101
|
NF-κB regulation by bisbenzylisoquinoline alkaloids in human T cells: a structure–activity relationship study. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02624-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
102
|
Andrijauskaite K, Wargovich MJ. Role of natural products in breast cancer related symptomology: Targeting chronic inflammation. Semin Cancer Biol 2020; 80:370-378. [PMID: 32891720 DOI: 10.1016/j.semcancer.2020.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 08/03/2020] [Accepted: 08/16/2020] [Indexed: 02/06/2023]
Abstract
Breast cancer is the most common cancer in women worldwide. There have been many advancements in the treatment of breast cancer leading to an increased population of patients living with this disease. Accumulating evidence suggests that cancer diagnosis and aftermath experienced stress could not only affect the quality of life of cancer patients, but it could also influence their disease outcome. The magnitude of stress experienced by breast cancer patients is often compared to the post-traumatic stress disorder-like symptoms suggested to be mediated by the chronic inflammation including NF-κB, AKt, p53 and other inflammatory pathways. Here, we describe the symptomology of PTSD-like symptoms in breast cancer patients and argue that they may in fact be caused by or maintained through aspects of chronic inflammation mediated by the pro-inflammatory markers. Evidence exists that natural products that might attenuate or lessen the effects of chronic inflammation abound in the diet. We summarize some possible agents that might abate the genesis of symptoms experienced by breast cancer patients while mitigating the effect of inflammation.
Collapse
Affiliation(s)
- Kristina Andrijauskaite
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, 78229, United States.
| | - Michael J Wargovich
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, 78229, United States
| |
Collapse
|
103
|
Shahzadi I, Ali Z, Bukhari S, Narula AS, Mirza B, Mohammadinejad R. Possible applications of salvianolic acid B against different cancers. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:218-238. [PMID: 36046777 PMCID: PMC9400738 DOI: 10.37349/etat.2020.00014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer is the second death causing disease worldwide after cardiovascular abnormalities. The difficulty in treating tumor cells with more precise targeted interventions and recurrence of cancer after treatment may pose great difficulty in developing sustainable therapeutic regimens. These limitations have prompted the need to explore several compounds with ability to cease tumor growth while at the same time induce apoptosis of tumor cells. Several studies have emphasized the use of natural compounds as antitumor agents due to their high efficacy against cancer cells and low toxicity in normal cells. Salvianolic acid B (SAB), a naturally occurring phenolic compound extracted from the radix of Chinese herb Salvia miltiorrhiza can induce apoptosis in different types of tumor cells. It can be used to treat cardiovascular and neurodegenerative disorders, hepatic fibrosis, and cancers. Several studies have shown that SAB can mitigate tumorigenesis by modulating MAPK, PI3K/AKT, and NF-ĸB signaling pathways. It also sensitizes the tumor cells to different anti-cancer agents by reversing the multi-drug resistance mechanisms found in tumor cells. This review summarizes the studies showing antitumor potential of SAB in different types of cancer cell lines, animal models and highlights the possible mechanisms through which SAB can induce apoptosis, inhibit growth and metastasis in tumor cells. Moreover, the possible role of nano-technological approaches to induce targeted delivery of SAB to eradicate tumor cells has been also discussed.
Collapse
Affiliation(s)
- Iram Shahzadi
- Plant Molecular Biology Lab, Institute of Biological Sciences, Department of Biochemistry, Quaid i Azam University, Islamabad 45320, Pakistan
| | - Zain Ali
- Molecular Cancer Therapeutics Lab, Institute of Biological Sciences, Department of Biochemistry, Quaid i Azam University, Islamabad 45320, Pakistan
| | - Sidra Bukhari
- Molecular Cancer Therapeutics Lab, Institute of Biological Sciences, Department of Biochemistry, Quaid i Azam University, Islamabad 45320, Pakistan; Naula Research, Chapel Hill, NC 27516, USA
| | | | - Bushra Mirza
- Plant Molecular Biology Lab, Institute of Biological Sciences, Department of Biochemistry, Quaid i Azam University, Islamabad 45320, Pakistan
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran
| |
Collapse
|
104
|
Ashrafizadeh M, Hushmandi K, Rahmani Moghadam E, Zarrin V, Hosseinzadeh Kashani S, Bokaie S, Najafi M, Tavakol S, Mohammadinejad R, Nabavi N, Hsieh CL, Zarepour A, Zare EN, Zarrabi A, Makvandi P. Progress in Delivery of siRNA-Based Therapeutics Employing Nano-Vehicles for Treatment of Prostate Cancer. Bioengineering (Basel) 2020; 7:E91. [PMID: 32784981 PMCID: PMC7552721 DOI: 10.3390/bioengineering7030091] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa) accounts for a high number of deaths in males with no available curative treatments. Patients with PCa are commonly diagnosed in advanced stages due to the lack of symptoms in the early stages. Recently, the research focus was directed toward gene editing in cancer therapy. Small interfering RNA (siRNA) intervention is considered as a powerful tool for gene silencing (knockdown), enabling the suppression of oncogene factors in cancer. This strategy is applied to the treatment of various cancers including PCa. The siRNA can inhibit proliferation and invasion of PCa cells and is able to promote the anti-tumor activity of chemotherapeutic agents. However, the off-target effects of siRNA therapy remarkably reduce its efficacy in PCa therapy. To date, various carriers were designed to improve the delivery of siRNA and, among them, nanoparticles are of importance. Nanoparticles enable the targeted delivery of siRNAs and enhance their potential in the downregulation of target genes of interest. Additionally, nanoparticles can provide a platform for the co-delivery of siRNAs and anti-tumor drugs, resulting in decreased growth and migration of PCa cells. The efficacy, specificity, and delivery of siRNAs are comprehensively discussed in this review to direct further studies toward using siRNAs and their nanoscale-delivery systems in PCa therapy and perhaps other cancer types.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran; (K.H.); (S.B.)
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Vahideh Zarrin
- Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | | | - Saied Bokaie
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran; (K.H.); (S.B.)
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran;
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran;
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kermaan 55425147, Iran;
| | - Noushin Nabavi
- Research Services, University of Victoria, Victoria, BC V8W 2Y2, Canada;
| | - Chia-Ling Hsieh
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei City 110, Taiwan;
| | - Atefeh Zarepour
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran;
| | | | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 61537-53843, Iran
| |
Collapse
|
105
|
Wong AHH, Shin EM, Tergaonkar V, Chng WJ. Targeting NF-κB Signaling for Multiple Myeloma. Cancers (Basel) 2020; 12:cancers12082203. [PMID: 32781681 PMCID: PMC7463546 DOI: 10.3390/cancers12082203] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy in the world. Even though survival rates have significantly risen over the past years, MM remains incurable, and is also far from reaching the point of being managed as a chronic disease. This paper reviews the evolution of MM therapies, focusing on anti-MM drugs that target the molecular mechanisms of nuclear factor kappa B (NF-κB) signaling. We also provide our perspectives on contemporary research findings and insights for future drug development.
Collapse
Affiliation(s)
- Ada Hang-Heng Wong
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore; (E.M.S.); (V.T.)
- AW Medical Company Limited, Macau, China
- Correspondence: (A.H.-H.W.); (W.-J.C.); Tel.: +65-6586-9709 (A.H.-H.W.); +65-6772-4612 (W.-J.C.)
| | - Eun Myoung Shin
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore; (E.M.S.); (V.T.)
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore; (E.M.S.); (V.T.)
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
- Department of Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore 119074, Singapore
- Correspondence: (A.H.-H.W.); (W.-J.C.); Tel.: +65-6586-9709 (A.H.-H.W.); +65-6772-4612 (W.-J.C.)
| |
Collapse
|
106
|
Ramadass V, Vaiyapuri T, Tergaonkar V. Small Molecule NF-κB Pathway Inhibitors in Clinic. Int J Mol Sci 2020; 21:E5164. [PMID: 32708302 PMCID: PMC7404026 DOI: 10.3390/ijms21145164] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022] Open
Abstract
Nuclear factor kappa B (NF-κB) signaling is implicated in all major human chronic diseases, with its role in transcription of hundreds of gene well established in the literature. This has propelled research into targeting the NF-κB pathways for modulating expression of those genes and the diseases mediated by them. In-spite of the critical, but often promiscuous role played by this pathway and the inhibition causing adverse drug reaction, currently many biologics, macromolecules, and small molecules that modulate this pathway are in the market or in clinical trials. Furthermore, many marketed drugs that were later found to also have NF-κB targeting activity were repurposed for new therapeutic interventions. Despite the rising importance of biologics in drug discovery, small molecules got around 76% of US-FDA (Food and Drug Administration-US) approval in the last decade. This encouraged us to review information regarding clinically relevant small molecule inhibitors of the NF-κB pathway from cell surface receptor stimulation to nuclear signaling. We have also highlighted the underexplored targets in this pathway that have potential to succeed in clinic.
Collapse
Affiliation(s)
| | | | - Vinay Tergaonkar
- Institute of Molecular and Cell Biology (IMCB), Singapore 138673, Singapore;
- Department of Pathology, NUS, Singapore 117597, Singapore
| |
Collapse
|
107
|
Sin ZW, Bhardwaj V, Pandey AK, Garg M. A brief overview of antitumoral actions of bruceine D. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:200-217. [PMID: 36046775 PMCID: PMC9400783 DOI: 10.37349/etat.2020.00013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/30/2020] [Indexed: 12/25/2022] Open
Abstract
Cancer remains the second leading cause of mortality globally. In combating cancer, conventional chemotherapy and/or radiotherapy are administered as first-line therapy. However, these are usually accompanied with adverse side effects that decrease the quality of patient’s lives. As such, natural bioactive compounds have gained an attraction in the scientific and medical community as evidence of their anticancer properties and attenuation of side effects mounted. In particular, quassinoids have been found to exhibit a plethora of inhibitory activities such as anti-proliferative effects on tumor development and metastasis. Recently, bruceine D, a quassinoid isolated from the shrub Brucea javanica (L.) Merr. (Simaroubaceae), has come under immense investigation on its antineoplastic properties in various human cancers including pancreas, breast, lung, blood, bone, and liver. In this review, we have highlighted the antineoplastic effects of bruceine D and its mode of actions in different tumor models.
