101
|
Kwack K, Zhang L, Sohn J, Maglaras V, Thiyagarajan R, Kirkwood K. Novel Preosteoclast Populations in Obesity-Associated Periodontal Disease. J Dent Res 2022; 101:348-356. [PMID: 34636272 PMCID: PMC8982008 DOI: 10.1177/00220345211040729] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although there is a clear relationship between the degree of obesity and periodontal disease incidence, the mechanisms that underpin the links between these conditions are not completely understood. Understanding that myeloid-derived suppressor cells (MDSCs) are expanded during obesity and operate in a context-defined manner, we addressed the potential role of MDSCs to contribute toward obesity-associated periodontal disease. Flow cytometry revealed that in the spleen of mice fed a high-fat diet (HFD), expansion in monocytic MDSCs (M-MDSCs) significantly increased when compared with mice fed a low-fat diet (LFD). In the osteoclast differentiation assay, M-MDSCs isolated from the bone marrow of HFD-fed mice showed a larger number and area of osteoclasts with a greater number of nuclei. In the M-MDSCs of HFD-fed mice, several osteoclast-related genes were significantly elevated when compared with LFD-fed mice according to a focused transcriptomic platform. In experimental periodontitis, the number and percentage of M-MDSCs were greater, with a significantly larger increase in HFD-fed mice versus LFD-fed mice. In the spleen, the percentage of M-MDSCs was significantly higher in HFD-fed periodontitis-induced (PI) mice than in LFD-PI mice. Alveolar bone volume fraction was significantly reduced in experimental periodontitis and was further decreased in HFD-PI mice as compared with LFD-PI mice. The inflammation score was significantly higher in HFD-PI mice versus LFD-PI mice, with a concomitant increase in TRAP staining for osteoclast number and area in HFD-PI mice over LFD-PI mice. These data support the concept that M-MDSC expansion during obesity to become osteoclasts during periodontitis is related to increased alveolar bone destruction, providing a more detailed mechanistic appreciation of the interconnection between obesity and periodontitis.
Collapse
Affiliation(s)
- K.H. Kwack
- Department of Oral Biology,
University at Buffalo, Buffalo, NY, USA
| | - L. Zhang
- Department of Oral Biology,
University at Buffalo, Buffalo, NY, USA
| | - J. Sohn
- Department of Oral Biology,
University at Buffalo, Buffalo, NY, USA,Department of Medicine,
University at Buffalo, Buffalo, NY, USA,Department of Genetics, Genomics,
and Bioinformatics Program, University at Buffalo, Buffalo, NY, USA
| | - V. Maglaras
- Department of Oral Biology,
University at Buffalo, Buffalo, NY, USA
| | - R. Thiyagarajan
- Department of Medicine,
University at Buffalo, Buffalo, NY, USA,Research Service, Western New
York Veterans Affairs Healthcare Service, Buffalo, NY, USA
| | - K.L. Kirkwood
- Department of Oral Biology,
University at Buffalo, Buffalo, NY, USA,Department of Head and
Neck/Plastic and Reconstructive Surgery, Roswell Park Comprehensive Cancer
Center, Buffalo, NY, USA,K.L. Kirkwood, Department of Oral
Biology, School of Dental Medicine, University at Buffalo, The State
University of New York, 645 Biomedical Research Building, 3435 Main
St, Buffalo, NY 14214-8006, USA.
