101
|
Lobular architecture of human adipose tissue defines the niche and fate of progenitor cells. Nat Commun 2019; 10:2549. [PMID: 31186409 PMCID: PMC6560121 DOI: 10.1038/s41467-019-09992-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 04/12/2019] [Indexed: 01/07/2023] Open
Abstract
Human adipose tissue (hAT) is constituted of structural units termed lobules, the organization of which remains to be defined. Here we report that lobules are composed of two extracellular matrix compartments, i.e., septa and stroma, delineating niches of CD45-/CD34+/CD31- progenitor subsets characterized by MSCA1 (ALPL) and CD271 (NGFR) expression. MSCA1+ adipogenic subset is enriched in stroma while septa contains mainly MSCA1-/CD271- and MSCA1-/CD271high progenitors. CD271 marks myofibroblast precursors and NGF ligand activation is a molecular relay of TGFβ-induced myofibroblast conversion. In human subcutaneous (SC) and visceral (VS) AT, the progenitor subset repartition is different, modulated by obesity and in favor of adipocyte and myofibroblast fate, respectively. Lobules exhibit depot-specific architecture with marked fibrous septa containing mesothelial-like progenitor cells in VSAT. Thus, the human AT lobule organization in specific progenitor subset domains defines the fat depot intrinsic capacity to remodel and may contribute to obesity-associated cardiometabolic risks.
Collapse
|
102
|
Mesothelium and Malignant Mesothelioma. J Dev Biol 2019; 7:jdb7020007. [PMID: 30965570 PMCID: PMC6630312 DOI: 10.3390/jdb7020007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 02/06/2023] Open
Abstract
The mesothelium is an epithelial structure derived from the embryonic mesoderm. It plays an important role in the development of a number of different organs, including the heart, lungs, and intestines. In this publication, we discuss aspects of the development of the mesothelium, where mesothelial structures can be found, and review molecular and cellular characteristics associated with the mesothelium. Furthermore, we discuss the involvement of the mesothelium in a number of disease conditions, in particular in the pathogenesis of mesotheliomas with an emphasis on malignant pleural mesothelioma (MPM)—a primary cancer developing in the pleural cavity.
Collapse
|
103
|
Ramírez-Hernández C, García-Márquez LJ, Decanini-Arcaute H, Martínez-Burnes J, Ramírez-Romero R. Fat, Cartilage, and Bone Metaplasia in Lungs of Cattle With Caudal Pleural Lesions and Subjacent Interstitial Fibrosis. Vet Pathol 2019; 56:599-603. [PMID: 30917746 DOI: 10.1177/0300985819837719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The changes associated with condemned lungs in cattle with chronic pleural lesions of the caudal lobes were characterized by histology and immunohistochemistry (IHC). Fibroproliferative pleural lesions were microscopically confirmed. Occasionally, the pleural lesions also included adipose, chondroid, and osseous metaplasia that were covered by mesothelial cells, mostly in the absence of inflammation. Other lungs also showed fibrosis in the subpleural interstitium and interlobular septa. In both condemned and noncondemned lungs, immunoreactivity to Wilms tumor 1 (WT1) was normally observed on surface mesothelial cells but not on the submesothelial fibroblasts and myofibroblasts. Conversely, the myofibroblasts beneath the pleura, but not the mesothelial cells, showed immunoreactivity to alpha smooth muscle actin and calponin. However, in the lungs with myofibroblastic foci in the pleura, the proliferated cells maintained WT1 immunoreactivity similar to those of some metaplastic cells. These findings may reflect the plasticity of mesothelial cells in vivo.
Collapse
Affiliation(s)
- Cecilia Ramírez-Hernández
- 1 Universidad Autónoma de Nuevo León, Posgrado Conjunto Agronomía-Veterinaria, Gral. Escobedo, Nuevo Leon, México
| | - Luis Jorge García-Márquez
- 2 Centro Universitario de Investigación y Desarrollo Agropecuario (CUIDA), Facultad de Medicina Veterinaria y Zootecnia, Universidad de Colima, México
| | - Horacio Decanini-Arcaute
- 3 Departamento de Patología, Hospital Christus-Muguerza Alta Especialidad, Monterrey, Nuevo Leon, México
| | - Julio Martínez-Burnes
- 4 Facultad de Medicina Veterinaria y Zootecnia "Dr. Norberto Treviño Zapata", Universidad Autónoma de Tamaulipas, México
| | - Rafael Ramírez-Romero
- 1 Universidad Autónoma de Nuevo León, Posgrado Conjunto Agronomía-Veterinaria, Gral. Escobedo, Nuevo Leon, México
| |
Collapse
|
104
|
Li X, Liu H, Sun L, Zhou X, Yuan X, Chen Y, Liu F, Liu Y, Xiao L. MicroRNA-302c modulates peritoneal dialysis-associated fibrosis by targeting connective tissue growth factor. J Cell Mol Med 2019; 23:2372-2383. [PMID: 30693641 PMCID: PMC6433681 DOI: 10.1111/jcmm.14029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/15/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022] Open
Abstract
Long‐term peritoneal dialysis (PD) can lead to the induction of mesothelial/epithelial‐mesenchymal transition (MMT/EMT) and fibrosis; these effects eventually result in ultrafiltration failure and the discontinuation of PD. MicroRNA‐302c (miR‐302c) is believed to be involved in regulating tumour cell growth and metastasis by suppressing MMT, but the effect of miR‐302c on MMT in the context of PD is unknown. MiR‐302c levels were measured in mesothelial cells isolated from the PD effluents of continuous ambulatory peritoneal dialysis patients. After miR‐302c overexpression using lentivirus, human peritoneal mesothelial cell line (HMrSV5) and PD mouse peritoneum were treated with TGF‐β1 or high glucose peritoneal dialysate respectively. MiR‐302c expression level and MMT‐related factors alteration were observed. In addition, fibrosis of PD mouse peritoneum was alleviated by miR‐302c overexpression. Furthermore, the expression of connective tissue growth factor (CTGF) was negatively related by miR‐302c, and LV‐miR‐302c reversed the up‐regulation of CTGF induced by TGF‐β1. These data suggest that there is a novel TGF‐β1/miR‐302c/CTGF pathway that plays a significant role in the process of MMT and fibrosis during PD. MiR‐302c might be a potential biomarker for peritoneal fibrosis and a novel therapeutic target for protection against peritoneal fibrosis in PD patients.
Collapse
Affiliation(s)
- Xiejia Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xun Zhou
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xinke Yuan
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yusa Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fuyou Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
105
|
Rouka E, Kotsiou OS, Kyriakou D, Gourgoulianis KI, Zarogiannis SG. Pleural effusions induced by human herpesviruses in the immunocompetent host. Infect Dis (Lond) 2019; 51:189-196. [PMID: 30676829 DOI: 10.1080/23744235.2018.1551620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
METHODS A computer-based search of the English literature for articles relative to Human Herpesviruses (HHVs) infection and pleural effusions (PEs) in the immunocompetent host was performed in PubMed and Scopus. The reference lists of the retrieved articles were also reviewed for relevant articles. RESULTS A total of 20 articles satisfied the selection criteria and were included in the study. In the majority of the articles, PEs were reported as clinical complications of systemic HHV-induced infection. The frequency of HHVs within the reported cases was five for HHV-1/2, one for HHV-3, six for HHV-4, six for HHV-5 and one for HHV-6. One case involved HHV-4 and HHV-5 co-infection. No case of HHV-7 or HHV-8 related PE in the immunocompetent host was retrieved. CONCLUSIONS Pleural effusions in the immunocompetent host occur in severe viral infections and can be due to comorbidities (or septic complications) or due to the direct HHV pathogenicity although research relative to the susceptibility of pleural mesothelial cells to HHV infection is lacking. HHV pathogenicity needs to be studied further as it could explain undiagnosed PEs.
Collapse
Affiliation(s)
- Erasmia Rouka
- a Department of Transfusion Medicine , Faculty of Medicine, University of Thessaly, BIOPOLIS , Larissa , Greece.,b Department of Physiology , Faculty of Medicine, University of Thessaly, BIOPOLIS , Larissa , Greece
| | - Ourania S Kotsiou
- c Department of Respiratory Medicine , Faculty of Medicine, University of Thessaly, BIOPOLIS , Larissa , Greece
| | - Despoina Kyriakou
- a Department of Transfusion Medicine , Faculty of Medicine, University of Thessaly, BIOPOLIS , Larissa , Greece
| | | | - Sotirios G Zarogiannis
- b Department of Physiology , Faculty of Medicine, University of Thessaly, BIOPOLIS , Larissa , Greece.,c Department of Respiratory Medicine , Faculty of Medicine, University of Thessaly, BIOPOLIS , Larissa , Greece
| |
Collapse
|
106
|
Kawka E, Witowski J, Sandoval P, Rudolf A, Vidal AR, Cabrera ML, Jörres A. Epithelial-to-Mesenchymal Transition and Migration of Human Peritoneal Mesothelial Cells Undergoing Senescence. Perit Dial Int 2018; 39:35-41. [PMID: 30478141 DOI: 10.3747/pdi.2017.00244] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 07/17/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) of human peritoneal mesothelial cells (HPMCs) contributes to fibrotic thickening of the peritoneum that develops in patients on peritoneal dialysis (PD). The process is thought to be largely mediated by transforming growth factor-beta (TGF-β). As TGF-β has also been implicated in senescence of HPMCs, we have performed an exploratory study to examine if senescent HPMCs can undergo EMT. METHODS Omentum-derived HPMCs were rendered senescent by repeated passages in culture. Features of EMT were assessed by immunostaining and quantitative polymerase chain reaction (qPCR) at various stages of the HPMC lifespan and after treatment with or without TGF-β. The motility of HPMCs was assessed in a scratch wound migration assay. RESULTS Replicative senescence of HPMCs was associated with a gradual increase in the constitutive expression of EMT markers, including increased production of extracellular matrix proteins. However, senescent HPMCs also retained epithelial cell features such as cytokeratin, calretinin, and E-cadherin and showed decreased, rather than increased, motility. In contrast, exposure to TGF-β resulted in an up-regulation of mesenchymal markers and down-regulation of epithelial markers. Such effects of TGF-β occurred both in young and senescent cells, although they were less pronounced in senescence. CONCLUSIONS Senescence of HPMCs is associated with spontaneous development of several EMT features. At the same time, senescent HPMCs preserve epithelial cell-like characteristics and are less prone to develop a full EMT phenotype in response to TGF-β. These observations may support the concept of cellular senescence being antagonistically pleiotropic with regard to EMT.
