. It was found that BX357664 level was lowered in cancer specimens than adjacent non-cancer tissues and correlated with tumor size and TNM stage. Also, we used cell counting kit 8 (CCK8), cell clone formation assay and transwell assay, which affirmed that up-regulation of BX357664 inhibited the proliferation, migration, and invasion of GC cells, but promoted apoptosis. In the dual-luciferase report analysis, BX357664 acted as a miR-183-3p ceRNA to target and regulate the expression of PTEN and affect the PI3K/AKT pathway. These results indicate that BX357664 can inhibit the proliferation and metastasis of GC through the miR-183-3p/PTEN/PI3K/AKT pathway, which may serve as potential targets for the treatment of GC in the future.
Collapse
Affiliation(s)
- Li-Chuan Liang
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China; Department of General Surgery, An Hui Provincial Hospital Affiliated to the An Hui Medical University, Hefei, 230001, China.
| | - Lin-Qing Liu
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Liu Liu
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Dong-Liang Liu
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China; Department of General Surgery, An Hui Provincial Hospital Affiliated to the An Hui Medical University, Hefei, 230001, China.
| | - Yi-Ren He
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Xiao Wan
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Zhi-Qiang Zhu
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Bao-Gui Zhang
- Department of General Surgery, Affiliated Hospital of Jining Medical University, No. 89 Guhuai Road, Rencheng District, Jining City, 272000, China.
| | - Shao-Jun Liu
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Huo Wu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei City, China.
| | - Lei Hu
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
138
|
Guo J, Tong J, Zheng J. Circular RNAs: A Promising Biomarker for Endometrial Cancer. Cancer Manag Res 2021; 13:1651-1665. [PMID: 33633465 PMCID: PMC7901565 DOI: 10.2147/cmar.s290975] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/19/2021] [Indexed: 01/06/2023] Open
Abstract
Endometrial cancer (EC) is one of the most common malignant tumors of the female reproductive tract. EC patients have high morbidity and mortality rates and remain an important cause of cancer-related morbidity and mortality worldwide. More and more studies have shown that a large number of non-coding RNAs (such as microRNAs and long non-coding RNAs) are associated with the occurrence of diseases. Circular RNAs (circRNAs) is an endogenous non-coding RNA. It has a unique covalent structure. Many studies in recent years have found circRNAs differential expression in a variety of tumor tissues compared to matched normal tissues. In endometrial carcinoma, there also are multiple circRNAs differentially expressed and therefore circRNAs perhaps can be used as a diagnostic and prognosis biomarkers of EC. In this review, we described the biogenesis, function and characteristics of circRNAs, and the circRNAs with potential influence and clinical significance on the development of EC were summarized. Adenocarcinoma is the most common form of EC, so this review focuses on endometrioid adenocarcinoma.
Collapse
Affiliation(s)
- Jialu Guo
- Department of the Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310008, People's Republic of China.,Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang Province, 310008, People's Republic of China
| | - Jinyi Tong
- Department of the Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310008, People's Republic of China.,Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang Province, 310008, People's Republic of China
| | - Jianfeng Zheng
- Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang Province, 310008, People's Republic of China.,Department of Obstetrics and Gynecology, Affiliated Hangzhou Hospital, Nanjing Medical University, Hangzhou, Zhejiang Province, 310008, People's Republic of China
| |
Collapse
|
139
|
Tian L, Han F, Yang J, Ming X, Chen L. Long non‑coding RNA LINC01006 exhibits oncogenic properties in cervical cancer by functioning as a molecular sponge for microRNA‑28‑5p and increasing PAK2 expression. Int J Mol Med 2021; 47:46. [PMID: 33576457 PMCID: PMC7891833 DOI: 10.3892/ijmm.2021.4879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
As previously reported, long intergenic non‑protein‑coding RNA 1006 (LINC01006) plays crucial roles in prostate, pancreatic and gastric cancers. However, whether it plays important roles in cervical cancer remains unclear. The present study thus aimed to determine the precise role of LINC01006 in cervical cancer and elucidate its regulatory mechanisms. The expression of LINC01006 in cervical cancer was examined by reverse transcription‑quantitative polymerase chain reaction. Cell proliferation assay, flow cytometric analysis, Transwell migration and invasion assays, and tumor xenograft model experiments were performed to elucidate the roles of LINC01006 in cervical cancer. Bioinformatics analysis, luciferase reporter assay, RNA immunoprecipitation and rescue experiments were performed for mechanistic analyses. The expression of LINC01006 was found to be upregulated in cervical cancer and to be associated with a poor prognosis. The absence of LINC01006 inhibited the proliferation, migration and invasion of cervical cancer cells, whereas it promoted cell apoptosis in vitro. The downregulation of LINC01006 impeded tumor growth in vivo. LINC01006 was verified as an endogenous 'sponge' that competed for microRNA‑28‑5p (miR‑28‑5p), which resulted in the upregulation of the miR‑28‑5p target P21‑activated kinase 2 (PAK2). Rescue experiments revealed that the suppression of miR‑28‑5p expression or the overexpression of PAK2 abrogated the effects of LINC01006 downregulation on malignant cellular functions in cervical cancer. On the whole, the present study demonstrates that LINC01006 exhibits tumor‑promoting functions in cervical cancer via the regulation of the miR‑28‑5p/PAK2 axis. These findings may provide the basis for the identification of LINC01006‑targeted clinical therapy.
