101
|
Spitzwieser M, Holzweber E, Pfeiler G, Hacker S, Cichna-Markl M. Applicability of HIN-1, MGMT and RASSF1A promoter methylation as biomarkers for detecting field cancerization in breast cancer. Breast Cancer Res 2015; 17:125. [PMID: 26370119 PMCID: PMC4570691 DOI: 10.1186/s13058-015-0637-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 08/27/2015] [Indexed: 12/18/2022] Open
Abstract
Introduction It has been shown in some articles that genetic and epigenetic abnormalities cannot only be found in tumor tissues but also in adjacent regions that appear histologically normal. This phenomenon is metaphorically called field cancerization or field defect. Field cancerization is regarded as clinically significant because it is assumed to be an important factor in local recurrence of cancer. As the field showing these molecular abnormalities may not be removed completely by surgery, these changes might lead to neoplasms and subsequent transformation to a tumor. We aimed to investigate the applicability of the methylation status of six tumor suppressor genes as biomarkers for detecting field cancerization in breast cancer. Methods The promoter methylation status of CCND2, DAPK1, GSTP1, HIN-1, MGMT and RASSF1A was determined by methylation-sensitive high-resolution melting (MS-HRM) analysis. MS-HRM methods for CCND2, MGMT and RASSF1A were developed in-house, primer sequences for DAPK1, GSTP1 and HIN-1 have already been published. Biopsy samples were taken from tumor, tumor-adjacent and tumor-distant tissue from 17 breast cancer patients. Normal breast tissues of four healthy women served as controls. Results All MS-HRM methods proved to be very sensitive. LODs were in the range from 0.1 to 1.5 %, LOQs ranged from 0.3 to 5.3 %. A total of 94 %, 82 % and 65 % of the tumors showed methylation of RASSF1A, HIN-1 and MGMT promoters, respectively. The methylation status of these promoters was significantly lower in tumor-distant tissues than in tumor tissues. Tumor-adjacent tissues showed higher methylation status of RASSF1A, HIN-1 and MGMT promoters than tumor-distant tissues, indicating field cancerization. The methylation status of the HIN-1 promoter in tumor-adjacent tissues was found to correlate strongly with that in the corresponding tumors (r = 0.785, p < 0.001), but not with that in the corresponding tumor-distant tissues (r = 0.312, p = 0.239). Conclusions Among the gene promoters investigated, the methylation status of the HIN-1 promoter can be considered the best suitable biomarker for detecting field cancerization. Further investigation is needed to test whether it can be used for defining surgical margins in order to prevent future recurrence of breast cancer.
Collapse
Affiliation(s)
- Melanie Spitzwieser
- Department of Analytical Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria.
| | - Elisabeth Holzweber
- Department of Analytical Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria.
| | - Georg Pfeiler
- Department of Obstetrics and Gynecology, Division of Gynecology and Gynecological Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Stefan Hacker
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Margit Cichna-Markl
- Department of Analytical Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria.
| |
Collapse
|
102
|
Su L, Wang H, Miao J, Liang Y. Clinicopathological Significance and Potential Drug Target of CDKN2A/p16 in Endometrial Carcinoma. Sci Rep 2015; 5:13238. [PMID: 26283007 PMCID: PMC4642515 DOI: 10.1038/srep13238] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/30/2015] [Indexed: 02/06/2023] Open
Abstract
Previous studies demonstrated that the loss of function of the CDKN2A/p16/INK4A gene is mainly caused by the hypermethylation of CDKN2A, however, whether or not it is associated with the incidence and clinicopathological characteristics of endometrial carcinoma (EC) remains unclear. In this study, we conducted a meta-analysis aiming to comprehensively assess the role of CDKN2A hypermethylation in the pathogenesis of EC. A detailed literature search was made to identify the related research publications. Analysis of pooled data was performed. Odds ratio (OR) was calculated and summarized. Final analysis of 638 EC patients from 12 eligible studies was performed. The results showed that CDKN2A hypermethylation was significantly higher in EC than in normal control tissue, the pooled OR from 8 studies including 400 EC patients and 131 controls, OR = 8.39 with 95% CI 4.03–17.45, test for overall effect, Z = 5.69, P < 0.00001. Further analysis showed that CDKN2A hypermethylation was not significantly associated with tumor differentiation and clinical stage status in EC patients. The results of this meta-analysis suggest that CDKN2A hypermethylation may be implicated in the pathogenesis of EC. CDKN2A hypermethylation was not significantly associated with tumor differentiation and clinical stage status in EC patients, indicating that CDKN2A hypermethylation might be early event of EC.
