101
|
Al-Jipouri A, Eritja À, Bozic M. Unraveling the Multifaceted Roles of Extracellular Vesicles: Insights into Biology, Pharmacology, and Pharmaceutical Applications for Drug Delivery. Int J Mol Sci 2023; 25:485. [PMID: 38203656 PMCID: PMC10779093 DOI: 10.3390/ijms25010485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Extracellular vesicles (EVs) are nanoparticles released from various cell types that have emerged as powerful new therapeutic option for a variety of diseases. EVs are involved in the transmission of biological signals between cells and in the regulation of a variety of biological processes, highlighting them as potential novel targets/platforms for therapeutics intervention and/or delivery. Therefore, it is necessary to investigate new aspects of EVs' biogenesis, biodistribution, metabolism, and excretion as well as safety/compatibility of both unmodified and engineered EVs upon administration in different pharmaceutical dosage forms and delivery systems. In this review, we summarize the current knowledge of essential physiological and pathological roles of EVs in different organs and organ systems. We provide an overview regarding application of EVs as therapeutic targets, therapeutics, and drug delivery platforms. We also explore various approaches implemented over the years to improve the dosage of specific EV products for different administration routes.
Collapse
Affiliation(s)
- Ali Al-Jipouri
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany;
| | - Àuria Eritja
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25196 Lleida, Spain;
| | - Milica Bozic
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany;
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25196 Lleida, Spain;
| |
Collapse
|
102
|
Wu SY, Tsai WB. Development of an In Situ Photo-Crosslinking Antimicrobial Collagen Hydrogel for the Treatment of Infected Wounds. Polymers (Basel) 2023; 15:4701. [PMID: 38139953 PMCID: PMC10748037 DOI: 10.3390/polym15244701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Antimicrobial hydrogels have received considerable attention in the treatment of bacteria-infected wounds. Herein, we develop a neutral, soluble collagen via modification with maleic anhydride, serving as a hydrogel precursor. Maleic anhydride-modified collagen (ColME) could form a gel after exposure to UV light and be loaded with the antimicrobial agents, nisin and levofloxacin, to acquire antimicrobial ability. The ColME hydrogel containing nisin and levofloxacin had good cytocompatibility and effectively killed pathogenic bacterial strains, such as Escherichia coli and Staphylococcus aureus. The antimicrobial ColME hydrogels effectively supported the healing of a full-thickness skin wound infected with S. aureus in a mouse model. Our results demonstrate the potential of antimicrobial hydrogels as effective wound dressings via in situ photogelation for the healing of infected wounds.
Collapse
Affiliation(s)
- Song-Yi Wu
- Department of Chemical Engineering & Program of Green Materials and Precision Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan;
- Guangdong Victory Biotech Co., Ltd., 4F., A11, Guangdong New Light Source Industrial Park, Luocun, Shishan Town, Nanhai District, Foshan 528226, China
- Guangxi Shenguan Collagen Biological Group Company Limited, No. 39 Xijiang 4th Rd., Wuzhou 543099, China
| | - Wei-Bor Tsai
- Department of Chemical Engineering & Program of Green Materials and Precision Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan;
| |
Collapse
|
103
|
Qiao B, Wang J, Qiao L, Maleki A, Liang Y, Guo B. ROS-responsive hydrogels with spatiotemporally sequential delivery of antibacterial and anti-inflammatory drugs for the repair of MRSA-infected wounds. Regen Biomater 2023; 11:rbad110. [PMID: 38173767 PMCID: PMC10761208 DOI: 10.1093/rb/rbad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/15/2023] [Accepted: 12/02/2023] [Indexed: 01/05/2024] Open
Abstract
For the treatment of MRSA-infected wounds, the spatiotemporally sequential delivery of antibacterial and anti-inflammatory drugs is a promising strategy. In this study, ROS-responsive HA-PBA/PVA (HPA) hydrogel was prepared by phenylborate ester bond cross-linking between hyaluronic acid-grafted 3-amino phenylboronic acid (HA-PBA) and polyvinyl alcohol (PVA) to achieve spatiotemporally controlled release of two kinds of drug to treat MRSA-infected wound. The hydrophilic antibiotic moxifloxacin (M) was directly loaded in the hydrogel. And hydrophobic curcumin (Cur) with anti-inflammatory function was first mixed with Pluronic F127 (PF) to form Cur-encapsulated PF micelles (Cur-PF), and then loaded into the HPA hydrogel. Due to the different hydrophilic and hydrophobic nature of moxifloxacin and Cur and their different existing forms in the HPA hydrogel, the final HPA/M&Cur-PF hydrogel can achieve different spatiotemporally sequential delivery of the two drugs. In addition, the swelling, degradation, self-healing, antibacterial, anti-inflammatory, antioxidant property, and biocompatibility of hydrogels were tested. Finally, in the MRSA-infected mouse skin wound, the hydrogel-treated group showed faster wound closure, less inflammation and more collagen deposition. Immunofluorescence experiments further confirmed that the hydrogel promoted better repair by reducing inflammation (TNF-α) and promoting vascular (VEGF) regeneration. In conclusion, this HPA/M&Cur-PF hydrogel that can spatiotemporally sequential deliver antibacterial and anti-inflammatory drugs showed great potential for the repair of MRSA-infected skin wounds.
Collapse
Affiliation(s)
- Bowen Qiao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Jiaxin Wang
- State Key Laboratory for Mechanical Behavior of Materials, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Lipeng Qiao
- State Key Laboratory for Mechanical Behavior of Materials, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan 45139-56184, Iran
| | - Yongping Liang
- State Key Laboratory for Mechanical Behavior of Materials, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Baolin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Department of Orthopaedics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, People’s Republic of China
| |
Collapse
|
104
|
Verdú-Soriano J, Casado-Díaz A, de Cristino-Espinar M, Luna-Morales S, Dios-Guerra C, Moreno-Moreno P, Dorado G, Quesada-Gómez JM, Rodríguez-Mañas L, Lázaro-Martínez JL. Hard-to-Heal Wound Healing: Superiority of Hydrogel EHO-85 (Containing Olea europaea Leaf Extract) vs. a Standard Hydrogel. A Randomized Controlled Trial. Gels 2023; 9:962. [PMID: 38131948 PMCID: PMC10742797 DOI: 10.3390/gels9120962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Chronic wounds, especially those that are hard-to-heal, constitute a serious public-health problem. Although progress has been made in the development of wound dressings for healing, there is little high-quality evidence of their efficacy, with no evidence of superiority in the use of one hydrogel over another. To evaluate the superiority of a hydrogel (EHO-85), containing Olea europaea leaf extract (OELE), over a standard hydrogel (SH), the promotion and/or improvement of healing of difficult-to-heal wounds was compared in a prospective, parallel-group multicenter, randomized, observer-blinded, controlled trial ("MACAON"). Non-hospitalized patients with pressure, venous or diabetic foot-ulcers difficult-to-heal were recruited and treated with standard care, and EHO-85 (n = 35) or VariHesive (n = 34) as SH. Wound-area reduction (WAR; percentage) and healing rate (HR; mm2/day) were measured. EHO-85 showed a statistically significant superior effect over VariHesive. At the end of the follow-up period, the relative WAR decreased by 51.6% vs. 18.9% (p < 0.001), with a HR mean of 10.5 ± 5.7 vs. 1.0 ± 7.5 mm2/day (p = 0.036). EHO-85 superiority is probably based on its optimal ability to balance the ulcer bed, by modulating pH and oxidative stress. That complements the wetting and barrier functions, characteristics of conventional hydrogels. These results support the use of EHO-85 dressing, for treatment of hard-to-heal ulcers. Trial Registration AEMPS:PS/CR623/17/CE.
Collapse
Affiliation(s)
- José Verdú-Soriano
- Department of Community Nursing, Preventive Medicine, Public Health and History of Science, Faculty of Health Sciences, University of Alicante, 03690 Alicante, Spain
| | - Antonio Casado-Díaz
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain; (M.d.C.-E.); (S.L.-M.); (C.D.-G.); (P.M.-M.); (J.M.Q.-G.)
- Endocrinology and Nutrition Unit, Reina Sofia University Hospital, 14004 Córdoba, Spain
- Consortium for Biomedical Research in Frailty & Healthy Ageing (CIBERFES), Institute of Health Carlos III, 28029 Madrid, Spain; (G.D.); (L.R.-M.)
| | - Marisol de Cristino-Espinar
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain; (M.d.C.-E.); (S.L.-M.); (C.D.-G.); (P.M.-M.); (J.M.Q.-G.)
- Pharmacy Department, Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - Silvia Luna-Morales
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain; (M.d.C.-E.); (S.L.-M.); (C.D.-G.); (P.M.-M.); (J.M.Q.-G.)
- Occidente Health Center, Córdoba and Guadalquivir Health Management Area, 14005 Córdoba, Spain
| | - Caridad Dios-Guerra
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain; (M.d.C.-E.); (S.L.-M.); (C.D.-G.); (P.M.-M.); (J.M.Q.-G.)
- Occidente Health Center, Córdoba and Guadalquivir Health Management Area, 14005 Córdoba, Spain
- Department of Nursing, Faculty of Medicine and Nursing, University of Cordoba, 14004 Córdoba, Spain
| | - Paloma Moreno-Moreno
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain; (M.d.C.-E.); (S.L.-M.); (C.D.-G.); (P.M.-M.); (J.M.Q.-G.)
- Endocrinology and Nutrition Unit, Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - Gabriel Dorado
- Consortium for Biomedical Research in Frailty & Healthy Ageing (CIBERFES), Institute of Health Carlos III, 28029 Madrid, Spain; (G.D.); (L.R.-M.)
- Department Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain
| | - José Manuel Quesada-Gómez
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain; (M.d.C.-E.); (S.L.-M.); (C.D.-G.); (P.M.-M.); (J.M.Q.-G.)
- Consortium for Biomedical Research in Frailty & Healthy Ageing (CIBERFES), Institute of Health Carlos III, 28029 Madrid, Spain; (G.D.); (L.R.-M.)
| | - Leocadio Rodríguez-Mañas
- Consortium for Biomedical Research in Frailty & Healthy Ageing (CIBERFES), Institute of Health Carlos III, 28029 Madrid, Spain; (G.D.); (L.R.-M.)
- Department of Geriatrics, University Hospital of Getafe, 28905 Getafe, Spain
| | - José Luis Lázaro-Martínez
- Diabetic Foot Unit, University Podiatry Clinic, Complutense University of Madrid, 28040 Madrid, Spain;
| |
Collapse
|
105
|
Witkowska K, Paczkowska-Walendowska M, Plech T, Szymanowska D, Michniak-Kohn B, Cielecka-Piontek J. Chitosan-Based Hydrogels for Controlled Delivery of Asiaticoside-Rich Centella asiatica Extracts with Wound Healing Potential. Int J Mol Sci 2023; 24:17229. [PMID: 38139059 PMCID: PMC10743457 DOI: 10.3390/ijms242417229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Centella asiatica extract is a valued plant material with known anti-inflammatory and anti-microbiological properties. Using the Design of Experiment (DoE) approach, it was possible to obtain an optimized water/alcoholic extract from Centella asiatica, which allowed the preparation of the final material with biological activity in the wound healing process. Studies on the novel applications of Centella asiatica in conjunction with the multifunctional chitosan carrier have been motivated by the plant's substantial pharmacological activity and the need to develop new and effective methods for the treatment of chronic wounds. The controlled release of asiaticoside was made possible by the use of chitosan as a carrier. Based on the findings of investigations using the PAMPA skin assay, which is a model imitating the permeability of actives through skin, this compound, characterized by sustained release from the chitosan delivery system, was identified as being well able to permeate biological membranes such as skin. Chitosan and the lyophilized extract of Centella asiatica worked synergistically to block hyaluronidase, exert efficient microbiological activity and take part in the wound healing process, as proven in an in vitro model. A formulation containing 3% extract with 3% medium-molecular-weight chitosan was indicated as a potentially new treatment with high compliance and effectiveness for patients. Optimization of the chitosan-based hydrogel preparation ensured the required rheological properties necessary for the release of the bioactive from the chitosan delivery system and demonstrated a satisfactory antimicrobial activity.