Collapse
Affiliation(s)
- Libin Tian
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Feng Han
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430015, P.R. China
| | - Jing Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiaoqiong Ming
- Department of Obstetrics and Gynecology, China Resources WISCO General Hospital, Wuhan, Hubei 430080, P.R. China
| | - Lili Chen
- Department of Obstetrics and Gynecology, China Resources WISCO General Hospital, Wuhan, Hubei 430080, P.R. China
| |
Collapse
|
140
|
Ma N, Li X, Wei H, Zhang H, Zhang S. Circular RNA circNFATC3 acts as a miR-9-5p sponge to promote cervical cancer development by upregulating SDC2. Cell Oncol (Dordr) 2021; 44:93-107. [PMID: 32902825 DOI: 10.1007/s13402-020-00555-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2020] [Indexed: 10/23/2022] Open
Abstract
PURPOSE Circular RNAs (circRNAs) constitute a class of regulatory RNAs that are thought to play important roles in tumor initiation and progression. Several studies have reported that circRNAs may be involved in various biological processes via networks of competing endogenous RNAs (ceRNAs). However, the regulatory roles and underlying mechanisms of circRNAs in cervical cancer (CC) still largely remain to be resolved. METHODS CircNFATC3 (hsa_circ_0005615) expression was assessed in CC cell lines (SiHa, H8) using circRNA microarray analysis, whereas qRT-PCR was used to detect circNFATC3 and miR-9-5p expression in primary human CC tissues and cell lines. The tumor promoting role of circNFATC3 was verified in CC cells using a series of functional assays, and interactions between circNFATC3, miR-9-5p and syndecan-2 (SDC2) were investigated using dual-luciferase reporter assays. SDC2 protein expression was detected using Western blotting and immunohistochemistry. The tumor promoting role of circNFATC3 was confirmed in vivo using a CC xenograft model. RESULTS We found that circNFATC3 expression was upregulated in primary CC tissues and positively correlated with CC tumor size and stromal invasion. In addition, we found that exogenous circNFATC3 overexpression enhanced the proliferation, migration and invasion of HeLa cells, while its knockdown reduced the malignancy of SiHa cells. We also found that circNFATC3 may act directly as a miR-9-5p sponge to regulate SDC2 expression and its downstream signaling pathways, thereby enhancing CC development. CONCLUSION Our data indicate that circNFATC3 sponges miR-9-5p to regulate SDC2 expression and, thereby, to promote CC tumor development.
Collapse
Affiliation(s)
- Ningye Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang City, 110004, China
| | - Xinhui Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang City, 110004, China
| | - Heng Wei
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang City, 110004, China
| | - Huijie Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang City, 110004, China
| | - Shulan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang City, 110004, China.