| |
Collapse
|
102
|
Adipokines Profile and Inflammation Biomarkers in Prepubertal Population with Obesity and Healthy Metabolic State. CHILDREN 2022; 9:children9010042. [PMID: 35053667 PMCID: PMC8774044 DOI: 10.3390/children9010042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/05/2022]
Abstract
(1) Background and aims: Obesity and high body max index (BMI) have been linked to elevated levels of inflammation serum markers such as C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-alpha), adiponectin, and resistin. It has been described that adipose tissue presents a high production and secretion of these diverse pro-inflammatory molecules, which may have local effects on the physiology of the fat cell and also systemic effects on other organs. Our aim was to evaluate the impact that lifestyle modifications, following a Mediterranean Diet (MedDiet) program and physical activity (PA) training, would have on inflammatory biomarkers in a metabolically healthy prepubertal population with obesity (MHOPp) from Malaga (Andalusia, Spain). (2) Methods: 144 MHOPp subjects (aged 5–9 years) were included in this study as they met ≤1 of the following criteria: waist circumference and blood pressure ≥ 90 percentile, triglycerides > 90 mg/dL, high-density lipoprotein cholesterol (HDL-c) < 40 mg/dL, or impaired fasting glucose (≥100 md/dL). Selected subjects followed a personalized intensive lifestyle modification. Anthropometric measurements, inflammation biomarkers, and adipokine profile were analyzed after 12 and 24 months of intervention. (3) Results: 144 MHOPp participants (75 boys—52% and 69 girls—48%; p = 0.62), who were 7.8 ± 1.4 years old and had a BMI 24.6 ± 3.3 kg/m2, were included in the study. After 24 months of MedDiet and daily PA, a significant decrease in body weight (−0.5 ± 0.2 SD units; p < 0.0001) and BMI (−0.7 ± 0.2 SD units; p < 0.0001) was observed in the total population with respect to baseline. Serum inflammatory biomarkers (IL-6, TNF-alpha, and CRP) after 24 months of intervention were significantly reduced. Adipokine profile (adiponectin and resistin) did not improve with the intervention, as adiponectin levels significantly decreased and resistin levels increased in all the population. Inflammatory biomarkers and adipokine profile had a significant correlation with anthropometric parameters, body composition, and physical activity. (4) Conclusions: After 24 months of lifestyle modification, our MHOPp reduced their Z-score of BMI, leading to an improvement of inflammatory biomarkers but inducing deterioration in the adipokine profile, which does not improve with MedDiet and physical activity intervention. An adequate education within the family about healthier habits is necessary to prevent and reduce an excessive increase in obesity in childhood.
Collapse
|
103
|
Wu K, Ke HH, Gong W, Hu H, Chen L. Impact of Pre-Pregnancy Hemoglobin Level on the Association Between Pre-Pregnancy Body Mass Index and Gestational Diabetes Mellitus: A Retrospective Cohort Study in a Single Center in China. Diabetes Metab Syndr Obes 2022; 15:3767-3775. [PMID: 36524205 PMCID: PMC9744891 DOI: 10.2147/dmso.s388562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
AIM To assess the impact of maternal pre-pregnancy body mass index (BMI) on gestational diabetes mellitus (GDM) based on different pre-pregnancy hemoglobin levels. METHODS This retrospective cohort study included 1289 pregnant women between June 2020 and January 2022. Clinical data were collected by reviewing their medical and antepartum screening records between 24 and 28 gestational weeks, including pre-pregnancy BMI and pre-pregnancy hemoglobin (Hb) levels. The diagnosis of GDM mainly depended on oral glucose tolerance test (OGTT) during 24-28 weeks. Restricted cubic spline (RCS) was used to investigate the association between the pre-pregnancy Hb level and the risk of GDM. Univariate and multivariate logistic regression analyses were applied to evaluate the relative risk of GDM. RESULTS Of the 1289 included pregnant women, 187 (14.5%) women were diagnosed with GDM in this study. The pre-pregnancy Hb level was significantly associated with GDM risk, and the pre-pregnancy Hb level of 123 g/L was identified as the threshold to stratify and assess the association between the GDM risk and the pre-pregnancy BMI. For women with a pre-pregnancy Hb level ≥123 g/L, the pre-pregnancy BMI showed a significant association with GDM risk, and the estimated incidence rate of GDM was 7.7%, 14.8%, 36.3% and 44% for underweight, normal-weight, overweight and obese pregnant women, respectively. After adjusting for potential influencing factors of GDM, the respective relative risk was 1.0 (reference), 2.04 (95% CI 0.84, 4.99), 7.06 (2.66, 18.61), and 10.77 (2.85, 40.63) (P for trend < 0.001). CONCLUSION In pregnant women with a pre-pregnancy Hb level ≥123 g/L, pre-pregnancy BMI showed a more significant association with GDM risk as compared with those with a pre-pregnancy Hb level <123 g/L.