Collapse
Affiliation(s)
- Edyta Kawka
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Janusz Witowski
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,Department of Pathophysiology, Poznan University of Medical Sciences, Poznań, Poland
| | - Pilar Sandoval
- Centro de Biología Molecular-Severo Ochoa, Departamento de Biología Celular e Inmunología, Madrid, Spain
| | - Andras Rudolf
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznań, Poland
| | - Angela Rynne Vidal
- Centro de Biología Molecular-Severo Ochoa, Departamento de Biología Celular e Inmunología, Madrid, Spain
| | - Manuel Lopez Cabrera
- Centro de Biología Molecular-Severo Ochoa, Departamento de Biología Celular e Inmunología, Madrid, Spain
| | - Achim Jörres
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany .,Department of Medicine I - Nephrology, Transplantation & Medical Intensive Care, University Witten/Herdecke, Medical Center Cologne-Merheim, Cologne, Germany
| |
Collapse
|
107
|
Acetylation of HMGB1 by JNK1 Signaling Promotes LPS-Induced Peritoneal Mesothelial Cells Apoptosis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2649585. [PMID: 30539006 PMCID: PMC6260401 DOI: 10.1155/2018/2649585] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/10/2018] [Accepted: 10/30/2018] [Indexed: 01/16/2023]
Abstract
Increased high mobility group box 1 (HMGB1) in dialysis effluence is associated with the presence of peritoneal dialysis-related peritonitis in patients and peritoneal dysfunction in acute peritonitis mice model, but it remains unclear whether HMGB1 is involved in peritoneal mesothelial cell injury and functions via molecular posttranslational modifications by acetylation in this process. Here we first showed correlation between HMGB1 acetylation level in dialysis effluence of patients and occurrence of Gram-negative peritonitis. The increased level of acetylated HMGB1 was similarly observed under the lipopolysaccharides (LPS) treatment in both human peritoneal mesothelial cell line (HMrSV5) and mice visceral peritoneum tissue. Overexpression of wild-type, but not hypoacetylation mutant of HMGB1, enhanced LPS-induced apoptosis in HMrSV5 cells, which was accompanied by elevated protein levels of BAX and cleaved-caspase 3 compared to the control. Pretreatment of HMrSV5 cell with JNK inhibitor attenuated LPS-induced HMGB1 acetylation. Consistently, primary peritoneal mesothelial cells from Jnk1-/- mice showed a lower protein contents of acetylated HMGB1, fewer apoptosis, and decreased protein expression of BAX and cleaved-caspase3 after LPS exposure, as compared to those from wild-type mice. In conclusion, our data demonstrated HMGB1 promotes LPS-induced peritoneal mesothelial cells apoptosis, which is associated with JNK1-mediated upregulation of HMGB1 acetylation.
Collapse
|
108
|
Sayed A, Valente M, Sassoon D. Does cardiac development provide heart research with novel therapeutic approaches? F1000Res 2018; 7. [PMID: 30450195 PMCID: PMC6221076 DOI: 10.12688/f1000research.15609.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2018] [Indexed: 01/04/2023] Open
Abstract
Embryonic heart progenitors arise at specific spatiotemporal periods that contribute to the formation of distinct cardiac structures. In mammals, the embryonic and fetal heart is hypoxic by comparison to the adult heart. In parallel, the cellular metabolism of the cardiac tissue, including progenitors, undergoes a glycolytic to oxidative switch that contributes to cardiac maturation. While oxidative metabolism is energy efficient, the glycolytic-hypoxic state may serve to maintain cardiac progenitor potential. Consistent with this proposal, the adult epicardium has been shown to contain a reservoir of quiescent cardiac progenitors that are activated in response to heart injury and are hypoxic by comparison to adjacent cardiac tissues. In this review, we discuss the development and potential of the adult epicardium and how this knowledge may provide future therapeutic approaches for cardiac repair.
Collapse
Affiliation(s)
- Angeliqua Sayed
- Cellular, Molecular, and Physiological Mechanisms of Heart Failure, Paris-Cardiovascular Research Center (PARCC), European Georges Pompidou Hospital (HEGP), INSERM U970, F-75737 Paris Cedex 15, Paris, France
| | - Mariana Valente
- Cellular, Molecular, and Physiological Mechanisms of Heart Failure, Paris-Cardiovascular Research Center (PARCC), European Georges Pompidou Hospital (HEGP), INSERM U970, F-75737 Paris Cedex 15, Paris, France
| | - David Sassoon
- Cellular, Molecular, and Physiological Mechanisms of Heart Failure, Paris-Cardiovascular Research Center (PARCC), European Georges Pompidou Hospital (HEGP), INSERM U970, F-75737 Paris Cedex 15, Paris, France
| |
Collapse
|
109
|
Cui X, Sun X, Lu F, Jiang X. Baicalein represses TGF-β1-induced fibroblast differentiation through the inhibition of miR-21. Toxicol Appl Pharmacol 2018; 358:35-42. [DOI: 10.1016/j.taap.2018.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 09/05/2018] [Indexed: 12/26/2022]
|
110
|
Hepler C, Shan B, Zhang Q, Henry GH, Shao M, Vishvanath L, Ghaben AL, Mobley AB, Strand D, Hon GC, Gupta RK. Identification of functionally distinct fibro-inflammatory and adipogenic stromal subpopulations in visceral adipose tissue of adult mice. eLife 2018; 7:39636. [PMID: 30265241 PMCID: PMC6167054 DOI: 10.7554/elife.39636] [Citation(s) in RCA: 233] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/09/2018] [Indexed: 12/21/2022] Open
Abstract
White adipose tissue (WAT) remodeling is dictated by coordinated interactions between adipocytes and resident stromal-vascular cells; however, the functional heterogeneity of adipose stromal cells has remained unresolved. We combined single-cell RNA-sequencing and FACS to identify and isolate functionally distinct subpopulations of PDGFRβ+ stromal cells within visceral WAT of adult mice. LY6C- CD9- PDGFRβ+ cells represent highly adipogenic visceral adipocyte precursor cells (‘APCs’), whereas LY6C+ PDGFRβ+ cells represent fibro-inflammatory progenitors (‘FIPs’). FIPs lack adipogenic capacity, display pro-fibrogenic/pro-inflammatory phenotypes, and can exert an anti-adipogenic effect on APCs. The pro-inflammatory phenotype of PDGFRβ+ cells is regulated, at least in part, by NR4A nuclear receptors. These data highlight the functional heterogeneity of visceral WAT perivascular cells, and provide insight into potential cell-cell interactions impacting adipogenesis and inflammation. These improved strategies to isolate FIPs and APCs from visceral WAT will facilitate the study of physiological WAT remodeling and mechanisms leading to metabolic dysfunction. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter). Fat tissue, also known as white adipose tissue, specializes in storing excess calories. Much of this storage happens under the skin, but fat tissue can also build up inside the abdomen and surround organs, where it is known as ‘visceral’ fat. When visceral fat tissue is unhealthy, it may help diseases such as diabetes and heart disease to develop. Unhealthy fat tissue contains enlarged fat cells, which may die from overwork. The stress this places on the surrounding tissue activates the immune system, causing inflammation and the build-up of collagen fibers around the cells (a condition known as fibrosis). Not all people develop this type of unhealthy fat tissue, but we do not yet understand why. In many tissues, blood vessels serve as a home for several types of adult stem cells that help to rejuvenate the tissue following damage. To identify these cells, Hepler et al. analyzed the genes used by more than 3,000 cells living around the blood vessels in the visceral fat of adult mice. Recent work had already revealed that stem cells called adipocyte precursor cells live in this region. Hepler et al. now reveal the presence of a second group of cells, termed fibro-inflammatory progenitor cells (or FIPs for short). To investigate the roles of each cell type in more detail, Hepler et al. developed a new technique to isolate the adipocyte precursor cells from other cell types. When grown in the right conditions in petri dishes, the adipocyte precursor cells were able to form new fat cells. They could also make new fat cells when transplanted into mice that lacked fat tissue. By contrast, the FIPs can suppress the activity of adipocyte precursor cells and activate immune cells. They may also help fibrosis to develop. It is not yet clear whether FIPs are present in human fat tissue. But, if they are, understanding them in greater detail may suggest new ways to treat diabetes and heart disease in obese people.
Collapse
Affiliation(s)
- Chelsea Hepler
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Bo Shan
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Qianbin Zhang
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Gervaise H Henry
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Mengle Shao
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Lavanya Vishvanath
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Alexandra L Ghaben
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Angela B Mobley
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Douglas Strand
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Gary C Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Rana K Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
111
|
Ramasamy V, Mayosi BM, Sturrock ED, Ntsekhe M. Established and novel pathophysiological mechanisms of pericardial injury and constrictive pericarditis. World J Cardiol 2018; 10:87-96. [PMID: 30344956 PMCID: PMC6189073 DOI: 10.4330/wjc.v10.i9.87] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/06/2018] [Accepted: 04/22/2018] [Indexed: 02/06/2023] Open
Abstract
This review article aims to: (1) discern from the literature the immune and inflammatory processes occurring in the pericardium following injury; and (2) to delve into the molecular mechanisms which may play a role in the progression to constrictive pericarditis. Pericarditis arises as a result of a wide spectrum of pathologies of both infectious and non-infectious aetiology, which lead to various degrees of fibrogenesis. Current understanding of the sequence of molecular events leading to pathological manifestations of constrictive pericarditis is poor. The identification of key mechanisms and pathways common to most fibrotic events in the pericardium can aid in the design and development of novel interventions for the prevention and management of constriction. We have identified through this review various cellular events and signalling cascades which are likely to contribute to the pathological fibrotic phenotype. An initial classical pattern of inflammation arises as a result of insult to the pericardium and can exacerbate into an exaggerated or prolonged inflammatory state. Whilst the implication of major drivers of inflammation and fibrosis such as tumour necrosis factor and transforming growth factor β were foreseeable, the identification of pericardial deregulation of other mediators (basic fibroblast growth factor, galectin-3 and the tetrapeptide Ac-SDKP) provides important avenues for further research.