Collapse
Affiliation(s)
- Katarzyna Witkowska
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (K.W.); (M.P.-W.); (D.S.)
| | - Magdalena Paczkowska-Walendowska
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (K.W.); (M.P.-W.); (D.S.)
| | - Tomasz Plech
- Department of Pharmacology, Medical University of Lublin, Radziwillowska 11, 20-080 Lublin, Poland;
| | - Daria Szymanowska
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (K.W.); (M.P.-W.); (D.S.)
| | - Bożena Michniak-Kohn
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers—The State University of New Jersey, Piscataway, NJ 08854, USA;
- Center for Dermal Research, Rutgers—The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (K.W.); (M.P.-W.); (D.S.)
| |
Collapse
|
106
|
Suhandi C, Mohammed AFA, Wilar G, El-Rayyes A, Wathoni N. Effectiveness of Mesenchymal Stem Cell Secretome on Wound Healing: A Systematic Review and Meta-analysis. Tissue Eng Regen Med 2023; 20:1053-1062. [PMID: 37682505 PMCID: PMC10645742 DOI: 10.1007/s13770-023-00570-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/15/2023] [Accepted: 07/03/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Secretome provides promising potential in replacing cell-based therapies in wound repair therapy. This study aimed to systematically review and conduct a meta-analysis on the effectiveness of secretome in promoting wound healing. METHODS To ensure the rigor and transparency of our study, we followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, as registered in PROSPERO with ID: CRD42023412671. We conducted a comprehensive search on four electronic databases to identify studies evaluating the effect of secretome on various clinical parameters of wound repair. In addition, we evaluated the risk of bias for each study using the Jadad and Newcastle-Ottawa scale. To synthesize the data, we employed a fixed-effects model and calculated the mean difference or odds ratio (OR) with a 95% confidence interval (CI). RESULTS Based on six included articles, secretome is known to affect several clinical parameters in wound healing included the size and depth of ulcers during healing; the E´chelle d'évaluation clinique des cicatrices d'acne (ECCA) score, epidermal thickness, collagen fibers, abnormal elastic tissues, volume of atrophic acne scars, skin pore volume, and erythema during acne scar healing; and microcrust areas, erythema index, transepidermal water loss, volume of atrophic acne scars, erythema, and relative gene expression of procollagen type I, procollagen type III, and elastin were evaluated in wound healing after laser treatment. Meta-analysis studies showed that secretome reduced ulcer size (mean difference: 0.87, 95% CI of 0.37-1.38, p = 0.0007), decreased ulcer depth (mean difference: 0.18, 95% CI of 0.11-0.25, p < 0.00001), and provided patient satisfaction (odds ratio: 9.71, 95% CI of 3.47-21.17, p < 0.0001). However, secretome failed to reach significance in clinical improvement (OR 0.38, 95% CI 0.10, 1.53, p = 0.06). CONCLUSION The secretome provides good effectiveness in accelerating wound healing through a mechanism that correlates with several clinical parameters of wound repair.
Collapse
Affiliation(s)
- Cecep Suhandi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | | | - Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Ali El-Rayyes
- Department of Chemistry, Faculty of Science, Northern Border University, Arar, Saudi Arabia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia.
| |
Collapse
|
107
|
Nasra S, Patel M, Shukla H, Bhatt M, Kumar A. Functional hydrogel-based wound dressings: A review on biocompatibility and therapeutic efficacy. Life Sci 2023; 334:122232. [PMID: 37918626 DOI: 10.1016/j.lfs.2023.122232] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Chronic wounds, burns, and surgical incisions represent critical healthcare challenges that significantly impact patient quality of life and strain healthcare resources. In response to these pressing needs, the field of wound healing has witnessed a radical advancement with the emergence of functional hydrogel-based dressings. This review article underscores the severity and importance of this transformative study in the domain of wound healing. The hydrogel matrix offers a moist and supportive environment that facilitates cellular migration, proliferation, and tissue regeneration, vital for efficient wound closure. Their conformable nature ensures patient comfort, reducing pain and uneasiness during dressing changes, particularly in chronic wounds where frequent interventions are required. Beyond their structural merits, functional hydrogel dressings possess the capability of incorporating bioactive molecules such as growth factors and antimicrobial agents. This facilitates targeted and sustained delivery of therapeutics directly to the wound site, addressing the multifactorial nature of chronic wounds and enhancing the healing trajectory. The integration of advanced nanotechnology has propelled the design of hydrogel dressings with enhanced mechanical strength and controlled drug release profiles, amplifying their therapeutic potential. In conclusion, the significance of this study lies in its ability to revolutionize wound healing practices and positively impact the lives of countless individuals suffering from chronic wounds and burns. As this transformative technology gains momentum, it holds the promise of addressing a major healthcare burden worldwide, thus heralding a new era in wound care management.
Collapse
Affiliation(s)
- Simran Nasra
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Milonee Patel
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Haly Shukla
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Mahek Bhatt
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
108
|
Su L, Jia Y, Fu L, Guo K, Xie S. The emerging progress on wound dressings and their application in clinic wound management. Heliyon 2023; 9:e22520. [PMID: 38076148 PMCID: PMC10709065 DOI: 10.1016/j.heliyon.2023.e22520] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND In addition to its barrier function, the skin plays a crucial role in maintaining the stability of the body's internal environment and normal physiological functions. When the skin is damaged, it is important to select proper dressings as temporary barriers to cover the wound, which can exert significant effects on defence against microbial infection, maintaining normal tissue/cell functions, and coordinating the process of wound repair and regeneration. It now forms an important approach in clinic practice to facilitate wound repair. SEARCH STRATEGIES We conducted a comprehensive literature search using online databases including PubMed, Web of Science, MEDLINE, ScienceDirect, Wiley Online Library, CNKI, and Wanfang Data. In addition, information was obtained from local and foreign books on biomaterials science and traumatology. RESULTS This review focuses on the efficacy and principles of functional dressings for anti-bacteria, anti-infection, anti-inflammation, anti-oxidation, hemostasis, and wound healing facilitation; and analyses the research progress of dressings carrying living cells such as fibroblasts, keratinocytes, skin appendage cells, and stem cells from different origins. We also summarize the recent advances in intelligent wound dressings with respect to real-time monitoring, automatic drug delivery, and precise adjustment according to the actual wound microenvironment. In addition, this review explores and compares the characteristics, advantages and disadvantages, mechanisms of actions, and application scopes of dressings made from different materials. CONCLUSION The real-time and dynamic acquisition and analysis of wound conditions are crucial for wound management and prognostic evaluation. Therefore, the development of modern dressings that integrate multiple functions, have high similarity to the skin, and are highly intelligent will be the focus of future research, which could drive efficient wound management and personalized medicine, and ultimately facilitate the translation of health monitoring into clinical practice.
Collapse
Affiliation(s)
- Linlin Su
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Yanhui Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Lanqing Fu
- Department of Orthopedics, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, 430063, China
| | - Kai Guo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Songtao Xie
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
109
|
Guo J, Lv A, Wu J, Sun E, Zhu Y, Zhang X, Wang L, Wang K, Li X. Bandage modified with antibacterial films of quaternized chitosan & sodium carboxymethyl cellulose microgels/baicalein nanoparticles for accelerating infected wound healing. Int J Biol Macromol 2023; 250:126274. [PMID: 37572812 DOI: 10.1016/j.ijbiomac.2023.126274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Wound dressings capable of sterilizing pathogenic bacteria and scavenging free radicals are important to inhibit bacterial invasion and accelerate wound healing. The target of this work is to develop an antibacterial dressing by modifying bandages with films composed of biological macromolecule microgels and baicalein@tannic acid (Bai@TA) nanoparticles (NPs). Firstly, hydrophobic Bai was made into water soluble Bai@TA NPs using a solvent exchange method with TA as stabilizer. Polymeric microgels of sodium carboxymethyl cellulose (CMC)&hydroxypropyltrimethyl ammonium chloride chitosan (HACC) were then prepared by a simple blending method. Further, CMC&HACC/Bai@TA multilayer films were deposited on medical bandages by using a layer-by-layer assembly technique to obtain an antibacterial dressing. The as-prepared dressings showed great antibacterial ability against E. coli, S. aureus and methicillin resistant Staphylococcus aureus (MRSA), excellent antioxidant activity and good biological safety. In addition, compared to conventional medical bandages, the dressings could efficaciously diminish inflammation in the wound, accelerate skin regeneration and functional restoration, and promote the in vivo healing speed of full-thickness skin wounds infected by MRSA. We believe that as a low-cost but effective wound dressing, the antibacterial bandage modified with CMC&HACC/Bai@TA films has potentials to replace traditional dressings in the clinical management of infected wounds.
Collapse
Affiliation(s)
- Jiaxiang Guo
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Anboyuan Lv
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiang Wu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Enze Sun
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Zhu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xu Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lin Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China.
| | - Ke Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Xiaozhou Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
110
|
Raina N, Haque S, Tuli HS, Jain A, Slama P, Gupta M. Optimization and Characterization of a Novel Antioxidant Naringenin-Loaded Hydrogel for Encouraging Re-Epithelization in Chronic Diabetic Wounds: A Preclinical Study. ACS OMEGA 2023; 8:34995-35011. [PMID: 37779948 PMCID: PMC10536028 DOI: 10.1021/acsomega.3c04441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023]
Abstract
Nonhealed wounds are one of the most dangerous side effects of type-2 diabetes, which is linked to a high frequency of bacterial infections around the globe that eventually results in amputation of limbs. The present investigation aimed to explore the drug-loaded (naringenin) hydrogel system for chronic wound healing. The hydrogel membranes comprising Na-alginate with F-127 and poly(vinyl alcohol) were developed to treat chronic wounds using the quality-by-design (QbD) approach. The optimized formulation was tested for various parameters, such as swelling, gel fraction, water vapor transition rate (WVTR), etc. In vitro evaluation indicated that a drug-loaded hydrogel displayed better tissue adhesiveness and can release drugs for a prolonged duration of 12 h. Scratch assay performed on L929 cell lines demonstrated good cell migration. The diabetic wound healing potential of the hydrogel membrane was assessed in streptozotocin-induced male Wistar rats (50 mg/kg). Higher rates of wound closure, re-epithelialization, and accumulation of collagen were seen in in vivo experiments. Histopathologic investigation correspondingly implied that the drug-loaded hydrogel could enhance dermal wound repair. The improved antimicrobial and antioxidant properties with expedited healing indicated that the drug-loaded hydrogel is a perfect dressing for chronic wounds.
Collapse
Affiliation(s)
- Neha Raina
- Department
of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Pushp Vihar, New Delhi 110017, India
| | - Shafiul Haque
- Research
and Scientific Studies Unit, College of Nursing and Allied Health
Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Gilbert
and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 11022801, Lebanon
- Centre
of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 13306, United Arab
Emirates
| | - Hardeep Singh Tuli
- Department
of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering
College, Maharishi Markandeshwar (Deemed
to Be University), Mullana-Ambala 133207, India
| | - Atul Jain
- Department
of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University
(DPSRU), New Delhi 110017, India
| | - Petr Slama
- Laboratory
of Animal Immunology and Biotechnology, Department of Animal Morphology,
Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Madhu Gupta
- Department
of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Pushp Vihar, New Delhi 110017, India
| |
Collapse
|
111
|
Tatarusanu SM, Lupascu FG, Profire BS, Szilagyi A, Gardikiotis I, Iacob AT, Caluian I, Herciu L, Giscă TC, Baican MC, Crivoi F, Profire L. Modern Approaches in Wounds Management. Polymers (Basel) 2023; 15:3648. [PMID: 37688274 PMCID: PMC10489962 DOI: 10.3390/polym15173648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Wound management represents a well-known continuous challenge and concern of the global healthcare systems worldwide. The challenge is on the one hand related to the accurate diagnosis, and on the other hand to establishing an effective treatment plan and choosing appropriate wound care products in order to maximize the healing outcome and minimize the financial cost. The market of wound dressings is a dynamic field which grows and evolves continuously as a result of extensive research on developing versatile formulations with innovative properties. Hydrogels are one of the most attractive wound care products which, in many aspects, are considered ideal for wound treatment and are widely exploited for extension of their advantages in healing process. Smart hydrogels (SHs) offer the opportunities of the modulation physico-chemical properties of hydrogels in response to external stimuli (light, pressure, pH variations, magnetic/electric field, etc.) in order to achieve innovative behavior of their three-dimensional matrix (gel-sol transitions, self-healing and self-adapting abilities, controlled release of drugs). The SHs response to different triggers depends on their composition, cross-linking method, and manufacturing process approach. Both native or functionalized natural and synthetic polymers may be used to develop stimuli-responsive matrices, while the mandatory characteristics of hydrogels (biocompatibility, water permeability, bioadhesion) are preserved. In this review, we briefly present the physiopathology and healing mechanisms of chronic wounds, as well as current therapeutic approaches. The rational of using traditional hydrogels and SHs in wound healing, as well as the current research directions for developing SHs with innovative features, are addressed and discussed along with their limitations and perspectives in industrial-scale manufacturing.
Collapse
Affiliation(s)
- Simona-Maria Tatarusanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
- Research & Development Department, Antibiotice Company, 1 Valea Lupului Street, 707410 Iasi, Romania
| | - Florentina-Geanina Lupascu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
| | - Bianca-Stefania Profire
- Department of Internal Medicine, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street, 700115 Iasi, Romania;
| | - Andrei Szilagyi
- Advanced Research and Development Center for Experimental Medicine (CEMEX), University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street, 700115 Iasi, Romania; (A.S.); (I.G.)
| | - Ioannis Gardikiotis
- Advanced Research and Development Center for Experimental Medicine (CEMEX), University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street, 700115 Iasi, Romania; (A.S.); (I.G.)
| | - Andreea-Teodora Iacob
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
| | - Iulian Caluian
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
| | - Lorena Herciu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
| | - Tudor-Catalin Giscă
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street 700115 Iasi, Romania;
| | - Mihaela-Cristina Baican
- Department of Pharmaceutical Physics, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street, 700115 Iasi, Romania;
| | - Florina Crivoi
- Department of Pharmaceutical Physics, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street, 700115 Iasi, Romania;
| | - Lenuta Profire
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
| |
Collapse
|
112
|
Prete S, Dattilo M, Patitucci F, Pezzi G, Parisi OI, Puoci F. Natural and Synthetic Polymeric Biomaterials for Application in Wound Management. J Funct Biomater 2023; 14:455. [PMID: 37754869 PMCID: PMC10531657 DOI: 10.3390/jfb14090455] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
Biomaterials are at the forefront of the future, finding a variety of applications in the biomedical field, especially in wound healing, thanks to their biocompatible and biodegradable properties. Wounds spontaneously try to heal through a series of interconnected processes involving several initiators and mediators such as cytokines, macrophages, and fibroblasts. The combination of biopolymers with wound healing properties may provide opportunities to synthesize matrices that stimulate and trigger target cell responses crucial to the healing process. This review outlines the optimal management and care required for wound treatment with a special focus on biopolymers, drug-delivery systems, and nanotechnologies used for enhanced wound healing applications. Researchers have utilized a range of techniques to produce wound dressings, leading to products with different characteristics. Each method comes with its unique strengths and limitations, which are important to consider. The future trajectory in wound dressing advancement should prioritize economical and eco-friendly methodologies, along with improving the efficacy of constituent materials. The aim of this work is to give researchers the possibility to evaluate the proper materials for wound dressing preparation and to better understand the optimal synthesis conditions as well as the most effective bioactive molecules to load.