Collapse
Affiliation(s)
- Kui Wu
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, People’s Republic of China
| | - Hui-Hui Ke
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, People’s Republic of China
| | - Wei Gong
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, People’s Republic of China
| | - Hua Hu
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, People’s Republic of China
| | - Li Chen
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, People’s Republic of China
- Correspondence: Li Chen; Hua Hu, Department of Obstetrics and Gynecology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai, 201399, People’s Republic of China, Tel +86 21 5802 2995, Email ;
| |
Collapse
|
104
|
Nie Y, Wang C, Yang L, Yang Z, Sun Y, Tian M, Ma Y, Zhang Y, Yuan Y, Zhang L. Relationship Analysis of Inorganic Arsenic Exposure and Metabolic Syndrome Based on Propensity Score Matching in Xinjiang, China. Diabetes Metab Syndr Obes 2022; 15:921-931. [PMID: 35370411 PMCID: PMC8965335 DOI: 10.2147/dmso.s349583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/17/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The role of inorganic arsenic (iAs) in the risk of metabolic syndrome (MetS) remains unclear. This investigation focused on the effect of iAs exposure on MetS and whether the results are consistent in different subgroups. PATIENTS AND METHODS The present study was conducted on 629 men and 616 women aged 35-70 years and living in Xinjiang Uygur Autonomous Region, China. The 1:1 propensity score matching (PSM) was adopted to regulate the confounding factors, and the multivariate logistic regression was performed to assess the relationship between urinary iAs and MetS. RESULTS The median content of urinary iAs was examined as 2.20 μg/dL (interquartile range: 1.30-3.20 μg/dL), and the MetS prevalence reached 23.69% (295 cases/950 participants). After the confounding factors were adjusted, the ORs (95% CIs) for MetS from the minimal to the maximum urinary iAs quartiles reached 1.171 (0.736,1.863), 1.568 (1.008, 2.440) and 2.011 (1.296, 3.120), respectively (referencing 1.00) (P for trend=0.001). After the PSM, the urinary iAs content still plays a potential prediction role in MetS (P for trend=0.011). In addition, as revealed from the subgroup analysis, the urinary iAs content was a predictor of MetS in the female patients, whereas it did not serve as a significant predictor of MetS in the male patients (P for interaction<0.05). CONCLUSION The increased urinary iAs content was associated with the increased prevalence of MetS in Chinese population. More attention should be paid to female urinary iAs content to avoid the high prevalence of MetS.
Collapse
Affiliation(s)
- Yanwu Nie
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Public Health, Xinjiang Medical University, Urumqi, 830017, People’s Republic of China
| | - Chenchen Wang
- Center for Disease Control and prevention of Xinjiang Uygur Autonomous Region, Urumqi, 830017, People’s Republic of China
| | - Lei Yang
- School of Nursing, Xinjiang Medical University, Urumqi, 830017, People’s Republic of China
| | - Zhen Yang
- School of Public Health, Xinjiang Medical University, Urumqi, 830017, People’s Republic of China
| | - Yahong Sun
- School of Public Health, Xinjiang Medical University, Urumqi, 830017, People’s Republic of China
| | - Maozai Tian
- Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing, 100872, People’s Republic of China
- College of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830017, People’s Republic of China
| | - Yuhua Ma
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People’s Republic of China
- Department of Pathology, Karamay Central Hospital of XinJiang Karamay, Karamay, Xinjiang Uygur Autonomous Region, 834000, People’s Republic of China
| | - Yuxia Zhang
- Department of Clinical Nutrition, Urumqi Maternal and Child Health Institute, Urumqi, 830001, People’s Republic of China
| | - Yimu Yuan
- Department of General Practice Medicine, Xinjiang Corps Hospital, Urumqi, People’s Republic of China
| | - Liping Zhang
- College of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830017, People’s Republic of China
- Correspondence: Liping Zhang, Email
| |
Collapse
|
105
|
Anemia in Sports: A Narrative Review. Life (Basel) 2021; 11:life11090987. [PMID: 34575136 PMCID: PMC8472039 DOI: 10.3390/life11090987] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Recent years have brought about new understandings regarding the pathogenesis of anemia in sports. From hemodilution and redistribution considered to contribute to the so-called “sports anemia” to iron deficiency caused by increased demands, dietary restrictions, decreased absorption, increased losses, hemolysis, and sequestration, to genetic determinants of different types of anemia (some related to sport), the anemia in athletes deserves a careful and multifactorial approach. Dietary factors that reduce iron absorption (e.g., phytate, polyphenols) and that augment iron’s bioavailability (e.g., ascorbic acid) should be considered. Celiac disease, more prevalent in female athletes, may underlie an unexplained iron deficiency anemia. Iron loss during exercise occurs in several ways: sweating, hematuria, gastrointestinal bleeding, inflammation, and intravascular and extravascular hemolysis. From a practical point of view, assessing iron status, especially in the athletes at risk for iron deficiency (females, adolescents, in sports with dietary restrictions, etc.), may improve the iron balance and possibly the performance. Hemoglobin and serum ferritin are measures that are easily employable for the evaluation of patients’ iron status. Cutoff values should probably be further assessed with respect to the sex, age, and type of sport. A healthy gut microbiome influences the iron status. Athletes at risk of iron deficiency should perform non-weight-bearing, low-intensity sports to avoid inducing hemolysis.