Collapse
Affiliation(s)
- Vinasha Ramasamy
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
- Department of Integrative Biomedical Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Bongani M Mayosi
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
- Division of Cardiology, University of Cape Town, Observatory 7925, South Africa
| | - Edward D Sturrock
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
- Department of Integrative Biomedical Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Mpiko Ntsekhe
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
- Division of Cardiology, University of Cape Town, Observatory 7925, South Africa
| |
Collapse
|
112
|
Li X, Zou B, Zhao N, Wang C, Du Y, Mei L, Wang Y, Ma S, Tian X, He J, Tong A, Zhou L, Han B, Guo G. Potent Anti-adhesion Barrier Combined Biodegradable Hydrogel with Multifunctional Turkish Galls Extract. ACS APPLIED MATERIALS & INTERFACES 2018; 10:24469-24479. [PMID: 29974740 DOI: 10.1021/acsami.8b10668] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xiaoling Li
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Bingwen Zou
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Na Zhao
- School of Pharmacy, Shihezi University, and Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi 832002, P. R. China
| | - Chao Wang
- National Engineering Research Center for Synthesis of Novel Rubber and Plastic Materials, Yanshan Branch, Beijing Research Institute of Chemical Industry, SINOPEC, Beijing 102500, P. R. China
| | - Ying Du
- National Engineering Research Center for Synthesis of Novel Rubber and Plastic Materials, Yanshan Branch, Beijing Research Institute of Chemical Industry, SINOPEC, Beijing 102500, P. R. China
| | - Lan Mei
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Yuelong Wang
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Shangzhi Ma
- School of Pharmacy, Shihezi University, and Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi 832002, P. R. China
| | - Xing Tian
- School of Pharmacy, Shihezi University, and Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi 832002, P. R. China
| | - Jun He
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Liangxue Zhou
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Bo Han
- School of Pharmacy, Shihezi University, and Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi 832002, P. R. China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| |
Collapse
|
113
|
Namvar S, Woolf AS, Zeef LA, Wilm T, Wilm B, Herrick SE. Functional molecules in mesothelial-to-mesenchymal transition revealed by transcriptome analyses. J Pathol 2018; 245:491-501. [PMID: 29774544 PMCID: PMC6055603 DOI: 10.1002/path.5101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/01/2018] [Accepted: 05/12/2018] [Indexed: 12/13/2022]
Abstract
Peritoneal fibrosis is a common complication of abdominal and pelvic surgery, and can also be triggered by peritoneal dialysis, resulting in treatment failure. In these settings, fibrosis is driven by activated myofibroblasts that are considered to be partly derived by mesothelial‐to‐mesenchymal transition (MMT). We hypothesized that, if the molecular signature of MMT could be better defined, these insights could be exploited to block this pathological cellular transition. Rat peritoneal mesothelial cells were purified by the use of an antibody against HBME1, a protein present on mesothelial cell microvilli, and streptavidin nanobead technology. After exposure of sorted cells to a well‐known mediator of MMT, transforming growth factor (TGF)‐β1, RNA sequencing was undertaken to define the transcriptomes of mesothelial cells before and during early‐phase MMT. MMT was associated with dysregulation of transcripts encoding molecules involved in insulin‐like growth factor (IGF) and bone morphogenetic protein (BMP) signalling. The application of either recombinant BMP4 or IGF‐binding protein 4 (IGFBP4) ameliorated TGF‐β1‐induced MMT in culture, as judged from the retention of epithelial morphological and molecular phenotypes, and reduced migration. Furthermore, peritoneal tissue from peritoneal dialysis patients showed less prominent immunostaining than control tissue for IGFBP4 and BMP4 on the peritoneal surface. In a mouse model of TGF‐β1‐induced peritoneal thickening, BMP4 immunostaining on the peritoneal surface was attenuated as compared with healthy controls. Finally, genetic lineage tracing of mesothelial cells was used in mice with peritoneal injury. In this model, administration of BMP4 ameliorated the injury‐induced shape change and migration of mesothelial cells. Our findings demonstrate a distinctive MMT signature, and highlight the therapeutic potential for BMP4, and possibly IGFBP4, to reduce MMT. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Sara Namvar
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK.,Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Leo Ah Zeef
- The Bioinformatics Core Facility, The University of Manchester, Manchester, UK
| | - Thomas Wilm
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Bettina Wilm
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Sarah E Herrick
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
114
|
Lymphatic Endothelial Cell in Endemic Bancroftian Filariasis: A Focus on the Lymphatics of the Tunica Vaginalis Testis. J Trop Med 2018; 2018:5134670. [PMID: 29861747 PMCID: PMC5976995 DOI: 10.1155/2018/5134670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 04/03/2018] [Indexed: 11/23/2022] Open
Abstract
Background In endemic areas, lymphangiectasia is the fundamental alteration to live Wuchereria bancrofti adult worms which, in adult males, are usually found in the lymphatic vessels of the spermatic cord; accordingly, hydrocele/filaricele is the most common clinical manifestation of bancroftian filariasis. The pathogenic role of the lymphatic endothelial cells (LECs) and the status of mesothelial cells (MCs) samples of the parietal layer (PL) of the tunica vaginalis testis were examined. Methods The PL of thirty-two patients, excised for different reasons, was examined by histology and immunohistochemistry using the D2-40 monoclonal antibody for identification of LECs and CK-7 antibody for recognition of mesothelial cells (MCs). Results The most important findings were (a) marked lymphangiectasia, especially in hydroceles with minor evolution time; (b) the first report of lymphatic stomata and submesothelial lacunae in filarial acute hydrocele; (c) the likely participation of LECs in filarial granuloma; (d) the potential phenotypic transition of LECs into myofibroblasts in severe chylocele; and (e) mesothelial reactive hyperplasia, a hallmark of filaricele, varying in intensity from mild to severe, sometimes mimicking a mesothelial neoplasia. Conclusion The data suggest that LECs have an active role in the pathogenesis of bancroftian hydrocele and, possibly, in other clinical forms of lymphatic filariasis.
Collapse
|
115
|
Rossi L, Battistelli C, de Turris V, Noce V, Zwergel C, Valente S, Moioli A, Manzione A, Palladino M, Bordoni V, Domenici A, Menè P, Mai A, Tripodi M, Strippoli R. HDAC1 inhibition by MS-275 in mesothelial cells limits cellular invasion and promotes MMT reversal. Sci Rep 2018; 8:8492. [PMID: 29855565 PMCID: PMC5981641 DOI: 10.1038/s41598-018-26319-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 05/10/2018] [Indexed: 12/20/2022] Open
Abstract
Peritoneal fibrosis is a pathological alteration of the peritoneal membrane occurring in a variety of conditions including peritoneal dialysis (PD), post-surgery adhesions and peritoneal metastases. The acquisition of invasive and pro-fibrotic abilities by mesothelial cells (MCs) through induction of MMT, a cell-specific form of EMT, plays a main role in this process. Aim of this study was to evaluate possible effects of histone deacetylase (HDAC) inhibitors, key components of the epigenetic machinery, in counteracting MMT observed in MCs isolated from effluent of PD patients. HDAC inhibitors with different class/isoform selectivity have been used for pharmacological inhibition. While the effect of other inhibitors was limited to a partial E-cadherin re-expression, MS-275, a HDAC1-3 inhibitor, promoted: (i) downregulation of mesenchymal markers (MMP2, Col1A1, PAI-1, TGFβ1, TGFβRI) (ii) upregulation of epithelial markers (E-cadherin, Occludin), (iii) reacquisition of an epithelial-like morphology and (iv) marked reduction of cellular invasiveness. Results were confirmed by HDAC1 genetic silencing. Mechanistically, MS-275 causes: (i) increase of nuclear histone H3 acetylation (ii) rescue of the acetylation profile on E-cadherin promoter, (iii) Snail functional impairment. Overall, our study, pinpointing a role for HDAC1, revealed a new player in the regulation of peritoneal fibrosis, providing the rationale for future therapeutic opportunities.
Collapse
Affiliation(s)
- Lucia Rossi
- Department of Cellular Biotechnologies and Hematology, Section of Molecular Genetics, Sapienza University of Rome, Rome, Italy
| | - Cecilia Battistelli
- Department of Cellular Biotechnologies and Hematology, Section of Molecular Genetics, Sapienza University of Rome, Rome, Italy
| | - Valeria de Turris
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Valeria Noce
- Department of Cellular Biotechnologies and Hematology, Section of Molecular Genetics, Sapienza University of Rome, Rome, Italy
| | - Clemens Zwergel
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, Rome, Italy
| | - Sergio Valente
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, Rome, Italy
| | - Alessandra Moioli
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Nephrology Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Andrea Manzione
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Nephrology Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Marco Palladino
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Nephrology Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Veronica Bordoni
- Gene Expression Laboratory, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy
| | - Alessandro Domenici
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Nephrology Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Paolo Menè
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Nephrology Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Antonello Mai
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, Rome, Italy
| | - Marco Tripodi
- Department of Cellular Biotechnologies and Hematology, Section of Molecular Genetics, Sapienza University of Rome, Rome, Italy. .,Gene Expression Laboratory, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy.
| | - Raffaele Strippoli
- Department of Cellular Biotechnologies and Hematology, Section of Molecular Genetics, Sapienza University of Rome, Rome, Italy. .,Gene Expression Laboratory, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy.
| |
Collapse
|
116
|
Song LJ, Zhou LL, Wang M, Liu F, Xiong L, Xiang F, Yu F, He XL, Xu JJ, Shi HZ, Xin JB, Ye H, Ma WL. Lethal (2) giant larvae regulates pleural mesothelial cell polarity in pleural fibrosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1201-1210. [PMID: 29842893 DOI: 10.1016/j.bbamcr.2018.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 04/20/2018] [Accepted: 05/24/2018] [Indexed: 12/29/2022]
Abstract
Pleural fibrosis is barely reversible and the underlying mechanisms are poorly understood. Pleural mesothelial cells (PMCs) which have apical-basal polarity play a key role in pleural fibrosis. Loss of cell polarity is involved in the development of fibrotic diseases. Partition defective protein (PAR) complex is a key regulator of cell polarity. However, changes of PMC polarity and PAR complex in pleural fibrosis are still unknown. In this study, we observed that PMC polarity was lost in fibrotic pleura. Next we found increased Lethal (2) giant larvae (Lgl) bound with aPKC and PAR-6B competing against PAR-3A in PAR complex, which led to cell polarity loss. Then we demonstrated that Lgl1 siRNA prevented cell polarity loss in PMCs, and Lgl1 conditional knockout (ER-Cre+/-Lgl1flox/flox) attenuated pleural fibrosis in a mouse model. Our data indicated that Lgl1 regulates cell polarity of PMCs, inhibition of Lgl1 and maintenance of cell polarity in PMCs could be a potential therapeutic treatment approach for pleural fibrosis.
Collapse
Affiliation(s)
- Lin-Jie Song
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li-Ling Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Meng Wang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fei Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liang Xiong
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Respiratory Diseases, Ministry of Health of China, Wuhan 430030, China
| | - Fei Xiang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Respiratory Diseases, Ministry of Health of China, Wuhan 430030, China
| | - Fan Yu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Respiratory Diseases, Ministry of Health of China, Wuhan 430030, China
| | - Xin-Liang He
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Respiratory Diseases, Ministry of Health of China, Wuhan 430030, China
| | - Juan-Juan Xu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Respiratory Diseases, Ministry of Health of China, Wuhan 430030, China
| | - Huan-Zhong Shi
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jian-Bao Xin
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Respiratory Diseases, Ministry of Health of China, Wuhan 430030, China
| | - Hong Ye
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Respiratory Diseases, Ministry of Health of China, Wuhan 430030, China.
| | - Wan-Li Ma
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Respiratory Diseases, Ministry of Health of China, Wuhan 430030, China.
| |
Collapse
|
117
|
Fu Y, Tsauo J, Sun Y, Wang Z, Kim KY, Lee SH, Kim DY, Jing F, Lim D, Song HY, Hyun H, Choi EY. Developmental endothelial locus-1 prevents development of peritoneal adhesions in mice. Biochem Biophys Res Commun 2018; 500:783-789. [PMID: 29684347 DOI: 10.1016/j.bbrc.2018.04.158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/19/2018] [Indexed: 01/01/2023]
Abstract
Postoperative peritoneal adhesions, fibrous bands formed in the peritoneal cavity following surgery, represent a common, challenging and costly problem faced by surgeons and patients, for which effective therapeutic options are lacking. Since aberrant inflammation is one of the key mechanisms underlying peritoneal adhesion formation, here we set out to study the role of developmental endothelial locus-1 (Del-1), which has been recently identified as an endogenous inhibitor of inflammation, in the formation of postoperative peritoneal adhesions using a mouse model of peritoneal adhesions induced by ischemic buttons. Del-1-deficient mice had a higher incidence of adhesions, and their adhesions had higher quality and tenacity scores. Del-1 deficiency also led to enhanced inflammation mediators and collagen production. Finally, Del-1 supplementation decreased the incidence and severity of postoperative peritoneal adhesions. Taken together, these results indicate a protective role for Del-1 in postoperative peritoneal adhesion formation.