Collapse
Affiliation(s)
- Sabrina Prete
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
| | - Marco Dattilo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
| | - Francesco Patitucci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
| | - Giuseppe Pezzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
| | - Ortensia Ilaria Parisi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
113
|
Zahra D, Shokat Z, Ahmad A, Javaid A, Khurshid M, Ashfaq UA, Nashwan AJ. Exploring the recent developments of alginate silk fibroin material for hydrogel wound dressing: A review. Int J Biol Macromol 2023; 248:125989. [PMID: 37499726 DOI: 10.1016/j.ijbiomac.2023.125989] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Hydrogels, a type of polymeric material capable of retaining water within a three-dimensional network, have demonstrated their potential in wound healing, surpassing traditional wound dressings. These hydrogels possess remarkable mechanical, chemical, and biological properties, making them suitable scaffolds for tissue regeneration. This article aims to emphasize the advantages of alginate, silk fibroin, and hydrogel-based wound dressings, specifically highlighting their crucial functions that accelerate the healing process of skin wounds. Noteworthy functions include self-healing ability, water solubility, anti-inflammatory properties, adhesion, antimicrobial properties, drug delivery, conductivity, and responsiveness to stimuli. Moreover, recent advancements in hydrogel technology have resulted in the development of wound dressings with enhanced features for monitoring wound progression, further augmenting their effectiveness. This review emphasizes the utilization of hydrogel membranes for treating excisional and incisional wounds, while exploring recent breakthroughs in hydrogel wound dressings, including nanoparticle composite hydrogels, stem cell hydrogel composites, and curcumin-hydrogel composites. Additionally, the review focuses on diverse synthesis procedures, designs, and potential applications of hydrogels in wound healing dressings.
Collapse
Affiliation(s)
- Duaa Zahra
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Pakistan
| | - Zeeshan Shokat
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Pakistan
| | - Azka Ahmad
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Pakistan
| | - Anam Javaid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Pakistan
| | - Mohsin Khurshid
- Institute of Microbiology, Government College University Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Pakistan.
| | | |
Collapse
|
114
|
Kaur Sandhu S, Raut J, Kumar S, Singh M, Ahmed B, Singh J, Rana V, Rishi P, Ganesh N, Dua K, Pal Kaur I. Nanocurcumin and viable Lactobacillus plantarum based sponge dressing for skin wound healing. Int J Pharm 2023; 643:123187. [PMID: 37394156 DOI: 10.1016/j.ijpharm.2023.123187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
Curcumin loaded solid lipid nanoparticles (CSLNs) and probiotic (Lactobacillus plantarum UBLP-40; L. plantarum) were currently co-incorporated into a wound dressing. The combination with manifold anti-inflammatory, anti-infective, analgesic, and antioxidant properties of both curcumin and L. plantarum will better manage complex healing process. Recent reports indicate that polyphenolics like curcumin improve probiotic effects. Curcumin was nanoencapsulated (CSLNs) to improve its bioprofile and achieve controlled release on the wound bed. Bacteriotherapy (probiotic) is established to promote wound healing via antimicrobial activity, inhibition of pathogenic toxins, immunomodulation, and anti-inflammatory actions. Combination of CSLNs with probiotic enhanced (560%) its antimicrobial effects against planktonic cells and biofilms of skin pathogen, Staphylococcus aureus 9144. The sterile dressing was devised with selected polymers, and optimized for polymer concentration, and dressing characteristics using a central composite design. It exhibited a swelling ratio of 412 ± 36%, in vitro degradation time of 3 h, optimal water vapor transmission rate of 1516.81 ± 155.25 g/m2/day, high tensile strength, low-blood clotting index, case II transport, and controlled release of curcumin. XRD indicated strong interaction between employed polymers. FESEM revealed a porous sponge like meshwork embedded with L. plantarum and CSLNs. It degraded and released L. plantarum, which germinated in the wound bed. The sponge was stable under refrigerated conditions for up to six months. No translocation of probiotic from wound to the internal organs confirmed safety. The dressing exhibited faster wound closure and lowered bioburden in the wound area in mice. This was coupled with a decrease in TNF-α, MMP-9, and LPO levels; and an increase in VEGF, TGF-β, and antioxidant enzymes such as catalase and GSH, establishing multiple healing pathways. Results were compared with CSLNs and probiotic-alone dressings. The dressing was as effective as the silver nanoparticle-based marketed hydrogel dressing; however, the cost and risk of developing resistance would be much lower currently.
Collapse
Affiliation(s)
- Simarjot Kaur Sandhu
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Jayant Raut
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08844, USA
| | - Mandeep Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Bakr Ahmed
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Joga Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Vikas Rana
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh 160014, India
| | - Narayanan Ganesh
- Jawaharlal Nehru Cancer Hospital & Research Centre, Bhopal 462001, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, New South Wales 2007, Australia
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
115
|
Lo S, Mahmoudi E, Fauzi MB. Applications of drug delivery systems, organic, and inorganic nanomaterials in wound healing. DISCOVER NANO 2023; 18:104. [PMID: 37606765 PMCID: PMC10444939 DOI: 10.1186/s11671-023-03880-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/02/2023] [Indexed: 08/23/2023]
Abstract
The skin is known to be the largest organ in the human body, while also being exposed to environmental elements. This indicates that skin is highly susceptible to physical infliction, as well as damage resulting from medical conditions such as obesity and diabetes. The wound management costs in hospitals and clinics are expected to rise globally over the coming years, which provides pressure for more wound healing aids readily available in the market. Recently, nanomaterials have been gaining traction for their potential applications in various fields, including wound healing. Here, we discuss various inorganic nanoparticles such as silver, titanium dioxide, copper oxide, cerium oxide, MXenes, PLGA, PEG, and silica nanoparticles with their respective roles in improving wound healing progression. In addition, organic nanomaterials for wound healing such as collagen, chitosan, curcumin, dendrimers, graphene and its derivative graphene oxide were also further discussed. Various forms of nanoparticle drug delivery systems like nanohydrogels, nanoliposomes, nanofilms, and nanoemulsions were discussed in their function to deliver therapeutic agents to wound sites in a controlled manner.
Collapse
Affiliation(s)
- Samantha Lo
- Centre for Tissue Engineering and Regenerative Medicine, The National University of Malaysia/Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ebrahim Mahmoudi
- Faculty of Engineering and Built Environment, The National University of Malaysia/Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, The National University of Malaysia/Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
116
|
Panwar V, Sharma A, Murugesan P, Salaria N, Ghosh D. Free-flowing, self-crosslinking, carboxymethyl starch and carboxymethyl cellulose microgels, as smart hydrogel dressings for wound repair. Int J Biol Macromol 2023; 246:125735. [PMID: 37423449 DOI: 10.1016/j.ijbiomac.2023.125735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Hydrogels are widely recognized and favoured as moist wound dressings due to their beneficial properties. However, their limited capacity to absorb fluids restricts their use in highly exuding wounds. Microgels are small sized hydrogels that have recently gained considerable attention in drug delivery applications due to their superior swelling behaviour and ease of application. In this study, we introduce dehydrated microgel particles (μGeld) that rapidly swell and interconnect, forming an integrated hydrogel when exposed to fluid. These free-flowing microgel particles, derived from the interaction of carboxymethylated forms of starch and cellulose, have been designed to significantly absorb fluid and release silver nanoparticles in order to effectively control infection. Studies using simulated wound models validated the microgels ability to efficiently regulate the wound exudate and create a moist environment. While the biocompatibility and hemocompatibility studies confirmed the safety of the μGel particles, its haemostatic property was established using relevant models. Furthermore, the promising results from a full-thickness wounds in rats have highlighted the enhanced healing potential of the microgel particles. These findings suggest that the dehydrated microgels can evolve as a new class of smart wound dressings.
Collapse
Affiliation(s)
- Vineeta Panwar
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali 140306, Punjab, India.
| | - Anjana Sharma
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali 140306, Punjab, India
| | - Preethi Murugesan
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali 140306, Punjab, India
| | - Navita Salaria
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali 140306, Punjab, India
| | - Deepa Ghosh
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali 140306, Punjab, India.
| |
Collapse
|
117
|
Hao M, Wang D, Duan M, Kan S, Li S, Wu H, Xiang J, Liu W. Functional drug-delivery hydrogels for oral and maxillofacial wound healing. Front Bioeng Biotechnol 2023; 11:1241660. [PMID: 37600316 PMCID: PMC10434880 DOI: 10.3389/fbioe.2023.1241660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
The repair process for oral and maxillofacial injuries involves hemostasis, inflammation, proliferation, and remodeling. Injury repair involves a variety of cells, including platelets, immune cells, fibroblasts, and various cytokines. Rapid and adequate healing of oral and maxillofacial trauma is a major concern to patients. Functional drug-delivery hydrogels play an active role in promoting wound healing and have shown unique advantages in wound dressings. Functional hydrogels promote wound healing through their adhesive, anti-inflammatory, antioxidant, antibacterial, hemostatic, angiogenic, and re-epithelialization-promoting properties, effectively sealing wounds and reducing inflammation. In addition, functional hydrogels can respond to changes in temperature, light, magnetic fields, pH, and reactive oxygen species to release drugs, enabling precise treatment. Furthermore, hydrogels can deliver various cargos that promote healing, including nucleic acids, cytokines, small-molecule drugs, stem cells, exosomes, and nanomaterials. Therefore, functional drug-delivery hydrogels have a positive impact on the healing of oral and maxillofacial injuries. This review describes the oral mucosal structure and healing process and summarizes the currently available responsive hydrogels used to promote wound healing.
Collapse
Affiliation(s)
- Ming Hao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Mengna Duan
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shaoning Kan
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shuangji Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Han Wu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Jingcheng Xiang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
118
|
Nikolaev B, Yakovleva L, Fedorov V, Li H, Gao H, Shevtsov M. Nano- and Microemulsions in Biomedicine: From Theory to Practice. Pharmaceutics 2023; 15:1989. [PMID: 37514175 PMCID: PMC10383468 DOI: 10.3390/pharmaceutics15071989] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Nano- and microemulsions are colloidal systems that are widely used in various fields of biomedicine, including wound and burn healing, cosmetology, the development of antibacterial and antiviral drugs, oncology, etc. The stability of these systems is governed by the balance of molecular interactions between nanodomains. Microemulsions as a colloidal form play a special important role in stability. The microemulsion is the thermodynamically stable phase from oil, water, surfactant and co-surfactant which forms the surface of drops with very small surface energy. The last phenomena determines the shortage time of all fluid dispersions including nanoemulsions and emulgels. This review examines the theory and main methods of obtaining nano- and microemulsions, particularly focusing on the structure of microemulsions and methods for emulsion analysis. Additionally, we have analyzed the main preclinical and clinical studies in the field of wound healing and the use of emulsions in cancer therapy, emphasizing the prospects for further developments in this area.
Collapse
Affiliation(s)
- Boris Nikolaev
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, 194064 Saint Petersburg, Russia
| | - Ludmila Yakovleva
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, 194064 Saint Petersburg, Russia
| | - Viacheslav Fedorov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 Saint Petersburg, Russia
- Department of Inorganic Chemistry and Biophysics, Saint-Petersburg State University of Veterinary Medicine, Chernigovskaya Str. 5, 196084 Saint Petersburg, Russia
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Maxim Shevtsov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 Saint Petersburg, Russia
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany
- Laboratory of Biomedical Cell Technologies, Far Eastern Federal University, 690091 Vladivostok, Russia
| |
Collapse
|
119
|
Yasin SNN, Said Z, Halib N, Rahman ZA, Mokhzani NI. Polymer-Based Hydrogel Loaded with Honey in Drug Delivery System for Wound Healing Applications. Polymers (Basel) 2023; 15:3085. [PMID: 37514474 PMCID: PMC10383286 DOI: 10.3390/polym15143085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/01/2023] [Accepted: 05/18/2023] [Indexed: 07/30/2023] Open
Abstract
Excellent wound dressings should have crucial components, including high porosity, non-toxicity, high water absorption, and the ability to retain a humid environment in the wound area and facilitate wound healing. Unfortunately, current wound dressings hamper the healing process, with poor antibacterial, anti-inflammatory, and antioxidant activity, frequent dressing changes, low biodegradability, and poor mechanical properties. Hydrogels are crosslinked polymer chains with three-dimensional (3D) networks that have been applicable as wound dressings. They could retain a humid environment on the wound site, provide a protective barrier against pathogenic infections, and provide pain relief. Hydrogel can be obtained from natural, synthetic, or hybrid polymers. Honey is a natural substance that has demonstrated several therapeutic efficacies, including anti-inflammatory, antibacterial, and antioxidant activity, which makes it beneficial for wound treatment. Honey-based hydrogel wound dressings demonstrated excellent characteristics, including good biodegradability and biocompatibility, stimulated cell proliferation and reepithelization, inhibited bacterial growth, and accelerated wound healing. This review aimed to demonstrate the potential of honey-based hydrogel in wound healing applications and complement the studies accessible regarding implementing honey-based hydrogel dressing for wound healing.