| |
Collapse
|
141
|
Chen Y, Geng Y, Huang J, Xi D, Xu G, Gu W, Shao Y. CircNEIL3 promotes cervical cancer cell proliferation by adsorbing miR-137 and upregulating KLF12. Cancer Cell Int 2021; 21:34. [PMID: 33413360 PMCID: PMC7792354 DOI: 10.1186/s12935-020-01736-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Background CircRNAs play crucial roles in multiple tumours. However, the functions of most circRNAs in cervical cancer remain unclear. Methods This study collected GSE113696 data from the GEO database to search for differentially expressed circRNAs in cervical cancer. Quantitative reverse transcription PCR was used to detect the expression level of circNEIL3 in cervical cancer cells and tissues. Then, functional experiments in vitro and in vivo were performed to evaluate the effects of circNEIL3 in cervical cancer. Results CircNEIL3 was highly expressed in cervical cancer. In vivo and in vitro experiments verified that circNEIL3 enhanced the proliferation capacity of cervical cancer cells. RNA immunoprecipitation, luciferase reporter assay, pull-down assay, and fluorescent in situ hybridization confirmed the interaction between circNEIL3 and miR-137 in cervical cancer. A luciferase reporter assay showed that circNEIL3 adsorbed miR-137 and upregulated KLF12 to regulate the proliferation of cervical cancer cells. Conclusions CircNEIL3 is an oncogene in cervical cancer and might serve as a ceRNA that competitively binds to miR-137, thereby indirectly upregulating the expression of KLF12 and promoting the proliferation of cervical cancer cells.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Yiting Geng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Junchao Huang
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Dan Xi
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Guoping Xu
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| | - Wendong Gu
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| | - Yingjie Shao
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| |
Collapse
|
142
|
Cáceres-Durán MÁ, Ribeiro-dos-Santos Â, Vidal AF. Roles and Mechanisms of the Long Noncoding RNAs in Cervical Cancer. Int J Mol Sci 2020; 21:ijms21249742. [PMID: 33371204 PMCID: PMC7766288 DOI: 10.3390/ijms21249742] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Cervical cancer (CC) continues to be one of the leading causes of death for women across the world. Although it has been determined that papillomavirus infection is one of the main causes of the etiology of the disease, genetic and epigenetic factors are also required for its progression. Among the epigenetic factors are included the long noncoding RNAs (lncRNAs), transcripts of more than 200 nucleotides (nt) that generally do not code for proteins and have been associated with diverse functions such as the regulation of transcription, translation, RNA metabolism, as well as stem cell maintenance and differentiation, cell autophagy and apoptosis. Recently, studies have begun to characterize the aberrant regulation of lncRNAs in CC cells and tissues, including Homeobox transcript antisense RNA (HOTAIR), H19, Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), Cervical Carcinoma High-Expressed 1 (CCHE1), Antisense noncoding RNA in the inhibitors of cyclin-dependent kinase 4 (ANRIL), Growth arrest special 5 (GAS5) and Plasmacytoma variant translocation 1 (PVT1). They have been associated with several disease-related processes such as cell growth, cell proliferation, cell survival, metastasis and invasion as well as therapeutic resistance, and are novel potential biomarkers for diagnosis and prognosis in CC. In this review, we summarize the current literature regarding the knowledge we have about the roles and mechanisms of the lncRNAs in cervical neoplasia.
Collapse
Affiliation(s)
- Miguel Ángel Cáceres-Durán
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém 66075-110, Brazil; (M.Á.C.-D.); (Â.R.-d.-S.)
| | - Ândrea Ribeiro-dos-Santos
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém 66075-110, Brazil; (M.Á.C.-D.); (Â.R.-d.-S.)
- Graduate Program in Oncology and Medical Sciences, Center of Oncology Researches, Federal University of Pará, Belém 66073-005, Brazil
| | - Amanda Ferreira Vidal
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém 66075-110, Brazil; (M.Á.C.-D.); (Â.R.-d.-S.)
- Correspondence: ; Tel.: +55-91-3201-7843
| |
Collapse
|
143
|
Ocadiz-Delgado R, Lizcano-Meneses S, Trejo-Vazquez JA, Conde-Perezprina JC, Garrido-Palmas F, Alvarez-Rios E, García-Villa E, Ruiz G, Illades-Aguiar B, Leyva-Vázquez MA, García-Carrancá A, Gariglio P. Circulating miR-15b, miR-34a and miR-218 as promising novel early low-invasive biomarkers of cervical carcinogenesis. APMIS 2020; 129:70-79. [PMID: 33112434 DOI: 10.1111/apm.13093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
Circulating biological markers, such as miRNAs, hold the greatest possibilities to complement tissue biopsy and clinical diagnostic tests. The objective of this study was to evaluate the relative abundance of three circulating miRNAs in serum from 17 HPV16-positive patients with early cervical lesions known as Low-Grade Squamous Intraepithelial Lesions (LSILs). The expression of circulating microRNAs miR-15b, miR-34a and miR-218 in patients with LSILs was compared to 23 HPV-negative individuals showing normal cervical epithelium (healthy women) and 23 Squamous Cell Carcinoma (SCC) samples. The expression levels of miR-15b remained unchanged while those of miRNAs 34a and 218 were relatively high in serum obtained from LSIL patients in comparison with healthy women (results were statistically significant with a p of < 0.01 or < 0.001). According to previous findings, miR-15b was overexpressed and miRNAs 34a and 218 were underexpressed in serum from SCC patients. Additionally, the mRNA expression levels of some selected gene targets were determined [Cyclin D1 (CCND1), Cyclin E1 (CCNE1), B-cell lymphoma 2 (Bcl-2) and MutS homolog 2 (MSH-2)]. All serum results correlated with tissue samples from the same patients. We propose that circulating microRNAs can be valuable as molecular markers for the early follow-up of cervical carcinogenesis risk.