Collapse
Affiliation(s)
- Yan Fu
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jiaywei Tsauo
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Yucheng Sun
- Department of Orthopedic Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Zhe Wang
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Kun Yung Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Seung-Hwan Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong-Young Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Feifeng Jing
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dahae Lim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ho-Young Song
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Hoon Hyun
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea.
| | - Eun Young Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
118
|
Kienzle A, Servais AB, Ysasi AB, Gibney BC, Valenzuela CD, Wagner WL, Ackermann M, Mentzer SJ. Free-Floating Mesothelial Cells in Pleural Fluid After Lung Surgery. Front Med (Lausanne) 2018; 5:89. [PMID: 29675416 PMCID: PMC5895720 DOI: 10.3389/fmed.2018.00089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/22/2018] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVES The mesothelium, the surface layer of the heart, lung, bowel, liver, and tunica vaginalis, is a complex tissue implicated in organ-specific diseases and regenerative biology; however, the mechanism of mesothelial repair after surgical injury is unknown. Previous observations indicated seeding of denuded mesothelium by free-floating mesothelial cells may contribute to mesothelial healing. In this study, we investigated the prevalence of mesothelial cells in pleural fluid during the 7 days following pulmonary surgery. STUDY DESIGN Flow cytometry was employed to study pleural fluid of 45 patients after lung resection or transplantation. We used histologically validated mesothelial markers (CD71 and WT1) to estimate the prevalence of mesothelial cells. RESULTS The viability of pleural fluid cells approached 100%. Leukocytes and mesothelial cells were identified in the pleural fluid within the first week after surgery. The leukocyte concentration was relatively stable at all time points. In contrast, mesothelial cells, identified by CD71 and WT1 peaked on POD3. The broad expression of CD71 molecule in postoperative pleural fluid suggests that many of the free-floating non-leukocyte cells were activated or proliferative mesothelial cells. CONCLUSION We demonstrated that pleural fluid post lung surgery is a source of mesothelial cells; most of these cells appear to be viable and, as shown by CD71 staining, activated mesothelial cells. The observed peak of mesothelial cells on POD3 is consistent with a potential reparative role of free-floating mesothelial cells after pulmonary surgery.
Collapse
Affiliation(s)
- Arne Kienzle
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Andrew B. Servais
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Alexandra B. Ysasi
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Barry C. Gibney
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Cristian D. Valenzuela
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Willi L. Wagner
- Department of Diagnostic and Interventional Radiology, Translational Lung Research Center Heidelberg (TLRC), Member of German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Steven J. Mentzer
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
119
|
Masola V, Granata S, Bellin G, Gambaro G, Onisto M, Rugiu C, Lupo A, Zaza G. Specific heparanase inhibition reverses glucose-induced mesothelial-to-mesenchymal transition. Nephrol Dial Transplant 2018; 32:1145-1154. [PMID: 28064160 DOI: 10.1093/ndt/gfw403] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/10/2016] [Indexed: 01/19/2023] Open
Abstract
Background Epithelial-to-mesenchymal transition (EMT) of peritoneal mesothelial cells induced by high glucose (HG) levels is a major biological mechanism leading to myofibroblast accumulation in the omentum of patients on peritoneal dialysis (PD). Heparanase (HPSE), an endoglycosidase that cleaves heparan sulfate chains, is involved in the EMT of several cell lines, and may have a major role in this pro-fibrotic process potentially responsible for the failure of dialysis. Its specific inhibition may therefore plausibly minimize this pathological condition. Methods An in vitro study employing several biomolecular strategies was conducted to assess the role of HPSE in the HG-induced mesothelial EMT process, and to measure the effects of its specific inhibition by SST0001, a N-acetylated glycol-split heparin with a strong anti-HPSE activity. Rat mesothelial cells were grown for 6 days in HG (200 mM) culture medium with or without SST0001. Then EMT markers (VIM, α-SMA, TGF-β) and vascular endothelial growth factor (VEGF) (a factor involved in neoangiogenesis) were measured by real-time PCR and immunofluorescence/western blotting. As a functional analysis, trans-epithelial resistance (TER) and permeability to albumin were also measured in our in vitro model using a Millicell-ERS ohmmeter and a spectrophotometer, respectively. Results Our results showed that 200 mM of glucose induced a significant gene and protein up-regulation of VEGF and all EMT markers after 6 days of culture. Intriguingly, adding SST0001 on day 3 reversed these biological and cellular effects. HPSE inhibition also restored the normal TER and permeability lost during the HG treatment. Conclusion Taken together, our data confirm that HG can induce EMT of mesothelial cells, and that HPSE plays a central part in this process. Our findings also suggest that pharmacological HPSE inhibition could prove a valuable therapeutic tool for minimizing fibrosis and avoiding a rapid decline in the efficacy of dialysis in patients on PD, though clinical studies and/or trials would be needed to confirm the clinical utility of this treatment.
Collapse
Affiliation(s)
- Valentina Masola
- Renal Unit, Department of Medicine, Verona University Hospital, Verona, Italy
| | - Simona Granata
- Renal Unit, Department of Medicine, Verona University Hospital, Verona, Italy
| | - Gloria Bellin
- Renal Unit, Department of Medicine, Verona University Hospital, Verona, Italy
| | - Giovanni Gambaro
- Nephrology and Dialysis Division, Columbus-Gemelli Hospital, Catholic University School of Medicine, Rome, Italy
| | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Carlo Rugiu
- Renal Unit, Department of Medicine, Verona University Hospital, Verona, Italy
| | - Antonio Lupo
- Renal Unit, Department of Medicine, Verona University Hospital, Verona, Italy
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, Verona University Hospital, Verona, Italy
| |
Collapse
|
120
|
Abstract
PURPOSE OF REVIEW The pathogenesis of lung cancer and pulmonary fibrotic disorders partially overlaps. This review focuses on the common features of the two disease categories, aimed at advancing our translational understanding of their pathobiology and at fostering the development of new therapies. RECENT FINDINGS Both malignant and collagen-producing lung cells display enhanced cellular proliferation, increased resistance to apoptosis, a propensity for invading and distorting the lung parenchyma, as well as stemness potential. These characteristics are reinforced by the tissue microenvironment and inflammation seems to play an important adjuvant role in both types of disorders. SUMMARY Unraveling the thread of the common and distinct characteristics of lung fibrosis and cancer might contribute to a more comprehensive approach of the pathobiology of both diseases and to a pathfinder for novel and personalized therapeutic strategies.
Collapse
|
121
|
Franceschi T, Allias F, Mauduit C, Bolze PA, Devouassoux-Shisheboran M. Chondroid nodule in the female peritoneum arises from normal tissue and not from teratoma or conception product. Virchows Arch 2018; 473:115-119. [PMID: 29368082 DOI: 10.1007/s00428-018-2295-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 10/18/2022]
Abstract
The pathogenesis of benign-looking cartilaginous tissue within the peritoneum is unknown. Chondroid metaplasia of subcoelomic mesenchyme has been suggested, as has been the case for other gynecological diseases such as endometriosis, peritoneal leiomyomatosis, or gliomatosis peritonei, but has never been proven. Chondroid nodules in the peritoneum may represent either teratomatous tissue, fetal rests from a conception product, or metaplasia of pluripotent mesenchymal cells. Herein, the unique genetic characteristics of ovarian teratomas (homozygous at many polymorphic microsatellite loci) versus normal tissues (heterozygous at the same loci) were used to investigate the origin of chondroid nodules in the peritoneum. DNA samples extracted from paraffin-embedded normal peritoneal tissue and chondroid peritoneal nodules from two patients were studied. In both cases, chondroid and normal tissue showed heterozygosity at each informative microsatellite locus on different chromosomes, with a profile similar to the mother. These results indicate that peritoneal chondroid nodules arise within the peritoneum, presumably from pluripotent mesodermal stem cells, and are not related to teratomatous proliferation, or previous pregnancy. This finding shows once again the plasticity and metaplastic potential of stem cells within the peritoneal cavity.
Collapse
Affiliation(s)
- Tatiana Franceschi
- Hospices Civils de Lyon, Department of Pathology, Centre de Biologie et de Pathologie Sud, Chemin du Grand Revoyet, 69495, Pierre Bénite Cedex, France
| | - Fabienne Allias
- Hospices Civils de Lyon, Department of Pathology, Centre de Biologie et de Pathologie Sud, Chemin du Grand Revoyet, 69495, Pierre Bénite Cedex, France
| | - Claire Mauduit
- Hospices Civils de Lyon, Department of Pathology, Centre de Biologie et de Pathologie Sud, Chemin du Grand Revoyet, 69495, Pierre Bénite Cedex, France
| | - Pierre-Adrien Bolze
- Department of Gynecological Surgery and Oncology, Obstetrics, 165 chemin du Grand Revoyet, 69495, Pierre Bénite Cedex, France
| | - Mojgan Devouassoux-Shisheboran
- Hospices Civils de Lyon, Department of Pathology, Centre de Biologie et de Pathologie Sud, Chemin du Grand Revoyet, 69495, Pierre Bénite Cedex, France.
| |
Collapse
|
122
|
Sousa IRD, Pereira ICC, Morais LJD, Teodoro LDGVL, Rodrigues MLP, Gomes RADS. Pericardial Parietal Mesothelial Cells: Source of the Angiotensin-Converting-Enzyme of the Bovine Pericardial Fluid. Arq Bras Cardiol 2017; 109:425-431. [PMID: 29267626 PMCID: PMC5729778 DOI: 10.5935/abc.20170155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 07/12/2017] [Indexed: 11/20/2022] Open
Abstract
Background Angiotensin II (Ang II), the primary effector hormone of the
renin-angiotensin system (RAS), acts systemically or locally, being produced
by the action of angiotensin-converting-enzyme (ACE) on angiotensin I.
Although several tissue RASs, such as cardiac RAS, have been described,
little is known about the presence of an RAS in the pericardial fluid and
its possible sources. Locally produced Ang II has paracrine and autocrine
effects, inducing left ventricular hypertrophy, fibrosis, heart failure and
cardiac dysfunction. Because of the difficulties inherent in human
pericardial fluid collection, appropriate experimental models are useful to
obtain data regarding the characteristics of the pericardial fluid and
surrounding tissues. Objectives To evidence the presence of constituents of the Ang II production paths in
bovine pericardial fluid and parietal pericardium. Methods Albumin-free crude extracts of bovine pericardial fluid, immunoprecipitated
with anti-ACE antibody, were submitted to electrophoresis (SDS-PAGE) and
gels stained with coomassie blue. Duplicates of gels were probed with
anti-ACE antibody. In the pericardial membranes, ACE was detected by use of
immunofluorescence. Results Immunodetection on nitrocellulose membranes showed a 146-KDa ACE isoform in
the bovine pericardial fluid. On the pericardial membrane sections, ACE was
immunolocalized in the mesothelial layer. Conclusions The ACE isoform in the bovine pericardial fluid and parietal pericardium
should account at least partially for the production of Ang II in the
pericardial space, and should be considered when assessing the cardiac
RAS.