Collapse
|
106
|
Mamtani M, Jaisinghani MT, Jaiswal SG, Pipal KV, Patel AA, Kulkarni H. Genetic association of anthropometric traits with type 2 diabetes in ethnically endogamous Sindhi families. PLoS One 2021; 16:e0257390. [PMID: 34506595 PMCID: PMC8432747 DOI: 10.1371/journal.pone.0257390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022] Open
Abstract
Background Ethnically endogamous populations can shed light on the genetics of type 2 diabetes. Such studies are lacking in India. We conducted this study to determine the genetic and environmental contributions of anthropometric traits to type 2 diabetes risk in the Sindhi families in central India. Methods We conducted a family study in Indian Sindhi families with at least one case of type 2 diabetes. Variance components methods were used to quantify the genetic association of 18 anthropometric traits with eight type 2 diabetes related traits. Univariate and bivariate polygenic models were used to determine the heritability, genetic and environmental correlation of anthropometric traits with type 2 diabetes related traits. Results We included 1,152 individuals from 112 phenotyped families. The ascertainment-bias corrected prevalence of type 2 diabetes was 35%. Waist circumference, hip circumference and the biceps, triceps, subscapular and medial calf skinfold thicknesses were polygenically and significantly associated with type 2 diabetes. The range of heritability of the anthropometric traits and type 2 diabetes related traits was 0.27–0.73 and 0.00–0.39, respectively. Heritability of type 2 diabetes as a discrete trait was 0.35. Heritability curves demonstrated a substantial local influence of type 2 diabetes related traits. Bivariate trait analyses showed that biceps and abdominal skinfold thickness and all waist-containing indexes were strongly genetically correlated with type 2 diabetes. Conclusions In this first study of Sindhi families, we found evidence for genetic and environmental concordance of anthropometric traits with type 2 diabetes. Future studies need to probe into the genetics of type 2 diabetes in this population.
Collapse
Affiliation(s)
- Manju Mamtani
- Lata Medical Research Foundation, Nagpur, India
- M&H Research, LLC, San Antonio, Texas, United States of America
- * E-mail:
| | | | | | | | | | - Hemant Kulkarni
- Lata Medical Research Foundation, Nagpur, India
- M&H Research, LLC, San Antonio, Texas, United States of America
| |
Collapse
|
107
|
Dietz JV, Fox JL, Khalimonchuk O. Down the Iron Path: Mitochondrial Iron Homeostasis and Beyond. Cells 2021; 10:cells10092198. [PMID: 34571846 PMCID: PMC8468894 DOI: 10.3390/cells10092198] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022] Open
Abstract
Cellular iron homeostasis and mitochondrial iron homeostasis are interdependent. Mitochondria must import iron to form iron–sulfur clusters and heme, and to incorporate these cofactors along with iron ions into mitochondrial proteins that support essential functions, including cellular respiration. In turn, mitochondria supply the cell with heme and enable the biogenesis of cytosolic and nuclear proteins containing iron–sulfur clusters. Impairment in cellular or mitochondrial iron homeostasis is deleterious and can result in numerous human diseases. Due to its reactivity, iron is stored and trafficked through the body, intracellularly, and within mitochondria via carefully orchestrated processes. Here, we focus on describing the processes of and components involved in mitochondrial iron trafficking and storage, as well as mitochondrial iron–sulfur cluster biogenesis and heme biosynthesis. Recent findings and the most pressing topics for future research are highlighted.
Collapse
Affiliation(s)
- Jonathan V. Dietz
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA;
| | - Jennifer L. Fox
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424, USA;
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA;
- Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
- Fred and Pamela Buffett Cancer Center, Omaha, NE 68198, USA
- Correspondence:
| |
Collapse
|
108
|
Duan JY, Lin X, Xu F, Shan SK, Guo B, Li FXZ, Wang Y, Zheng MH, Xu QS, Lei LM, Ou-Yang WL, Wu YY, Tang KX, Yuan LQ. Ferroptosis and Its Potential Role in Metabolic Diseases: A Curse or Revitalization? Front Cell Dev Biol 2021; 9:701788. [PMID: 34307381 PMCID: PMC8299754 DOI: 10.3389/fcell.2021.701788] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022] Open
Abstract
Ferroptosis is classified as an iron-dependent form of regulated cell death (RCD) attributed to the accumulation of lipid hydroperoxides and redox imbalance. In recent years, accumulating researches have suggested that ferroptosis may play a vital role in the development of diverse metabolic diseases, for example, diabetes and its complications (e.g., diabetic nephropathy, diabetic cardiomyopathy, diabetic myocardial ischemia/reperfusion injury and atherosclerosis [AS]), metabolic bone disease and adrenal injury. However, the specific physiopathological mechanism and precise therapeutic effect is still not clear. In this review, we summarized recent advances about the development of ferroptosis, focused on its potential character as the therapeutic target in metabolic diseases, and put forward our insights on this topic, largely to offer some help to forecast further directions.