Collapse
Affiliation(s)
- Zi Wayne Sin
- Department of Biological Sciences, National University of Singapore, Singapore 117600, Singapore
| | - Vipul Bhardwaj
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida 201313, India
| | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Haryana 122413, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida 201313, India
| |
Collapse
|
108
|
Zhou YX, Gong XH, Zhang H, Peng C. A review on the pharmacokinetics of paeoniflorin and its anti-inflammatory and immunomodulatory effects. Biomed Pharmacother 2020; 130:110505. [PMID: 32682112 DOI: 10.1016/j.biopha.2020.110505] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/25/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023] Open
Abstract
Increasing pharmacological evidence supports that paeoniflorin, a water-soluble monoterpene glycoside isolated from Paeonia lactiflora Pall. (Shaoyao in Chinese), has a wide range of medicinal properties including anti-inflammatory, antioxidant, antithrombotic, anticonvulsive, analgesic, cardioprotective, neuroprotective, hepatoprotective, antidepressant-like, antitumoral, and immune-regulatory activities; as well as enhancing cognition and attenuating learning impairment. In addition to pharmacodynamic studies, information on pharmacokinetics is also significant for the further development and utilization of paeoniflorin. The present review focuses on the absorption, distribution, metabolism, and excretion of paeoniflorin, especially main pharmacological activities of paeoniflorin on inflammation and immune function. According to the findings obtained both in vitro and in vivo, a broad application prospect has been opened for paeoniflorin. However, further studies are needed to clarity the direct molecular mechanisms and key targets underlying the beneficial effects of paeoniflorin on inflammation and immunity.
Collapse
Affiliation(s)
- Yan-Xi Zhou
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Library, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiao-Hong Gong
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hong Zhang
- Institute of Interdisciplinary Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Cheng Peng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
109
|
Fernandes SG, Dsouza R, Pandya G, Kirtonia A, Tergaonkar V, Lee SY, Garg M, Khattar E. Role of Telomeres and Telomeric Proteins in Human Malignancies and Their Therapeutic Potential. Cancers (Basel) 2020; 12:E1901. [PMID: 32674474 PMCID: PMC7409176 DOI: 10.3390/cancers12071901] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022] Open
Abstract
Telomeres are the ends of linear chromosomes comprised of repetitive nucleotide sequences in humans. Telomeres preserve chromosomal stability and genomic integrity. Telomere length shortens with every cell division in somatic cells, eventually resulting in replicative senescence once telomere length becomes critically short. Telomere shortening can be overcome by telomerase enzyme activity that is undetectable in somatic cells, while being active in germline cells, stem cells, and immune cells. Telomeres are bound by a shelterin complex that regulates telomere lengthening as well as protects them from being identified as DNA damage sites. Telomeres are transcribed by RNA polymerase II, and generate a long noncoding RNA called telomeric repeat-containing RNA (TERRA), which plays a key role in regulating subtelomeric gene expression. Replicative immortality and genome instability are hallmarks of cancer and to attain them cancer cells exploit telomere maintenance and telomere protection mechanisms. Thus, understanding the role of telomeres and their associated proteins in cancer initiation, progression and treatment is very important. The present review highlights the critical role of various telomeric components with recently established functions in cancer. Further, current strategies to target various telomeric components including human telomerase reverse transcriptase (hTERT) as a therapeutic approach in human malignancies are discussed.
Collapse
Affiliation(s)
- Stina George Fernandes
- Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed to be University), Vile Parle West, Mumbai 400056, India; (S.G.F.); (R.D.)
| | - Rebecca Dsouza
- Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed to be University), Vile Parle West, Mumbai 400056, India; (S.G.F.); (R.D.)
| | - Gouri Pandya
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida 201313, India; (G.P.); (A.K.)
| | - Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida 201313, India; (G.P.); (A.K.)
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; (V.T.); (S.Y.L.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
| | - Sook Y. Lee
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; (V.T.); (S.Y.L.)
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida 201313, India; (G.P.); (A.K.)
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed to be University), Vile Parle West, Mumbai 400056, India; (S.G.F.); (R.D.)
| |
Collapse
|
110
|
Wang WT, Liao SF, Wu ZL, Chang CW, Wu JY. Simultaneous study of antioxidant activity, DNA protection and anti-inflammatory effect of Vernonia amygdalina leaves extracts. PLoS One 2020; 15:e0235717. [PMID: 32658905 PMCID: PMC7357738 DOI: 10.1371/journal.pone.0235717] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/21/2020] [Indexed: 11/19/2022] Open
Abstract
Vernonia amygdalina (VA) has been reported to have antioxidant potential; however, its DNA protection and anti-inflammatory properties remain unclear. We aimed to investigate whether aqueous (WEVAL) and alcoholic (EEVAL) VA extracts exert similar antioxidant, DNA protection and anti-inflammatory effects and attempted to explore the mechanism underlying the anti-inflammatory effects. These results demonstrated that WEVAL had greater polyphenolic and flavonoid contents, as well as a stronger reducing power, DPPH radical scavenging and DNA protective activity. Moreover, both extracts reduced lipopolysaccharide (LPS)-induced expression of COX-II, iNOS, pro-inflammatory factors, including NO, TNF-α, IL-1β, and IL-10. Compared with WEVAL, EEVAL was a more potent inflammatory inhibitor. Both extracts similarly inhibited LPS-induced MAPK (p38) and NF-κB expression. Our findings indicate that WEVAL and EEVAL have diverse antioxidant and anti-inflammatory effects. WEVAL had a stronger antioxidant and DNA protection activity; contrastingly, EEVAL had a stronger anti-inflammatory ability. The anti-inflammatory activity involves reduced pro-inflammatory cytokines through NF-κB down-regulation and MAPK inhibition. These results demonstrated that production of WEVAL and EEVAL from VA leaves may provide a safe and efficacious source of pharmaceutical applications, with antioxidant, DNA protective and anti-inflammation activities.
Collapse
Affiliation(s)
- Wei-Te Wang
- Department of Food Science and Biotechnology, Da-Yeh University, Changhua, Taiwan
- Department of Physical Medicine and Rehabilitation, Changhua Christian Hospital, Changhua, Taiwan
| | - Su-Fen Liao
- Department of Physical Medicine and Rehabilitation, Changhua Christian Hospital, Changhua, Taiwan
| | - Zih-Ling Wu
- Department of Food Science and Biotechnology, Da-Yeh University, Changhua, Taiwan
| | - Chia-Wei Chang
- Department of Food Science and Biotechnology, Da-Yeh University, Changhua, Taiwan
| | - Jane-Yii Wu
- Department of Food Science and Biotechnology, Da-Yeh University, Changhua, Taiwan
- * E-mail:
| |
Collapse
|
111
|
Identification of Matrine as a Novel Regulator of the CXCR4 Signaling Axis in Tumor Cells. Int J Mol Sci 2020; 21:ijms21134731. [PMID: 32630806 PMCID: PMC7370290 DOI: 10.3390/ijms21134731] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/22/2022] Open
Abstract
Matrine, a quinolizidine alkaloid, is commonly employed for treating various viral and inflammatory disorders. Here, we have evaluated matrine for its activity on C-X-C chemokine receptor type 4 (CXCR4) and matrix metalloproteinases (MMP-9/2) expression, and its potential to affect tumor metastasis and invasion. The effects of matrine on CXCR4, MMP-9/2, and nuclear factor κB (NF-κB) activation in lung (A549), prostate (DU145), and pancreas (MIA PaCa-2) cells were investigated by diverse techniques. The expression level of CXCR4 and MMP-9/2 was analyzed by western blot analysis and reverse transcription polymerase chain reaction. NF-κB activation was also evaluated by western blot analysis, electrophoretic mobility shift assay as well as immunocytochemical experiments. Furthermore, we monitored cell invasion and metastasis activities by wound healing and Boyden chamber assays. We noted that matrine induced a down-regulation of CXCR4 and MMP-9/2 at both protein and mRNA levels. In addition, matrine negatively regulated human epidermal growth factor receptor 2 (HER2) and C-X-C Motif Chemokine Ligand 12 (CXCL12)-induced CXCR4 expression. Moreover, NF-κB suppression by matrine led to inhibition of metastatic potential of tumor cells. Our results suggest that matrine can block the cancer metastasis through the negative regulation of CXCR4 and MMP-9/2 and consequently it can be considered as a potential candidate for cancer therapy.
Collapse
|
112
|
Ashrafizadeh M, Zarrabi A, Hashemi F, Moghadam ER, Hashemi F, Entezari M, Hushmandi K, Mohammadinejad R, Najafi M. Curcumin in cancer therapy: A novel adjunct for combination chemotherapy with paclitaxel and alleviation of its adverse effects. Life Sci 2020; 256:117984. [PMID: 32593707 DOI: 10.1016/j.lfs.2020.117984] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022]
Abstract
Dealing with cancer is of importance due to enhanced incidence rate of this life-threatening disorder. Chemotherapy is an ideal candidate in overcoming and eradication of cancer. To date, various chemotherapeutic agents have been applied in cancer therapy and paclitaxel (PTX) is one of them. PTX is a key member of taxane family with potential anti-tumor activity against different cancers. Notably, PTX has demonstrated excellent proficiency in elimination of cancer in clinical trials. This chemotherapeutic agent is isolated from Taxus brevifolia, and is a tricyclic diterpenoid. However, resistance of cancer cells into PTX chemotherapy has endangered its efficacy. Besides, administration of PTX is associated with a number of side effects such as neurotoxicity, hepatotoxicity, cardiotoxicity and so on, demanding novel strategies in obviating PTX issues. Curcumin is a pharmacological compound with diverse therapeutic effects including anti-tumor, anti-oxidant, anti-inflammatory, anti-diabetic and so on. In the current review, we demonstrate that curcumin, a naturally occurring nutraceutical compound is able to enhance anti-tumor activity of PTX against different cancers. Besides, curcumin administration reduces adverse effects of PTX due to its excellent pharmacological activities. These topics are discussed with an emphasis on molecular pathways to provide direction for further studies in revealing other signaling networks.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzia, Istanbul 34956, Turkey
| | - Farid Hashemi
- DVM, Graduated, Young Researcher and Elite Club, Kazerun Branch, Islamic Azad University, Kazeroon, Iran
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fardin Hashemi
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
113
|
Kansara S, Pandey V, Lobie PE, Sethi G, Garg M, Pandey AK. Mechanistic Involvement of Long Non-Coding RNAs in Oncotherapeutics Resistance in Triple-Negative Breast Cancer. Cells 2020; 9:cells9061511. [PMID: 32575858 PMCID: PMC7349003 DOI: 10.3390/cells9061511] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most lethal forms of breast cancer (BC), with a significant disease burden worldwide. Chemoresistance and lack of targeted therapeutics are major hindrances to effective treatments in the clinic and are crucial causes of a worse prognosis and high rate of relapse/recurrence in patients diagnosed with TNBC. In the last decade, long non-coding RNAs (lncRNAs) have been found to perform a pivotal role in most cellular functions. The aberrant functional expression of lncRNAs plays an ever-increasing role in the progression of diverse malignancies, including TNBC. Therefore, lncRNAs have been recently studied as predictors and modifiers of chemoresistance. Our review discusses the potential involvement of lncRNAs in drug-resistant mechanisms commonly found in TNBC and highlights various therapeutic strategies to target lncRNAs in this malignancy.