Collapse
|
123
|
Buechler MB, Turley SJ. A short field guide to fibroblast function in immunity. Semin Immunol 2017; 35:48-58. [PMID: 29198601 DOI: 10.1016/j.smim.2017.11.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/06/2017] [Indexed: 12/27/2022]
Abstract
Fibroblasts in secondary lymphoid organs, or fibroblastic reticular cells (FRC), are gate-keepers of immune responses. Here, we frame how these cells regulate immune responses via a three-part scheme in which FRC can setup, support or suppress immune responses. We also review how fibroblasts from non-lymphoid tissues influence immunity and highlight how they resemble and differ from FRC. Overall, we aim to focus attention on the emerging roles of lymphoid tissue and non-lymphoid tissue fibroblasts in control of innate and adaptive immunity.
Collapse
Affiliation(s)
- Matthew B Buechler
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, United States
| | - Shannon J Turley
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, United States.
| |
Collapse
|
124
|
Song LJ, Xiang F, Ye H, Huang H, Yang J, Yu F, Xiong L, Xu JJ, Greer PA, Shi HZ, Xin JB, Su Y, Ma WL. Inhibition of angiotensin II and calpain attenuates pleural fibrosis. Pulm Pharmacol Ther 2017; 48:46-52. [PMID: 29107090 DOI: 10.1016/j.pupt.2017.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/30/2017] [Accepted: 10/24/2017] [Indexed: 11/26/2022]
Abstract
Pleural fibrosis is associated with various inflammatory processes such as tuberculous pleurisy and bacterial empyema. There is currently no ideal therapeutic to attenuate pleural fibrosis. Some pro-fibrogenic mediators induce fibrosis through inflammatory processes, suggesting that blockage of these mediators might prevent pleural fibrosis. The MeT-5A human pleural mesothelial cell line (PMC) was used in this study as an in vitro model of fibrosis; and intra-pleural injection of bleomycin with carbon particles was used as an in vivo mouse model of pleural fibrosis. Calpain knockout mice, calpain inhibitor (calpeptin), and angiotensin (Ang) II type 1 receptor (AT1R) antagonist (losartan) were evaluated in prevention of experimental pleural fibrosis. We found that bleomycin and carbon particles induced calpain activation in cultured PMCs. This in vitro response was associated with increased collagen-I synthesis, and was blocked by calpain inhibitor or AT1R antagonist. Calpain genetic or treatment with calpeptin or losartan prevented pleural fibrosis in a mouse model induced by bleomycin and carbon particles. Our findings indicate that Ang II signaling and calpain activation induce collagen-I synthesis and contribute to fibrotic alterations in pleural fibrosis. Inhibition of Ang II and calpain might therefore be a novel strategy in treatment of pleural fibrosis.
Collapse
Affiliation(s)
- Lin-Jie Song
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fei Xiang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hong Ye
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Respiratory Diseases, Ministry of Health of China, Wuhan 430030, China
| | - Hai Huang
- Department of Internal Medicine, Wuhan Institute of Tuberculosis Prevention and Control, Wuhan 430030, China
| | - Jie Yang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fan Yu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liang Xiong
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Juan-Juan Xu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peter A Greer
- Queen's University Cancer Research Institute, Kingston, Ontario K7L 3N6, Canada
| | - Huan-Zhong Shi
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jian-Bao Xin
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Respiratory Diseases, Ministry of Health of China, Wuhan 430030, China
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Wan-Li Ma
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Respiratory Diseases, Ministry of Health of China, Wuhan 430030, China.
| |
Collapse
|
125
|
Yazdani S, Bansal R, Prakash J. Drug targeting to myofibroblasts: Implications for fibrosis and cancer. Adv Drug Deliv Rev 2017; 121:101-116. [PMID: 28720422 DOI: 10.1016/j.addr.2017.07.010] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/20/2017] [Accepted: 07/12/2017] [Indexed: 12/21/2022]
Abstract
Myofibroblasts are the key players in extracellular matrix remodeling, a core phenomenon in numerous devastating fibrotic diseases. Not only in organ fibrosis, but also the pivotal role of myofibroblasts in tumor progression, invasion and metastasis has recently been highlighted. Myofibroblast targeting has gained tremendous attention in order to inhibit the progression of incurable fibrotic diseases, or to limit the myofibroblast-induced tumor progression and metastasis. In this review, we outline the origin of myofibroblasts, their general characteristics and functions during fibrosis progression in three major organs: liver, kidneys and lungs as well as in cancer. We will then discuss the state-of-the art drug targeting technologies to myofibroblasts in context of the above-mentioned organs and tumor microenvironment. The overall objective of this review is therefore to advance our understanding in drug targeting to myofibroblasts, and concurrently identify opportunities and challenges for designing new strategies to develop novel diagnostics and therapeutics against fibrosis and cancer.
Collapse
Affiliation(s)
- Saleh Yazdani
- Targeted Therapeutics Division, Department of Biomaterials, Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Ruchi Bansal
- Targeted Therapeutics Division, Department of Biomaterials, Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Jai Prakash
- Targeted Therapeutics Division, Department of Biomaterials, Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands; ScarTec Therapeutics BV, Enschede, The Netherlands.
| |
Collapse
|
126
|
Strowitzki MJ, Ritter AS, Radhakrishnan P, Harnoss JM, Opitz VM, Biller M, Wehrmann J, Keppler U, Scheer J, Wallwiener M, Schmidt T, Ulrich A, Schneider M. Pharmacological HIF-inhibition attenuates postoperative adhesion formation. Sci Rep 2017; 7:13151. [PMID: 29030625 PMCID: PMC5640636 DOI: 10.1038/s41598-017-13638-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/29/2017] [Indexed: 02/06/2023] Open
Abstract
Peritoneal adhesions represent a common complication of abdominal surgery, and tissue hypoxia is a main determinant in adhesion formation. Reliable therapeutic options to reduce peritoneal adhesions are scarce. We investigated whether the formation of postsurgical adhesions can be affected by pharmacological interference with hypoxia-inducible factors (HIFs). Mice were treated with a small molecule HIF-inhibitor, YC-1 (3-[5′-Hydroxymethyl-2′-furyl]-1-benzyl-indazole), or vehicle three days before and seven days after induction of peritoneal adhesions or, alternatively, once during induction of peritoneal adhesions. Pretreatment or single intraperitoneal lavage with YC-1 significantly reduced postoperative adhesion formation without prompting systemic adverse effects. Expression analyses of cytokines in peritoneal tissue and fluid and in vitro assays applying macrophages and peritoneal fibroblasts indicated that this effect was cooperatively mediated by various putatively HIF-1α-dependent mechanisms, comprising attenuated pro-inflammatory activation of macrophages, impaired recruitment and activation of peritoneal fibroblasts, mitigated epithelial-mesenchymal-transition (EMT), as well as enhanced fibrinolysis and impaired angiogenesis. Thus, this study identifies prevention of postsurgical peritoneal adhesions as a novel and promising field for the application of HIF inhibitors in clinical practice.
Collapse
Affiliation(s)
- Moritz J Strowitzki
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Alina S Ritter
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Praveen Radhakrishnan
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Jonathan M Harnoss
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany.,Cancer Immunology, Genentech, Inc., South San Francisco, USA
| | - Vanessa M Opitz
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Marvin Biller
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Julian Wehrmann
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Ulrich Keppler
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Jana Scheer
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Markus Wallwiener
- Department of General Gynaecology and Obstetrics, University of Heidelberg, Heidelberg, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Alexis Ulrich
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
127
|
Birnie KA, Prêle CM, Thompson PJ, Badrian B, Mutsaers SE. Targeting microRNA to improve diagnostic and therapeutic approaches for malignant mesothelioma. Oncotarget 2017; 8:78193-78207. [PMID: 29100460 PMCID: PMC5652849 DOI: 10.18632/oncotarget.20409] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/04/2017] [Indexed: 12/14/2022] Open
Abstract
Malignant mesothelioma is an aggressive and often fatal cancer associated with asbestos exposure. The disease originates in the mesothelial lining of the serosal cavities, most commonly affecting the pleura. Survival rates are low as diagnosis often occurs at an advanced stage and current treatments are limited. Identifying new diagnostic and therapeutic targets for mesothelioma remains a priority, particularly for the new wave of victims exposed to asbestos through do-it-yourself renovations and in countries where asbestos is still mined and used. Recent advances have demonstrated a biological role for the small but powerful gene regulators microRNA (miRNA) in mesothelioma. A number of potential therapeutic targets have been identified. MiRNA have also become popular as potential biomarkers for mesothelioma due to their stable expression in bodily fluid and tissues. In this review, we highlight the current challenges associated with the diagnosis and treatment of mesothelioma and discuss how targeting miRNA may improve diagnostic, prognostic and therapeutic approaches.
Collapse
Affiliation(s)
- Kimberly A Birnie
- Institute for Respiratory Health, Centre for Respiratory Health, Harry Perkins Institute of Medical Research, QEII Medical Centre, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Cecilia M Prêle
- Institute for Respiratory Health, Centre for Respiratory Health, Harry Perkins Institute of Medical Research, QEII Medical Centre, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Philip J Thompson
- Institute for Respiratory Health, Centre for Respiratory Health, Harry Perkins Institute of Medical Research, QEII Medical Centre, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Bahareh Badrian
- Institute for Respiratory Health, Centre for Respiratory Health, Harry Perkins Institute of Medical Research, QEII Medical Centre, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Steven E Mutsaers
- Institute for Respiratory Health, Centre for Respiratory Health, Harry Perkins Institute of Medical Research, QEII Medical Centre, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
128
|
Justet A, Joannes A, Besnard V, Marchal-Sommé J, Jaillet M, Bonniaud P, Sallenave JM, Solhonne B, Castier Y, Mordant P, Mal H, Cazes A, Borie R, Mailleux AA, Crestani B. FGF9 prevents pleural fibrosis induced by intrapleural adenovirus injection in mice. Am J Physiol Lung Cell Mol Physiol 2017; 313:L781-L795. [PMID: 28729349 DOI: 10.1152/ajplung.00508.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022] Open
Abstract
Fibroblast growth factor 9 (FGF9) is necessary for fetal lung development and is expressed by epithelium and mesothelium. We evaluated the role of FGF9 overexpression on adenoviral-induced pleural injury in vivo and determined the biological effects of FGF9 on mesothelial cells in vitro. We assessed the expression of FGF9 and FGF receptors by mesothelial cells in both human and mouse lungs. Intrapleural injection of an adenovirus expressing human FGF9 (AdFGF9) or a control adenovirus (AdCont) was performed. Mice were euthanized at days 3, 5, and 14 Expression of FGF9 and markers of inflammation and myofibroblastic differentiation was studied by qPCR and immunohistochemistry. In vitro, rat mesothelial cells were stimulated with FGF9 (20 ng/ml), and we assessed its effect on proliferation, survival, migration, and differentiation. FGF9 was expressed by mesothelial cells in human idiopathic pulmonary fibrosis. FGF receptors, mainly FGFR3, were expressed by mesothelial cells in vivo in humans and mice. AdCont instillation induced diffuse pleural thickening appearing at day 5, maximal at day 14 The altered pleura cells strongly expressed α-smooth muscle actin and collagen. AdFGF9 injection induced maximal FGF9 expression at day 5 that lasted until day 14 FGF9 overexpression prevented pleural thickening, collagen and fibronectin accumulation, and myofibroblastic differentiation of mesothelial cells. In vitro, FGF9 decreased mesothelial cell migration and inhibited the differentiating effect of transforming growth factor-β1. We conclude that FGF9 has a potential antifibrotic effect on mesothelial cells.