Collapse
Affiliation(s)
- Siti Nor Najihah Yasin
- Department of Basic Sciences and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Tower B, Persiaran MPAJ, Jalan Pandan Utama, Pandan Indah, Kuala Lumpur 55100, Malaysia
| | - Zulfahmi Said
- Department of Basic Sciences and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Tower B, Persiaran MPAJ, Jalan Pandan Utama, Pandan Indah, Kuala Lumpur 55100, Malaysia
| | - Nadia Halib
- Department of Basic Sciences and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Tower B, Persiaran MPAJ, Jalan Pandan Utama, Pandan Indah, Kuala Lumpur 55100, Malaysia
| | - Zulaiha A Rahman
- Department of Basic Sciences and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Tower B, Persiaran MPAJ, Jalan Pandan Utama, Pandan Indah, Kuala Lumpur 55100, Malaysia
| | - Noor Izzati Mokhzani
- Department of Basic Sciences and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Tower B, Persiaran MPAJ, Jalan Pandan Utama, Pandan Indah, Kuala Lumpur 55100, Malaysia
| |
Collapse
|
120
|
Wang Z, Fu L, Liu D, Tang D, Liu K, Rao L, Yang J, Liu Y, Li Y, Chen H, Yang X. Controllable Preparation and Research Progress of Photosensitive Antibacterial Complex Hydrogels. Gels 2023; 9:571. [PMID: 37504450 PMCID: PMC10379193 DOI: 10.3390/gels9070571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023] Open
Abstract
Hydrogels are materials consisting of a network of hydrophilic polymers. Due to their good biocompatibility and hydrophilicity, they are widely used in biomedicine, food safety, environmental protection, agriculture, and other fields. This paper summarizes the typical complex materials of photocatalysts, photosensitizers, and hydrogels, as week as their antibacterial activities and the basic mechanisms of photothermal and photodynamic effects. In addition, the application of hydrogel-based photoresponsive materials in microbial inactivation is discussed, including the challenges faced in their application. The advantages of photosensitive antibacterial complex hydrogels are highlighted, and their application and research progress in various fields are introduced in detail.
Collapse
Affiliation(s)
- Zhijun Wang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Lili Fu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Dongliang Liu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Dongxu Tang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Kun Liu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Lu Rao
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Jinyu Yang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yi Liu
- College of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China
| | - Yuesheng Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Huangqin Chen
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Xiaojie Yang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
121
|
Verdú-Soriano J, de Cristino-Espinar M, Luna-Morales S, Dios-Guerra C, Casado-Díaz A, Quesada-Gómez JM, Dorado G, Berenguer-Pérez M, Vílchez S, Esquena J, Rodríguez-Mañas L, Lázaro-Martínez JL. EHO-85, Novel Amorphous Antioxidant Hydrogel, Containing Olea europaea Leaf Extract-Rheological Properties, and Superiority over a Standard Hydrogel in Accelerating Early Wound Healing: A Randomized Controlled Trial. Pharmaceutics 2023; 15:1925. [PMID: 37514112 PMCID: PMC10383111 DOI: 10.3390/pharmaceutics15071925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/26/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Many advanced wound healing dressings exist, but there is little high-quality evidence to support them. To determine the performance of a novel amorphous hydrogel (EHO-85) in relation to its application, we compared its rheological properties with those of other standard hydrogels (SH), and we assessed the induction of acceleration of the early stages of wound healing as a secondary objective of a prospective, multicenter, randomized, observer-blinded, controlled trial. The patients were recruited if they had pressure, venous, or diabetic foot ulcers and were treated with EHO-85 (n = 103) or VariHesive® (SH) (n = 92), and their response was assessed by intention-to-treat as wound area reduction (WAR (%)) and healing rate (HR mm2/day) in the second and fourth weeks of treatment. Results: EHO-85 had the highest shear thinning and G'/G″ ratio, the lowest viscous modulus, G″, and relatively low cohesive energy; EHO-85 had a significantly superior effect over SH in WAR and HR, accelerating wound healing in the second and fourth weeks of application (p: 0.002). This superiority is likely based on its optimal moisturizing capacity and excellent pH-lowering and antioxidant properties. In addition, the distinct shear thinning of EHO-85 facilitates spreading by gentle hand pressure, making it easier to apply to wounds. These rheological properties contribute to its improved performance.
Collapse
Affiliation(s)
- José Verdú-Soriano
- Department of Community Nursing, Preventive Medicine, Public Health and History of Science, Faculty of Health Sciences, University of Alicante, 03690 Alicante, Spain
| | - Marisol de Cristino-Espinar
- Pharmacy Department, Reina Sofia University Hospital, 14004 Córdoba, Spain
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
| | - Silvia Luna-Morales
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
- Occidente Health Center, Córdoba and Guadalquivir Health Management Area, 14005 Córdoba, Spain
| | - Caridad Dios-Guerra
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
- Occidente Health Center, Córdoba and Guadalquivir Health Management Area, 14005 Córdoba, Spain
- Department of Nursing, Faculty of Medicine and Nursing, University of Cordoba, 14004 Córdoba, Spain
| | - Antonio Casado-Díaz
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
- Endocrinology and Nutrition Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain
- Consortium for Biomedical Research in Frailty & Healthy Ageing (CIBERFES), Institute of Health Carlos III, 28029 Madrid, Spain
| | - José Manuel Quesada-Gómez
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
- Consortium for Biomedical Research in Frailty & Healthy Ageing (CIBERFES), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Gabriel Dorado
- Consortium for Biomedical Research in Frailty & Healthy Ageing (CIBERFES), Institute of Health Carlos III, 28029 Madrid, Spain
- Dep. Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain
| | - Miriam Berenguer-Pérez
- Department of Community Nursing, Preventive Medicine, Public Health and History of Science, Faculty of Health Sciences, University of Alicante, 03690 Alicante, Spain
| | - Susana Vílchez
- Institute of Advanced Chemistry of Catalonia, Consejo Superior de Investigaciones Científicas (IQAC-CSIC), 08034 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Jordi Esquena
- Institute of Advanced Chemistry of Catalonia, Consejo Superior de Investigaciones Científicas (IQAC-CSIC), 08034 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Consortium for Biomedical Research in Frailty & Healthy Ageing (CIBERFES), Institute of Health Carlos III, 28029 Madrid, Spain
- Geriatric Research Group, Biomedical Research Foundation at Getafe University Hospital, 28905 Getafe, Spain
- Department of Geriatrics, University Hospital of Getafe, 28905 Getafe, Spain
| | - José Luis Lázaro-Martínez
- Diabetic Foot Unit, University Podiatry Clinic, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
122
|
Wang Y, Wang S, Hu W, Kong S, Su F, Liu F, Li S. In situ Hydrogels Prepared by Photo-initiated Crosslinking of Acrylated Polymers for Local Delivery of Antitumor Drugs. J Pharm Sci 2023; 112:1863-1871. [PMID: 37201750 DOI: 10.1016/j.xphs.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 05/20/2023]
Abstract
A triblock copolymer was synthesized by ring opening polymerization of ε-caprolactone in the presence of poly(ethylene glycol) (PEG). The resulted PCL-PEG-PCL triblock copolymer, PEG and monomethoxy (MPEG) were functionalized by end group acrylation. NMR and FT-IR analyses evidenced the successful synthesis and functionalization of polymers. A series of photo-crosslinked hydrogels composed of acrylated PEG-PCL-Acr and MPEG-Acr or PEG-Acr were prepared by exposure to visible light using lithium phenyl-2,4,6-trimethylbenzoylphosphinate as initiator. The hydrogels present a porous and interconnected structure as shown by SEM. The swelling performance of hydrogels is closely related to the crosslinking density and hydrophilic content. Addition of MPEG or PEG results in increase in water absorption capacity of hydrogels. In vitro degradation of hydrogels was realized in the presence of a lipase from porcine pancreas. Various degradation rates were obtained which mainly depend on the hydrogel composition. MTT assay confirmed the good biocompatibility of hydrogels. Importantly, in situ gelation was achieved by irradiation of a precursor solution injected in the abdomen of mice. Doxorubicin (DOX) was selected as a model antitumor drug to evaluate the potential of hydrogels in cancer therapy. Drug-loaded hydrogels were prepared by in situ encapsulation. In vitro drug release studies showed a sustained release during 28 days with small burst release. DOX-loaded hydrogels exhibit antitumor activity against A529 lung cancer cells comparable to free drug, suggesting that injectable in situ hydrogel with tunable properties could be most promising for local drug delivery in cancer therapy.
Collapse
Affiliation(s)
- Yuandou Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shuxin Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wenju Hu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shaowen Kong
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Feng Su
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Fusheng Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Suming Li
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
123
|
Yudaev P, Butorova I, Chuev V, Posokhova V, Klyukin B, Chistyakov E. Wound Gel with Antimicrobial Effects Based on Polyvinyl Alcohol and Functional Aryloxycyclotriphosphazene. Polymers (Basel) 2023; 15:2831. [PMID: 37447477 DOI: 10.3390/polym15132831] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
A silver-containing gel based on polyvinyl alcohol and aryloxycyclotriphosphazene containing β-carboxyethenylphenoxy and p-formylphenoxy groups has been developed. Phosphazene was synthesized via the Doebner reaction from hexakis[(4-formyl)phenoxy]cyclotriphosphazene and malonic acid and characterized by 1H, 13C, and 31P NMR spectroscopy and MALDI-TOF mass spectrometry. The study of the gel using scanning electron microscopy showed that the gel contains open pores and can absorb wound exudate. The maximum water absorption capacity of the gel was 272%, which was reached after 80 min of testing. The antimicrobial activity of the obtained silver-containing gel was evaluated using the diffusion method. The gel was found to inhibit the growth of the main microorganisms in contact with the skin: the bacteria S. aureus, P. aeruginosa, E. coli, B. subtilis, S. epidermidis, and C. stationis and the fungus C. albicans. The study of the wound-healing effect of the gel in vivo showed a decrease in the wound area of the rabbit hind limb by 91.43% (p < 0.05) on the 10th day of observation and a decrease in the content of C-reactive protein in the rabbit blood serum by 1.3 times (p < 0.05).
Collapse
Affiliation(s)
- Pavel Yudaev
- Department of Chemical Technology of Plastics, Mendeleev University of Chemical Technology of Russia, Miusskaya Sq., 9, 125047 Moscow, Russia
| | - Irina Butorova
- Department of Chemical Technology of Plastics, Mendeleev University of Chemical Technology of Russia, Miusskaya Sq., 9, 125047 Moscow, Russia
| | - Vladimir Chuev
- Belgorod National Research University, Pobedy Street, 85, 308015 Belgorod, Russia
| | | | - Bogdan Klyukin
- Department of Chemical Technology of Plastics, Mendeleev University of Chemical Technology of Russia, Miusskaya Sq., 9, 125047 Moscow, Russia
| | - Evgeniy Chistyakov
- Department of Chemical Technology of Plastics, Mendeleev University of Chemical Technology of Russia, Miusskaya Sq., 9, 125047 Moscow, Russia
| |
Collapse
|
124
|
Estévez-Martínez Y, Vázquez Mora R, Méndez Ramírez YI, Chavira-Martínez E, Huirache-Acuña R, Díaz-de-León-Hernández JN, Villarreal-Gómez LJ. Antibacterial nanocomposite of chitosan/silver nanocrystals/graphene oxide (ChAgG) development for its potential use in bioactive wound dressings. Sci Rep 2023; 13:10234. [PMID: 37353546 PMCID: PMC10290094 DOI: 10.1038/s41598-023-29015-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/30/2023] [Indexed: 06/25/2023] Open
Abstract
An adequate wound dressing reduces time of healing, provides cost-effective care, thereby improving patients' quality life. An antimicrobial bioactivity is always desired, for that reason, the objective of this work is to design an antimicrobial nanocomposite of chitosan/silver nanocrystals/graphene oxide (ChAgG). ChAgG nanostructured composite material is composed of chitosan from corn (Ch), and silver nanocrystals from garlic (Allium sativum). The nanocomposite obtained is the result of a series of experiments combining the graphene oxide (GrOx) with two members of the Amaryllidaceae family; garlic and onion (Allium cebae), which contain different sulfur materials. The characterization arrays confirmed the successful production of silver crystal, graphene oxidation and the blending of both components. The role of the chitosan as a binder between graphene and silver nanocrystals is proved. Moreover, the study discusses garlic as an optimal source that permits the synthesis of silver nanocrystals (AgNCs) (⁓ 2 to 10 nm) with better thermal and crystallinity properties. It was also confirmed the successful production of the ChAgG nanocomposite. Escherichia coli and Staphylococcus aureus were used to demonstrate the antibacterial bioactivity and L-929 fibroblast cells were utilized to visualize their biocompatibility. The proposed ChAgG nanomaterial will be useful for functionalizing specific fiber network that represents current challenging research in the fabrication of bioactive wound dressings.