Collapse
Affiliation(s)
- Samarth Kansara
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India;
| | - Vijay Pandey
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518005, China; (V.P.); (P.E.L.)
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Peter E. Lobie
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518005, China; (V.P.); (P.E.L.)
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Correspondence: (G.S.); (A.K.P.)
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, India;
| | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India;
- Correspondence: (G.S.); (A.K.P.)
| |
Collapse
|
114
|
STAT3 Pathway in Gastric Cancer: Signaling, Therapeutic Targeting and Future Prospects. BIOLOGY 2020; 9:biology9060126. [PMID: 32545648 PMCID: PMC7345582 DOI: 10.3390/biology9060126] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
Abstract
Molecular signaling pathways play a significant role in the regulation of biological mechanisms, and their abnormal expression can provide the conditions for cancer development. The signal transducer and activator of transcription 3 (STAT3) is a key member of the STAT proteins and its oncogene role in cancer has been shown. STAT3 is able to promote the proliferation and invasion of cancer cells and induces chemoresistance. Different downstream targets of STAT3 have been identified in cancer and it has also been shown that microRNA (miR), long non-coding RNA (lncRNA) and other molecular pathways are able to function as upstream mediators of STAT3 in cancer. In the present review, we focus on the role and regulation of STAT3 in gastric cancer (GC). miRs and lncRNAs are considered as potential upstream mediators of STAT3 and they are able to affect STAT3 expression in exerting their oncogene or onco-suppressor role in GC cells. Anti-tumor compounds suppress the STAT3 signaling pathway to restrict the proliferation and malignant behavior of GC cells. Other molecular pathways, such as sirtuin, stathmin and so on, can act as upstream mediators of STAT3 in GC. Notably, the components of the tumor microenvironment that are capable of targeting STAT3 in GC, such as fibroblasts and macrophages, are discussed in this review. Finally, we demonstrate that STAT3 can target oncogene factors to enhance the proliferation and metastasis of GC cells.
Collapse
|
115
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Kalantari M, Mohammadinejad R, Javaheri T, Sethi G. Association of the Epithelial-Mesenchymal Transition (EMT) with Cisplatin Resistance. Int J Mol Sci 2020; 21:E4002. [PMID: 32503307 PMCID: PMC7312011 DOI: 10.3390/ijms21114002] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023] Open
Abstract
Therapy resistance is a characteristic of cancer cells that significantly reduces the effectiveness of drugs. Despite the popularity of cisplatin (CP) as a chemotherapeutic agent, which is widely used in the treatment of various types of cancer, resistance of cancer cells to CP chemotherapy has been extensively observed. Among various reported mechanism(s), the epithelial-mesenchymal transition (EMT) process can significantly contribute to chemoresistance by converting the motionless epithelial cells into mobile mesenchymal cells and altering cell-cell adhesion as well as the cellular extracellular matrix, leading to invasion of tumor cells. By analyzing the impact of the different molecular pathways such as microRNAs, long non-coding RNAs, nuclear factor-κB (NF-ĸB), phosphoinositide 3-kinase-related protein kinase (PI3K)/Akt, mammalian target rapamycin (mTOR), and Wnt, which play an important role in resistance exhibited to CP therapy, we first give an introduction about the EMT mechanism and its role in drug resistance. We then focus specifically on the molecular pathways involved in drug resistance and the pharmacological strategies that can be used to mitigate this resistance. Overall, we highlight the various targeted signaling pathways that could be considered in future studies to pave the way for the inhibition of EMT-mediated resistance displayed by tumor cells in response to CP exposure.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey;
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417414418, Iran;
- Kazerun Health Technology Incubator, Shiraz University of Medical Sciences, Shiraz 1433671348, Iran
| | - Mahshad Kalantari
- Department of Genetic Science, Tehran Medical Science Branch, Islamic Azad University, Tehran 19168931813, Iran;
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 1355576169, Iran
| | - Tahereh Javaheri
- Health Informatics Lab, Metropolitan College, Boston University, Boston, MA 02215, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
| |
Collapse
|
116
|
Braicu C, Zanoaga O, Zimta AA, Tigu AB, Kilpatrick KL, Bishayee A, Nabavi SM, Berindan-Neagoe I. Natural compounds modulate the crosstalk between apoptosis- and autophagy-regulated signaling pathways: Controlling the uncontrolled expansion of tumor cells. Semin Cancer Biol 2020; 80:218-236. [PMID: 32502598 DOI: 10.1016/j.semcancer.2020.05.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 02/07/2023]
Abstract
Due to the high number of annual cancer-related deaths, and the economic burden that this malignancy affects today's society, the study of compounds isolated from natural sources should be encouraged. Most cancers are the result of a combined effect of lifestyle, environmental factors, and genetic and hereditary components. Recent literature reveals an increase in the interest for the study of phytochemicals from traditional medicine, this being a valuable resource for modern medicine to identify novel bioactive agents with potential medicinal applications. Phytochemicals are components of traditional medicine that are showing promising application in modern medicine due to their antitumor activities. Recent studies regarding two major mechanisms underlying cancer development and regulation, apoptosis and autophagy, have shown that the signaling pathways of both these processes are significantly interconnected through various mechanisms of crosstalk. Phytochemicals are able to activate pro-autophagic and pro-apoptosis mechanisms. Understanding the molecular mechanism involved in apoptosis-autophagy relationship modulated by phytochemicals plays a key role in development of a new therapeutic strategy for cancer treatment. The purpose of this review is to outline the bioactive properties of the natural phytochemicals with validated antitumor activity, focusing particularly on their role in the regulation of apoptosis and autophagy crosstalk that triggers the uncontrolled expansion of tumor cells. Furthermore, we have also critically discussed the limitations and challenges of existing research strategies and the prospective research directions in this field.
Collapse
Affiliation(s)
- Cornelia Braicu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 40015, Cluj-Napoca, Romania
| | - Oana Zanoaga
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 40015, Cluj-Napoca, Romania
| | - Alina-Andreea Zimta
- MEDFUTURE-Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 40015, Cluj-Napoca, Romania
| | - Adrian Bogdan Tigu
- MEDFUTURE-Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 40015, Cluj-Napoca, Romania; Babeș-Bolyai University, Faculty of Biology and Geology, 42 Republicii Street, 400015, Cluj-Napoca, Romania
| | | | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, 1435916471, Iran
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 40015, Cluj-Napoca, Romania; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 400015, Cluj-Napoca, Romania.
| |
Collapse
|
117
|
Ashrafizadeh M, Zarrabi A, Samarghandian S, Najafi M. PTEN: What we know of the function and regulation of this onco-suppressor factor in bladder cancer? Eur J Pharmacol 2020; 881:173226. [PMID: 32485246 DOI: 10.1016/j.ejphar.2020.173226] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Abstract
Bladder cancer accounts for high morbidity and mortality around the world and its incidence rate is suggested to be higher in following years. A number of factors involve in bladder cancer development such as lifestyle and drugs. However, it appears that genetic factors play a significant role in bladder cancer development and progression. Phosphatase and tensin homolog (PTEN) is a cancer-related transcription factor that is corelated with reduced proliferation and invasion of cancer cells by negatively targeting PI3K/Akt/mTOR signaling pathway. In the present review, we aimed to explore the role of PTEN in bladder cancer cells and how upstream modulators affect PTEN in this life-threatening disorder. Down-regulation of PTEN is associated with poor prognosis, chemoresistance and progression of cancer cells. Besides, microRNAs, long non-coding RNAs, circular RNAs and other molecular pathways such as NF-kB are able to target PTEN in bladder cancer cells. Notably, anti-tumor drugs such as kaempferol, β-elemene and sorafenib upregulate the expression of PTEN to exert their inhibitory effects on bladder cancer cells.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
118
|
Bailly C, Gao JM. Erinacine A and related cyathane diterpenoids: Molecular diversity and mechanisms underlying their neuroprotection and anticancer activities. Pharmacol Res 2020; 159:104953. [PMID: 32485283 DOI: 10.1016/j.phrs.2020.104953] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/10/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
The presence of a fused 5/6/7 tricyclic core characterizes the group of cyathane diterpene natural products, that include more than 170 compounds, isolated from fungi such as Cyathus africanus and Hericium erinaceus. These compounds have a common biosynthetic precursor (cyatha-3,12-diene) and can be produced bio- or hemi-synthetically, or via total syntheses. Cyathane diterpenes display a range of pharmacological properties, including anti-inflammatory (possibly through binding to the iNOS protein) and neuroprotective effects. Many cyathanes like cyahookerin C, cyathin Q and cyafranines B and G can stimulate neurite outgrowth in cells, whereas conversely a few molecules (such as scabronine M) inhibit NGF-stimulated neurite outgrowth. The main anticancer cyathanes are erinacine A and cyathins Q and R, with a capacity to trigger cancer cell death dependent on the production of reactive oxygen species (ROS). These compounds, active both in vitro and in vivo, activate different signaling pathways in tumor cells to induce apoptosis (and autophagy) and to upregulate the expression of several proteins implicated in the organization and functioning of the actin cytoskeleton. An analysis of the functional analogy between erinacine A and other natural products known to interfere with the actin network in a ROS-dependent manner (notably cucurbitacin B) further supports the idea that erinacine A functions as a perturbator of the cytoskeleton organization. Collectively, we provide an overview of the molecular diversity of cyathane diterpenes and the main mechanisms of action of the lead compounds, with the objective to encourage further research with these fungal products. The anticancer potential of erinacine A deserves further attention but it will be necessary to better characterize the implicated targets and signaling pathways.