Collapse
Affiliation(s)
- Li Su
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006, China
| | | | - Jingwei Miao
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006, China
| | | |
Collapse
|
103
|
Xu L, Lan H, Su Y, Li J, Wan J. Clinicopathological significance and potential drug target of RUNX3 in non-small cell lung cancer: a meta-analysis. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2855-65. [PMID: 26082616 PMCID: PMC4461130 DOI: 10.2147/dddt.s76358] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Emerging evidence indicates that RUNX3 is a candidate tumor suppressor in several types of human tumors, including non-small cell lung cancer (NSCLC). However, the correlation between RUNX3 hypermethylation and clinicopathological characteristics of NSCLC remains unclear. Here, we conducted a systematic review and meta-analysis to quantitatively evaluate the effects of RUNX3 hypermethylation on the incidence of NSCLC and clinicopathological characteristics. METHODS A detailed literature search was made using Medline, Embase and Web of Science for related research publications written in English. The methodological quality of the studies was evaluated. The data were extracted and assessed independently by two reviewers. Analysis of pooled data was performed. The odds ratio (OR) and hazard ratio were calculated and summarized. RESULTS Final analysis of 911 NSCLC patients from 13 eligible studies was performed. We observed that RUNX3 hypermethylation was significantly higher in NSCLC than in normal lung tissue; the pooled OR from seven studies including 361 NSCLC and 345 normal lung tissue (OR 7.08, confidence interval 4.12-12.17, P<0.00001). RUNX3 hypermethylation may also be associated with pathological types. The pooled OR was obtained from eleven studies including 271 squamous cell carcinoma and 389 adenocarcinoma (OR 0.41, confidence interval 0.19-0.89, P=0.02), which indicated that RUNX3 hypermethylation is significantly higher in adenocarcinoma that in squamous cell carcinoma. We did not find that RUNX3 hypermethylation was correlated with clinical stage or differentiated status. However, NSCLC patients with RUNX3 hypermethylation had a lower survival rate than those without RUNX3 hypermethylation. CONCLUSION The results of this meta-analysis suggest that RUNX3 hypermethylation is associated with an increased risk and worse survival in NSCLC. RUNX3 hypermethylation, which induces inactivation of the RUNX3 gene, plays an important role in lung carcinogenesis and clinical outcome.
Collapse
Affiliation(s)
- Lijun Xu
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hongwen Lan
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yushu Su
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jun Li
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jingwen Wan
- Department of Surgery (Operation Room), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, People's Republic of China
| |
Collapse
|
104
|
Zeng W, Zhu J, Shan L, Han Z, Aerxiding P, Quhai A, Zeng F, Wang Z, Li H. The clinicopathological significance of CDH1 in gastric cancer: a meta-analysis and systematic review. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2149-57. [PMID: 25926721 PMCID: PMC4403748 DOI: 10.2147/dddt.s75429] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background CDH1 is a protein encoded by the CDH1 gene in humans. Loss of CDH1 function contributes to cancer progression by increasing proliferation, invasion, and/or metastasis. However, the association and clinicopathological significance between CDH1 hypermethylation and gastric cancer (GC) remains unclear. In this study, we systematically reviewed the studies of CDH1 hypermethylation and GC, and evaluated the association between CDH1 hypermethylation and GC using meta-analysis methods. Methods A comprehensive search of the PubMed and Embase databases was performed for publications up to July 2014. Methodological quality of the studies was also evaluated. The data were extracted and assessed by two reviewers independently. Analyses of pooled data were performed. Odds ratios (ORs) were calculated and summarized. Results A final analysis of 1,079 GC patients from 14 eligible studies was performed. CDH1 hypermethylation level in the cancer group was significantly higher compared to the normal gastric mucosa (OR =8.55, 95% confidence interval [CI]: 2.39–33.51, Z=5.47, P<0.00001). CDH1 hypermethylation was not significantly higher in GC than in adjacent gastric mucosa (OR =3.68, 95% CI: 0.96–14.18, Z=1.90, P=0.06). However, CDH1 hypermethylation was higher in adjacent gastric mucosa compared to that in normal gastric mucosa (OR =2.55, 95% CI: 1.22–5.32, Z=2.49, P<0.01). In addition, CDH1 hypermethylation was correlated with Helicobacter pylori (HP) status in GC. The pooled OR from six studies including 280 HP-positive GCs and 193 HP-negative GCs is 1.72 (95% CI: 1.13–2.61, Z=2.55, P=0.01). Conclusion The results of this meta-analysis reveal that CDH1 hypermethylation levels in cancer and adjacent gastric mucosa are significantly higher compared to normal gastric mucosa. Thus, CDH1 hypermethylation is significantly correlated with GC risk. CDH1 hypermethylation is correlated with HP status, indicating that it plays a more important role in the pathogenesis of HP-positive GC and might be an interesting potential drug target for GC patients.