Collapse
Affiliation(s)
- Aurélien Justet
- Institut National de la Santé et de la Recherche Médicale U1152, Paris, France.,Département Hospitalo-Universitaire Fibrosis Inflammation and Remodeling (DHU FIRE), Paris, France.,Labex Inflamex, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie A, Paris, France
| | - Audrey Joannes
- Institut National de la Santé et de la Recherche Médicale U1152, Paris, France.,Département Hospitalo-Universitaire Fibrosis Inflammation and Remodeling (DHU FIRE), Paris, France.,Labex Inflamex, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Valérie Besnard
- Institut National de la Santé et de la Recherche Médicale U1152, Paris, France.,Département Hospitalo-Universitaire Fibrosis Inflammation and Remodeling (DHU FIRE), Paris, France.,Labex Inflamex, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Joëlle Marchal-Sommé
- Institut National de la Santé et de la Recherche Médicale U1152, Paris, France.,Département Hospitalo-Universitaire Fibrosis Inflammation and Remodeling (DHU FIRE), Paris, France.,Labex Inflamex, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Madeleine Jaillet
- Institut National de la Santé et de la Recherche Médicale U1152, Paris, France.,Département Hospitalo-Universitaire Fibrosis Inflammation and Remodeling (DHU FIRE), Paris, France.,Labex Inflamex, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Philipe Bonniaud
- Institut National de la Santé et de la Recherche Médicale U866, Université de Bourgogne, Dijon, France
| | - Jean Michel Sallenave
- Institut National de la Santé et de la Recherche Médicale U1152, Paris, France.,Département Hospitalo-Universitaire Fibrosis Inflammation and Remodeling (DHU FIRE), Paris, France.,Labex Inflamex, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Brigitte Solhonne
- Institut National de la Santé et de la Recherche Médicale U1152, Paris, France.,Département Hospitalo-Universitaire Fibrosis Inflammation and Remodeling (DHU FIRE), Paris, France.,Labex Inflamex, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Yves Castier
- Institut National de la Santé et de la Recherche Médicale U1152, Paris, France.,Département Hospitalo-Universitaire Fibrosis Inflammation and Remodeling (DHU FIRE), Paris, France.,Labex Inflamex, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Chirurgie Thoracique et Vasculaire, Paris, France
| | - Pierre Mordant
- Institut National de la Santé et de la Recherche Médicale U1152, Paris, France.,Département Hospitalo-Universitaire Fibrosis Inflammation and Remodeling (DHU FIRE), Paris, France.,Labex Inflamex, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Chirurgie Thoracique et Vasculaire, Paris, France
| | - Hervé Mal
- Institut National de la Santé et de la Recherche Médicale U1152, Paris, France.,Département Hospitalo-Universitaire Fibrosis Inflammation and Remodeling (DHU FIRE), Paris, France.,Labex Inflamex, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie et Transplantation, Paris, France; and
| | - Aurélie Cazes
- Institut National de la Santé et de la Recherche Médicale U1152, Paris, France.,Département Hospitalo-Universitaire Fibrosis Inflammation and Remodeling (DHU FIRE), Paris, France.,Labex Inflamex, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Département d'Anatomie Pathologique, Paris, France
| | - Raphael Borie
- Institut National de la Santé et de la Recherche Médicale U1152, Paris, France.,Département Hospitalo-Universitaire Fibrosis Inflammation and Remodeling (DHU FIRE), Paris, France.,Labex Inflamex, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie A, Paris, France
| | - Arnaud A Mailleux
- Institut National de la Santé et de la Recherche Médicale U1152, Paris, France.,Département Hospitalo-Universitaire Fibrosis Inflammation and Remodeling (DHU FIRE), Paris, France.,Labex Inflamex, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Bruno Crestani
- Institut National de la Santé et de la Recherche Médicale U1152, Paris, France; .,Département Hospitalo-Universitaire Fibrosis Inflammation and Remodeling (DHU FIRE), Paris, France.,Labex Inflamex, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie A, Paris, France
| |
Collapse
|
129
|
Yang K, Deng HB, Man AWC, Song E, Zhang J, Luo C, Cheung BMY, Yuen KY, Jensen PS, Irmukhamedov A, Elie AGIM, Vanhoutte PM, Xu A, De Mey JGR, Wang Y. Measuring non-polyaminated lipocalin-2 for cardiometabolic risk assessment. ESC Heart Fail 2017; 4:563-575. [PMID: 29154418 PMCID: PMC5695172 DOI: 10.1002/ehf2.12183] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 04/13/2017] [Accepted: 05/04/2017] [Indexed: 12/11/2022] Open
Abstract
Aims Lipocalin‐2 is a pro‐inflammatory molecule characterized by a highly diversified pattern of expression and structure–functional relationships. In vivo, this molecule exists as multiple variants due to post‐translational modifications and/or protein–protein interactions. Lipocalin‐2 is modified by polyamination, which enhances the clearance of this protein from the circulation and prevents its excessive accumulation in tissues. On the other hand, animal studies suggest that non‐polyaminated lipocalin‐2 (npLcn2) plays a causal role in the pathogenesis of obesity‐associated medical complications. The present study examined the presence of npLcn2 in samples from healthy volunteers or patients with cardiac abnormalities and evaluated npLcn2 as a biomarker for cardiometabolic risk assessment. Methods and results Immunoassays were developed to quantify npLcn2 in blood and urine samples collected from 100 volunteers (59 men and 41 women), or venous plasma and pericardial fluid samples obtained from 37 cardiothoracic surgery patients. In healthy volunteers, npLcn2 levels in serum are significantly higher in obese and overweight than in lean subjects. After adjustment for age, gender, smoking, and body mass index (BMI), serum npLcn2 levels are positively correlated with heart rate, circulating triglycerides, high‐sensitivity C‐reactive protein (hsCRP), and creatinine in plasma. The npLcn2 levels in urine are significantly increased in subjects with metabolic syndrome and positively correlated with BMI, heart rate, circulating triglycerides, and urinary aldosterone. In cardiothoracic surgery patients, the circulating concentrations of npLcn2 are higher (more than two‐fold) than those of healthy volunteers and positively correlated with the accumulation of this protein in the pericardial fluid. Heart failure patients exhibit excessive expression and distribution of npLcn2 in mesothelial cells and adipocytes of the parietal pericardium, which are significantly correlated with the elevated plasma levels of npLcn2, total cholesterol, and creatinine. Conclusions Quantitative and qualitative evaluation of npLcn2 in human biofluid samples and tissue samples can be applied for risk assessment of healthy individuals and disease management of patients with obesity‐related cardiometabolic and renal complications.
Collapse
Affiliation(s)
- Kangmin Yang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Han-Bing Deng
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Andy W C Man
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Erfei Song
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Jialiang Zhang
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cuiting Luo
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | | | - Kwok-Yung Yuen
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Pia Søndergaard Jensen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Akhmadjon Irmukhamedov
- Department of Cardiac, Thoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Atlanta G I M Elie
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Paul M Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jo G R De Mey
- Department of Cardiac, Thoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark.,Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
130
|
Abstract
The signaling pathways and cellular mechanisms that achieve alignment of dorsal and ventral midline structures remain a poorly understood aspect of vertebrate development. In this issue of Developmental Cell, Arraf et al. (2016) find a requisite role for bilaterally symmetrical BMP signaling in coordinating dorsal and ventral tissue morphogenesis.
Collapse
Affiliation(s)
- Svetlana Gavrilov
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Elizabeth Lacy
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA.
| |
Collapse
|
131
|
Sanchez-Martin D, Uldrick TS, Kwak H, Ohnuki H, Polizzotto MN, Annunziata CM, Raffeld M, Wyvill KM, Aleman K, Wang V, Marshall VA, Whitby D, Yarchoan R, Tosato G. Evidence for a Mesothelial Origin of Body Cavity Effusion Lymphomas. J Natl Cancer Inst 2017; 109:3078996. [PMID: 28376153 DOI: 10.1093/jnci/djx016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/20/2017] [Indexed: 12/19/2022] Open
Abstract
Background Primary effusion lymphoma (PEL) is a Kaposi's sarcoma herpes virus (KSHV)-induced lymphoma that typically arises in body cavities of HIV-infected patients. PEL cells are often co-infected with Epstein-Barr virus (EBV). "PEL-like" lymphoma is a KSHV-unrelated lymphoma that arises in body cavities of HIV-negative patients. "PEL-like" lymphoma is sometimes EBV positive. The derivation of PEL/"PEL-like" cells is unclear. Methods Mesothelial cells were cultured from body cavity effusions of 23 patients. Cell proliferation, cytokine secretion, marker phenotypes, KSHV/EBV infection, and clonality were evaluated by standard methods. Gene expression was measured by quantitative polymerase chain reaction and immunoblotting. A mouse model of PEL (3 mice/group) was used to evaluate tumorigenicity. Results We found that the mesothelia derived from six effusions of HIV-infected patients with PEL or other KSHV-associated diseases contained rare KSHV + or EBV + mesothelial cells. After extended culture (16-17 weeks), some mesothelial cells underwent a trans-differentiation process, generating lymphoid-type CD45 + /B220 + , CD5 + , CD27 + , CD43 + , CD11c + , and CD3 - cells resembling "B1-cells," most commonly found in mouse body cavities. These "B1-like" cells were short lived. However, long-term KSHV + EBV - and EBV + KSHV - clonal cell lines emerged from mesothelial cultures from two patients that were clonally distinct from the monoclonal or polyclonal B-cell populations found in the patients' original effusions. Conclusions Mesothelial-to-lymphoid transformation is a newly identified in vitro process that generates "B1-like" cells and is associated with the emergence of long-lived KSHV or EBV-infected cell lines in KSHV-infected patients. These results identify mesothelial cultures as a source of PEL cells and lymphoid cells in humans.