Collapse
Affiliation(s)
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| |
Collapse
|
119
|
Henamayee S, Banik K, Sailo BL, Shabnam B, Harsha C, Srilakshmi S, VGM N, Baek SH, Ahn KS, Kunnumakkara AB. Therapeutic Emergence of Rhein as a Potential Anticancer Drug: A Review of Its Molecular Targets and Anticancer Properties. Molecules 2020; 25:molecules25102278. [PMID: 32408623 PMCID: PMC7288145 DOI: 10.3390/molecules25102278] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/02/2020] [Accepted: 05/07/2020] [Indexed: 12/19/2022] Open
Abstract
According to the World Health Organization (WHO), cancer is the second-highest cause of mortality in the world, and it kills nearly 9.6 million people annually. Besides the fatality of the disease, poor prognosis, cost of conventional therapies, and associated side-effects add more burden to patients, post-diagnosis. Therefore, the search for alternatives for the treatment of cancer that are safe, multi-targeted, effective, and cost-effective has compelled us to go back to ancient systems of medicine. Natural herbs and plant formulations are laden with a variety of phytochemicals. One such compound is rhein, which is an anthraquinone derived from the roots of Rheum spp. and Polygonum multiflorum. In ethnomedicine, these plants are used for the treatment of inflammation, osteoarthritis, diabetes, and bacterial and helminthic infections. Increasing evidence suggests that this compound can suppress breast cancer, cervical cancer, colon cancer, lung cancer, ovarian cancer, etc. in both in vitro and in vivo settings. Recent studies have reported that this compound modulates different signaling cascades in cancer cells and can prevent angiogenesis and progression of different types of cancers. The present review highlights the cancer-preventing and therapeutic properties of rhein based on the available literature, which will help to extend further research to establish the chemoprotective and therapeutic roles of rhein compared to other conventional drugs. Future pharmacokinetic and toxicological studies could support this compound as an effective anticancer agent.
Collapse
Affiliation(s)
- Sahu Henamayee
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
| | - Bethsebie Lalduhsaki Sailo
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
| | - Bano Shabnam
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
| | - Satti Srilakshmi
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER, Guwahati), Assam 781125, India; (S.S.); (N.V.)
| | - Naidu VGM
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER, Guwahati), Assam 781125, India; (S.S.); (N.V.)
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Korea;
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- Correspondence: (K.S.A.); or (A.B.K.); Tel.: +82-2-961-2316 (K.S.A.)
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
- Correspondence: (K.S.A.); or (A.B.K.); Tel.: +82-2-961-2316 (K.S.A.)
| |
Collapse
|
120
|
Lam H, Tergaonkar V, Ahn K. Mechanisms of allergen-specific immunotherapy for allergic rhinitis and food allergies. Biosci Rep 2020; 40:BSR20200256. [PMID: 32186703 PMCID: PMC7109000 DOI: 10.1042/bsr20200256] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022] Open
Abstract
Allergen-specific immunotherapy (AIT) is currently the only potential treatment for allergies including allergic rhinitis (AR) and food allergies (FA) that can modify the underlying course of the diseases. Although AIT has been performed for over a century, the precise and detailed mechanism for AIT is still unclear. Previous clinical trials have reported that successful AIT induces the reinstatement of tolerance against the specific allergen. In this review, we aim to provide an updated summary of the knowledge on the underlying mechanisms of IgE-mediated AR and FA as well as the immunological changes observed after AIT and discuss on how better understanding of these can lead to possible identification of biomarkers and novel strategies for AIT.
Collapse
Affiliation(s)
- Hiu Yan Lam
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117596, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117596, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117596, Singapore
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
121
|
Ye T, Xiong D, Chen L, Li Y, Gong S, Zhang L, Li B, Pan J, Qian J, Qu H. Effect of Danshen on TLR2-triggered inflammation in macrophages. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 70:153228. [PMID: 32361291 DOI: 10.1016/j.phymed.2020.153228] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 03/29/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Danshen (Salvia Miltiorrhiza Radix et Rhizoma) is a valued herbal plant widely used to treat cardiovascular diseases in Asian countries. In modern medicine, innate immunity-induced inflammation is considered a risk factor for cardiovascular diseases. However, little is known about the anti-inflammatory effects and molecular mechanism of Danshen. PURPOSE To evaluate the molecular mechanisms of Danshen on Toll-like receptor (TLR) 2-triggered inflammation in macrophages and identify its bioactive components. METHODS Pam3CSK4-stimulated bone marrow-derived macrophages (BMMs) were treated with Danshen water extract (DSE), and the levels of proinflammatory cytokines (interleukin (IL)-6, IL-12 and tumor necrosis factor (TNF)-α) were measured by both real-time quantitative PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). RNA sequencing (RNA-seq)-based bioinformatics analyses were applied to reveal the novel molecular mechanisms of DSE, followed by western blotting for verification. Additionally, HPLC-UV analysis along with bioassays was performed to identify the bioactive ingredients of DSE. RESULTS The results of RT-qPCR and ELISA showed that DSE significantly inhibited proinflammatory cytokine expression in a dose-dependent manner. Transcriptome analyses revealed that a wider panel of inflammatory cytokines responded to the regulatory effect of DSE, and that the TNF signaling pathway might have played a vital role. Western blotting data confirmed the involvement of extracellular signal-regulated protein kinases (ERK) and Jun N-terminal Kinase (JNK) related singling pathway. Among the seven components identified in DSE, Danshensu (DSS) and protocatechuic aldehyde (PA) were confirmed as bioactive ones with anti-inflammatory effects. CONCLUSION DSE showed a promising effect against TLR2-triggered inflammation associated with the inhibition of the TNF cascade down-streamed mitogen-activated protein kinase (MAPK) signaling pathway, in which IL-6 acts as the key effective molecule, and ERK and JNK phosphorylation was inhibited. Notably, DSS and PA were considered bioactive components with anti-inflammatory bioactivity.
Collapse
Affiliation(s)
- Tingting Ye
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | | | - Libing Chen
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yufei Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shuqing Gong
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Luquan Zhang
- Guizhou Baite Pharmaceutical co., Ltd., Guizhou, China
| | - Bailing Li
- Guizhou Baite Pharmaceutical co., Ltd., Guizhou, China
| | - Jianyang Pan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jing Qian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Haibin Qu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
122
|
Mohan CD, Rangappa S, Preetham HD, Chandra Nayaka S, Gupta VK, Basappa S, Sethi G, Rangappa KS. Targeting STAT3 signaling pathway in cancer by agents derived from Mother Nature. Semin Cancer Biol 2020; 80:157-182. [DOI: 10.1016/j.semcancer.2020.03.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 02/07/2023]
|
123
|
An Overview of the Potential Antineoplastic Effects of Casticin. Molecules 2020; 25:molecules25061287. [PMID: 32178324 PMCID: PMC7144019 DOI: 10.3390/molecules25061287] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer persists as one of the leading causes of deaths worldwide, contributing to approximately 9.6 million deaths per annum in recent years. Despite the numerous advancements in cancer treatment, there is still abundant scope to mitigate recurrence, adverse side effects and toxicities caused by existing pharmaceutical drugs. To achieve this, many phytochemicals from plants and natural products have been tested against cancer cell lines in vivo and in vitro. Likewise, casticin, a flavonoid extracted from the Vitex species, has been isolated from the leaves and seeds of V. trifolia and V. agnus-castus. Casticin possesses a wide range of therapeutic properties, including analgesic, anti-inflammatory, antiangiogenic, antiasthmatic and antineoplastic activities. Several studies have been conducted on the anticancer effects of casticin against cancers, including breast, bladder, oral, lung, leukemia and hepatocellular carcinomas. The compound inhibits invasion, migration and proliferation and induces apoptosis (casticin-induced, ROS-mediated and mitochondrial-dependent) and cell cycle arrest (G0/G1, G2/M, etc.) through different signaling pathways, namely the PI3K/Akt, NF-κB, STAT3 and FOXO3a/FoxM1 pathways. This review summarizes the chemo-preventive ability of casticin as an antineoplastic agent against several malignancies.
Collapse
|
124
|
Wu L, Fidan K, Um JY, Ahn KS. Telomerase: Key regulator of inflammation and cancer. Pharmacol Res 2020; 155:104726. [PMID: 32109579 DOI: 10.1016/j.phrs.2020.104726] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
The telomerase holoenzyme, which has a highly conserved role in maintaining telomere length, has long been regarded as a high-profile target in cancer therapy due to the high dependency of the majority of cancer cells on constitutive and elevated telomerase activity for sustained proliferation and immortality. In this review, we present the salient findings in the telomerase field with special focus on the association of telomerase with inflammation and cancer. The elucidation of extra-telomeric roles of telomerase in inflammation, reactive oxygen species (ROS) generation, and cancer development further complicated the design of anti-telomerase therapy. Of note, the discovery of the unique mechanism that underlies reactivation of the dormant telomerase reverse transcriptase TERT promoter in somatic cells not only enhanced our understanding of the critical role of TERT in carcinogenesis but also opens up new intervention ideas that enable the differential targeting of cancer cells only. Despite significant effort invested in developing telomerase-targeted therapeutics, devising efficacious cancer-specific telomerase/TERT inhibitors remains an uphill task. The latest discoveries of the telomere-independent functionalities of telomerase in inflammation and cancer can help illuminate the path of developing specific anti-telomerase/TERT therapeutics against cancer cells.
Collapse
Affiliation(s)
- Lele Wu
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore
| | - Kerem Fidan
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
| | - Jae-Young Um
- College of Korean Medicine, Kyung Hee University, #47, Kyungheedae-gil, Dongdaemoon-gu, Seoul 130-701, Republic of Korea
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, #47, Kyungheedae-gil, Dongdaemoon-gu, Seoul 130-701, Republic of Korea.
| |
Collapse
|
125
|
Naz I, Ramchandani S, Khan MR, Yang MH, Ahn KS. Anticancer Potential of Raddeanin A, a Natural Triterpenoid Isolated from Anemone raddeana Regel. Molecules 2020; 25:E1035. [PMID: 32106609 PMCID: PMC7179125 DOI: 10.3390/molecules25051035] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/24/2022] Open
Abstract
Natural compounds extracted from plants have gained immense importance in the fight against cancer cells due to their lesser toxicity and potential therapeutic effects. Raddeanin A (RA), an oleanane type triterpenoid is a major compound isolated from Anemone raddeana Regel. As an anticancer agent, RA induces apoptosis, cell cycle arrest, inhibits invasion, migration and angiogenesis in malignant cell lines as well as in preclinical models. In this systemic review, the pharmacological effects of RA and its underlying molecular mechanisms were carefully analyzed and potential molecular targets have been highlighted. The apoptotic potential of RA can be mediated through the modulation of Bcl-2, Bax, caspase-3, caspase-8, caspase-9, cytochrome c and poly-ADP ribose polymerase (PARP) cleavage. PI3K/Akt signaling pathway serves as the major molecular target affected by RA. Furthermore, RA can block cell proliferation through inhibition of canonical Wnt/β-catenin signaling pathway in colorectal cancer cells. RA can also alter the activation of NF-κB and STAT3 signaling pathways to suppress invasion and metastasis. RA has also exhibited promising anticancer potential against drug resistant cancer cells and can enhance the anticancer effects of several chemotherapeutic agents. Overall, RA may function as a promising compound in combating cancer, although further in-depth study is required under clinical settings to validate its efficacy in cancer patients.