Collapse
Affiliation(s)
- Wei Zeng
- College of Public Health, Xinjiang Medical University, Xinjiang, People's Republic of China ; First Department of Lung Cancer Chemotherapy, The Affiliated Cancer Hospital of Xinjiang Medical University, Xinjiang, People's Republic of China
| | - Jinfeng Zhu
- Department of Gastrointestinal Surgery, The Affiliated Cancer Hospital of Xinjiang Medical University, Xinjiang, People's Republic of China
| | - Li Shan
- First Department of Lung Cancer Chemotherapy, The Affiliated Cancer Hospital of Xinjiang Medical University, Xinjiang, People's Republic of China
| | - Zhigang Han
- First Department of Lung Cancer Chemotherapy, The Affiliated Cancer Hospital of Xinjiang Medical University, Xinjiang, People's Republic of China
| | - Patiguli Aerxiding
- First Department of Lung Cancer Chemotherapy, The Affiliated Cancer Hospital of Xinjiang Medical University, Xinjiang, People's Republic of China
| | - Amina Quhai
- First Department of Lung Cancer Chemotherapy, The Affiliated Cancer Hospital of Xinjiang Medical University, Xinjiang, People's Republic of China
| | - Fanye Zeng
- Department of Oncology, Traditional Chinese Medical Hospital Affiliated to Xinjiang Medical University, Xinjiang, People's Republic of China
| | - Ziwei Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Huiwu Li
- School of Basic Medicine, Xinjiang Medical University, Xinjiang, People's Republic of China
| |
Collapse
|
105
|
Liu K, Liu Y, Lau JL, Min J. Epigenetic targets and drug discovery Part 2: Histone demethylation and DNA methylation. Pharmacol Ther 2015; 151:121-40. [PMID: 25857453 DOI: 10.1016/j.pharmthera.2015.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/31/2015] [Indexed: 02/06/2023]
Abstract
Chromatin structure is dynamically modulated by various chromatin modifications, such as histone/DNA methylation and demethylation. We have reviewed histone methyltransferases and methyllysine binders in terms of small molecule screening and drug discovery in the first part of this review series. In this part, we will summarize recent progress in chemical probe and drug discovery of histone demethylases and DNA methyltransferases. Histone demethylation and DNA methylation have attracted a lot of attention regarding their biology and disease implications. Correspondingly, many small molecule compounds have been designed to modulate the activity of histone demethylases and DNA methyltransferases, and some of them have been developed into therapeutic drugs or put into clinical trials.
Collapse
Affiliation(s)
- Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Yanli Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Johnathan L Lau
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
106
|
Zhong K, Chen W, Xiao N, Zhao J. The clinicopathological significance and potential drug target of E-cadherin in NSCLC. Tumour Biol 2015; 36:6139-48. [PMID: 25758052 DOI: 10.1007/s13277-015-3298-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/01/2015] [Indexed: 01/01/2023] Open
Abstract
Human epithelial cadherin (E-cadherin), a member of transmembrane glycoprotein family, encoded by the E-cadherin gene, plays a key role in cell-cell adhesion, adherent junction in normal epithelial tissues, contributing to tissue differentiation and homeostasis. Although previous studies indicated that inactivation of the E-cadherin is mainly induced by hypermethylation of E-cadherin gene, evidence concerning E-cadherin hypermethylation in the carcinogenesis and development of non-small cell lung carcinoma (NSCLC) remains controversial. In this study, we conducted a meta-analysis to quantitatively evaluate the effects of E-cadherin hypermethylation on the incidence and clinicopathological characteristics of NSCLC. A comprehensive search of PubMed and Embase databases was performed up to October 2014. Analyses of pooled data were performed. Odds ratios (ORs) were calculated and summarized. Our meta-analysis combining 18 published articles demonstrated that the hypermethylation frequencies in NSCLC were significantly higher than those in normal control tissues, OR = 3.55, 95 % confidence interval (CI) = 1.98-6.36, p < 0.0001. Further analysis showed that E-cadherin hypermethylation was not strongly associated with the sex or smoking status in NSCLC patients. In addition, E-cadherin hypermethylation was also not strongly associated with pathological types, differentiated status, clinical stages, or metastatic status in NSCLC patients. The results from the current study indicate that the hypermethylation frequency of E-cadherin in NSCLC is strongly associated with NSCLC incidence and it may be an early event in carcinogenesis of NSCLC. We also discussed the potential value of E-cadherin as a drug target that may bring new direction and hope for cancer treatment through gene-targeted therapy.
Collapse
Affiliation(s)
- Kaize Zhong
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China
| | | | | | | |
Collapse
|
107
|
Zheng CG, Jin C, Ye LC, Chen NZ, Chen ZJ. Clinicopathological significance and potential drug target of O6-methylguanine-DNA methyltransferase in colorectal cancer: a meta-analysis. Tumour Biol 2015; 36:5839-48. [PMID: 25716203 DOI: 10.1007/s13277-015-3254-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/10/2015] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence indicates that O(6)-methylguanine-DNA methyltransferase (MGMT) is a candidate for tumor suppression in several types of human tumors including colorectal cancer (CRC). However, the correlation between MGMT hypermethylation and clinicopathological characteristics of CRC remains unclear. In this study, we conducted a systematic review and meta-analysis to quantitatively evaluate the effects of MGMT hypermethylation on the incidence of CRC and clinicopathological characteristics. A comprehensive literature search was done from Web of Science, the Cochrane Library Database, PubMed, EMBASE, CINAHL, and the Chinese Biomedical Database for related research publications written in English and Chinese. Methodological quality of the studies was also evaluated. Analyses of pooled data were performed with Review Manager 5.2. Odds ratio (OR) and hazard ratio (HR) were calculated and summarized, respectively. Final analysis from 28 eligible studies was performed. MGMT hypermethylation is found to be significantly higher in CRC than in normal colorectal mucosa, the pooled OR from 13 studies including 1085 CRC and 899 normal colorectal mucosa, OR = 6.04, 95 % confidence interval (CI) = 4.69-7.77, p < 0.00001. MGMT hypermethylation is also significantly higher in colorectal adenoma than in normal colorectal mucosa, but it is significantly less compared to that in CRC patients. Interestingly, MGMT hypermethylation is correlated with sex status and is significantly higher in female than in male. MGMT hypermethylation is also associated with high levels of microsatellite instability (MSI). The pooled HR for overall survival (OS) shows that MGMT hypermethylation is not associated with worse survival in CRC patients. The results of this meta-analysis suggest that MGMT hypermethylation is associated with an increased risk and high levels of MSI and may play an important role in CRC initiation. However, MGMT hypermethylation may play an important role in the early stage of CRC progression and development, as well as having limited value in prediction of prognosis in CRC patients. We also discussed that MGMT may serve as a potential drug target of CRC.