Collapse
Affiliation(s)
| | | | | | | | - Frida Garrido-Palmas
- Department of Genetics and Molecular Biology, CINVESTAV-IPN, Mexico City, Mexico
| | | | - Enrique García-Villa
- Department of Genetics and Molecular Biology, CINVESTAV-IPN, Mexico City, Mexico
| | - Graciela Ruiz
- Department of Genetics and Molecular Biology, CINVESTAV-IPN, Mexico City, Mexico
| | - Berenice Illades-Aguiar
- Faculty of Chemical Biological Sciences, Autonomous University of Guerrero, UAGro, Chilpancingo, Guerrero, Mexico
| | - Marco Antonio Leyva-Vázquez
- Faculty of Chemical Biological Sciences, Autonomous University of Guerrero, UAGro, Chilpancingo, Guerrero, Mexico
| | - Alejandro García-Carrancá
- Biomedical Research Unit in Cancer, IIB, National Autonomous University of Mexico UNAM, Mexico City, Mexico.,National Cancer Institute INCan, SS, Mexico City, Mexico
| | - Patricio Gariglio
- Department of Genetics and Molecular Biology, CINVESTAV-IPN, Mexico City, Mexico
| |
Collapse
|
144
|
Xu T, Song X, Wang Y, Fu S, Han P. Genome-Wide Analysis of the Expression of Circular RNA Full-Length Transcripts and Construction of the circRNA-miRNA-mRNA Network in Cervical Cancer. Front Cell Dev Biol 2020; 8:603516. [PMID: 33330502 PMCID: PMC7732672 DOI: 10.3389/fcell.2020.603516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/05/2020] [Indexed: 12/30/2022] Open
Abstract
Increasing evidence suggests that circular RNA (circRNA) plays an important role in tumorigenesis by regulating gene expression at the transcriptional and post-transcriptional levels. Alternative splicing events permit multiple transcript isoforms of circRNA to be produced; however, changes in the expression of circRNA full-length transcripts in cervical cancer remain unclear. Here, we systematically explored the dysregulation circRNA full-length transcripts and constructed an improved circRNA-miRNA-mRNA regulatory network to provide potential biomarkers and possible treatment targets in cervical cancer. We identified 9359 circular full-length transcripts from RNase R-treated RNA-seq data in cervical cancer, of which 353 circular full-length transcripts were significantly differentially expressed (DE) between the tumor and normal group. A total of 881 DE mRNA transcript isoforms were also identified from total RNA-seq data in cervical cancer, of which 421 (47.8%) transcript isoforms were up-regulated, and 460 (52.2%) transcript isoforms were down-regulated in tumor samples. Two circRNA-miRNA-mRNA competitively regulated networks, including 33 circRNA transcripts, 2 miRNAs, and 189 mRNA transcripts were constructed. Three genes (COPE, RAB3B, and TFPI) in the network were significantly associated with overall survival (P < 0.05), which indicated that these genes could act as prognostic biomarkers for patients with cervical cancer. Our study revealed genome-wide differential expression of full-length circRNA transcripts and constructed a more accurate circRNA-miRNA-mRNA network at the full-length transcript expression level in cervical cancer. CircRNA may thus be involved in the development of cervical cancer by regulating the expression of COPE, RAB3B, and TFPI. However, the specific regulatory mechanism in cervical cancer requires further study.