Collapse
Affiliation(s)
- Irum Naz
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | | | | | - Min Hee Yang
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea;
| | - Kwang Seok Ahn
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea;
| |
Collapse
|
126
|
Somu C, Mohan CD, Ambekar S, Dukanya, Rangappa S, Baburajeev CP, Sukhorukov A, Mishra S, Shanmugam MK, Chinnathambi A, Awad Alahmadi T, Alharbi SA, Basappa, Rangappa KS. Identification of a novel 1,2 oxazine that can induce apoptosis by targeting NF-κB in hepatocellular carcinoma cells. ACTA ACUST UNITED AC 2020; 25:e00438. [PMID: 32140443 PMCID: PMC7044713 DOI: 10.1016/j.btre.2020.e00438] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/21/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
Abstract
10 new 1,2-Oxazines were synthesized and evaluated for their anticancer activity. 3i is lead cytotoxic agent which increased SubG1 cell population of HCC cells. p65 siRNA transfection significantly reduced the 3i induced DNA fragmentation. 3i decreased DNA binding and NF-κB-dependent luciferase reporter gene expression.
Constitutive activation of NF-κB is associated with proinflammatory diseases and suppression of the NF-κB signaling pathway has been considered as an effective therapeutic strategy in the treatment of various cancers including hepatocellular carcinoma (HCC). Herein, we report the synthesis of 1,2 oxazines and their anticancer potential. The antiproliferative studies presented 3-((4-(1H-benzo[d]imidazol-2-yl)piperidin-1-yl)methyl)-4-phenyl-4,4a,5,6,7,7a-hexahydrocyclopenta [e][1,2]oxazine(3i) as a lead cytotoxic agent against HCC cells. Flow cytometric analysis showed that 3i caused a substantial increase in the subG1 cell population. Annexin-V-FITC-PI staining showed a significant increase in the percentage of apoptotic cells on treatment with 3i. Transfection with p65 siRNA significantly reduced the 3i induced DNA fragmentation indicating that 3i may primarily mediate its proapoptotic effects by abrogating the NF-κB signaling. In addition, treatment of HCC cells with 3i decreased the DNA binding ability of NF-κB and NF-κB-dependent luciferase expression. Taken together, this report introduces 1,2-oxazine that potently targets the NF-κB signaling pathway in HCC cells.
Collapse
Affiliation(s)
- Chaithanya Somu
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India
| | | | - Sachin Ambekar
- Laboratory of Chemical Biology, Department of Chemistry, Bangalore University, Central College Campus, Palace Road, Bangalore 560001, India
| | - Dukanya
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, BG Nagara, Nagamangala Taluk, Mandya district-571448, India
| | - C P Baburajeev
- Laboratory of Chemical Biology, Department of Chemistry, Bangalore University, Central College Campus, Palace Road, Bangalore 560001, India
| | - Alexey Sukhorukov
- N.D. Zelinsky Institute of Organic Chemistry, Leninsky Prospect, Moscow 119991, Russia
| | - Srishti Mishra
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore 117600, Singapore
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore 117600, Singapore
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh -11451, Saudi Arabia
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University Medical City, Riyadh 11461, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh -11451, Saudi Arabia
| | - Basappa
- Laboratory of Chemical Biology, Department of Chemistry, Bangalore University, Central College Campus, Palace Road, Bangalore 560001, India.,Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India
| | | |
Collapse
|
127
|
Plant lectins and their usage in preparing targeted nanovaccines for cancer immunotherapy. Semin Cancer Biol 2020; 80:87-106. [PMID: 32068087 DOI: 10.1016/j.semcancer.2020.02.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 01/06/2023]
Abstract
Plant lectins, a natural source of glycans with a therapeutic potential may lead to the discovery of new targeted therapies. Glycans extracted from plant lectins are known to act as ligands for C-type lectin receptors (CLRs) that are primarily present on immune cells. Plant-derived glycosylated lectins offer diversity in their N-linked oligosaccharide structures that can serve as a unique source of homogenous and heterogenous glycans. Among the plant lectins-derived glycan motifs, Man9GlcNAc2Asn exhibits high-affinity interactions with CLRs that may resemble glycan motifs of pathogens. Thus, such glycan domains when presented along with antigens complexed with a nanocarrier of choice may bewilder the immune cells and direct antigen cross-presentation - a cytotoxic T lymphocyte immune response mediated by CD8+ T cells. Glycan structure analysis has attracted considerable interest as glycans are looked upon as better therapeutic alternatives than monoclonal antibodies due to their cost-effectiveness, reduced toxicity and side effects, and high specificity. Furthermore, this approach will be useful to understand whether the multivalent glycan presentation on the surface of nanocarriers can overcome the low-affinity lectin-ligand interaction and thereby modulation of CLR-dependent immune response. Besides this, understanding how the heterogeneity of glycan structure impacts the antigen cross-presentation is pivotal to develop alternative targeted therapies. In the present review, we discuss the findings on structural analysis of glycans from natural lectins performed using GlycanBuilder2 - a software tool based on a thorough literature review of natural lectins. Additionally, we discuss how multiple parameters like the orientation of glycan ligands, ligand density, simultaneous targeting of multiple CLRs and design of antigen delivery nanocarriers may influence the CLR targeting efficacy. Integrating this information will eventually set the ground for new generation immunotherapeutic vaccine design for the treatment of various human malignancies.
Collapse
|
128
|
Abstract
Cancer is a multi-step process during which cells acquire mutations that eventually lead to uncontrolled cell growth and division and evasion of programmed cell death. The oncogenes such as Ras and c-Myc may be responsible in all three major stages of cancer i.e., early, intermediate, and late. The NF-κB has been shown to control the expression of genes linked with tumor pathways such as chronic inflammation, tumor cell survival, anti-apoptosis, proliferation, invasion, and angiogenesis. In the last few decades, various biomarker pathways have been identified that play a critical role in carcinogenesis such as Ras, NF-κB and DNA damage.
Collapse
Affiliation(s)
- Anas Ahmad
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India.,Department of Nano-Therapeutics, Institute of Nano Science and Technology (INST), Habitat Centre, Mohali, India
| | - Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia (A Central University), New Delhi, India
| |
Collapse
|
129
|
Lai CY, Yeh DW, Lu CH, Liu YL, Chuang YC, Ruan JW, Kao CY, Huang LR, Chuang TH. Epigenetic Silencing of Ubiquitin Specific Protease 4 by Snail1 Contributes to Macrophage-Dependent Inflammation and Therapeutic Resistance in Lung Cancer. Cancers (Basel) 2020; 12:E148. [PMID: 31936290 PMCID: PMC7016945 DOI: 10.3390/cancers12010148] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/28/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023] Open
Abstract
There is a positive feedback loop driving tumorigenesis and tumor growth through coordinated regulation of epigenetics, inflammation, and stemness. Nevertheless, the molecular mechanism linking these processes is not well understood. In this study, we analyzed the correlation of de-ubiquitinases (DUBs) expression with survival data from the OncoLnc database. Among the DUBs analyzed, ubiquitin specific protease 4 (USP4) had the lowest negative Cox coefficient. Low expression of USP4 was associated with poor survival among lung cancer patients and was inversely correlated with expression of stemness and inflammation markers. Expression of USP4 were reduced at more advanced stages of lung cancer. Mechanistically, expression of USP4 was downregulated in snail1-overexpressing and stemness-enriched lung cancer cells. Snail1 was induced in lung cancer cells by interaction with macrophages, and epigenetically suppressed USP4 expression by promoter methylation. Stable knockdown of USP4 in lung cancer cells enhanced inflammatory responses, stemness properties, chemotherapy resistance, and the expression of molecules allowing escape from immunosurveillance. Further, mice injected with USP4 knockdown lung cancer cells demonstrated enhanced tumorigenesis and tumor growth. These results reveal that the Snail1-mediated suppression of USP4 is a potential mechanism to orchestrate epigenetic regulation, inflammation and stemness for macrophage-promoted tumor progression.
Collapse
Affiliation(s)
- Chao-Yang Lai
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan; (C.-Y.L.); (D.-W.Y.); (C.-H.L.); (Y.-L.L.); (Y.-C.C.); (J.-W.R.); (C.-Y.K.)
| | - Da-Wei Yeh
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan; (C.-Y.L.); (D.-W.Y.); (C.-H.L.); (Y.-L.L.); (Y.-C.C.); (J.-W.R.); (C.-Y.K.)
| | - Chih-Hao Lu
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan; (C.-Y.L.); (D.-W.Y.); (C.-H.L.); (Y.-L.L.); (Y.-C.C.); (J.-W.R.); (C.-Y.K.)
| | - Yi-Ling Liu
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan; (C.-Y.L.); (D.-W.Y.); (C.-H.L.); (Y.-L.L.); (Y.-C.C.); (J.-W.R.); (C.-Y.K.)
| | - Yu-Chen Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan; (C.-Y.L.); (D.-W.Y.); (C.-H.L.); (Y.-L.L.); (Y.-C.C.); (J.-W.R.); (C.-Y.K.)
| | - Jhen-Wei Ruan
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan; (C.-Y.L.); (D.-W.Y.); (C.-H.L.); (Y.-L.L.); (Y.-C.C.); (J.-W.R.); (C.-Y.K.)
| | - Cheng-Yuan Kao
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan; (C.-Y.L.); (D.-W.Y.); (C.-H.L.); (Y.-L.L.); (Y.-C.C.); (J.-W.R.); (C.-Y.K.)
| | - Li-Rung Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan;
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan; (C.-Y.L.); (D.-W.Y.); (C.-H.L.); (Y.-L.L.); (Y.-C.C.); (J.-W.R.); (C.-Y.K.)
- Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
| |
Collapse
|
130
|
Wnt signaling mediates TLR pathway and promote unrestrained adipogenesis and metaflammation: Therapeutic targets for obesity and type 2 diabetes. Pharmacol Res 2019; 152:104602. [PMID: 31846761 DOI: 10.1016/j.phrs.2019.104602] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/17/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022]
Abstract
Diabesity is the combination of type 2 diabetes and obesity characterized by chronic low-grade inflammation. The Wnt signaling act as an evolutionary pathway playing crucial role in regulating cellular homeostasis and energy balance from hypothalamus to metabolic organs. Aberrant activity of certain appendages in the canonical and non-canonical Wnt system deregulates metabolism and leads to adipose tissue expansion, this key event initiates metabolic stress causing metaflammation and obesity. Metaflammation induced obesity initiates abnormal development of adipocytes mediating through the non-canonical Wnt signaling inhibition of canonical Wnt pathway to fan the flames of adipogenesis. Moreover, activation of toll like receptor (TLR)-4 signaling in metabolic stress invites immune cells to release pro-inflammatory cytokines for recruitment of macrophages in adipose tissues, further causes polarization of macrophages into M1(classically activated) and M2 (alternatively activated) subtypes. These events end with chronic low-grade inflammation which interferes with insulin signaling in metabolic tissues to develop type 2 diabetes. However, there is a dearth in understanding the exact mechanism of Wnt-TLR axis during diabesity. This review dissects the molecular facets of Wnt and TLRs that modulates cellular components during diabesity and provides current progress, challenges and alternative therapeutic strategies at preclinical and clinical level.
Collapse
|
131
|
The IκB Kinase Inhibitor ACHP Targets the STAT3 Signaling Pathway in Human Non-Small Cell Lung Carcinoma Cells. Biomolecules 2019; 9:biom9120875. [PMID: 31847229 PMCID: PMC6995615 DOI: 10.3390/biom9120875] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022] Open
Abstract
STAT3 is an oncogenic transcription factor that regulates the expression of genes which are involved in malignant transformation. Aberrant activation of STAT3 has been observed in a wide range of human malignancies and its role in negative prognosis is well-documented. In this report, we performed high-throughput virtual screening in search of STAT3 signaling inhibitors using a cheminformatics platform and identified 2-Amino-6-[2-(Cyclopropylmethoxy)-6-Hydroxyphenyl]-4-Piperidin-4-yl Nicotinonitrile (ACHP) as the inhibitor of the STAT3 signaling pathway. The predicted hit was evaluated in non-small cell lung cancer (NSCLC) cell lines for its STAT3 inhibitory activity. In vitro experiments suggested that ACHP decreased the cell viability and inhibited the phosphorylation of STAT3 on Tyr705 of NSCLC cells. In addition, ACHP imparted inhibitory activity on the constitutive activation of upstream protein tyrosine kinases, including JAK1, JAK2, and Src. ACHP decreased the nuclear translocation of STAT3 and downregulated its DNA binding ability. Apoptosis was evidenced by cleavage of caspase-3 and PARP with the subsequent decline in antiapoptotic proteins, including Bcl-2, Bcl-xl, and survivin. Overall, we report that ACHP can act as a potent STAT3 signaling inhibitor in NSCLC cell lines.
Collapse
|
132
|
Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K, Varol M, Jain A, Khan MA, Sethi G. Role of Reactive Oxygen Species in Cancer Progression: Molecular Mechanisms and Recent Advancements. Biomolecules 2019; 9:735. [PMID: 31766246 PMCID: PMC6920770 DOI: 10.3390/biom9110735] [Citation(s) in RCA: 710] [Impact Index Per Article: 118.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) play a pivotal role in biological processes and continuous ROS production in normal cells is controlled by the appropriate regulation between the silver lining of low and high ROS concentration mediated effects. Interestingly, ROS also dynamically influences the tumor microenvironment and is known to initiate cancer angiogenesis, metastasis, and survival at different concentrations. At moderate concentration, ROS activates the cancer cell survival signaling cascade involving mitogen-activated protein kinase/extracellular signal-regulated protein kinases 1/2 (MAPK/ERK1/2), p38, c-Jun N-terminal kinase (JNK), and phosphoinositide-3-kinase/ protein kinase B (PI3K/Akt), which in turn activate the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), matrix metalloproteinases (MMPs), and vascular endothelial growth factor (VEGF). At high concentrations, ROS can cause cancer cell apoptosis. Hence, it critically depends upon the ROS levels, to either augment tumorigenesis or lead to apoptosis. The major issue is targeting the dual actions of ROS effectively with respect to the concentration bias, which needs to be monitored carefully to impede tumor angiogenesis and metastasis for ROS to serve as potential therapeutic targets exogenously/endogenously. Overall, additional research is required to comprehend the potential of ROS as an effective anti-tumor modality and therapeutic target for treating malignancies.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Histopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Punjab, Chandigarh 160012, India;
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India;
| | - Ayşegül Varol
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskişehir TR26470, Turkey;
| | - Falak Thakral
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India;
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey;
| | | | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Kotekli Campus, Mugla Sitki Kocman University, Mugla TR48000, Turkey;
| | - Aklank Jain
- Department of Animal Sciences, Central University of Punjab, City Campus, Mansa Road, Bathinda 151001, India;
| | - Md. Asaduzzaman Khan
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China;
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| |
Collapse
|
133
|
Bordoloi D, Monisha J, Roy NK, Padmavathi G, Banik K, Harsha C, Wang H, Kumar AP, Arfuso F, Kunnumakkara AB. An Investigation on the Therapeutic Potential of Butein, A Tretrahydroxychalcone Against Human Oral Squamous Cell Carcinoma. Asian Pac J Cancer Prev 2019; 20:3437-3446. [PMID: 31759370 PMCID: PMC7063020 DOI: 10.31557/apjcp.2019.20.11.3437] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Oral squamous cell carcinoma (OSCC) is one of the most predominant cancers in India. With advances in the field of oncology, a number of therapies have emerged; however, they are minimally effective. Consequently, there is a need to develop safe and effective regimens for the treatment of OSCC. Butein, a tetrahydroxychalcone has been found to exhibit potent antioxidant, anti-inflammatory, and also anti-tumor effects against several cancer types. However, its effect on OSCC is not studied yet. Methods: The effect of butein on the viability, apoptosis, migration and invasion of OSCC cells was evaluated using MTT, colony formation, PI/FACS, live and dead, scratch wound healing, and matrigel invasion assays. Further Western blot analysis was done to evaluate the expression of different proteins involved in the regulation of cancer hallmarks. Results: This is the first report exemplifying the anti-cancer effect of butein against OSCC. Our results showed that butein exhibited potent anti-proliferative, cytotoxic, anti-migratory, and anti-invasive effects in OSCC cells. It suppressed the expression of NF-κB and NF-κB-regulated gene products such as COX-2, survivin and MMP-9 which are involved in the regulation of different processes like proliferation, survival, invasion, and metastasis of OSCC cells. Conclusion Collectively, these results suggest that butein has immense potential in the management of OSCC. Nonetheless, in vivo validation is critical before moving to clinical trials.
Collapse
Affiliation(s)
- Devivasha Bordoloi
- Cancer Biology Laboratory, & DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Javadi Monisha
- Cancer Biology Laboratory, & DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Nand Kishor Roy
- Cancer Biology Laboratory, & DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Ganesan Padmavathi
- Cancer Biology Laboratory, & DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Kishore Banik
- Cancer Biology Laboratory, & DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Choudhary Harsha
- Cancer Biology Laboratory, & DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Hong Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | | |
Collapse
|
134
|
Wei H, Li J, Li Y, Song J. MicroRNA-451 inhibits inflammation and proliferation of glomerular mesangial cells through down-regulating PSMD11 and NF-κB p65. Biosci Rep 2019; 39:BSR20191455. [PMID: 31652441 PMCID: PMC6822504 DOI: 10.1042/bsr20191455] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/10/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to investigate the regulatory roles of microRNA-451 (miR-451) on the inflammation and proliferation of glomerular mesangial cells (GMCs) under high-glucose condition, and reveal the potential mechanisms related to 26S proteasome non-ATPase regulatory subunit 11 (PSMD11) and nuclear factor-κ B (NF-κB) signaling. The interaction between PSMD11 and miR-451 was identified by dual luciferase reporter (DLR) gene assay. GMCs were treated with 5.6 mmol/l (normal, L-GMCs) and 30 mmol/l glucose (high-glucose, H-GMCs), respectively. After transfecting with pcDNA3.1-PSMD11 and/or miR-451 mimics, the expression of miR-451, PSMD11, inhibitor of NF-κB α (IκBα), phosphorylated IκBα (p-IκBα), NF-κB p65, COX-2, and cyclinD1 were detected in H-GMCs by quantitative real-time PCR (qRT-PCR) and/or Western blot. The levels of interleukin (IL)-1β, IL-6, and IL-8, cell cycle, and viability was detected by enzyme-linked immunosorbent assay, flow cytometry, and MTT assay, respectively. MiR-451 was up-regulated in H-GMCs, and negatively regulated its target PSMD11 (P<0.05). H-GMCs exhibited significantly higher levels of IL-1β, IL-6, and IL-8, cell viability, and p-IκBα, NF-κB, COX-2, and cyclinD1 expression than L-GMCs (P<0.05). The transfection of miR-451 mimics significantly decreased the levels of IL-1β, IL-6, and IL-8, inhibited the cell viability via blocking cells in G0/G1 phase, and down-regulated p-IκBα, NF-κB p65, COX-2, and cyclinD1 in H-GMCs (P<0.05). The regulatory effects of miR-451 mimics on H-GMCs were reversed by the transfection of PSMD11 (P<0.05). The up-regulation of miR-451 inhibits the inflammation and proliferation of H-GMCs through down-regulating PSMD11 and NF-κB p65.