Collapse
Affiliation(s)
- Chen-Guo Zheng
- Department of Coloproctology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | | | | | | | | |
Collapse
|
108
|
Abstract
Epigenetic and genetic alterations contribute to cancer initiation and progression. Epigenetics refers to the study of heritable changes in gene expression without alterations in DNA sequences. Epigenetic changes are reversible and include key processes of DNA methylation, chromatin modifications, nucleosome positioning, and alterations in noncoding RNA profiles. Disruptions in epigenetic processes can lead to altered gene function and cellular neoplastic transformation. Epigenetic modifications precede genetic changes and usually occur at an early stage in neoplastic development. Recent technological advances offer a better understanding of the underlying epigenetic alterations during carcinogenesis and provide insight into the discovery of putative epigenetic biomarkers for detection, prognosis, risk assessment, and disease monitoring. In this chapter we provide information on various epigenetic mechanisms and their role in carcinogenesis, in particular, epigenetic modifications causing genetic changes and the potential clinical impact of epigenetic research in the future.
Collapse
Affiliation(s)
- Rajnee Kanwal
- Department of Urology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | | | | |
Collapse
|
109
|
Wang Z, Wang B, Guo H, Shi G, Hong X. Clinicopathological significance and potential drug target of T-cadherin in NSCLC. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 9:207-16. [PMID: 25565774 PMCID: PMC4278732 DOI: 10.2147/dddt.s74259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Background Previous studies demonstrate that T-cadherin is a candidate tumor suppressor in several types of human tumors, including non-small cell lung cancer (NSCLC). Lack of protein expression of T-cadherin by hypermethylation has been found to play an important role in lung alveolar differentiation regulation and epithelial tumorigenesis. However, the correlation between T-cadherin hypermethylation and clinicopathological characteristics of NSCLC remains unclear. Here we conducted a systematic review and meta-analysis to quantitatively evaluate the effects of T-cadherin hypermethylation on the incidence of NSCLC and clinicopathological characteristics. Methods A detailed literature search was carried out for related research publications. Analyses of pooled data were performed. Odds ratio (OR) and hazard ratio (HR) were calculated and summarized, respectively. Results Final analysis of 1,172 NSCLC patients from 15 eligible studies was performed. T-cadherin hypermethylation was observed to be significantly higher in NSCLC than in normal lung tissue, based on the pooled OR from nine studies including 532 NSCLC and 372 normal lung tissue samples (OR=8.19, 95% confidence interval [CI]=5.41–12.39, P<0.00001). T-cadherin hypermethylation may also be associated with pathological types. The pooled OR was obtained from four studies including 111patients with squamous cell carcinoma and 106 with adenocarcinoma (OR=0.35, 95% CI=0.19–0.66, P=0.001), which indicated that T-cadherin hypermethylation plays a more important role in the pathogenesis of adenocarcinoma. We did not find that T-cadherin hypermethylation was correlated with the sex or smoking status, clinical stages, or epidermal growth factor receptor (EGFR) mutation status. However, T-cadherin hypermethylation was found to be significantly higher in poorly differentiated NSCLC than in moderately and highly differentiated NSCLC, and NSCLC patients with T-cadherin hypermethylation had a lower survival rate than those without T-cadherin hypermethylation. Conclusion The results of this meta-analysis suggest that T-cadherin hypermethylation is associated with an increased risk and worse survival in NSCLC. T-cadherin hypermethylation, which induces the inactivation of T-cadherin gene, plays an important role in the carcinogenesis, cancer progression, as well as clinical outcome.
Collapse
Affiliation(s)
- Zhidong Wang
- Oncology Department, Eighth Hospital of Changsha, Changsha, People's Republic of China
| | - Bin Wang
- Oncology Department, Eighth Hospital of Changsha, Changsha, People's Republic of China
| | - Huanchen Guo
- Department of Respiratory Medicine, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, People's Republic of China
| | - Guoyu Shi
- Department of Respiratory Medicine, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, People's Republic of China
| | - Xiuqin Hong
- Institute of Gerontology, Hunan Geriatric Hospital, Changsha, People's Republic of China
| |
Collapse
|
110
|
Chao WR, Lin WL, Chen CK, Han LM, Lin JC, Han CP. Unusual c-KIT+ squamous cell carcinoma of the uterine cervix showing paradoxical hypermethylation of the c-KIT proto-oncogene. Eur J Obstet Gynecol Reprod Biol 2014; 184:130-1. [PMID: 25524714 DOI: 10.1016/j.ejogrb.2014.11.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/19/2014] [Accepted: 11/21/2014] [Indexed: 10/24/2022]
Affiliation(s)
- Wan-Ru Chao
- Institute of Medicine, Chung-Shan Medical University, Taichung, Taiwan; Department of Pathology, Chung-Shan Medical University and Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wea-Lung Lin
- Department of Pathology, Chung-Shan Medical University and Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chi-Kuan Chen
- Department of Pathology, Laboratory Medicine and Department of Medicine, Mackay Medical College, Taipei, Taiwan
| | - Lih-Min Han
- Post Graduate Year Program, Chung-Shan Medical University and Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jau-Chen Lin
- Department of Respiratory Therapy, Fu-Jen Catholic University, Taipei, Taiwan.