Collapse
Affiliation(s)
- Tianyi Xu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Yulan Wang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Shilong Fu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ping Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
145
|
Onyango CG, Ogonda L, Guyah B, Shiluli C, Ganda G, Orang'o OE, Patel K. Novel biomarkers with promising benefits for diagnosis of cervical neoplasia: a systematic review. Infect Agent Cancer 2020; 15:68. [PMID: 33292364 PMCID: PMC7670699 DOI: 10.1186/s13027-020-00335-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cervical cancer screening is slowly transitioning from Pappanicolaou cytologic screening to primary Visual Inspection with Acetic Acid (VIA) or HPV testing as an effort to enhance early detection and treatment. However, an effective triage tests needed to decide who among the VIA or HPV positive women should receive further diagnostic evaluation to avoid unnecessary colposcopy referrals is still lacking. Evidence from experimental studies have shown potential usefulness of Squamous Cell Carcinoma Antigen (SCC Ag), Macrophage Colony Stimulating Factor (M-CSF), Vascular Endothelial Growth Factor (VEGF), MicroRNA, p16INKa / ki-67, HPV E6/E7/mRNA, and DNA methylation biomarkers in detecting premalignant cervical neoplasia. Given the variation in performance, and scanty review studies in this field, this systematic review described the diagnostic performance of some selected assays to detect high-grade cervical intraepithelial neoplasia (CIN2+) with histology as gold standard. METHODS We systematically searched articles published in English between 2012 and 2020 using key words from PubMed/Medline and SCOPUS with two reviewers assessing study eligibility, and risk of bias. We performed a descriptive presentation of the performance of each of the selected assays for the detection of CIN2 + . RESULTS Out of 298 citations retrieved, 58 articles were included. Participants with cervical histology yielded CIN2+ proportion range of 13.7-88.4%. The diagnostic performance of the assays to detect CIN2+ was; 1) SCC-Ag: range sensitivity of 78.6-81.2%, specificity 74-100%. 2) M-CSF: sensitivity of 68-87.7%, specificity 64.7-94% 3) VEGF: sensitivity of 56-83.5%, specificity 74.6-96%. 4) MicroRNA: sensitivity of 52.9-67.3%, specificity 76.4-94.4%. 5) p16INKa / ki-67: sensitivity of 50-100%, specificity 39-90.4%. 6) HPV E6/E7/mRNA: sensitivity of 65-100%, specificity 42.7-90.2%, and 7) DNA methylation: sensitivity of 59.7-92.9%, specificity 67-98%. CONCLUSION Overall, the reported test performance and the receiving operating characteristics curves implies that implementation of p16ink4a/ki-67 assay as a triage for HPV positive women to be used at one visit with subsequent cryotherapy treatment is feasible. For the rest of assays, more robust clinical translation studies with larger consecutive cohorts of women participants is recommended.
Collapse
Affiliation(s)
- Calleb George Onyango
- Department of Biomedical Sciences and Technology, Maseno University, P.O Box Private Bag, Maseno, Kenya.
| | - Lilian Ogonda
- Department of Biomedical Sciences and Technology, Maseno University, P.O Box Private Bag, Maseno, Kenya
| | - Bernard Guyah
- Department of Biomedical Sciences and Technology, Maseno University, P.O Box Private Bag, Maseno, Kenya
| | - Clement Shiluli
- Department of Biomedical Sciences and Technology, Maseno University, P.O Box Private Bag, Maseno, Kenya
| | - Gregory Ganda
- Department of Clinical Services, Division of Gynecology / Oncology, Jaramogi Oginga Odinga Teaching and Referral Hospital (JOOTRH), P.O Box 849, Kisumu, Kenya
| | - Omenge Elkanah Orang'o
- Department of Reproductive Health, Division of Gynecology / Oncology, Moi University, P. O Box 4606, Eldoret, Kenya
| | - Kirtika Patel
- Department of Immunology, Moi University, P.O Box 4606, Eldoret, Kenya
| |
Collapse
|
146
|
Immune-Related Four-lncRNA Signature for Patients with Cervical Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3641231. [PMID: 33274204 PMCID: PMC7683128 DOI: 10.1155/2020/3641231] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022]
Abstract
Cervical cancer (CC) is a common gynecological malignancy for which prognostic and therapeutic biomarkers are urgently needed. The signature based on immune-related lncRNAs (IRLs) of CC has never been reported. This study is aimed at establishing an IRL signature for patients with CC. A cohort of 326 CC and 21 normal tissue samples with corresponding clinical information was included in this study. Twenty-eight IRLs were collected according to the Pearson correlation analysis between the immune score and lncRNA expression (p < 0.01). Four IRLs (BZRAP1-AS1, EMX2OS, ZNF667-AS1, and CTC-429P9.1) with the most significant prognostic values (p < 0.05) were identified which demonstrated an ability to stratify patients into the low-risk and high-risk groups by developing a risk score model. It was observed that patients in the low-risk group showed longer overall survival (OS) than those in the high-risk group in the training set, valid set, and total set. The area under the curve (AUC) of the receiver operating characteristic curve (ROC curve) for the four-IRL signature in predicting the one-, two-, and three-year survival rates was larger than 0.65. In addition, the low-risk and high-risk groups displayed different immune statuses in GSEA. These IRLs were also significantly correlated with immune cell infiltration. Our results showed that the IRL signature had a prognostic value for CC. Meanwhile, the specific mechanisms of the four IRLs in the development of CC were ascertained preliminarily.