Collapse
Affiliation(s)
- Jia-Yue Duan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fu-Xing-Zi Li
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Wang
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li-Min Lei
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Lu Ou-Yang
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yun-Yun Wu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ke-Xin Tang
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
109
|
Qu J, Tan S, Xie X, Wu W, Zhu H, Li H, Liao X, Wang J, Zhou ZA, Huang S, Lu Q. Dendrobium Officinale Polysaccharide Attenuates Insulin Resistance and Abnormal Lipid Metabolism in Obese Mice. Front Pharmacol 2021; 12:659626. [PMID: 34194325 PMCID: PMC8236886 DOI: 10.3389/fphar.2021.659626] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/01/2021] [Indexed: 12/16/2022] Open
Abstract
Objectives: Dendrobium officinale polysaccharide (DOP) is the main active ingredient in a valuable traditional Chinese medicine, which exerts several pharmacological activities including hepatoprotection and hypoglycemic effects. However, the effects of DOP on obesity-associated insulin resistance (IR) and lipid metabolism remain unknown. This study aimed to investigate the role of DOP in IR and abnormal lipid metabolism in obese mice. Methods: IR models were established using 3T3-L1 adipocytes, C2C12 myocytes, and primary cultured hepatocytes exposed to palmitate acid. After treatment with DOP, insulin-stimulated glucose uptake, glucose release, and AKT phosphorylation was detected. Fasting blood glucose, fasting serum insulin, the glucose tolerance test (GTT), and the insulin tolerance test (ITT) were measured to evaluate IR of obese mice. Lipid analysis was conducted to evaluate the effects of DOP on lipid metabolism in obese mice. Results:In vitro, DOP treatment ameliorated palmitic acid-induced IR in adipocytes, myocytes, and hepatocytes. DOP regulated cellular insulin sensitivity via the peroxisome proliferator-activated receptor-γ (PPAR-γ). Furthermore, administration of DOP significantly reduced the IR and visceral adipose tissue (VAT) inflammation of diet-induced obese (DIO) and the genetically-induced obesity mice (ob/ob) mouse models. In addition, DOP treatment attenuated the high-fat diet (HFD)-induced liver lipid accumulation by reducing liver triglycerides (TG), plasma free fatty acid (FFA), serum cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels, while increasing HDL-C levels. Conclusion: DOP could improve obesity-associated IR and abnormal lipid metabolism through its activities on PPAR-γ, and may serve as a potential therapeutic agent for obesity-associated insulin resistance and lipid metabolism disorder.
Collapse
Affiliation(s)
- Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shengyu Tan
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xinyan Xie
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenqiang Wu
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haihong Zhu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hang Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Liao
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiaojiao Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Ang Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Song Huang
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiong Lu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
110
|
Sales CH, Rogero MM, Sarti FM, Fisberg RM. Prevalence and Factors Associated with Iron Deficiency and Anemia among Residents of Urban Areas of São Paulo, Brazil. Nutrients 2021; 13:1888. [PMID: 34072813 PMCID: PMC8226555 DOI: 10.3390/nu13061888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/23/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022] Open
Abstract
Anemia is a worldwide concern. This cross-sectional population-based study examined the prevalence of iron-deficiency anemia (IDA) among residents of São Paulo (n = 898; 12-93 years), considering sociodemographic factors, dietary iron inadequacy, and food contributors to iron intake. Blood cell count and iron biomarkers were quantified. Dietary iron intake was measured using two 24-h dietary recalls. Iron intake inadequacy was estimated using a probabilistic approach. The prevalence of anemia was 6.7%, depleted iron stores 5.1%, and IDA 1.1%. Women of all age groups, older adults, and those who were underweight or obese had the highest prevalence of anemia, and female adolescents had the highest prevalence of depleted iron stores. Female adolescents and adults were more vulnerable to depleted iron stores. Male adults and older adults had a considerable prevalence of iron overload. Except for female adolescents and adults, all groups had mild probabilities of inadequate iron intake. The main food iron contributor was wheat flour. Hemoglobin concentrations were directly associated with being an adult, having a higher income, and inversely associated with being female. Serum ferritin concentrations were directly associated with age and inversely correlated with female sex. Residents of São Paulo had a low prevalence of anemia, iron deficiency, and IDA, and sociodemographic factors interfered with these parameters.