Collapse
Affiliation(s)
- Yoxkin Estévez-Martínez
- Tecnológico Nacional de México, Campús Acatlán de Osorio, Unidad Tecnológica Acatlán, Carretera Acatlán-San Juan Ixcaquistla kilómetro 5.5, Del Maestro, 74949, Acatlán, Puebla, Mexico.
| | - Rubí Vázquez Mora
- Tecnológico Nacional de México, Campús Acatlán de Osorio, Unidad Tecnológica Acatlán, Carretera Acatlán-San Juan Ixcaquistla kilómetro 5.5, Del Maestro, 74949, Acatlán, Puebla, Mexico
| | - Yesica Itzel Méndez Ramírez
- Tecnológico Nacional de México, Campús Acatlán de Osorio, Unidad Tecnológica Acatlán, Carretera Acatlán-San Juan Ixcaquistla kilómetro 5.5, Del Maestro, 74949, Acatlán, Puebla, Mexico
| | - Elizabeth Chavira-Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Rafael Huirache-Acuña
- Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, 58060, Morelia, Michoacán, Mexico
| | - Jorge Noé Díaz-de-León-Hernández
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Carretera Tijuana-Ensenada, Km. 107, 22860, Ensenada, Baja California, Mexico
| | - Luis Jesús Villarreal-Gómez
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Unidad Valle de las Palmas, Blvd. Universitario #1000, CP 21500, Tijuana, Baja California, Mexico.
- Facultad de Ciencias Química e Ingeniería, Universidad Autónoma de Baja California, UABC, Parque Internacional Industrial Tijuana, Universidad #14418, 22424, Tijuana, Baja California, Mexico.
| |
Collapse
|
125
|
Chin JD, Zhao L, Mayberry TG, Cowan BC, Wakefield MR, Fang Y. Photodynamic Therapy, Probiotics, Acetic Acid, and Essential Oil in the Treatment of Chronic Wounds Infected with Pseudomonas aeruginosa. Pharmaceutics 2023; 15:1721. [PMID: 37376169 PMCID: PMC10301549 DOI: 10.3390/pharmaceutics15061721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
As a prevalent medical problem that burdens millions of patients across the world, chronic wounds pose a challenge to the healthcare system. These wounds, often existing as a comorbidity, are vulnerable to infections. Consequently, infections hinder the healing process and complicate clinical management and treatment. While antibiotic drugs remain a popular treatment for infected chronic wounds, the recent rise of antibiotic-resistant strains has hastened the need for alternative treatments. Future impacts of chronic wounds are likely to increase with aging populations and growing obesity rates. With the need for more effective novel treatments, promising research into various wound therapies has seen an increased demand. This review summarizes photodynamic therapy, probiotics, acetic acid, and essential oil studies as developing antibiotic-free treatments for chronic wounds infected with Pseudomonas aeruginosa. Clinicians may find this review informative by gaining a better understanding of the state of current research into various antibiotic-free treatments. Furthermore. this review provides clinical significance, as clinicians may seek to implement photodynamic therapy, probiotics, acetic acid, or essential oils into their own practice.
Collapse
Affiliation(s)
- Jaeson D. Chin
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA 50312, USA
| | - Lei Zhao
- The Department of Respiratory Medicine, The Second People’s Hospital of Hefei and Hefei Hospital Affiliated to Anhui Medical University, Hefei 230002, China
| | - Trenton G. Mayberry
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Braydon C. Cowan
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Mark R. Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA 50312, USA
| |
Collapse
|
126
|
Zhao J, Qiu P, Wang Y, Wang Y, Zhou J, Zhang B, Zhang L, Gou D. Chitosan-based hydrogel wound dressing: From mechanism to applications, a review. Int J Biol Macromol 2023:125250. [PMID: 37307982 DOI: 10.1016/j.ijbiomac.2023.125250] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/17/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
As promising biomaterials, hydrogels are widely used in the medical engineering field, especially in wound repairing. Compared with traditional wound dressings, such as gauze and bandage, hydrogel could absorb and retain more water without dissolving or losing its three-dimensional structure, thus avoiding secondary injury and promoting wound healing. Chitosan and its derivatives have become hot research topics for hydrogel wound dressing production due to their unique molecular structure and diverse biological activities. In this review, the mechanism of wound healing was introduced systematically. The mechanism of action of chitosan in the first three stages of wound repair (hemostasis, antimicrobial properties and progranulation), the effect of chitosan deacetylation and the molecular weight on its performance are analyzed. Additionally, the recent progress in intelligent and drug-loaded chitosan-based hydrogels and the features and advantages of chitosan were discussed. Finally, the challenges and prospects for the future development of chitosan-based hydrogels were discussed.
Collapse
Affiliation(s)
- Jun Zhao
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Peng Qiu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yue Wang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yufan Wang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Jianing Zhou
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Baochun Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Lihong Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Dongxia Gou
- College of Food Science and Engineering, Changchun University, Changchun 130022, China.
| |
Collapse
|
127
|
Pinthong T, Yooyod M, Daengmankhong J, Tuancharoensri N, Mahasaranon S, Viyoch J, Jongjitwimol J, Ross S, Ross GM. Development of Natural Active Agent-Containing Porous Hydrogel Sheets with High Water Content for Wound Dressings. Gels 2023; 9:459. [PMID: 37367130 DOI: 10.3390/gels9060459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
This work was concerned with the fabrication of a porous hydrogel system suitable for medium to heavy-exudating wounds where traditional hydrogels cannot be used. The hydrogels were based on 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPs). In order to produce the porous structure, additional components were added (acid, blowing agent, foam stabilizer). Manuka honey (MH) was also incorporated at concentrations of 1 and 10% w/w. The hydrogel samples were characterized for morphology via scanning electron microscopy, mechanical rheology, swelling using a gravimetric method, surface absorption, and cell cytotoxicity. The results confirmed the formation of porous hydrogels (PH) with pore sizes ranging from ~50-110 µm. The swelling performance showed that the non-porous hydrogel (NPH) swelled to ~2000%, while PH weight increased ~5000%. Additionally, the use of a surface absorption technique showed that the PH absorbed 10 μL in <3000 ms, and NPH absorbed <1 μL over the same time. Incorporating MH the enhanced gel appearance and mechanical properties, including smaller pores and linear swelling. In summary, the PH produced in this study had excellent swelling performance with rapid absorption of surface liquid. Therefore, these materials have the potential to expand the applicability of hydrogels to a range of wound types, as they can both donate and absorb fluid.
Collapse
Affiliation(s)
- Thanyaporn Pinthong
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Maytinee Yooyod
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Jinjutha Daengmankhong
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Nantaprapa Tuancharoensri
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sararat Mahasaranon
- Biopolymer Group, Department of Chemistry, Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Jarupa Viyoch
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
| | - Jirapas Jongjitwimol
- Department of Medical Technology, Faculty of Allied Health Sciences and Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sukunya Ross
- Biopolymer Group, Department of Chemistry, Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Gareth M Ross
- Biopolymer Group, Department of Chemistry, Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
128
|
Sharma AD, Jarman EH, Fox PM. Scoping Review of Hydrogel Therapies in the Treatment of Diabetic Chronic Wounds. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2023; 11:e4984. [PMID: 37250833 PMCID: PMC10219739 DOI: 10.1097/gox.0000000000004984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/09/2023] [Indexed: 05/31/2023]
Abstract
Chronic diabetic wounds are a significant issue that can be treated with topical hydrogel therapies. The aim of this study was to review the different compositions of hydrogel that have been developed and analyze their clinical relevance in the treatment of chronic diabetic wounds. Methods We conducted a scoping review in which twelve articles were selected for review after applying relevant inclusion and exclusion criteria using a two-reviewer strategy. Data extracted from these studies was used to answer the following research question: What is the composition of hydrogels used to treat chronic diabetic wounds and how effective are they? Results We analyzed five randomized controlled trials, two retrospective studies, three reviews, and two case reports. Hydrogel compositions discussed included mesenchymal stem cell sheets, carbomer, collagen, and alginate hydrogels, as well as hydrogels embedded with platelet-derived growth factor. Synthetic hydrogels, largely composed of carbomers, were found to have high levels of evidence supporting their wound healing properties, though few articles described their routine use in a clinical setting. Collagen hydrogels dominate the present-day hydrogel market in the clinical treatment of chronic diabetic wounds. The augmentation of hydrogels with therapeutic biomaterials is a new field of hydrogel research, with studies demonstrating promising early in vitro and in vivo animal studies demonstrating promising early results for in vitro and in vivo animal investigations. Conclusions Current research supports hydrogels as a promising topical therapy in the treatment of chronic diabetic wounds. Augmenting Food & Drug Administration-approved hydrogels with therapeutic substances remains an interesting early area of investigation.
Collapse
Affiliation(s)
- Ayushi D. Sharma
- From the Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, Calif
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif
- Creighton University School of Medicine, Phoenix, Ariz
| | - Evan H. Jarman
- From the Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, Calif
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif
| | - Paige M. Fox
- From the Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, Calif
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif
| |
Collapse
|
129
|
Levin A, Gong S, Cheng W. Wearable Smart Bandage-Based Bio-Sensors. BIOSENSORS 2023; 13:bios13040462. [PMID: 37185537 PMCID: PMC10136806 DOI: 10.3390/bios13040462] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023]
Abstract
Bandage is a well-established industry, whereas wearable electronics is an emerging industry. This review presents the bandage as the base of wearable bioelectronics. It begins with introducing a detailed background to bandages and the development of bandage-based smart sensors, which is followed by a sequential discussion of the technical characteristics of the existing bandages, a more practical methodology for future applications, and manufacturing processes of bandage-based wearable biosensors. The review then elaborates on the advantages of basing the next generation of wearables, such as acceptance by the customers and system approvals, and disposal.
Collapse
Affiliation(s)
- Arie Levin
- Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3168, Australia
| | - Shu Gong
- Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3168, Australia
| | - Wenlong Cheng
- Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
130
|
Nie L, Wei Q, Sun M, Ding P, Wang L, Sun Y, Ding X, Okoro OV, Jiang G, Shavandi A. Injectable, self-healing, transparent, and antibacterial hydrogels based on chitosan and dextran for wound dressings. Int J Biol Macromol 2023; 233:123494. [PMID: 36736977 DOI: 10.1016/j.ijbiomac.2023.123494] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
One major shortcoming of biopolymeric based wound dressing so far is the lack of an integrated multi-functional system that could provide suitable mechanical strength, fast self-healing, transparency, antibacterial and antioxidant effects. Benefiting from the dynamic and rapid reaction between glycidyl trimethyl ammonium chloride-graft- chitosan (QCS) and aldehyde-dextran (ODex) under physiological conditions, we designed hydrogels (QCS-ODex) with fast in situ gel-forming (< 70 s), porous structure (300-350 μm), stable storage modulus and the loss modulus, suitable swelling capacity (2.465 folds of chitosan), tissue adhesion, transmission property, free radical scavenging capacity, good self-healing behavior, and injectability, inherent antibacterial (against E. coli and S. aureus) and biocompatibility. Furthermore, Baicalein could be in situ encapsulated into QCS-ODex hydrogels, and the release behavior of Baicalein could be regulated by adjusting the ratio of QCS and ODex. The Baicalein-loaded QCS-ODex hydrogel further facilitated free radical scavenging and antibacterial bioactivities due to the cooperative therapeutic effects between QCS-ODex and Baicalein. This study may provide new insights into designing multi-functional QCS-ODex hydrogels with multiple therapeutic effects as a wound dressing.
Collapse
Affiliation(s)
- Lei Nie
- College of Life Sciences, Xinyang Normal University (XYNU), Xinyang 464000, China.
| | - Qianqian Wei
- College of Life Sciences, Xinyang Normal University (XYNU), Xinyang 464000, China
| | - Meng Sun
- College of Life Sciences, Xinyang Normal University (XYNU), Xinyang 464000, China.
| | - Peng Ding
- College of Life Sciences, Xinyang Normal University (XYNU), Xinyang 464000, China
| | - Ling Wang
- College of Life Sciences, Xinyang Normal University (XYNU), Xinyang 464000, China
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaoyue Ding
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Oseweuba Valentine Okoro
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium.
| |
Collapse
|
131
|
Tie BSH, Halligan E, Zhuo S, Keane G, Geever L. Synthesis of NVCL-NIPAM Hydrogels Using PEGDMA as a Chemical Crosslinker for Controlled Swelling Behaviours in Potential Shapeshifting Applications. Gels 2023; 9:gels9030248. [PMID: 36975697 PMCID: PMC10048785 DOI: 10.3390/gels9030248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Stimuli-responsive hydrogels have recently gained interest within shapeshifting applications due to their capabilities to expand in water and their altering swelling properties when triggered by stimuli, such as pH and heat. While conventional hydrogels lose their mechanical strength during swelling, most shapeshifting applications require materials to have mechanical strength within a satisfactory range to perform specified tasks. Thus, stronger hydrogels are needed for shapeshifting applications. Poly (N-isopropylacrylamide) (PNIPAm) and poly (N-vinyl caprolactam) (PNVCL) are the most popular thermosensitive hydrogels studied. Their close-to-physiological lower critical solution temperature (LCST) makes them superior candidates in biomedicine. In this study, copolymers made of NVCL and NIPAm and chemically crosslinked using poly (ethylene glycol) dimethacrylate (PEGDMA) were fabricated. Successful polymerisation was proven via Fourier transform infrared spectroscopy (FTIR). The effects of incorporating comonomer and crosslinker on the LCST were found minimal using cloud-point measurements, ultraviolet (UV) spectroscopy, and differential scanning calorimetry (DSC). Formulations that completed three cycles of thermo-reversing pulsatile swelling are demonstrated. Lastly, rheological analysis validated the mechanical strength of PNVCL, which was improved due to the incorporation of NIPAm and PEGDMA. This study showcases potential smart thermosensitive NVCL-based copolymers that can be applied in the biomedical shapeshifting area.