Collapse
Affiliation(s)
- David Sanchez-Martin
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Thomas S Uldrick
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Hyeongil Kwak
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Hidetaka Ohnuki
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Mark N Polizzotto
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Christina M Annunziata
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mark Raffeld
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Kathleen M Wyvill
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Karen Aleman
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Victoria Wang
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Vickie A Marshall
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Denise Whitby
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Giovanna Tosato
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
132
|
Lei Y, Chen Q, Chen J, Liu D. Potential ameliorative effects of grape seed-derived polyphenols against cadmium induced prostatic deficits. Biomed Pharmacother 2017; 91:707-713. [PMID: 28499242 DOI: 10.1016/j.biopha.2017.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/25/2017] [Accepted: 05/02/2017] [Indexed: 02/06/2023] Open
Abstract
Grape (Vitis vinifera) is consumed as fruit and wine for people. In this study, rat model of prostatic deficits was induced by orally receiving 60mg/L cadmium chlorine (CdCl2) through drinking water for 20 weeks. Grape seed-derived polyphenols extract (GSP) was orally given for 20 weeks. Finally, the prostatic levels of E-cadherin, fibronectin, and α-smooth muscle actin were measured by immunohistochemical and qPCR analysis. The oxidative stress was measured by detecting the levels of malondialdehyde, nitric oxide, reduced glutathione/oxidized glutathione and enzymatic antioxidant status. Additionally, the prostatic expressions of transforming growth factor-β1 (TGF-β1), type I TGF-β receptor (TGF-βRI), Smad3, phosphorylation-Smad3 (p-Smad3), Smad7, nuclear related factor-2 (Nrf-2), heme oxygenase-1 (HO-1) and γ-glutamate cysteine ligase catalytic subunit (γ-GCLC) were measured by western blot. The levels of microRNA (miR)-133a/b were measured by qPCR. It was observed that GSP ameliorated the prostatic oxidative stress and fibrosis induced by CdCl2. GSP also inhibited the over-generation of TGF-β1 and p-Smad3, as well as enhanced the levels of Smad7, Nrf-2, HO-1, γ-GCLC and miR-133a/b. These results showed that GSP could attenuate Cd-induced prostatic deficits.
Collapse
Affiliation(s)
- Yongfang Lei
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Chen
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinglou Chen
- Department of Pharmacy, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
133
|
Gruber-Dujardin E, Bleyer M, Mätz-Rensing K. Morphological and immunohistochemical characterization of spontaneous endometriosis in rhesus macaques ( Macaca mulatta). Primate Biol 2017; 4:77-91. [PMID: 32110695 PMCID: PMC7041517 DOI: 10.5194/pb-4-77-2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/21/2017] [Indexed: 11/11/2022] Open
Abstract
Several cases of spontaneous endometriosis in middle-aged to old rhesus macaques (Macaca mulatta) from the breeding colony of the German Primate Center were thoroughly characterized with regards to anatomical distribution and macroscopic appearance, histological differentiation and immunohistochemical profile including somatic markers, hormonal receptors, and proliferation indices. More than half of the examined animals (five of nine) were directly related to one breeding male, supporting a strong genetic predisposition. Histologically, four different types of endometriotic lesions, depending on the degree of ectopic endometrial gland and stromal differentiation (well differentiated, purely stromal, mixed differentiation, poorly differentiated), could be constantly identified within all animals. Immunohistochemistry (IHC) of cytokeratin (CK), vimentin, smooth muscle actin (SMA), desmin, estrogen (ER), and progesterone (PR) receptors as well as of the nuclear proteins Ki67 and p53 revealed varying staining patterns in the four different types of endometriosis differentiation and compared to normal endometrium. Purely stromal, mixed, or poorly differentiated lesions, especially, showed additional cytokeratin-positive stromal cells, whereas epithelial cells of endometriosis with mixed or poor differentiation increasingly expressed mesenchymal markers (vimentin, SMA). Hormonal receptor and Ki67 expression in well-differentiated endometriotic lesions mostly reflected that of normal endometrial tissue according to the cyclic phase of the animal, while the expression gradually diminished with decreasing grade of differentiation. However, increased nuclear accumulations of p53 antigen could only be continuously detected in epithelial cells of mixed or poorly differentiated endometriosis. Altogether, these findings support the pathogenetic theory of coelomic metaplasia, since the expression profiles of somatic markers in less differentiated forms closely resembled that of mesothelial cells. Thus, the four different histological types of endometriosis might display subsequent grades of differentiation in the course of time, with poorly differentiated types representing newly formed, immature lesions and well-differentiated types being older, fully differentiated forms, rather than being the outcome of dedifferentiation processes.
Collapse
Affiliation(s)
| | - Martina Bleyer
- Pathology Unit, German Primate Center, 37077 Göttingen, Germany
| | | |
Collapse
|
134
|
Rouka E, Vavougios GD, Solenov EI, Gourgoulianis KI, Hatzoglou C, Zarogiannis SG. Transcriptomic Analysis of the Claudin Interactome in Malignant Pleural Mesothelioma: Evaluation of the Effect of Disease Phenotype, Asbestos Exposure, and CDKN2A Deletion Status. Front Physiol 2017; 8:156. [PMID: 28377727 PMCID: PMC5359316 DOI: 10.3389/fphys.2017.00156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/28/2017] [Indexed: 01/14/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a highly aggressive tumor primarily associated with asbestos exposure. Early detection of MPM is restricted by the long latency period until clinical presentation, the ineffectiveness of imaging techniques in early stage detection and the lack of non-invasive biomarkers with high sensitivity and specificity. In this study we used transcriptome data mining in order to determine which CLAUDIN (CLDN) genes are differentially expressed in MPM as compared to controls. Using the same approach we identified the interactome of the differentially expressed CLDN genes and assessed their expression profile. Subsequently, we evaluated the effect of tumor histology, asbestos exposure, CDKN2A deletion status, and gender on the gene expression level of the claudin interactome. We found that 5 out of 15 studied CLDNs (4, 5, 8, 10, 15) and 4 out of 27 available interactors (S100B, SHBG, CDH5, CXCL8) were differentially expressed in MPM specimens vs. healthy tissues. The genes encoding the CLDN-15 and S100B proteins present differences in their expression profile between the three histological subtypes of MPM. Moreover, CLDN-15 is significantly under-expressed in the cohort of patients with previous history of asbestos exposure. CLDN-15 was also found significantly underexpressed in patients lacking the CDKN2A gene. These results warrant the detailed in vitro investigation of the role of CDLN-15 in the pathobiology of MPM.
Collapse
Affiliation(s)
- Erasmia Rouka
- Gradute Program in Primary Health Care, Faculty of Medicine, University of Thessaly Larissa, Greece
| | - Georgios D Vavougios
- Department of Respiratory Medicine, University of Thessaly Medical School Larissa, Greece
| | - Evgeniy I Solenov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of SciencesNovosibirsk, Russia; Department of Physiology, Novosibirsk State UniversityNovosibirsk, Russia
| | - Konstantinos I Gourgoulianis
- Gradute Program in Primary Health Care, Faculty of Medicine, University of ThessalyLarissa, Greece; Department of Respiratory Medicine, University of Thessaly Medical SchoolLarissa, Greece
| | - Chrissi Hatzoglou
- Gradute Program in Primary Health Care, Faculty of Medicine, University of ThessalyLarissa, Greece; Department of Respiratory Medicine, University of Thessaly Medical SchoolLarissa, Greece; Department of Physiology, Faculty of Medicine, University of ThessalyLarissa, Greece
| | - Sotirios G Zarogiannis
- Gradute Program in Primary Health Care, Faculty of Medicine, University of ThessalyLarissa, Greece; Department of Respiratory Medicine, University of Thessaly Medical SchoolLarissa, Greece; Department of Physiology, Faculty of Medicine, University of ThessalyLarissa, Greece
| |
Collapse
|
135
|
Wilson RB. Changes in the coelomic microclimate during carbon dioxide laparoscopy: morphological and functional implications. Pleura Peritoneum 2017; 2:17-31. [PMID: 30911629 PMCID: PMC6328073 DOI: 10.1515/pp-pp-2017-0001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 02/17/2017] [Indexed: 02/06/2023] Open
Abstract
In this article the adverse effects of laparoscopic CO2 pneumoperitoneum and coelomic climate change, and their potential prevention by warmed, humidified carbon dioxide insufflation are reviewed. The use of pressurized cold, dry carbon dioxide (C02) pneumoperitoneum causes a number of local effects on the peritoneal mesothelium, as well as systemic effects. These can be observed at a macroscopic, microscopic, cellular and metabolic level. Local effects include evaporative cooling, oxidative stress, desiccation of mesothelium, disruption of mesothelial cell junctions and glycocalyx, diminished scavenging of reactive oxygen species, decreased peritoneal blood flow, peritoneal acidosis, peritoneal hypoxia or necrosis, exposure of the basal lamina and extracellular matrix, lymphocyte infiltration, and generation of peritoneal cytokines such as IL-1, IL-6, IL-8 and TNFα. Such damage is increased by high CO2 insufflation pressures and gas velocities and prolonged laparoscopic procedures. The resulting disruption of the glycocalyx, mesothelial cell barrier and exposure of the extracellular matrix creates a cascade of immunological and pro-inflammatory events and favours tumour cell implantation. Systemic effects include cardiopulmonary and respiratory changes, hypothermia and acidosis. Such coelomic climate change can be prevented by the use of lower insufflation pressures and preconditioned warm humidified CO2. By achieving a more physiological temperature, pressure and humidity, the coelomic microenvironment can be better preserved during pneumoperitoneum. This has the potential clinical benefits of maintaining isothermia and perfusion, reducing postoperative pain, preventing adhesions and inhibiting cancer cell implantation in laparoscopic surgery.
Collapse
Affiliation(s)
- Robert B. Wilson
- Department of Upper Gastrointestinal Surgery, Liverpool Hospital, Elizabeth St, Liverpool, Sydney, NSW, 2170, Australia
| |
Collapse
|
136
|
Strippoli R, Echarri A, Del Pozo MA. Cell-Based Assays to Study ERK Pathway/Caveolin1 Interactions. Methods Mol Biol 2017; 1487:163-174. [PMID: 27924566 DOI: 10.1007/978-1-4939-6424-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Caveolin1, the main component of caveolae, plays a major role in regulating cell motility, gene expression, and cytoskeleton remodeling downstream of many membrane receptors. Here, we summarize different techniques set up to study changes in cell morphology and cell motility regulated by ERK/caveolin1 interactions during induction of epithelial mesenchymal transition (EMT) in mesothelial cells (MCs).
Collapse
Affiliation(s)
- Raffaele Strippoli
- Integrin Signaling Laboratory, Cell Biology & Physiology Program, Cell & Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares, Melchor Fernandez Almagro, 3, Madrid, 28029, Spain.