| | - Chih-Ping Han
- Department of Pathology, Chung-Shan Medical University and Chung Shan Medical University Hospital, Taichung, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, Chung-Shan Medical University and Chung-Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
111
|
Abstract
AbstractMethylation-specific PCR (MSP) is still the method of choice for a single gene methylation study. The proper design of the primer pairs is a prerequisite for obtaining reliable PCR results. Despite numerous protocols describing the rules for MSP primer design, none of them provide a comprehensive approach to the problem. Our aim was to depict a workflow for the primer design that is concise and easy to follow. In order to achieve this goal, adequate tools for promoter sequence retrieval, MSP primer design and subsequent in silico analysis are presented and discussed. Furthermore, a few instructive examples regarding a good versus a poor primer design are provided. Finally, primer design is demonstrated according to the proposed workflow. This article aims to provide researchers, interested in a single gene methylation studies, with useful information regarding successful primer design.
Collapse
|
112
|
Jeschke J, Collignon E, Fuks F. DNA methylome profiling beyond promoters - taking an epigenetic snapshot of the breast tumor microenvironment. FEBS J 2014; 282:1801-14. [PMID: 25331982 DOI: 10.1111/febs.13125] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/06/2014] [Accepted: 10/19/2014] [Indexed: 12/22/2022]
Abstract
Breast cancer, one of the most common and deadliest malignancies in developed countries, is a remarkably heterogeneous disease, which is clinically reflected by patients who display similar pathological features but respond differently to treatments. In the search for mediators of responsiveness, the tumor microenvironment (TME), in particular tumor-associated immune cells, has been pushed into the spotlight as it has become clear that the TME is an active component of breast cancer disease that affects clinical outcomes. Thus, the characterization of the TME in terms of cell identities and their frequencies has generated a great deal of interest. The common methods currently used for this purpose are either limited in accuracy or application, and DNA methylation has recently been proposed as an alternative approach. The aim of this review is to discuss DNA methylation profiling beyond promoters as a potential clinical tool for TME characterization and cell typing within tumors. With respect to this, we review the role of DNA methylation in breast cancer and cell-lineage specification, as well as inform about the composition and clinical relevance of the TME.
Collapse
Affiliation(s)
- Jana Jeschke
- Laboratory of Cancer Epigenetics, Université Libre de Bruxelles, Brussels, Belgium
| | | | | |
Collapse
|
113
|
Li J, Bi L, Lin Y, Lu Z, Hou G. Clinicopathological significance and potential drug target of p15INK4B in multiple myeloma. Drug Des Devel Ther 2014; 8:2129-36. [PMID: 25382971 PMCID: PMC4222634 DOI: 10.2147/dddt.s71088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Multiple myeloma (MM) is a clonal malignancy characterized by the proliferation of malignant plasma cells in the bone marrow and the production of monoclonal immunoglobulin. In addition to genetic changes, gene hypermethylation is an alternative mechanism of tumor suppressor gene inactivation in MM. The cyclin-dependent kinase inhibitor 1 (CDKN2B or p15INK4B) gene lies adjacent to the tumor suppressor gene, cyclin-dependent kinase inhibitor 2 (CDKN2A), and is frequently mutated and deleted in a wide variety of tumors, including MM. However, there is a lack of systematic analysis of p15 epigenetic modification such as methylation in MM from different studies that can provide more powerful estimation of an effect. In this study, we have systematically reviewed the studies of p15INK4B promoter methylation in MM and quantified the association between p15INK4B promoter methylation and MM using meta-analysis methods. We observed that the frequency of p15INK4B methylation is significantly higher in MM patients than in normal healthy controls. The pooled odds ratio (OR) from ten studies including 394 MM and 99 normal individuals is 0.08, while confidence interval (CI) is 0.03–0.21 (P<0.00001). This indicates that p15INK4B inactivation through methylation plays an important role in the pathogenesis of MM. In addition, the frequency of p15INK4B methylation was significantly higher in patients with MM than in those with asymptomatic monoclonal gammopathy of undetermined significance. The pooled OR from four studies is 0.40, 95% CI =0.21–0.78 (P=0.007). These results suggest that silencing of p15INK4B gene expression by epigenetic modification such as promoter hypermethylation plays a role not only in the initiation of MM but also in plasma cell malignant transformation, disease progression, and development.