Collapse
Affiliation(s)
- Billy Shu Hieng Tie
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Centre, Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Elaine Halligan
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Centre, Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Shuo Zhuo
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Centre, Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Gavin Keane
- Centre for Industrial Service & Design, Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Luke Geever
- Applied Polymer Technologies Gateway, Materials Research Institute, Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| |
Collapse
|
132
|
Sobczak-Kupiec A, Kudłacik-Kramarczyk S, Drabczyk A, Cylka K, Tyliszczak B. Studies on PVP-Based Hydrogel Polymers as Dressing Materials with Prolonged Anticancer Drug Delivery Function. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2468. [PMID: 36984346 PMCID: PMC10054093 DOI: 10.3390/ma16062468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Tamoxifen is a well-known active substance with anticancer activity. Currently, many investigations are performed on the development of carriers that provide its effective delivery. Particular attention is directed toward the formation of cyclodextrin-drug complexes to provide prolonged drug delivery. According to our knowledge, carriers in the form of polyvinylpyrrolidone (PVP)/gelatin-based hydrogels incorporated with β-cyclodextrin-tamoxifen complexes and additionally modified with nanogold have not been presented in the literature. In this work, two series of these materials have been synthesized-with tamoxifen and with its complex with β-cyclodextrin. The process of obtaining drug carrier systems consisted of several stages. Firstly, the nanogold suspension was obtained. Next, the hydrogels were prepared via photopolymerization. The size, dispersity and optical properties of nanogold as well as the swelling properties of hydrogels, their behavior in simulated physiological liquids and the impact of these liquids on their chemical structure were verified. The release profiles of tamoxifen from composites were also determined. The developed materials showed swelling capacity, stability in tested environments that did not affect their structure, and the ability to release drugs, while the release process was much more effective in acidic conditions than in alkaline ones. This is a benefit considering their use for anticancer drug delivery, due to the fact that near cancer cells, there is an acidic environment. In the case of the composites containing the drug-β-cyclodextrin complex, a prolonged release process was achieved compared to the drug release from materials with unbound tamoxifen. In terms of the properties and the composition, the developed materials show a great application potential as drug carriers, in particular as carriers of anticancer drugs such as tamoxifen.
Collapse
Affiliation(s)
- Agnieszka Sobczak-Kupiec
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Sonia Kudłacik-Kramarczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Anna Drabczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Karolina Cylka
- Institute of Inorganic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Krakow, Poland
| | - Bozena Tyliszczak
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| |
Collapse
|
133
|
Tatarusanu SM, Sava A, Profire BS, Pinteala T, Jitareanu A, Iacob AT, Lupascu F, Simionescu N, Rosca I, Profire L. New Smart Bioactive and Biomimetic Chitosan-Based Hydrogels for Wounds Care Management. Pharmaceutics 2023; 15:pharmaceutics15030975. [PMID: 36986836 PMCID: PMC10060009 DOI: 10.3390/pharmaceutics15030975] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Wound management represents a continuous challenge for health systems worldwide, considering the growing incidence of wound-related comorbidities, such as diabetes, high blood pressure, obesity, and autoimmune diseases. In this context, hydrogels are considered viable options since they mimic the skin structure and promote autolysis and growth factor synthesis. Unfortunately, hydrogels are associated with several drawbacks, such as low mechanical strength and the potential toxicity of byproducts released after crosslinking reactions. To overcome these aspects, in this study new smart chitosan (CS)-based hydrogels were developed, using oxidized chitosan (oxCS) and hyaluronic acid (oxHA) as nontoxic crosslinkers. Three active product ingredients (APIs) (fusidic acid, allantoin, and coenzyme Q10), with proven biological effects, were considered for inclusion in the 3D polymer matrix. Therefore, six API-CS-oxCS/oxHA hydrogels were obtained. The presence of dynamic imino bonds in the hydrogels' structure, which supports their self-healing and self-adapting properties, was confirmed by spectral methods. The hydrogels were characterized by SEM, swelling degree, pH, and the internal organization of the 3D matrix was studied by rheological behavior. Moreover, the cytotoxicity degree and the antimicrobial effects were also investigated. In conclusion, the developed API-CS-oxCS/oxHA hydrogels have real potential as smart materials in wound management, based on their self-healing and self-adapting properties, as well as on the benefits of APIs.
Collapse
Affiliation(s)
- Simona-Maria Tatarusanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 16 Universitatii Street, 700115 Iași, Romania
- Research & Development Department, Antibiotice Company, 1 ValeaLupului Street, 707410 Iasi, Romania
| | - Alexandru Sava
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 16 Universitatii Street, 700115 Iași, Romania
| | - Bianca-Stefania Profire
- Department of Internal Medicine, Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 16 Universitatii Street, 700115 Iași, Romania
| | - Tudor Pinteala
- Department of Orthopedics and Traumatology, Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 16 Universitatii Street, 700115 Iași, Romania
| | - Alexandra Jitareanu
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 16 Universitatii Street, 700115 Iași, Romania
| | - Andreea-Teodora Iacob
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 16 Universitatii Street, 700115 Iași, Romania
| | - Florentina Lupascu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 16 Universitatii Street, 700115 Iași, Romania
| | - Natalia Simionescu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "PetruPoni" Institute of Macromolecular Chemistry, 41A GrigoreGhica-Voda Alley, 700487 Iasi, Romania
| | - Irina Rosca
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "PetruPoni" Institute of Macromolecular Chemistry, 41A GrigoreGhica-Voda Alley, 700487 Iasi, Romania
| | - Lenuta Profire
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 16 Universitatii Street, 700115 Iași, Romania
| |
Collapse
|
134
|
Self-Healing Hydrogels Fabricated by Introducing Antibacterial Long-Chain Alkyl Quaternary Ammonium Salt into Marine-Derived Polysaccharides for Wound Healing. Polymers (Basel) 2023; 15:polym15061467. [PMID: 36987247 PMCID: PMC10051109 DOI: 10.3390/polym15061467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
The development of hydrogels as wound dressings has gained considerable attention due to their promising ability to promote wound healing. However, in many cases of clinical relevance, repeated bacterial infection, which might obstruct wound healing, usually occurs due to the lack of antibacterial properties of these hydrogels. In this study, we fabricated a new class of self-healing hydrogel with enhanced antibacterial properties based on dodecyl quaternary ammonium salt (Q12)-modified carboxymethyl chitosan (Q12-CMC), aldehyde group- modified sodium alginate (ASA), Fe3+ via Schiff bases and coordination bonds (QAF hydrogels). The dynamic Schiff bases and coordination interactions conferred excellent self-healing abilities to the hydrogels, while the incorporation of dodecyl quaternary ammonium salt gave the hydrogels superior antibacterial properties. Additionally, the hydrogels displayed ideal hemocompatibility and cytocompatibility, crucial for wound healing. Our full-thickness skin wound studies demonstrated that QAF hydrogels could result in rapid wound healing with reduced inflammatory response, increased collagen disposition and improved vascularization. We anticipate that the proposed hydrogels, possessing both antibacterial and self-healing properties, will emerge as a highly desirable material for skin wound repair.
Collapse
|
135
|
Cao Y, Cong H, Yu B, Shen Y. A review on the synthesis and development of alginate hydrogels for wound therapy. J Mater Chem B 2023; 11:2801-2829. [PMID: 36916313 DOI: 10.1039/d2tb02808e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Convenient and low-cost dressings can reduce the difficulty of wound treatment. Alginate gel dressings have the advantages of low cost and safe usage, and they have obvious potential for development in biomedical materials. Alginate gel dressings are currently a research area of great interest owing to their versatility, intelligent, and their application attempts in treating complex wounds. We present a detailed summary of the preparation of alginate hydrogels and a study of their performance improvement. Herein, we summarize the various applications of alginate hydrogels. The research focuses in this area mainly include designing multifunctional dressings for the treatment of various wounds and fabricating specialized dressings to assist physicians in the treatment of complex wounds (TOC). This review gives an outlook for future directions in the field of alginate hydrogel dressings. We hope to attract more research interest and studies in alginate hydrogel dressings, thus contributing to the creation of low-cost and highly effective wound treatment materials.
Collapse
Affiliation(s)
- Yang Cao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.,School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China. .,Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
136
|
Physicochemical Characterization, Biocompatibility, and Antibacterial Properties of CMC/PVA/Calendula officinalis Films for Biomedical Applications. Polymers (Basel) 2023; 15:polym15061454. [PMID: 36987233 PMCID: PMC10059992 DOI: 10.3390/polym15061454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
This study reports a carboxymethyl cellulose (CMC)/polyvinyl alcohol (PVA) composite film that incorporates Calendula officinalis (CO) extract for biomedical applications. The morphological, physical, mechanical, hydrophilic, biological, and antibacterial properties of CMC/PVA composite films with various CO concentrations (0.1%, 1%, 2.5%, 4%, and 5%) are fully investigated using different experiments. The surface morphology and structure of the composite films are significantly affected by higher CO concentrations. X-ray diffraction (XRD) and Fourier transform infrared spectrometry (FTIR) analyses confirm the structural interactions among CMC, PVA, and CO. After CO is incorporated, the tensile strength and elongation upon the breaking of the films decrease significantly. The addition of CO significantly reduces the ultimate tensile strength of the composite films from 42.8 to 13.2 MPa. Furthermore, by increasing the concentration of CO to 0.75%, the contact angle is decreased from 15.8° to 10.9°. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay reveals that the CMC/PVA/CO-2.5% and CMC/PVA/CO-4% composite films are non-cytotoxic to human skin fibroblast cells, which is favorable for cell proliferation. Remarkably, 2.5% and 4% CO incorporation significantly improve the inhibition ability of the CMC/PVA composite films against Staphylococcus aureus and Escherichia coli. In summary, CMC/PVA composite films containing 2.5% CO exhibit the functional properties for wound healing and biomedical engineering applications.
Collapse
|
137
|
Sari MHM, Cobre ADF, Pontarolo R, Ferreira LM. Status and Future Scope of Soft Nanoparticles-Based Hydrogel in Wound Healing. Pharmaceutics 2023; 15:pharmaceutics15030874. [PMID: 36986736 PMCID: PMC10057168 DOI: 10.3390/pharmaceutics15030874] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
Wounds are alterations in skin integrity resulting from any type of trauma. The healing process is complex, involving inflammation and reactive oxygen species formation. Therapeutic approaches for the wound healing process are diverse, associating dressings and topical pharmacological agents with antiseptics, anti-inflammatory, and antibacterial actions. Effective treatment must maintain occlusion and moisture in the wound site, suitable capacity for the absorption of exudates, gas exchange, and the release of bioactives, thus stimulating healing. However, conventional treatments have some limitations regarding the technological properties of formulations, such as sensory characteristics, ease of application, residence time, and low active penetration in the skin. Particularly, the available treatments may have low efficacy, unsatisfactory hemostatic performance, prolonged duration, and adverse effects. In this sense, there is significant growth in research focusing on improving the treatment of wounds. Thus, soft nanoparticles-based hydrogels emerge as promising alternatives to accelerate the healing process due to their improved rheological characteristics, increased occlusion and bioadhesiveness, greater skin permeation, controlled drug release, and a more pleasant sensory aspect in comparison to conventional forms. Soft nanoparticles are based on organic material from a natural or synthetic source and include liposomes, micelles, nanoemulsions, and polymeric nanoparticles. This scoping review describes and discusses the main advantages of soft nanoparticle-based hydrogels in the wound healing process. Herein, a state-of-the-art is presented by addressing general aspects of the healing process, current status and limitations of non-encapsulated drug-based hydrogels, and hydrogels formed by different polymers containing soft nanostructures for wound healing. Collectively, the presence of soft nanoparticles improved the performance of natural and synthetic bioactive compounds in hydrogels employed for wound healing, demonstrating the scientific advances obtained so far.