Collapse
Affiliation(s)
- Cristiane Hermes Sales
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil; (M.M.R.); (R.M.F.)
| | - Marcelo Macedo Rogero
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil; (M.M.R.); (R.M.F.)
| | - Flávia Mori Sarti
- School of Arts, Sciences and Humanities, University of São Paulo, São Paulo 03828-000, Brazil;
| | - Regina Mara Fisberg
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil; (M.M.R.); (R.M.F.)
| |
Collapse
|
111
|
Ma W, Jia L, Xiong Q, Feng Y, Du H. The role of iron homeostasis in adipocyte metabolism. Food Funct 2021; 12:4246-4253. [PMID: 33876811 DOI: 10.1039/d0fo03442h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Iron plays a vital role in the metabolism of adipose tissue. On the one hand, iron is essential for differentiation, endocrine, energy supply and other physiological functions of adipocytes. Iron homeostasis affects the progression of many chronic metabolic diseases such as obesity, type 2 diabetes mellitus, and non-alcoholic fatty liver disease. In adipose tissue, iron deficiency is associated with obesity, mainly due to inflammation. Nevertheless, excessive iron in adipose tissue leads to decreased insulin sensitivity owing to mitochondrial dysfunction and adipokine changes. On the other hand, iron has an effect on the thermogenesis of adipocytes. Iron deficiency affects the production of beige fat and the direction of the differentiation of brown fat. In this review, we summarize the current understanding of the crosstalk between iron homeostasis and metabolism in adipose tissue.
Collapse
Affiliation(s)
- Wan Ma
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou, China.
| | | | | | | | | |
Collapse
|
112
|
Risk of Iron Overload in Obesity and Implications in Metabolic Health. Nutrients 2021; 13:nu13051539. [PMID: 34063273 PMCID: PMC8147503 DOI: 10.3390/nu13051539] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023] Open
Abstract
Excessive adiposity is associated with several metabolic perturbations including disturbances in iron homeostasis. Increased systemic inflammation in obesity stimulates expression of the iron regulatory hormone hepcidin, which can result in a maldistribution of bodily iron, which may be implicated in metabolic dysfunction. This study aimed to investigate the effect of adiposity and any associated inflammation on iron homeostasis and the potential implications of dysregulated iron metabolism on metabolic health. Analyses are based on a subsample from the cross-sectional Irish National Adult Nutrition Survey (2008–2010) (n = 1120). Ferritin status and risk of iron overload were determined based on established WHO ferritin ranges. Participants were classed as having a healthy % body fat or as having overfat or obesity based on age- and gender-specific % body fat ranges as determined by bioelectrical impedance. Biomarkers of iron status were examined in association with measures of body composition, serum adipocytokines and markers of metabolic health. Excessive % body fat was significantly associated with increased serum hepcidin and ferritin and an increased prevalence of severe risk of iron overload amongst males independent of dietary iron intake. Elevated serum ferritin displayed significant positive associations with serum triglycerides and markers of glucose metabolism, with an increased but non-significant presentation of metabolic risk factors amongst participants with overfat and obesity at severe risk of iron overload. Increased adiposity is associated with dysregulations in iron homeostasis, presenting as increased serum hepcidin, elevated serum ferritin and an increased risk of iron overload, with potential implications in impairments in metabolic health.
Collapse
|
113
|
Bjørklund G, Peana M, Pivina L, Dosa A, Aaseth J, Semenova Y, Chirumbolo S, Medici S, Dadar M, Costea DO. Iron Deficiency in Obesity and after Bariatric Surgery. Biomolecules 2021; 11:biom11050613. [PMID: 33918997 PMCID: PMC8142987 DOI: 10.3390/biom11050613] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Iron deficiency (ID) is particularly frequent in obese patients due to increased circulating levels of acute-phase reactant hepcidin and adiposity-associated inflammation. Inflammation in obese subjects is closely related to ID. It induces reduced iron absorption correlated to the inhibition of duodenal ferroportin expression, parallel to the increased concentrations of hepcidin. Obese subjects often get decreased inflammatory response after bariatric surgery, accompanied by decreased serum hepcidin and therefore improved iron absorption. Bariatric surgery can induce the mitigation or resolution of obesity-associated complications, such as hypertension, insulin resistance, diabetes mellitus, and hyperlipidemia, adjusting many parameters in the metabolism. However, gastric bypass surgery and sleeve gastrectomy can induce malabsorption and may accentuate ID. The present review explores the burden and characteristics of ID and anemia in obese patients after bariatric surgery, accounting for gastric bypass technique (Roux-en-Y gastric bypass-RYGB) and sleeve gastrectomy (SG). After bariatric surgery, obese subjects' iron status should be monitored, and they should be motivated to use adequate and recommended iron supplementation.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610 Mo i Rana, Norway
- Correspondence: (G.B.); (M.P.)
| | - Massimiliano Peana
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy;
- Correspondence: (G.B.); (M.P.)
| | - Lyudmila Pivina
- Department of Neurology, Ophthalmology and Otolaryngology, Semey Medical University, 071400 Semey, Kazakhstan; (L.P.); (Y.S.)
- CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, 071400 Semey, Kazakhstan
| | - Alexandru Dosa
- Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania; (A.D.); (D.-O.C.)
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, 2380 Brumunddal, Norway;
| | - Yuliya Semenova
- Department of Neurology, Ophthalmology and Otolaryngology, Semey Medical University, 071400 Semey, Kazakhstan; (L.P.); (Y.S.)
- CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, 071400 Semey, Kazakhstan
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy;
- CONEM Scientific Secretary, 37134 Verona, Italy
| | - Serenella Medici
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy;
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj 31975/148, Iran;
| | - Daniel-Ovidiu Costea
- Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania; (A.D.); (D.-O.C.)
| |
Collapse
|
114
|
Association between Dietary Pattern, Lifestyle, Anthropometric Status, and Anemia-Related Biomarkers among Adults: A Population-Based Study from 2001 to 2015. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073438. [PMID: 33810272 PMCID: PMC8037593 DOI: 10.3390/ijerph18073438] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
Inadequate dietary intake, poor nutritional status, heavy smoking, and alcohol consumption are associated with the risk of anemia. The objective of this study was to investigate the associations between dietary patterns, lifestyle, nutritional status, and anemia-related biomarkers among adults using a multivariable regression model. Taiwanese adults aged 20–45 years (n = 118,924, 43,055 men and 75,869 women) were obtained from the Mei Jau Health Management Institution database, between 2001 and 2015, for data analysis. The anemia–inflammation-related dietary pattern was derived by reduced rank regression analysis. Dietary patterns with high intakes of eggs, meat, organ meats, rice or flour products, fried foods, sugary beverages, and processed foods significantly increased the risk of anemia, and was associated with decreased hemoglobin, hematocrit, and red blood cells, but increased white blood cells and C-reactive protein levels. Moreover, current alcohol drinkers, as well as people who were underweight, overweight, obese, and central obese, were more likely to increase their risk of anemia by 46%, 20%, 23%, 34%, and 28%, respectively. Interestingly, participants who are current or past smokers were inversely associated with risk of anemia. In conclusion, adherence to the anemia–inflammation dietary pattern was associated with an increased risk of anemia in Taiwanese adults. Furthermore, abnormal weight status and alcohol drinking were correlated with an increased risk of anemia.
Collapse
|
115
|
Blunted Reducing Power Generation in Erythrocytes Contributes to Oxidative Stress in Prepubertal Obese Children with Insulin Resistance. Antioxidants (Basel) 2021; 10:antiox10020244. [PMID: 33562490 PMCID: PMC7914909 DOI: 10.3390/antiox10020244] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 02/08/2023] Open
Abstract
Childhood obesity, and specifically its metabolic complications, are related to deficient antioxidant capacity and oxidative stress. Erythrocytes are constantly exposed to multiple sources of oxidative stress; hence, they are equipped with powerful antioxidant mechanisms requiring permanent reducing power generation and turnover. Glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) are two key enzymes on the pentose phosphate pathway. Both enzymes supply reducing power by generating NADPH, which is essential for maintaining the redox balance within the cell and the activity of other antioxidant enzymes. We hypothesized that obese children with insulin resistance would exhibit blunted G6PDH and 6PGDH activities, contributing to their erythrocytes’ redox status imbalances. We studied 15 control and 24 obese prepubertal children, 12 of whom were insulin-resistant according to an oral glucose tolerance test (OGTT). We analyzed erythroid malondialdehyde (MDA) and carbonyl group levels as oxidative stress markers. NADP+/NADPH and GSH/GSSG were measured to determine redox status, and NADPH production by both G6PDH and 6PGDH was assayed spectrophotometrically to characterize pentose phosphate pathway activity. Finally, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and glutathione reductase (GR) activities were also assessed. As expected, MDA and carbonyl groups levels were higher at baseline and along the OGTT in insulin-resistant children. Both redox indicators showed an imbalance in favor of the oxidized forms along the OGTT in the insulin-resistant obese group. Additionally, the NADPH synthesis, as well as GR activity, were decreased. H2O2 removing enzyme activities were depleted at baseline in both obese groups, although after sugar intake only metabolically healthy obese participants were able to maintain their catalase activity. No change was detected in SOD activity between groups. Our results show that obese children with insulin resistance present higher levels of oxidative damage, blunted capacity to generate reducing power, and hampered function of key NADPH-dependent antioxidant enzymes.