Collapse
Affiliation(s)
- Jun Li
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Lintao Bi
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yumei Lin
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Zhenxia Lu
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Gang Hou
- Department of Respiratory Medicine, The First Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
114
|
Xue R, Yang C, Zhao F, Li D. Prognostic significance of CDH13 hypermethylation and mRNA in NSCLC. Onco Targets Ther 2014; 7:1987-96. [PMID: 25382980 PMCID: PMC4222896 DOI: 10.2147/ott.s67355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aberrant methylation of CpG dinucleotides is a commonly observed epigenetic modification in human cancer. Thus, detection of aberrant gene promoter methylation as a tool for diagnosis of tumors or as a prognostic marker has been widely described for many types of cancers, including nonsmall cell lung cancer (NSCLC). Emerging evidence indicates that CDH13 is a candidate tumor suppressor in several types of human tumors, including NSCLC. However, the correlation between CDH13 hypermethylation and clinicopathological characteristics of NSCLC remains unclear. In the current study, we conducted a systematic review and meta-analysis to quantitatively evaluate the effects of CDH13 hypermethylation on the incidence of NSCLC and clinicopathological characteristics. Final analysis of 803 NSCLC patients from eleven eligible studies was performed. CDH13 hypermethylation was observed to be significantly higher in NSCLC than in normal lung tissue, with the pooled odds ratio (OR) from seven studies including 448 NSCLC and 345 normal lung tissue (OR, 7.85; 95% confidence interval, 5.12-12.03; P<0.00001). CDH13 hypermethylation was also associated with pathological types. The pooled OR was obtained from four studies, including 111 squamous cell carcinoma and 106 adenocarcinoma (OR, 0.35; 95% confidence interval, 0.19-0.66; P=0.001), which indicated that CDH13 hypermethylation plays a more important role in the pathogenesis of adenocarcinoma. NSCLC with CDH13 hypermethylation was found more frequently in poorly differentiated NSCLC patients. NSCLC patients with CDH13 hypermethylation had a lower survival rate than those without CDH13 hypermethylation. In addition, CDH13 mRNA high expression was found to correlate with better overall survival for all NSCLC patients followed for 20 years (hazard ratio, 0.81; P=0.0056). Interestingly, CDH13 mRNA overexpression was found to correlate with better overall survival only in adenocarcinoma patients (hazard ratio, 0.42; P=9.6e-09), not in squamous cell carcinoma patients (hazard ratio, 0.93; P=0.59). The results of this meta-analysis suggest that CDH13 hypermethylation is associated with an increased risk and worse survival in NSCLC. CDH13 hypermethylation and mRNA expression play an important role in carcinogenesis, progression, and development, as well as clinical outcomes.
Collapse
Affiliation(s)
- Ruilin Xue
- Global Health Institute, School of Public Health, Wuhan University, Wuhan, People's Republic of China
| | - Cuili Yang
- Global Health Institute, School of Public Health, Wuhan University, Wuhan, People's Republic of China
| | - Fang Zhao
- Zhongnan Hospital, Wuhan University, Wuhan, People's Republic of China
| | - Dejia Li
- Global Health Institute, School of Public Health, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
115
|
The Noninvasive Detection of RARβ2 Promoter Methylation for the Diagnosis of Prostate Cancer. Cell Biochem Biophys 2014; 71:925-30. [DOI: 10.1007/s12013-014-0285-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
116
|
DNA methylation biomarkers: cancer and beyond. Genes (Basel) 2014; 5:821-64. [PMID: 25229548 PMCID: PMC4198933 DOI: 10.3390/genes5030821] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 08/17/2014] [Accepted: 09/01/2014] [Indexed: 12/23/2022] Open
Abstract
Biomarkers are naturally-occurring characteristics by which a particular pathological process or disease can be identified or monitored. They can reflect past environmental exposures, predict disease onset or course, or determine a patient's response to therapy. Epigenetic changes are such characteristics, with most epigenetic biomarkers discovered to date based on the epigenetic mark of DNA methylation. Many tissue types are suitable for the discovery of DNA methylation biomarkers including cell-based samples such as blood and tumor material and cell-free DNA samples such as plasma. DNA methylation biomarkers with diagnostic, prognostic and predictive power are already in clinical trials or in a clinical setting for cancer. Outside cancer, strong evidence that complex disease originates in early life is opening up exciting new avenues for the detection of DNA methylation biomarkers for adverse early life environment and for estimation of future disease risk. However, there are a number of limitations to overcome before such biomarkers reach the clinic. Nevertheless, DNA methylation biomarkers have great potential to contribute to personalized medicine throughout life. We review the current state of play for DNA methylation biomarkers, discuss the barriers that must be crossed on the way to implementation in a clinical setting, and predict their future use for human disease.