Collapse
Affiliation(s)
| | - Alexandre de Fátima Cobre
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba 80210-170, Brazil
| | - Roberto Pontarolo
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba 80210-170, Brazil
- Pharmacy Department, Federal University of Paraná, Curitiba 80210-170, Brazil
| | - Luana Mota Ferreira
- Pharmacy Department, Federal University of Paraná, Curitiba 80210-170, Brazil
- Correspondence: ; Tel.: +55-41-3360-4095
| |
Collapse
|
138
|
Haghbin M, Malekshah RE, Sobhani M, Izadi Z, Haghshenas B, Ghasemi M, Kalani BS, Samadian H. Fabrication and characterization of Persian gum-based hydrogel loaded with gentamicin-loaded natural zeolite: An in vitro and in silico study. Int J Biol Macromol 2023; 235:123766. [PMID: 36841390 DOI: 10.1016/j.ijbiomac.2023.123766] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 02/27/2023]
Abstract
The main purpose of this study is to synthesize and characterize Persian gum-based hydrogel composited with gentamicin (Gen)-loaded natural zeolite (Clinoptilolite) and to evaluate its biological properties. Clinoptilolite (CLN) was decorated with Gen, and the conjugation was confirmed using computational and experimental assessments. The Monte Carlo adsorption locator module was used to reveal the physicochemical nature of the adsorption processes of Gen on CLN and ALG and gum on Gen@ CLN in Materials Studio 2017 software. Based on the high negative results, the adsorption process was found to be endothermic in all studied cases, and the interaction energies were in the range of physisorption for Gen on CLN and ALG and gum on Gen@CLN. Dynamic light scattering (DLS) and zeta potential analysis showed that the size of pristine CLN was around 2959 nm and the conjugation decreased the size significantly to approximately 932 nm. The hydrogel characterizations showed that the Gen-decorated CLNs are homogenously dispersed into the hydrogel matrix, and the resultant hydrogels have a porous structure with interconnected pores. The release kinetics evaluation showed that around 80 % of Gen was released from the nanocomposite drug during the first 10 h. In vitro studies revealed hemocompatibility and cytocompatibility of the nanocomposite. Microbial assessments indicated dose-dependent antibacterial activity of the hydrogel against gram (+) and gram (-) bacteria. The results showed that the fabricated hydrogel nanocomposite exhibits favorable physicochemical and biological properties.
Collapse
Affiliation(s)
- Mohana Haghbin
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Mahsa Sobhani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Babak Haghshenas
- Regenerative Medicine Research Center (RMRC), Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 67146, Iran
| | - Maryam Ghasemi
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Behrooz Sadeghi Kalani
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Hadi Samadian
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
139
|
Chelu M, Musuc AM. Polymer Gels: Classification and Recent Developments in Biomedical Applications. Gels 2023; 9:161. [PMID: 36826331 PMCID: PMC9956074 DOI: 10.3390/gels9020161] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Polymer gels are a valuable class of polymeric materials that have recently attracted significant interest due to the exceptional properties such as versatility, soft-structure, flexibility and stimuli-responsive, biodegradability, and biocompatibility. Based on their properties, polymer gels can be used in a wide range of applications: food industry, agriculture, biomedical, and biosensors. The utilization of polymer gels in different medical and industrial applications requires a better understanding of the formation process, the factors which affect the gel's stability, and the structure-rheological properties relationship. The present review aims to give an overview of the polymer gels, the classification of polymer gels' materials to highlight their important features, and the recent development in biomedical applications. Several perspectives on future advancement of polymer hydrogel are offered.
Collapse
Affiliation(s)
| | - Adina Magdalena Musuc
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| |
Collapse
|
140
|
Ju Y, Hu Y, Yang P, Xie X, Fang B. Extracellular vesicle-loaded hydrogels for tissue repair and regeneration. Mater Today Bio 2023; 18:100522. [PMID: 36593913 PMCID: PMC9803958 DOI: 10.1016/j.mtbio.2022.100522] [Citation(s) in RCA: 158] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) are a collective term for nanoscale or microscale vesicles secreted by cells that play important biological roles. Mesenchymal stem cells are a class of cells with the potential for self-healing and multidirectional differentiation. In recent years, numerous studies have shown that EVs, especially those secreted by mesenchymal stem cells, can promote the repair and regeneration of various tissues and, thus, have significant potential in regenerative medicine. However, due to the rapid clearance capacity of the circulatory system, EVs are barely able to act persistently at specific sites for repair of target tissues. Hydrogels have good biocompatibility and loose and porous structural properties that allow them to serve as EV carriers, thereby prolonging the retention in certain specific areas and slowing the release of EVs. When EVs are needed to function at specific sites, the EV-loaded hydrogels can stand as an excellent approach. In this review, we first introduce the sources, roles, and extraction and characterization methods of EVs and describe their current application status. We then review the different types of hydrogels and discuss factors influencing their abilities to carry and release EVs. We summarize several strategies for loading EVs into hydrogels and characterizing EV-loaded hydrogels. Furthermore, we discuss application strategies for EV-loaded hydrogels and review their specific applications in tissue regeneration and repair. This article concludes with a summary of the current state of research on EV-loaded hydrogels and an outlook on future research directions, which we hope will provide promising ideas for researchers.
Collapse
Key Words
- 4-arm-PEG-MAL, four-armed polyethylene glycol (PEG) functionalized with maleimide group
- AD/CS/RSF, alginate-dopamine chondroitin sulfate and regenerated silk fibroin
- ADSC, Adipose derived mesenchymal stem cells
- ADSC-EVs, adipose mesenchymal stem cells derived EVs
- ADSC-Exos, adipose mesenchymal stem cells derived exosomes
- ATRP, Atom transfer radical polymerization
- BCA, bicinchoninic acid
- BMSC, Bone marrow mesenchymal stem cells
- BMSC-EVs, bone marrow mesenchymal stem cells derived EVs
- BMSC-Exos, bone marrow mesenchymal stem cells derived exosomes
- CGC, chitosan-gelatin-chondroitin sulfate
- CL, chitosan lactate
- CNS, central nervous system
- CPCs, cardiac progenitor cells
- CS-g-PEG, chitosan-g-PEG
- DPSC-Exos, dental pulp stem cells derived exosomes
- ECM, extracellular matrix
- EGF, epidermal growth factor
- EVMs, extracellular vesicles mimetics
- EVs, Extracellular vesicles
- Exos, Exosomes
- Exosome
- Extracellular vesicle
- FEEs, functionally engineered EVs
- FGF, fibroblast growth factor
- GelMA, Gelatin methacryloyl
- HA, Hyaluronic acid
- HAMA, Hyaluronic acid methacryloyl
- HG, nano-hydroxyapatite-gelatin
- HIF-1 α, hypoxia-inducible factor-1 α
- HS-HA, hypoxia-sensitive hyaluronic acid
- HUVEC, human umbilical vein endothelial cell
- Hydrogel
- LAP, Lithium Phenyl (2,4,6-trimethylbenzoyl) phosphinate
- LSCM, laser scanning confocal microscopy
- MC-CHO, Aldehyde methylcellulose
- MMP, matrix metalloproteinase
- MNs, microneedles
- MSC-EVs, mesenchymal stem cells derived EVs
- MSC-Exos, mesenchymal stem cells derived exosomes
- MSCs, mesenchymal stem cells
- NPCs, neural progenitor cells
- NTA, nanoparticle tracking analysis
- OHA, oxidized hyaluronic acid
- OSA, oxidized sodium alginate
- PDA, Polydopamine
- PDLLA, poly(D l-lactic acid)
- PDNPs-PELA, Polydopamine nanoparticles incorporated poly (ethylene glycol)-poly(ε-cap-rolactone-co-lactide)
- PEG, Polyethylene glycol
- PF-127, Pluronic F-127
- PHEMA, phenoxyethyl methacrylate
- PIC, photo-induced imine crosslinking
- PKA, protein kinase A system
- PLA, Poly lactic acid
- PLGA, polylactic acid-hydroxy acetic acid copolymer
- PLLA, poly(l-lactic acid)
- PPy, polypyrrole
- PVA, polyvinyl alcohol
- RDRP, Reversible deactivation radical polymerization
- Regeneration
- SCI, spinal cord injury
- SEM, Scanning electron microscopy
- SF, Silk fibroin
- SPT, single-particle tracking
- TEM, transmission electron microscopy
- Tissue repair
- UMSC, umbilical cord mesenchymal stem cells
- UMSC-EVs, umbilical cord mesenchymal stem cells derived EVs
- UMSC-Exos, umbilical cord mesenchymal stem cells derived exosomes
- UV, ultraviolet
- VEGF, vascular endothelial growth factor
- VEGF-R, vascular endothelial growth factor receptor
- WB, western blotting
- dECM, decellularized ECM
- hiPS-MSC-Exos, human induced pluripotent stem cell-MSC-derived exosomes
- iPS-CPCs, pluripotent stem cell-derived cardiac progenitors
- nHP, nanohydroxyapatite/poly-ε-caprolactone
- sEVs, small extracellular vesicles
- β-TCP, β-Tricalcium Phosphate
Collapse
Affiliation(s)
- Yikun Ju
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Yue Hu
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Pu Yang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Xiaoyan Xie
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| |
Collapse
|
141
|
Luo GX, Lu YF, Huang C. [Role of functional hydrogel in promoting wound healing]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2023; 39:9-14. [PMID: 36740421 DOI: 10.3760/cma.j.cn501225-20221123-00503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cutaneous wounds are one of the commonest clinical diseases. At present, there are still many challenges in how to repair wounds quickly with high quality. With the rapid development and cross-integration of materials science and biomedicine, hydrogels that can integrate various excellent properties through flexible structural modification and combination of different functional components are widely applied in wound management and research. This paper attempted to summarize the role of hydrogel in promoting wound repair from the respects of matrix materials, special structures, and diverse functions of hydrogel.
Collapse
Affiliation(s)
- G X Luo
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Y F Lu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - C Huang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| |
Collapse
|
142
|
Development of a photosynthetic hydrogel as potential wound dressing for the local delivery of oxygen and bioactive molecules. Acta Biomater 2023; 155:154-166. [PMID: 36435443 DOI: 10.1016/j.actbio.2022.11.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
The development of biomaterials to improve wound healing is a critical clinical challenge and an active field of research. As it is well described that oxygen plays a critical role in almost each step of the wound healing process, in this work, an oxygen producing photosynthetic biomaterial was generated, characterized, and further modified to additionally release other bioactive molecules. Here, alginate hydrogels were loaded with the photosynthetic microalgae Chlamydomonas reinhardtii, showing high integration as well as immediate oxygen release upon illumination. Moreover, the photosynthetic hydrogel showed high biocompatibility in vitro and in vivo, and the capacity to sustain the metabolic oxygen requirements of zebrafish larvae and skin explants. In addition, the photosynthetic dressings were evaluated in 20 healthy human volunteers following the ISO-10993-10-2010 showing no skin irritation, mechanical stability of the dressings, and survival of the photosynthetic microalgae. Finally, hydrogels were also loaded with genetically engineered microalgae to release human VEGF, or pre-loaded with antibiotics, showing sustained release of both bioactive molecules. Overall, this work shows that photosynthetic hydrogels represent a feasible approach for the local delivery of oxygen and other bioactive molecules to promote wound healing. STATEMENT OF SIGNIFICANCE: As oxygen plays a key role in almost every step of the tissue regeneration process, the development of oxygen delivering therapies represents an active field of research, where photosynthetic biomaterials have risen as a promising approach for wound healing. Therefore, in this work a photosynthetic alginate hydrogel-based wound dressing containing C. reinhardtii microalgae was developed and validated in healthy skin of human volunteers. Moreover, hydrogels were modified to additionally release other bioactive molecules such as recombinant VEGF or antibiotics. The present study provides key scientific data to support the use of photosynthetic hydrogels as customizable dressings to promote wound healing.
Collapse
|
143
|
Ahmad N. In Vitro and In Vivo Characterization Methods for Evaluation of Modern Wound Dressings. Pharmaceutics 2022; 15:42. [PMID: 36678671 PMCID: PMC9864730 DOI: 10.3390/pharmaceutics15010042] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/10/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022] Open
Abstract
Chronic wound management represents a major challenge in the healthcare sector owing to its delayed wound-healing process progression and huge financial burden. In this regard, wound dressings provide an appropriate platform for facilitating wound healing for several decades. However, adherent traditional wound dressings do not provide effective wound healing for highly exudating chronic wounds and need the development of newer and innovative wound dressings to facilitate accelerated wound healing. In addition, these dressings need frequent changing, resulting in more pain and discomfort. In order to overcome these issues, a wide range of affordable and innovative modern wound dressings have been developed and explored recently to accelerate and improve the wound healing process. However, a comprehensive understanding of various in vitro and in vivo characterization methods being utilized for the evaluation of different modern wound dressings is lacking. In this context, an overview of modern dressings and their complete in vitro and in vivo characterization methods for wound healing assessment is provided in this review. Herein, various emerging modern wound dressings with advantages and challenges have also been reviewed. Furthermore, different in vitro wound healing assays and in vivo wound models being utilized for the evaluation of wound healing progression and wound healing rate using wound dressings are discussed in detail. Finally, a summary of modern wound dressings with challenges and the future outlook is highlighted.
Collapse
Affiliation(s)
- Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia
| |
Collapse
|
144
|
Farokhi M, Mottaghitalab F, Babaluei M, Mojarab Y, Kundu SC. Advanced Multifunctional Wound Dressing Hydrogels as Drug Carriers. Macromol Biosci 2022; 22:e2200111. [PMID: 35866647 DOI: 10.1002/mabi.202200111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/25/2022] [Indexed: 01/15/2023]
Abstract
Skin injuries, especially chronic wounds, remain a significant healthcare system problem. The number of burns, diabetic patients, pressure ulcers, and other damages is also growing, particularly in elderly populations. Several investigations are pursued in designing more effective therapeutics for treating different wound injuries. These efforts have resulted in developing multifunctional wound dressings to improve wound repair. For this, preparing multifunctional dressings using various methods has provided a new attitude to support effective skin regeneration. This review focuses on the recent developments in designing multifunctional hydrogel dressings with hemostasis, adhesiveness, antibacterial, and antioxidant properties.