Collapse
|
147
|
Lin L, Li N, Hu X, Sun J, He Y. Identification of circ_0085616 as an Upregulated and Oncogenic Circular RNA in Cervical Cancer Via the miR-503-5p-Mediated ATXN7L3 Activation. Cancer Biother Radiopharm 2020:cbr.2020.3865. [PMID: 33090006 DOI: 10.1089/cbr.2020.3865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: Increasing evidence enhanced the recognition of circular RNAs (circRNAs) implicated in cancer progression. CircRNA_0085616 (circ_0085616) is a novel circRNA with high expression in cervical cancer (CC); its function and action mechanism are explored during this study. Methods: The measurement of circ_0085616, microRNA-503-5p (miR-503-5p), and Ataxin-7L3 (ATXN7L3) was performed via quantitative real-time polymerase chain reaction. Next, 3-(4,5-dimethylthiazol-2-y1)-2, 5-diphenyl tetrazolium bromide (MTT) and colony formation assays were implemented to analyze the proliferative ability. Cell metastasis was evaluated by using transwell migration and invasion assays. Glycolysis was analyzed by using glucose consumption, lactate and adenosine triphosphate production. Western blot was employed for protein analysis. The target binding was performed by dual-luciferase reporter assay and RNA immunoprecipitation assay. An animal experiment in vivo was conducted by xenografts. Results: Circ_0085616 was heightened and its downregulation blocked cellular proliferation, metastasis, and glycolysis in CC. Then, we found that circ_0085616 had a sponge effect on miR-503-5p and the miR-503-5p inhibitor could ameliorate the effects of circ_0085616 knockdown on CC cells. In addition, miR-503-5p directly targeted ATXN7L3 to obstruct CC cell proliferation, metastasis, and glycolytic process. Further, circ_0085616 could enhance ATXN7L3 by sequestering miR-503-5p, and the miR-503-5p/ATXN7L3 axis was also responsible for circ_0085616 on promoting CC tumorigenesis in vivo. Conclusion: It was obvious that circ_0085616 facilitated the carcinogenic effect on CC via the activation of ATXN7L3 by sponging miR-503-5p. Our study may be likely to provide a novel molecular target for CC therapy.
Collapse
Affiliation(s)
- Lu Lin
- Department of Gynaecology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Nan Li
- Department of Pathology, Bengbu Medical College, Bengbu, China
| | - Xiaowen Hu
- Department of Gynaecology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jing Sun
- Scientific Research Center, Bengbu Medical College, Bengbu, China
| | - Yu He
- Department of Gynaecology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
148
|
Galvão MLTDC, Coimbra EC. Long noncoding RNAs (lncRNAs) in cervical carcinogenesis: New molecular targets, current prospects. Crit Rev Oncol Hematol 2020; 156:103111. [PMID: 33080526 DOI: 10.1016/j.critrevonc.2020.103111] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/15/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Aberrant expression of lncRNAs has been seen as a key factor in a wide range of diseases including cancer. The role of lncRNAs in cervical cancer has not been clearly explained, and has been the subject of recent studies. In this review, we have compiled an updated list of previously reported lncRNAs and established a general profile of these transcripts in accordance with the role they play in cervical carcinogenesis. Thus, information here includes the influence of lncRNAs on cervical tumorigenic process through a disturbance of cellular activities. Additionally, we described recent discoveries about how HPV contributes to lncRNAs expression in cervical cancer and we summarized exploratory studies of strategies adopted to modulate the expression levels of lncRNAs to treat cervical neoplasia, by drawing attention to radio and chemo-resistance. Finally, this paper provides a broad overview that sets out new research directions about the role of lncRNAs in cervical cancer.