Collapse
Affiliation(s)
- Hua Wei
- Department of Endocrinology, Shouguang People’s Hospital, No. 1233, Jiankang Street, Shouguang City, Shandong Province 262700, China
| | - Jianzhou Li
- Department of Endocrinology, Caoxian People’s Hospital, East Qinghe Road, South Fumin Avenue, Caoxian Development Zone, Heze City 274400, Shandong Province, China
| | - Yanhua Li
- Department of Medical, The First People’s Hospital of Jinan City, No. 132, Daminghu Road, Lixia District, Jinan City 250011, Shandong Province, China
| | - Jian Song
- Department of Nephrology, Qilu Hospital of Shandong University, No. 107, Wenhua West Road, Jinan City 250012, Shandong Province, China
| |
Collapse
|
135
|
Babaei M, Liu Y, Wuerzberger-Davis SM, McCaslin EZ, DiRusso CJ, Yeo AT, Kagermazova L, Miyamoto S, Gilmore TD. CRISPR/Cas9-based editing of a sensitive transcriptional regulatory element to achieve cell type-specific knockdown of the NEMO scaffold protein. PLoS One 2019; 14:e0222588. [PMID: 31553754 PMCID: PMC6760803 DOI: 10.1371/journal.pone.0222588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 09/02/2019] [Indexed: 11/25/2022] Open
Abstract
The use of alternative promoters for the cell type-specific expression of a given mRNA/protein is a common cell strategy. NEMO is a scaffold protein required for canonical NF-κB signaling. Transcription of the NEMO gene is primarily controlled by two promoters: one (promoter B) drives NEMO transcription in most cell types and the second (promoter D) is largely responsible for NEMO transcription in liver cells. Herein, we have used a CRISPR/Cas9-based approach to disrupt a core sequence element of promoter B, and this genetic editing essentially eliminates expression of NEMO mRNA and protein in 293T human kidney cells. By cell subcloning, we have isolated targeted 293T cell lines that express no detectable NEMO protein, have defined genomic alterations at promoter B, and do not support activation of canonical NF-κB signaling in response to treatment with tumor necrosis factor. Nevertheless, non-canonical NF-κB signaling is intact in these NEMO-deficient cells. Expression of ectopic wild-type NEMO, but not certain human NEMO disease mutants, in the edited cells restores downstream NF-κB signaling in response to tumor necrosis factor. Targeting of the promoter B element does not substantially reduce NEMO expression (from promoter D) in the human SNU-423 liver cancer cell line. Thus, we have created a strategy for selectively eliminating cell type-specific expression from an alternative promoter and have generated 293T cell lines with a functional knockout of NEMO. The implications of these findings for further studies and for therapeutic approaches to target canonical NF-κB signaling are discussed.
Collapse
Affiliation(s)
- Milad Babaei
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Yuekun Liu
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Shelly M. Wuerzberger-Davis
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Ethan Z. McCaslin
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Christopher J. DiRusso
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Alan T. Yeo
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Larisa Kagermazova
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Shigeki Miyamoto
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Thomas D. Gilmore
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
136
|
Wnt/β-catenin signaling as a useful therapeutic target in hepatoblastoma. Biosci Rep 2019; 39:BSR20192466. [PMID: 31511432 PMCID: PMC6757184 DOI: 10.1042/bsr20192466] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 12/24/2022] Open
Abstract
Hepatoblastoma is a malignant tumor in the liver of children that generally occurs at the age of 2–3 years. There have been ample evidence from the preclinical as well as clinical studies suggesting the activation of Wnt/β-catenin signaling in hepatoblastoma, which is mainly attributed to the somatic mutations in the exon 3 of β-catenin gene. There is increased translocation of β-catenin protein from the cell surface to cytoplasm and nucleus and intracellular accumulation is directly linked to the severity of the cancer. Accordingly, the alterations in β-catenin and its target genes may be used as markers in the diagnosis and prognosis of pediatric live tumors. Furthermore, scientists have reported the therapeutic usefulness of inhibition of Wnt/β-catenin signaling in hepatoblastoma and this inhibition of signaling has been done using different methods including short interfering RNA (siRNA), miRNA and pharmacological agents. Wnt/β-catenin works in association with other signaling pathways to induce the development of hepatoblastoma including Yes-associated protein (YAP)1 (YAP-1), mammalian target of rapamycin (mTOR) 1 (mTOR-1), SLC38A1, glypican 3 (GPC3), nuclear factor κ-light-chain-enhancer of activated B cells (NF-kB), epidermal growth factor receptor, ERK1/2, tumor necrosis factor-α (TNF-α), regenerating islet-derived 1 and 3 α (REG1A and 3A), substance P (SP)/neurokinin-1 receptor and PARP-1. The present review describes the key role of Wnt/β-catenin signaling in the development of hepatoblastoma. Moreover, the role of other signaling pathways in hepatoblastoma in association with Wnt/β-catenin has also been described.
Collapse
|
137
|
Anti-cancer effects of oxymatrine are mediated through multiple molecular mechanism(s) in tumor models. Pharmacol Res 2019; 147:104327. [DOI: 10.1016/j.phrs.2019.104327] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/24/2019] [Accepted: 06/21/2019] [Indexed: 12/22/2022]
|
138
|
Fangchinoline, a Bisbenzylisoquinoline Alkaloid can Modulate Cytokine-Impelled Apoptosis via the Dual Regulation of NF-κB and AP-1 Pathways. Molecules 2019; 24:molecules24173127. [PMID: 31466313 PMCID: PMC6749215 DOI: 10.3390/molecules24173127] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 12/25/2022] Open
Abstract
Fangchinoline (FCN) derived from Stephaniae tetrandrine S. Moore can be employed to treat fever, inflammation, rheumatism arthralgia, edema, dysuria, athlete’s foot, and swollen wet sores. FCN can exhibit a plethora of anti-neoplastic effects although its precise mode of action still remains to be deciphered. Nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) can closely regulate carcinogenesis and thus we analyzed the possible action of FCN may have on these two signaling cascades in tumor cells. The effect of FCN on NF-κB and AP-1 signaling cascades and its downstream functions was deciphered using diverse assays in both human chronic myeloid leukemia (KBM5) and multiple myeloma (U266). FCN attenuated growth of both leukemic and multiple myeloma cells and repressed NF-κB, and AP-1 activation through diverse mechanisms, including attenuation of phosphorylation of IκB kinase (IKK) and p65. Furthermore, FCN could also cause significant enhancement in TNFα-driven apoptosis as studied by various molecular techniques. Thus, FCN may exhibit potent anti-neoplastic effects by affecting diverse oncogenic pathways and may be employed as pro-apoptotic agent against various malignancies.
Collapse
|
139
|
Roy NK, Parama D, Banik K, Bordoloi D, Devi AK, Thakur KK, Padmavathi G, Shakibaei M, Fan L, Sethi G, Kunnumakkara AB. An Update on Pharmacological Potential of Boswellic Acids against Chronic Diseases. Int J Mol Sci 2019; 20:ijms20174101. [PMID: 31443458 PMCID: PMC6747466 DOI: 10.3390/ijms20174101] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
Natural compounds, in recent years, have attracted significant attention for their use in the prevention and treatment of diverse chronic diseases as they are devoid of major toxicities. Boswellic acid (BA), a series of pentacyclic triterpene molecules, is isolated from the gum resin of Boswellia serrata and Boswellia carteri. It proved to be one such agent that has exhibited efficacy against various chronic diseases like arthritis, diabetes, asthma, cancer, inflammatory bowel disease, Parkinson’s disease, Alzheimer’s, etc. The molecular targets attributed to its wide range of biological activities include transcription factors, kinases, enzymes, receptors, growth factors, etc. The present review is an attempt to demonstrate the diverse pharmacological uses of BA, along with its underlying molecular mechanism of action against different ailments. Further, this review also discusses the roadblocks associated with the pharmacokinetics and bioavailability of this promising compound and strategies to overcome those limitations for developing it as an effective drug for the clinical management of chronic diseases.
Collapse
Affiliation(s)
- Nand Kishor Roy
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Amrita Khwairakpam Devi
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Ganesan Padmavathi
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Lu Fan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
140
|
Hepatoprotective Effects of Morchella esculenta against Alcohol-Induced Acute Liver Injury in the C57BL/6 Mouse Related to Nrf-2 and NF- κB Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6029876. [PMID: 31396303 PMCID: PMC6664553 DOI: 10.1155/2019/6029876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/18/2019] [Accepted: 06/11/2019] [Indexed: 12/14/2022]
Abstract
This study investigated the hepatoprotective effects of Morchella esculenta fruit body (ME) and the underlying mechanisms in mice with alcohol-induced acute liver injury. Systematic analysis revealed that ME contained 21 types of fatty acid, 17 types of amino acid, and 12 types of mineral. Subsequently, a mouse model of acute alcohol-induced liver injury was established by oral administration of alcohol for 14 days. Fourteen-day administration of ME prevented alcohol-induced increases in alanine aminotransferase and aspartate aminotransferase levels and reduced the activity of acetaldehyde dehydrogenase in blood serum and liver tissue. ME appears to regulate lipid metabolism by suppressing triglycerides, total cholesterol, and high-density lipoprotein in the liver. ME inhibited the production of inflammatory factors including chitinase-3-like protein 1 (YKL 40), interleukin-7 (IL-7), plasminogen activator inhibitor type 1 (PAI-1), and retinol-binding protein 4 (RBP4) in blood serum and/or liver tissue. ME treatment relieved the alcohol-induced imbalance in prooxidative and antioxidative signaling via nuclear factor-erythroid 2-related factor 2 (Nrf-2), as indicated by upregulation of superoxide dismutase-1, superoxide dismutase-2, catalase, heme oxygenase-1, and heme oxygenase-2 expression and downregulation of kelch-like ECH-associated protein 1 (Keap-1) in the liver. Moreover, ME reduced the levels of phosphorylated nuclear factor kappa-B kinase α/β, inhibitor of nuclear factor kappa-B α and nuclear factor kappa-B p65 (NF-κB p65) in the liver. The hepatoprotective effects of ME against alcohol-induced acute liver injury were thus confirmed. The mechanism of action may be related to modulation of antioxidative and anti-inflammatory signaling pathways, partially via regulation of Nrf-2 and NF-κB signaling.
Collapse
|
141
|
Formononetin Regulates Multiple Oncogenic Signaling Cascades and Enhances Sensitivity to Bortezomib in a Multiple Myeloma Mouse Model. Biomolecules 2019; 9:biom9070262. [PMID: 31284669 PMCID: PMC6681380 DOI: 10.3390/biom9070262] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 12/18/2022] Open
Abstract
Here, we determined the anti-neoplastic actions of formononetin (FT) against multiple myeloma (MM) and elucidated its possible mode of action. It was observed that FT enhanced the apoptosis caused by bortezomib (Bor) and mitigated proliferation in MM cells, and these events are regulated by nuclear factor-κB (NF-κB), phosphatidylinositol 3-kinase (PI3K)/AKT, and activator protein-1 (AP-1) activation. We further noted that FT treatment reduced the levels of diverse tumorigenic proteins involved in myeloma progression and survival. Interestingly, we observed that FT also blocked persistent NF-κB, PI3K/AKT, and AP-1 activation in myeloma cells. FT suppressed the activation of these oncogenic cascades by affecting a number of signaling molecules involved in their cellular regulation. In addition, FT augmented tumor growth-inhibitory potential of Bor in MM preclinical mouse model. Thus, FT can be employed with proteasomal inhibitors for myeloma therapy by regulating the activation of diverse oncogenic transcription factors involved in myeloma growth.