Collapse
Affiliation(s)
- Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Mercedeh Babaluei
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Yasamin Mojarab
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal
| |
Collapse
|
145
|
Bregovskiy VB, Demina AG, Karpova IA. The use of modern dressings for the local treatment of diabetic foot ulcers in out-patient setting. AMBULATORNAYA KHIRURGIYA = AMBULATORY SURGERY (RUSSIA) 2022. [DOI: 10.21518/1995-1477-2022-19-2-72-81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Local treatment of diabetic foot ulcers is one of the most controversial topics in surgery. The choice of a dressing or bandage is still heavily influenced by many subjective factors and is often based on the personal preferences of the medical staff. Based on literature data and practical experience, the article presents the shortcomings of the current domestic practice of using gauze dressings with various drugs, as well as the reasons for the insufficient use of special so-called “outpatient” dressings with special properties. The main classes of modern dressings with special properties (mesh, hydrocolloids, hydroalginates, hydrogels, alginates and sponges or foams) and their areas of application are characterized. The concept of wound treatment in a humid environment with maintaining an optimal moisture balance is highlighted. The key areas of treatment of diabetic foot ulcers in accordance with the modern recommendations of the International Working Group on the Diabetic Foot and the Ministry of Health of the Russian Federation are given: infection control, adequate blood supply, regular debridement and offloading of the affected limb. Special attention is paid to immobilization as the most important factor ensuring healing. On clinical cases, the methodology and tactics of local treatment of postoperative wound and diabetic foot ulcer with alginate dressing and silicone coated sponges are analyzed. Alternative options for local treatment of patients in both clinical cases are discussed.
Collapse
|
146
|
Huang C, Dong L, Zhao B, Lu Y, Huang S, Yuan Z, Luo G, Xu Y, Qian W. Anti-inflammatory hydrogel dressings and skin wound healing. Clin Transl Med 2022; 12:e1094. [PMID: 36354147 PMCID: PMC9647861 DOI: 10.1002/ctm2.1094] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022] Open
Abstract
Hydrogels are promising and widely utilized in the biomedical field. In recent years, the anti-inflammatory function of hydrogel dressings has been significantly improved, addressing many clinical challenges presented in ongoing endeavours to promote wound healing. Wound healing is a cascaded and highly complex process, especially in chronic wounds, such as diabetic and severe burn wounds, in which adverse endogenous or exogenous factors can interfere with inflammatory regulation, leading to the disruption of the healing process. Although insufficient wound inflammation is uncommon, excessive inflammatory infiltration is an almost universal feature of chronic wounds, which impedes a histological repair of the wound in a predictable biological step and chronological order. Therefore, resolving excessive inflammation in wound healing is essential. In the past 5 years, extensive research has been conducted on hydrogel dressings to address excessive inflammation in wound healing, specifically by efficiently scavenging excessive free radicals, sequestering chemokines and promoting M1 -to-M2 polarization of macrophages, thereby regulating inflammation and promoting wound healing. In this study, we introduced novel anti-inflammatory hydrogel dressings and demonstrated innovative methods for their preparation and application to achieve enhanced healing. In addition, we summarize the most important properties required for wound healing and discuss our analysis of potential challenges yet to be addressed.
Collapse
Affiliation(s)
- Can Huang
- Institute of Burn ResearchSouthwest HospitalState Key Laboratory of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsArmy Medical UniversityChongqingChina
| | - Lanlan Dong
- Institute of Burn ResearchSouthwest HospitalState Key Laboratory of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsArmy Medical UniversityChongqingChina
| | - Baohua Zhao
- Institute of Burn ResearchSouthwest HospitalState Key Laboratory of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsArmy Medical UniversityChongqingChina
| | - Yifei Lu
- Institute of Burn ResearchSouthwest HospitalState Key Laboratory of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsArmy Medical UniversityChongqingChina
| | - Shurun Huang
- Department of Burns and Plastic Surgerythe 910th Hospital of Joint Logistic Force of Chinese People's Liberation ArmyQuanzhouFujianChina
| | - Zhiqiang Yuan
- Institute of Burn ResearchSouthwest HospitalState Key Laboratory of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsArmy Medical UniversityChongqingChina
| | - Gaoxing Luo
- Institute of Burn ResearchSouthwest HospitalState Key Laboratory of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsArmy Medical UniversityChongqingChina
| | - Yong Xu
- Orthopedic InstituteSuzhou Medical CollegeSoochow UniversitySuzhouChina
- B CUBE Center for Molecular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Wei Qian
- Institute of Burn ResearchSouthwest HospitalState Key Laboratory of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsArmy Medical UniversityChongqingChina
| |
Collapse
|
147
|
Wang Z, Li W, Gou L, Zhou Y, Peng G, Zhang J, Liu J, Li R, Ni H, Zhang W, Cao T, Cao Q, Su H, Han YP, Tong N, Fu X, Ilegems E, Lu Y, Berggren PO, Zheng X, Wang C. Biodegradable and Antioxidant DNA Hydrogel as a Cytokine Delivery System for Diabetic Wound Healing. Adv Healthc Mater 2022; 11:e2200782. [PMID: 36101484 DOI: 10.1002/adhm.202200782] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/30/2022] [Indexed: 01/28/2023]
Abstract
Impaired diabetic wound healing is associated with the persistence of chronic inflammation and excessive oxidative stress, which has become one of the most serious clinical challenges. Wound dressings with anti-inflammatory and reactive oxygen species (ROS)-scavenging properties are desirable for diabetic wound treatment. In this study, a shape-adaptable, biodegradable, biocompatible, antioxidant, and immunomodulatory interleukin-33 (IL-33)-cytogel is developed by encapsulating IL-33 into physically cross-linked DNA hydrogels and used as wound dressings to promote diabetic wound healing. The porous microstructures and biodegradable properties of the IL-33-cytogel ensure the local sustained-release of IL-33 in the wound area, where the sustained-release of IL-33 is maintained for at least 7 days. IL-33-cytogel can induce local accumulation of group 2 innate lymphoid cells (ILC2s) and regulatory T cells (Tregs), as well as M1-to-M2 transition at the wound sites. Additionally, the antioxidant and biocompatible characteristics of DNA hydrogels promote the scavenging of intracellular ROS without affecting cell viability. As a result, local inflammation in the diabetic wound area is resolved upon IL-33-cytogel treatment, which is accompanied by improved granulation tissue regeneration and accelerated wound closure. This study demonstrates a promising strategy in tissue engineering and regenerative medicine by incorporating DNA hydrogels and cytokine immunotherapy for promoting diabetic wound healing.
Collapse
Affiliation(s)
- Zhenghao Wang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, 610041, China.,The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, SE-17176, Sweden
| | - Wei Li
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liping Gou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ye Zhou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ge Peng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiayi Zhang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiaye Liu
- Department of thyroid and parathyroid surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ruoqing Li
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, 610041, China.,Department of General Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, 400014, China
| | - Hengfan Ni
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wanli Zhang
- Core facility of West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Cao
- Laboratory of Infectious Diseases and Vaccine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qi Cao
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
| | - Hong Su
- Department of Dermatology, Chengdu First People's Hospital, Chengdu, 610041, China
| | - Yuan-Ping Han
- The Center for Growth, Metabolism and Aging, The College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Nanwei Tong
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Erwin Ilegems
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, SE-17176, Sweden
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Per-Olof Berggren
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, 610041, China.,The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, SE-17176, Sweden
| | - Xiaofeng Zheng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chengshi Wang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
148
|
Injectable Crosslinked Genipin Hybrid Gelatin-PVA Hydrogels for Future Use as Bioinks in Expediting Cutaneous Healing Capacity: Physicochemical Characterisation and Cytotoxicity Evaluation. Biomedicines 2022; 10:biomedicines10102651. [PMID: 36289912 PMCID: PMC9599713 DOI: 10.3390/biomedicines10102651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 12/02/2022] Open
Abstract
The irregular shape and depth of wounds could be the major hurdles in wound healing for the common three-dimensional foam, sheet, or film treatment design. The injectable hydrogel is a splendid alternate technique to enhance healing efficiency post-implantation via injectable or 3D-bioprinting technologies. The authentic combination of natural and synthetic polymers could potentially enhance the injectability and biocompatibility properties. Thus, the purpose of this study was to characterise a hybrid gelatin−PVA hydrogel crosslinked with genipin (GNP; natural crosslinker). In brief, gelatin (GE) and PVA were prepared in various concentrations (w/v): GE, GPVA3 (3% PVA), and GPVA5 (5% PVA), followed by a 0.1% (w/v) genipin (GNP) crosslink, to achieve polymerisation in three minutes. The physicochemical and biocompatibility properties were further evaluated. GPVA3_GNP and GPVA5_GNP with GNP demonstrated excellent physicochemical properties compared to GE_GNP and non-crosslinked hydrogels. GPVA5_GNP significantly displayed the optimum swelling ratio (621.1 ± 93.18%) and excellent hydrophilicity (38.51 ± 2.58°). In addition, GPVA5_GNP showed an optimum biodegradation rate (0.02 ± 0.005 mg/h) and the highest mechanical strength with the highest compression modulus (2.14 ± 0.06 MPa). In addition, the surface and cross-sectional view for scanning electron microscopy (SEM) displayed that all of the GPVA hydrogels have optimum average pore sizes (100−199 μm) with interconnected pores. There were no substantial changes in chemical analysis, including FTIR, XRD, and EDX, after PVA and GNP intervention. Furthermore, GPVA hydrogels influenced the cell biocompatibility, which successfully indicated >85% of cell viability. In conclusion, gelatin−PVA hydrogels crosslinked with GNP were proven to have excellent physicochemical, mechanical, and biocompatibility properties, as required for potential bioinks for chronic wound healing.
Collapse
|
149
|
Recent Advances in Smart Hydrogels Prepared by Ionizing Radiation Technology for Biomedical Applications. Polymers (Basel) 2022; 14:polym14204377. [PMID: 36297955 PMCID: PMC9608571 DOI: 10.3390/polym14204377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/27/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022] Open
Abstract
Materials with excellent biocompatibility and targeting can be widely used in the biomedical field. Hydrogels are an excellent biomedical material, which are similar to living tissue and cannot affect the metabolic process of living organisms. Moreover, the three-dimensional network structure of hydrogel is conducive to the storage and slow release of drugs. Compared to the traditional hydrogel preparation technologies, ionizing radiation technology has high efficiency, is green, and has environmental protection. This technology can easily adjust mechanical properties, swelling, and so on. This review provides a classification of hydrogels and different preparation methods and highlights the advantages of ionizing radiation technology in smart hydrogels used for biomedical applications.
Collapse
|
150
|
Zhu Y, Chen F, Wu M, Xiang J, Yan F, Xie Y, Tong Z, Chen Y, Cai L. Biocompatible and antibacterial Flammulina velutipes-based natural hybrid cryogel to treat noncompressible hemorrhages and skin defects. Front Bioeng Biotechnol 2022; 10:960407. [PMID: 36304898 PMCID: PMC9593062 DOI: 10.3389/fbioe.2022.960407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Hemorrhage, infection, and frequent replacement of dressings bring great clinical challenges to wound healing. In this work, Flammulina velutipes extract (FV) and hydroxyethyl cellulose (HEC) were chemically cross-linked and freeze-dried to obtain novel HFV cryogels (named HFVn, with n = 10, 40, or 70 corresponding to the weight percentage of the FV content), which were constructed for wound hemostasis and full-thickness skin defect repair. Systematic characterization experiments were performed to assess the morphology, mechanical properties, hydrophilic properties, and degradation rate of the cryogels. The results indicated that HFV70 showed a loose interconnected-porous structure and exhibited the highest porosity (95%) and water uptake ratio (over 2,500%) with a desirable degradation rate and shape memory properties. In vitro cell culture and hemocompatibility experiments indicated that HFV70 showed improved cytocompatibility and hemocompatibility. It can effectively mimic the extracellular matrix microenvironment and support the adhesion and proliferation of L929 cells, and its hemolysis rate in vitro was less than 5%. Moreover, HFV70 effectively induced tube formation in HUVEC cells in vitro. The results of the bacteriostatic annulus confirmed that HFV70 significantly inhibited the growth of Gram-negative E. coli and Gram-positive S. aureus. In addition, HFV70 showed ideal antioxidant properties, with the DPPH scavenging rate in vitro reaching 74.55%. In vivo rat liver hemostasis experiments confirmed that HFV70 showed rapid and effective hemostasis, with effects comparable to those of commercial gelatin sponges. Furthermore, when applied to the repair of full-thickness skin defects in a rat model, HFV70 significantly promoted tissue regeneration. Histological analysis further confirmed the improved pro-angiogenic and anti-inflammatory activity of HFV70 in vivo. Collectively, our results demonstrated the potential of HFV70 in the treatment of full-thickness skin defects and rapid hemostasis.
Collapse
Affiliation(s)
- Yufan Zhu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Feixiang Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Minhao Wu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jieyu Xiang
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Feifei Yan
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuanlong Xie
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zan Tong
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yun Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- *Correspondence: Yun Chen, ; Lin Cai,
| | - Lin Cai
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yun Chen, ; Lin Cai,
| |
Collapse
|