Collapse
|
117
|
Yang Y, Ye Z, Zou Z, Xiao G, Luo G, Yang H. Clinicopathological significance of RUNX3 gene hypermethylation in hepatocellular carcinoma. Tumour Biol 2014; 35:10333-40. [DOI: 10.1007/s13277-014-2329-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 07/07/2014] [Indexed: 12/16/2022] Open
|
118
|
Mu WP, Wang J, Niu Q, Shi N, Lian HF. Clinical significance and association of RUNX3 hypermethylation frequency with colorectal cancer: a meta-analysis. Onco Targets Ther 2014; 7:1237-45. [PMID: 25053885 PMCID: PMC4105273 DOI: 10.2147/ott.s62103] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background The RUNX family, which is composed of RUNX1, RUNX2, and RUNX3, is a sequence-specific transcription factor family and is closely involved in a variety of cellular processes including development, differentiation, participation in the regulation of p53-dependent DNA damage response and/or tumorigenesis. Emerging evidence indicates that RUNX3 is a candidate tumor suppressor in several types of human tumors including colorectal cancer (CRC). However, the correlation of RUNX3 inactivation with CRC remains unclear. In the study reported here, we conducted a systematic review and meta-analysis to quantitatively evaluate the effects of RUNX3 hypermethylation/expression on the incidence of CRC. Methods A detailed search of the literature was made using Medline® and Web of Science for related research publications written in English. The methodological quality of the studies was also evaluated. The data were extracted and assessed by two reviewers independently. Analyses of the pooled data were performed. Odds ratios (ORs) and hazard ratios were calculated and summarized, respectively. Results A final analysis of 1,427 CRC patients from eleven eligible studies was performed. We observed that RUNX3 hypermethylation was significantly higher in CRC than in normal colorectal mucosa. The pooled OR from six studies comprising 289 CRC and 188 normal colorectal mucosa was OR =0.07 (confidence interval [CI] =0.03–0.18, P<0.00001). Aberrant RUNX3 hypermethylation/expression was significantly higher in advanced CRC than in early staged CRC (OR =0.54, CI =0.41–0.71, P<0.0001). Aberrant RUNX3 hypermethylation/expression was also significantly higher in microsatellite instability (MSI)-positive CRC than in MSI-negative CRC (OR =0.44, CI =0.3–0.66, P<0.0001). In addition, CRC patients with RUNX3 hypermethylation or lacking RUNX3 protein expression had a lower survival rate than those without RUNX3 hypermethylation or those who did not express RUNX3 protein. Conclusion The results of this meta-analysis suggest that RUNX3 hypermethylation is associated with an increased risk of CRC, increased risk of progression of CRC, and a poorer CRC survival rate. RUNX3 hypermethylation, which induces the inactivation of RUNX3 gene, plays an important role in colorectal carcinogenesis, high levels of MSI, as well as CRC progression and development.
Collapse
Affiliation(s)
- Wei-Ping Mu
- Department of Gastroenterology, Affiliated Hospital of Binzhou Medical College, Binzhou, People's Republic of China
| | - Jian Wang
- Department of Gastroenterology, Affiliated Hospital of Binzhou Medical College, Binzhou, People's Republic of China
| | - Qiong Niu
- Department of Gastroenterology, Affiliated Hospital of Binzhou Medical College, Binzhou, People's Republic of China
| | - Ning Shi
- Department of Gastroenterology, Affiliated Hospital of Binzhou Medical College, Binzhou, People's Republic of China
| | - Hai-Feng Lian
- Department of Gastroenterology, Affiliated Hospital of Binzhou Medical College, Binzhou, People's Republic of China
| |
Collapse
|
119
|
Gutjahr A, Xu SY. Engineering nicking enzymes that preferentially nick 5-methylcytosine-modified DNA. Nucleic Acids Res 2014; 42:e77. [PMID: 24609382 PMCID: PMC4027164 DOI: 10.1093/nar/gku192] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
N.ϕGamma is a strand-specific and site-specific DNA nicking enzyme (YCG↓GT or AC↑CGR). Here we describe the isolation of single and double mutants of N.ϕGamma with attenuated activity. The nicking domains (NDs) of E59A and 11 double mutants were fused to the 5mCG-binding domain of MBD2 and generated fusion enzymes that preferentially nick 5mCG-modified DNA. The CG dinucleotide can be modified by C5 methyltransferases (MTases) such as M.SssI, M.HhaI or M.HpaII to create composite sites AC↑YGG N(8-15) 5mCG. We also constructed a fusion enzyme 2xMBD2-ND(N.BceSVIII) targeting more frequent composite sites AS↑YS N(5-12) 5mCG in Mn2+ buffer. 5mCG-dependent nicking requires special digestion conditions in high salt (0.3 M KCl) or in Ni2+ buffer. The fusion enzyme can be used to nick and label 5mCG-modified plasmid and genomic DNAs with fluorescently labeled Cy3-dUTP and potentially be useful for diagnostic applications, DNA sequencing and optical mapping of epigenetic markers. The importance of the predicted catalytic residues D89, H90, N106 and H115 in N.ϕGamma was confirmed by mutagenesis. We found that the wild-type enzyme N.ϕGamma prefers to nick 5mCG-modified DNA in Ni2+ buffer even though the nicking activity is sub-optimal compared to the activity in Mg2+ buffer.
Collapse
Affiliation(s)
- Alice Gutjahr
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Shuang-yong Xu
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| |
Collapse
|
120
|
Wang XB, Lin YL, Li ZG, Ma JH, Li J, Ma JG. Protocadherin 17 promoter methylation in tumour tissue from patients with bladder transitional cell carcinoma. J Int Med Res 2014; 42:292-9. [PMID: 24567353 DOI: 10.1177/0300060513504364] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE To investigate the clinical significance of protocadherin 17 (PCDH17) promoter methylation in bladder cancer. METHODS Methylation-specific polymerase chain reaction was used to examine the promoter methylation status of PCDH17 in tumour tissue specimens obtained from patients with bladder cancer, and in normal bladder epithelial tissue specimens obtained from age- and sex-matched controls. The correlations between methylation status and demographic and clinicopathological parameters, and disease outcome, were assessed. RESULTS Methylation of the PCDH17 promoter was detected in 77/115 (67.0%) patients with bladder cancer and 0/43 (0%) of the controls. Methylation was significantly associated with high cancer grade (G3), advanced cancer stage (T2-T4), large tumour diameter (> 3 cm) and tumour recurrence. Methylation was also associated with significantly shorter survival time compared with unmethylated PCDH17 in patients with bladder cancer, and was an independent predictor of overall survival. CONCLUSIONS PCDH17 promoter methylation is closely associated with bladder cancer malignancy and may be used as an independent predictor of clinical outcomes in patients with bladder cancer.