Collapse
|
142
|
Banik K, Ranaware AM, Deshpande V, Nalawade SP, Padmavathi G, Bordoloi D, Sailo BL, Shanmugam MK, Fan L, Arfuso F, Sethi G, Kunnumakkara AB. Honokiol for cancer therapeutics: A traditional medicine that can modulate multiple oncogenic targets. Pharmacol Res 2019; 144:192-209. [DOI: 10.1016/j.phrs.2019.04.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023]
|
143
|
Focus on Formononetin: Anticancer Potential and Molecular Targets. Cancers (Basel) 2019; 11:cancers11050611. [PMID: 31052435 PMCID: PMC6562434 DOI: 10.3390/cancers11050611] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/22/2019] [Accepted: 04/28/2019] [Indexed: 12/11/2022] Open
Abstract
Formononetin, an isoflavone, is extracted from various medicinal plants and herbs, including the red clover (Trifolium pratense) and Chinese medicinal plant Astragalus membranaceus. Formononetin's antioxidant and neuroprotective effects underscore its therapeutic use against Alzheimer's disease. Formononetin has been under intense investigation for the past decade as strong evidence on promoting apoptosis and against proliferation suggests for its use as an anticancer agent against diverse cancers. These anticancer properties are observed in multiple cancer cell models, including breast, colorectal, and prostate cancer. Formononetin also attenuates metastasis and tumor growth in various in vivo studies. The beneficial effects exuded by formononetin can be attributed to its antiproliferative and cell cycle arrest inducing properties. Formononetin regulates various transcription factors and growth-factor-mediated oncogenic pathways, consequently alleviating the possible causes of chronic inflammation that are linked to cancer survival of neoplastic cells and their resistance against chemotherapy. As such, this review summarizes and critically analyzes current evidence on the potential of formononetin for therapy of various malignancies with special emphasis on molecular targets.
Collapse
|
144
|
Yang MH, Jung SH, Sethi G, Ahn KS. Pleiotropic Pharmacological Actions of Capsazepine, a Synthetic Analogue of Capsaicin, against Various Cancers and Inflammatory Diseases. Molecules 2019; 24:molecules24050995. [PMID: 30871017 PMCID: PMC6429077 DOI: 10.3390/molecules24050995] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/21/2022] Open
Abstract
Capsazepine is a synthetic analogue of capsaicin that can function as an antagonist of TRPV1. Capsazepine can exhibit diverse effects on cancer (prostate cancer, breast cancer, colorectal cancer, oral cancer, and osteosarcoma) growth and survival, and can be therapeutically used against other major disorders such as colitis, pancreatitis, malaria, and epilepsy. Capsazepine has been reported to exhibit pleiotropic anti-cancer effects against numerous tumor cell lines. Capsazepine can modulate Janus activated kinase (JAK)/signal transducer and activator of the transcription (STAT) pathway, intracellular Ca2+ concentration, and reactive oxygen species (ROS)-JNK-CCAAT/enhancer-binding protein homologous protein (CHOP) pathways. It can inhibit cell proliferation, metastasis, and induce apoptosis. Moreover, capsazepine can exert anti-inflammatory effects through the downregulation of lipopolysaccharide (LPS)-induced nuclear transcription factor-kappa B (NF-κB), as well as the blockage of activation of both transient receptor potential cation channel subfamily V member 1 (TRPV1) and transient receptor potential cation channel, subfamily A, and member 1 (TRPA1). This review briefly summarizes the diverse pharmacological actions of capsazepine against various cancers and inflammatory conditions.
Collapse
Affiliation(s)
- Min Hee Yang
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea.
| | - Sang Hoon Jung
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Kwang Seok Ahn
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea.
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
- Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| |
Collapse
|
145
|
Inhibition of PAK1 alleviates cerulein-induced acute pancreatitis via p38 and NF-κB pathways. Biosci Rep 2019; 39:BSR20182221. [PMID: 30718368 PMCID: PMC6395303 DOI: 10.1042/bsr20182221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022] Open
Abstract
Acute pancreatitis is a life-threatening disease accompanied by systemic inflammatory response. NF-κB and p38 signal pathways are activated in AP induced by cerulein. And PAKs are multifunctional effectors of Rho GTPases with kinase activity. In the present study, the function of P21-activated kinase 1 (PAK1) in AP was investigated, and found that PAK1 was up-regulated in pancreas of AP mice model, and led to NF-κB and p38 pathway activation. PAK1 inhibition by shRNA or small molecule inhibitor FRAX597 decreased NF-κB and p38 activity, also alleviated the pathological damage in the pancreas of AP mice model, including decreasing the amylase and lipase levels in serum, decreasing the levels of tumor necrosis factor-α, interleukin-6, and interleukin-1β in AP. These results suggested that PAK1 inhibition protects against AP by inhibiting NF-κB and p38 pathways, and indicated that PAK1 is a potential therapy to alleviate AP patients in clinic, and these need to be explored further.
Collapse
|
146
|
FBXW7 in Cancer: What Has Been Unraveled Thus Far? Cancers (Basel) 2019; 11:cancers11020246. [PMID: 30791487 PMCID: PMC6406609 DOI: 10.3390/cancers11020246] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 12/14/2022] Open
Abstract
: The FBXW7 (F-box with 7 tandem WD40) protein encoded by the gene FBXW7 is one of the crucial components of ubiquitin ligase called Skp1-Cullin1-F-box (SCF) complex that aids in the degradation of many oncoproteins via the ubiquitin-proteasome system (UPS) thus regulating cellular growth. FBXW7 is considered as a potent tumor suppressor as most of its target substrates can function as potential growth promoters, including c-Myc, Notch, cyclin E, c-JUN, and KLF5. Its regulators include p53, C/EBP-δ, Numb, microRNAs, Pin 1, Hes-5, BMI1, Ebp2. Mounting evidence has indicated the involvement of aberrant expression of FBXW7 for tumorigenesis. Moreover, numerous studies have also shown its role in cancer cell chemosensitization, thereby demonstrating the importance of FBXW7 in the development of curative cancer therapy. This comprehensive review emphasizes on the targets, functions, regulators and expression of FBXW7 in different cancers and its involvement in sensitizing cancer cells to chemotherapeutic drugs.
Collapse
|
147
|
Shaoyao-Gancao Decoction alleviated hyperandrogenism in a letrozole-induced rat model of polycystic ovary syndrome by inhibition of NF-κB activation. Biosci Rep 2019; 39:BSR20181877. [PMID: 30573529 PMCID: PMC6328870 DOI: 10.1042/bsr20181877] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/29/2018] [Accepted: 12/19/2018] [Indexed: 12/22/2022] Open
Abstract
Shaoyao-Gancao Decoction (SGD) has been widely used for the treatment of gynopathy. The present study aimed to evaluate the therapeutic effect and potential mechanism of SGD on hyperandrogenism in polycystic ovary syndrome (PCOS) rats. In the present work, SGD was orally administrated to the PCOS rats at the dose of 12.5, 25, and 50 g/kg/d for 14 consecutive days. UPLC–MS/MS was performed to identify the main chemical components of SGD. Body weight, ovarian weight, cystic dilating follicles, and serum levels of steroid hormones were tested to evaluate the therapeutic effect of SGD. In order to further clarify the underlying mechanism, we also measured mRNA and the protein levels of NF-κB, NF-κB p65, P-NF-κB p65, and IκB by RT-qPCR and Western blotting techniques. Our results showed that SGD treatment significantly alleviated hyperandrogenism in PCOS rats as evidenced by reduced serum levels of T and increased E2 and FSH levels. In addition, SGD effectively reduced the phosphorylation of NF-κB p65 and increased the expression of IκB. Results of the present study demonstrated that SGD could ameliorate hyperandrogenism in PCOS rats, and the potential mechanism may relate to the NF-κB pathway.
Collapse
|
148
|
Anti-Cancer Activity of Derivatives of 1,3,4-Oxadiazole. Molecules 2018; 23:molecules23123361. [PMID: 30567416 PMCID: PMC6320996 DOI: 10.3390/molecules23123361] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/14/2022] Open
Abstract
Compounds containing 1,3,4-oxadiazole ring in their structure are characterised by multidirectional biological activity. Their anti-proliferative effects associated with various mechanisms, such as inhibition of growth factors, enzymes, kinases and others, deserve attention. The activity of these compounds was tested on cell lines of various cancers. In most publications, the most active derivatives of 1,3,4-oxadiazole exceeded the effect of reference drugs, so they may become the main new anti-cancer drugs in the future.
Collapse
|
149
|
Ko JH, Arfuso F, Sethi G, Ahn KS. Pharmacological Utilization of Bergamottin, Derived from Grapefruits, in Cancer Prevention and Therapy. Int J Mol Sci 2018; 19:ijms19124048. [PMID: 30558157 PMCID: PMC6321104 DOI: 10.3390/ijms19124048] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/23/2022] Open
Abstract
Cancer still remains one of the leading causes of death worldwide. In spite of significant advances in treatment options and the advent of novel targeted therapies, there still remains an unmet need for the identification of novel pharmacological agents for cancer therapy. This has led to several studies evaluating the possible application of natural agents found in vegetables, fruits, or plant-derived products that may be useful for cancer treatment. Bergamottin is a furanocoumarin derived from grapefruits and is also a well-known cytochrome P450 inhibitor. Recent studies have demonstrated potent anti-oxidative, anti-inflammatory, and anti-cancer properties of grapefruit furanocoumarin both in vitro and in vivo. The present review focuses on the potential anti-neoplastic effects of bergamottin in different tumor models and briefly describes the molecular targets affected by this agent.
Collapse
Affiliation(s)
- Jeong-Hyeon Ko
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
- Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth 6009, Australia.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
- Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| |
Collapse
|
150
|
Phytochemicals: Current strategy to sensitize cancer cells to cisplatin. Biomed Pharmacother 2018; 110:518-527. [PMID: 30530287 DOI: 10.1016/j.biopha.2018.12.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/11/2018] [Accepted: 12/02/2018] [Indexed: 12/15/2022] Open
Abstract
Cisplatin-based chemotherapeutic regimens are the most frequently used adjuvant treatments for many types of cancer. However, the development of chemoresistance to cisplatin results in treatment failure. Despite the significant developments in understanding the mechanisms of cisplatin resistance, effective strategies to enhance the chemosensitivity of cisplatin are lacking. Phytochemicals are naturally occurring plant-based compounds that can augment the anti-cancer activity of cisplatin, with minimal side effects. Notably, some novel phytochemicals, such as curcumin, not only increase the efficacy of cisplatin but also decrease toxicity induced by cisplatin. However, the exact mechanisms underlying this process remain unclear. In this review, we discussed the progress made in utilizing phytochemicals to enhance the anti-cancer efficacy of cisplatin. We also presented some ideal phytochemicals as novel agents for counteracting cisplatin-induced organ damage.
Collapse
|