Collapse
Affiliation(s)
- Maria Luiza Tabosa de Carvalho Galvão
- Faculty of Medical Sciences, University of Pernambuco, Brazil; Laboratory of Molecular Biology of Viruses, Biological Sciences Institute, University of Pernambuco, Brazil
| | - Eliane Campos Coimbra
- Laboratory of Molecular Biology of Viruses, Biological Sciences Institute, University of Pernambuco, Brazil.
| |
Collapse
|
149
|
Protein-Related Circular RNAs in Human Pathologies. Cells 2020; 9:cells9081841. [PMID: 32781555 PMCID: PMC7463956 DOI: 10.3390/cells9081841] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Circular RNAs (circRNAs) are a distinct family of RNAs derived from alternative splicing which play a crucial role in regulating gene expression by acting as microRNA (miRNA) and RNA binding protein (RBP) sponges. However, recent studies have also reported the multifunctional potential of these particles. Under different conditions, circRNAs not only regulate protein synthesis, destination, and degradation but can serve as protein scaffolds or recruiters and are also able to produce short peptides with active biological functions. circRNAs are under ongoing investigation because of their close association with the development of diseases. Some circRNAs are reportedly expressed in a tissue- and development stage-specific manner. Furthermore, due to other features of circRNAs, including their stability, conservation, and high abundance in bodily fluids, they are believed to be potential biomarkers for various diseases, including cancers. In this review, we focus on providing a summary of the current knowledge on circRNA-protein interactions. We present the properties and functions of circRNAs, the possible mechanisms of their translation abilities, and the emerging functions of circRNA-derived peptides in human pathologies.
Collapse
|
150
|
Qian CJ, Xu ZR, Chen LY, Wang YC, Yao J. LncRNA MAFG-AS1 Accelerates Cell Migration, Invasion and Aerobic Glycolysis of Esophageal Squamous Cell Carcinoma Cells via miR-765/PDX1 Axis. Cancer Manag Res 2020; 12:6895-6908. [PMID: 32801913 PMCID: PMC7415466 DOI: 10.2147/cmar.s262075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/22/2020] [Indexed: 01/09/2023] Open
Abstract
Background LncRNA dysregulation is implicated in esophageal squamous cell carcinoma (ESCC) progression; However, the precise role and function of lncRNA MAFG-AS1 in ESCC remains unknown. Materials and Methods Expressions of MAFG-AS1, miR-765, PDX1, GLUT1 and LDH-A were detected via qRT-PCR or/and Western blot in ESCC tissues and cell lines. CCK-8, transwell and glycolysis assays were used to investigate the effects of MAFG-AS1 on ESCC cell proliferation, migration, invasion and aerobic glycolysis after knockdown or overexpression of MAFG-AS1, and bioinformatics analyses, RNA pull-down and dual luciferase reporter systems were applied to investigate the interaction between MAFG-AS1, miR-765 and PDX1. Results MAFG-AS1 was significantly up-modulated in ESCC tissues and cell lines. MAFG-AS1 significantly accelerated ESCC cell proliferation, migration, invasion and aerobic glycolysis. MAFG-AS1 competitively adsorbed miR-765, while miR-765 negatively modulated the expression of PDX1. miR-765 and PDX1 participated in the promotive effects of MAFG-AS1 on cell migration, invasion and aerobic glycolysis in ESCC cells. Conclusion Our research indicates that the MAFG-AS1/miR-765/PDX1 axis accelerates ESCC cell proliferation, migration, invasion and aerobic glycolysis.
Collapse
Affiliation(s)
- Cui-Juan Qian
- Institute of Tumor, School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, People's Republic of China
| | - Zhu-Rong Xu
- Institute of Tumor, School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, People's Republic of China
| | - Lu-Yan Chen
- Institute of Tumor, School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, People's Republic of China
| | - Yi-Chao Wang
- Department of Medical Laboratory, Taizhou Central Hospital, Taizhou University Hospital, Taizhou, Zhejiang 318000, People's Republic of China
| | - Jun Yao
- Institute of Tumor, School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, People's Republic of China
| |
Collapse
|