Collapse
Affiliation(s)
- Xiao-Bo Wang
- Department of Urology, Tianjin People's Hospital, Tianjin, China
| | | | | | | | | | | |
Collapse
|
121
|
Yu YY, Chen C, Kong FF, Zhang W. Clinicopathological significance and potential drug target of RUNX3 in breast cancer. Drug Des Devel Ther 2014; 8:2423-30. [PMID: 25525332 PMCID: PMC4266273 DOI: 10.2147/dddt.s71815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Previous reports indicate that RUNX3 is a tumor suppressor in several types of human tumors, including breast cancer (BC). However, the correlation between RUNX3 hypermethylation and the incidence of BC remains unclear. In this study, we conducted a systematic review and meta-analysis aiming to comprehensively assess the potential role of RUNX3 hypermethylation in the pathogenesis of BC. METHODS A detailed literature search was made to identify studies for related research publications. Methodological quality of the studies was evaluated. Analysis of pooled data was performed. Odds ratio (OR) was calculated and summarized respectively. RESULTS Final analysis of 565 BC patients from eleven eligible studies was performed. The results showed that RUNX3 hypermethylation was significantly higher in BC than in normal breast tissue, the pooled OR from nine studies including 339 BC and 248 normal breast tissue (OR =24.12, 95% confidence interval [CI] =13.50-43.11, Z=10.75, P<0.00001). Further analysis also showed significantly increased OR of RUNX3 hypermethylation in estrogen receptor (ER)-positive than in ER-negative BC patients (OR =5.67, 95% CI =2.69-11.95, Z=4.57, P<0.00001). In addition, RUNX3 messenger RNA (mRNA) high expression was found to be correlated to better overall survival in 3,455 cases of BC patients that were followed up for 20 years (hazard ratio [HR] 0.79, P=8.8×10(-5)). Interestingly, RUNX3 mRNA overexpression was found to be correlated to better overall survival in only 668 cases of ER-negative patients (HR 0.72, P=0.01), but not in 1,767 cases of ER-positive patients (HR 0.87, P=0.13). CONCLUSION The results of this meta-analysis suggest that RUNX3 hypermethylation may be implicated in the pathogenesis of BC. Detection of RUNX3 mRNA may be a helpful and valuable biomarker for diagnosis of BC, especially in ER-negative BC. We also discussed the significance of RUNX3 as a potential drug target.
Collapse
Affiliation(s)
- Ying-Ying Yu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Chao Chen
- Department of Gynecology, Shanghai First Maternity and Infant Hospital Affiliated to TongJi University, Shanghai, People’s Republic of China
| | - Fan-fei Kong
- Department of Gynecology, Shanghai First Maternity and Infant Hospital Affiliated to TongJi University, Shanghai, People’s Republic of China
| | - Wei Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People’s Republic of China
- Correspondence: Wei Zhang, Obstetrics and Gynecology Hospital, Fudan University, 413 Zhaozhou Road, Shanghai 200011, People’s Republic of China, Email
| |
Collapse
|
122
|
Luo ZG, Li ZG, Gui SL, Chi BJ, Ma JG. Protocadherin-17 promoter methylation in serum-derived DNA is associated with poor prognosis of bladder cancer. J Int Med Res 2013; 42:35-41. [PMID: 24366498 DOI: 10.1177/0300060513504705] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE To investigate the prognostic value of protocadherin 17 (PCDH17) promoter methylation in serum-derived DNA of patients with bladder cancer. METHODS DNA was isolated from serum of patients with bladder cancer and from age- and sex-matched controls. Methylation-specific polymerase chain reaction was used to examine the methylation status of the PCDH17 promoter. The correlations between methylation status and clinicopathological characteristics and overall survival were examined. RESULTS PCDH17 promoter methylation was detected in 79/151 (52.3%) of patients with bladder cancer, and none of the 43 control subjects. Methylation was significantly associated with larger tumour diameter (>3 cm), high grade (G3) and advanced stage (T2-T4). Patients with PCDH17 promoter methylation had significantly shorter overall survival than those with unmethylated PCDH17 promoter. Methylation was an independent predictor of overall survival. CONCLUSIONS PCDH17 promoter methylation was significantly associated with malignant behaviour and poor prognosis of bladder cancer. The detection of PCDH17 promoter methylation in serum-derived DNA may be a convenient and noninvasive predictive biomarker in routine clinical practice.
Collapse
Affiliation(s)
- Zhen-Guo Luo
- Department of Urology, First Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, China
| | | | | | | | | |
Collapse
|