- Department of Cellular Biotechnologies and Haematology, Sapienza University of Rome, Viale Regina Elena 324, 00185, Rome, Italy.
| | - Asier Echarri
- Integrin Signaling Laboratory, Cell Biology & Physiology Program, Cell & Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares, Melchor Fernandez Almagro, 3, Madrid, 28029, Spain
| | - Miguel Angel Del Pozo
- Integrin Signaling Laboratory, Cell Biology & Physiology Program, Cell & Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares, Melchor Fernandez Almagro, 3, Madrid, 28029, Spain.
| |
Collapse
|
137
|
Brozovic A. The relationship between platinum drug resistance and epithelial-mesenchymal transition. Arch Toxicol 2016; 91:605-619. [PMID: 28032148 DOI: 10.1007/s00204-016-1912-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/13/2016] [Indexed: 01/10/2023]
Abstract
One of the most commonly used chemotherapeutics, platinum drugs are used to treat a wide range of cancer types. Although many cancers initially respond well to those drugs, drug resistance occurs frequently and different molecular mechanisms have been associated with it. However, predictive biomarkers of cellular response in specific tumour types still do not exist. Epithelial-mesenchymal transition (EMT) is a malignant cancer phenotype characterized by aggressive invasion and metastasis, and resistance to apoptosis. Recent studies indicate that EMT accompanies the development of drug resistance to a number of cancer chemotherapies. The link between these two phenomena is still not elucidated, although several important molecules involved in both these complex processes, such as transcription factors (SNAIL, TWIST, ZEB, etc.) and miRNAs (miRNA-200 family, miR-15, miR-186, etc.) have been recognized as important. This article reviews numerous unresolved issues regarding platinum drugs resistance and EMT, the complexity of the signalling networks that regulate those two phenomena and their importance in tumour response and spreading which are becoming focuses of interest of many scientists. This article also presents molecules involved in platinum resistance and EMT as possible targets for new cancer therapy.
Collapse
Affiliation(s)
- Anamaria Brozovic
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia.
| |
Collapse
|
138
|
A Subset of Malignant Mesothelioma Tumors Retain Osteogenic Potential. Sci Rep 2016; 6:36349. [PMID: 27886205 PMCID: PMC5122867 DOI: 10.1038/srep36349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 10/13/2016] [Indexed: 01/16/2023] Open
Abstract
Malignant mesothelioma (MM) is an aggressive serosal tumor associated with asbestos exposure. We previously demonstrated that mesothelial cells differentiate into cells of different mesenchymal lineages and hypothesize that osseous tissue observed in a subset of MM patients is due to local differentiation of MM cells. In this study, the capacity of human and mouse MM cells to differentiate into osteoblast-like cells was determined in vitro using a functional model of bone nodule formation and in vivo using an established model of MM. Human and murine MM cell lines cultured in osteogenic medium expressed alkaline phosphatase and formed mineralized bone-like nodules. Several human and mouse MM cell lines also expressed a number of osteoblast phenotype markers, including runt-related transcription factor 2 (RUNX2), osteopontin, osteonectin and bone sialoprotein mRNA and protein. Histological analysis of murine MM tumors identified areas of ossification within the tumor, similar to those observed in human MM biopsies. These data demonstrate the ability of MM to differentiate into another mesenchymal cell type and suggest that MM cells may contribute to the formation of the heterologous elements observed in MM tumors.
Collapse
|
139
|
Miyoshi H. Wnt-expressing cells in the intestines: guides for tissue remodeling. J Biochem 2016; 161:19-25. [PMID: 28013225 DOI: 10.1093/jb/mvw070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/28/2016] [Indexed: 01/07/2023] Open
Abstract
The crypt is a minimal functional unit in the intestinal epithelium. This unique structure is maintained by surrounding mesenchymal cells that focally interact with associated epithelial cells. Canonical and non-canonical Wnt ligands enable specific microenvironments localized to each end of the crypt major axis. While canonical Wnt-expressing cells are localized near the crypt bottom where intestinal stem cells reside, non-canonical Wnt-expressing cells are positioned beneath the luminal surface of epithelial cells. During wound healing, propagation and appropriate relocation of each cell population are thought to ensure subsequent crypt regeneration. In this review, I integrate information from recent studies on Wnt-expressing cells and intestinal fibroblast lineages and discuss their roles in homeostasis and wound healing. More information on the lineages of Wnt-expressing cells will help clarify the mechanisms of epithelial tissue formation.
Collapse
Affiliation(s)
- Hiroyuki Miyoshi
- Division of Experimental Therapeutics, Department of Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
140
|
Snitow M, Lu M, Cheng L, Zhou S, Morrisey EE. Ezh2 restricts the smooth muscle lineage during mouse lung mesothelial development. Development 2016; 143:3733-3741. [PMID: 27578795 DOI: 10.1242/dev.134932] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 08/17/2016] [Indexed: 01/12/2023]
Abstract
During development, the lung mesoderm generates a variety of cell lineages, including airway and vascular smooth muscle. Epigenetic changes in adult lung mesodermal lineages are thought to contribute towards diseases such as idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease, although the factors that regulate early lung mesoderm development are unknown. We show in mouse that the PRC2 component Ezh2 is required to restrict smooth muscle differentiation in the developing lung mesothelium. Mesodermal loss of Ezh2 leads to the formation of ectopic smooth muscle in the submesothelial region of the developing lung mesoderm. Loss of Ezh2 specifically in the developing mesothelium reveals a mesothelial cell-autonomous role for Ezh2 in repression of the smooth muscle differentiation program. Loss of Ezh2 derepresses expression of myocardin and Tbx18, which are important regulators of smooth muscle differentiation from the mesothelium and related cell lineages. Together, these findings uncover an Ezh2-dependent mechanism to restrict the smooth muscle gene expression program in the developing mesothelium and allow appropriate cell fate decisions to occur in this multipotent mesoderm lineage.
Collapse
Affiliation(s)
- Melinda Snitow
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - MinMin Lu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lan Cheng
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Su Zhou
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E Morrisey
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA .,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
141
|
Abstract
PURPOSE OF REVIEW This article assesses the role of the mesentery in Crohn's disease. RECENT FINDINGS The mesentery is centrally positioned both anatomically and physiologically. Overlapping mesenteric and submucosal mesenchymal contributions are important in the pathobiology of Crohn's disease. Mesenteric contributions explain the topographic distribution of Crohn's disease in general and mucosal disease in particular. Operative strategies that are mesenteric based (i.e. mesocolic excision) may reduce rates of postoperative recurrence. SUMMARY The net effect of mesenteric events in Crohn's disease is pathologic. This can be targeted by operative means. VIDEO ABSTRACT http://links.lww.com/COG/A18.
Collapse
|
142
|
Kawanishi K. Diverse properties of the mesothelial cells in health and disease. Pleura Peritoneum 2016; 1:79-89. [PMID: 30911611 DOI: 10.1515/pp-2016-0009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/19/2016] [Indexed: 12/17/2022] Open
Abstract
Mesothelial cells (MCs) form the superficial anatomic layer of serosal membranes, including pleura, pericardium, peritoneum, and the tunica of the reproductive organs. MCs produce a protective, non-adhesive barrier against physical and biochemical damages. MCs express a wide range of phenotypic markers, including vimentin and cytokeratins. MCs play key roles in fluid transport and inflammation, as reflected by the modulation of biochemical markers such as transporters, adhesion molecules, cytokines, growth factors, reactive oxygen species and their scavengers. MCs synthesize extracellular matrix related molecules, and the surface of MC microvilli secretes a highly hydrophilic protective barrier, "glycocalyx", consisting mainly of glycosaminoglycans. MCs maintain a balance between procoagulant and fibrinolytic activation by producing a whole range of regulators, can synthetize fibrin and therefore form adhesions. Synthesis and recognition of hyaluronan and sialic acids might be a new insight to explain immunoactive and immunoregulatory properties of MCs. Epithelial to mesenchymal transition of MCs may involve serosal repair and remodeling. MCs might also play a role in the development and remodeling of visceral adipose tissue. Taken together, MCs play important roles in health and disease in serosal cavities of the body. The mesothelium is not just a membrane and should be considered as an organ.
Collapse
|
143
|
Molecular Mechanisms Underlying Peritoneal EMT and Fibrosis. Stem Cells Int 2016; 2016:3543678. [PMID: 26941801 PMCID: PMC4752998 DOI: 10.1155/2016/3543678] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/10/2016] [Indexed: 12/26/2022] Open
Abstract
Peritoneal dialysis is a form of renal replacement alternative to the hemodialysis. During this treatment, the peritoneal membrane acts as a permeable barrier for exchange of solutes and water. Continual exposure to dialysis solutions, as well as episodes of peritonitis and hemoperitoneum, can cause acute/chronic inflammation and injury to the peritoneal membrane, which undergoes progressive fibrosis, angiogenesis, and vasculopathy, eventually leading to discontinuation of the peritoneal dialysis. Among the different events controlling this pathological process, epithelial to mesenchymal transition of mesothelial cells plays a main role in the induction of fibrosis and in subsequent functional deterioration of the peritoneal membrane. Here, the main extracellular inducers and cellular players are described. Moreover, signaling pathways acting during this process are elucidated, with emphasis on signals delivered by TGF-β family members and by Toll-like/IL-1β receptors. The understanding of molecular mechanisms underlying fibrosis of the peritoneal membrane has both a basic and a translational relevance, since it may be useful for setup of therapies aimed at counteracting the deterioration as well as restoring the homeostasis of the peritoneal membrane.
Collapse
|
144
|
New developments in peritoneal fibroblast biology: implications for inflammation and fibrosis in peritoneal dialysis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:134708. [PMID: 26495280 PMCID: PMC4606153 DOI: 10.1155/2015/134708] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/11/2015] [Accepted: 08/25/2015] [Indexed: 01/19/2023]
Abstract
Uraemia and long-term peritoneal dialysis (PD) can lead to fibrotic thickening of the peritoneal membrane, which may limit its dialytic function. Peritoneal fibrosis is associated with the appearance of myofibroblasts and expansion of extracellular matrix. The extent of contribution of resident peritoneal fibroblasts to these changes is a matter of debate. Recent studies point to a significant heterogeneity and complexity of the peritoneal fibroblast population. Here, we review recent developments in peritoneal fibroblast biology and summarize the current knowledge on the involvement of peritoneal fibroblasts in peritoneal inflammation and fibrosis.
Collapse
|
145
|
Gupta OT, Gupta RK. Visceral Adipose Tissue Mesothelial Cells: Living on the Edge or Just Taking Up Space? Trends Endocrinol Metab 2015; 26:515-523. [PMID: 26412153 DOI: 10.1016/j.tem.2015.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/29/2015] [Accepted: 07/13/2015] [Indexed: 01/22/2023]
Abstract
Visceral adiposity and pathological adipose tissue remodeling, a result of overnutrition, are strong predictors of metabolic health in obesity. Factors intrinsic to visceral adipose depots are likely to play a causal role in eliciting the detrimental effects of this tissue on systemic nutrient homeostasis. The visceral adipose-associated mesothelium, a monolayer of epithelial cells of mesodermal origin that line the visceral serosa, has recently attracted attention for its role in metabolic dysfunction. Here we highlight and consolidate literature from various fields of study that points to the visceral adipose-associated mesothelium as a potential contributor to adipose development and remodeling. We propose a hypothesis in which adipose mesothelial cells represent a visceral depot-specific determinant of adipose tissue health in obesity.
Collapse
Affiliation(s)
- Olga T Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, Division of Pediatric Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Rana K Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|