Collapse
|
116
|
Yook JS, You M, Kim Y, Zhou M, Liu Z, Kim YC, Lee J, Chung S. The thermogenic characteristics of adipocytes are dependent on the regulation of iron homeostasis. J Biol Chem 2021; 296:100452. [PMID: 33631196 PMCID: PMC8010711 DOI: 10.1016/j.jbc.2021.100452] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/09/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022] Open
Abstract
The development of thermogenic adipocytes concurs with mitochondrial biogenesis, an iron-dependent pathway. Iron regulatory proteins (IRP) 1 and 2 are RNA-binding proteins that regulate intracellular iron homeostasis. IRPs bind to the iron-response element (IRE) of their target mRNAs, balancing iron uptake and deposition at the posttranscriptional levels. However, IRP/IRE-dependent iron regulation in adipocytes is largely unknown. We hypothesized that iron demands are higher in brown/beige adipocytes than white adipocytes to maintain the thermogenic mitochondrial capacity. To test this hypothesis, we investigated the IRP/IRE regulatory system in different depots of adipose tissue. Our results revealed that 1) IRP/IRE interaction was increased in proportional to the thermogenic function of the adipose depot, 2) adipose iron content was increased in adipose tissue browning upon β3-adrenoceptor stimulation, while decreased in thermoneutral conditions, and 3) modulation of iron content was linked with mitochondrial biogenesis. Moreover, the iron requirement was higher in HIB1B brown adipocytes than 3T3-L1 white adipocytes during differentiation. The reduction of the labile iron pool (LIP) suppressed the differentiation of brown/beige adipocytes and mitochondrial biogenesis. Using the 59Fe-Tf, we also demonstrated that thermogenic stimuli triggered cell-autonomous iron uptake and mitochondrial compartmentalization as well as enhanced mitochondrial respiration. Collectively, our work demonstrated that IRP/IRE signaling and subsequent adaptation in iron metabolism are a critical determinant for the thermogenic function of adipocytes.
Collapse
Affiliation(s)
- Jin-Seon Yook
- Department of Nutrition and Health Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Mikyoung You
- Department of Nutrition and Health Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Yongeun Kim
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Mi Zhou
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Zhenhua Liu
- Department of Nutrition and Health Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Young-Cheul Kim
- Department of Nutrition and Health Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jaekwon Lee
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska, USA
| | - Soonkyu Chung
- Department of Nutrition and Health Sciences, University of Massachusetts, Amherst, Massachusetts, USA; Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, Nebraska, USA.
| |
Collapse
|
117
|
The Molecular Mechanisms of Iron Metabolism and Its Role in Cardiac Dysfunction and Cardioprotection. Int J Mol Sci 2020; 21:ijms21217889. [PMID: 33114290 PMCID: PMC7660609 DOI: 10.3390/ijms21217889] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Iron is an essential mineral participating in different functions of the organism under physiological conditions. Numerous biological processes, such as oxygen and lipid metabolism, protein production, cellular respiration, and DNA synthesis, require the presence of iron, and mitochondria play an important role in the processes of iron metabolism. In addition to its physiological role, iron may be also involved in the adaptive processes of myocardial "conditioning". On the other hand, disorders of iron metabolism are involved in the pathological mechanisms of the most common human diseases and include a wide range of them, such as type 2 diabetes, obesity, and non-alcoholic fatty liver disease, and accelerate the development of atherosclerosis. Furthermore, iron also exerts potentially deleterious effects that may be manifested under conditions of ischemia/reperfusion (I/R) injury, myocardial infarction, heart failure, coronary artery angioplasty, or heart transplantation, due to its involvement in reactive oxygen species (ROS) production. Moreover, iron has been recently described to participate in the mechanisms of iron-dependent cell death defined as "ferroptosis". Ferroptosis is a form of regulated cell death that is distinct from apoptosis, necroptosis, and other types of cell death. Ferroptosis has been shown to be associated with I/R injury and several other cardiac diseases as a significant form of cell death in cardiomyocytes. In this review, we will discuss the role of iron in cardiovascular diseases, especially in myocardial I/R injury, and protective mechanisms stimulated by different forms of "conditioning" with a special emphasis on the novel targets for cardioprotection.
Collapse
|