101
|
Alamshany ZM, Algamdi EM, Othman IMM, Anwar MM, Nossier ES. New pyrazolopyridine and pyrazolothiazole-based compounds as anti-proliferative agents targeting c-Met kinase inhibition: design, synthesis, biological evaluation, and computational studies. RSC Adv 2023; 13:12889-12905. [PMID: 37114032 PMCID: PMC10128108 DOI: 10.1039/d3ra01931d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
c-Met tyrosine kinase plays a key role in the oncogenic process. Inhibition of the c-Met has emerged as an attractive target for human cancer treatment. This work deals with the design and synthesis of a new set of derivatives bearing pyrazolo[3,4-b]pyridine, pyrazolo[3,4-b]thieno[3,2-e]pyridine, and pyrazolo[3,4-d]thiazole-5-thione scaffolds, 5a,b, 8a-f, and 10a,b, respectively, utilizing 3-methyl-1-tosyl-1H-pyrazol-5(4H)-one (1) as a key starting material. All the new compounds were evaluated as antiproliferative agents against HepG-2, MCF-7, and HCT-116 human cancer cell lines utilizing 5-fluorouracil and erlotinib as two standard drugs. Compounds 5a,b and 10a,b represented the most promising cytotoxic activity of IC50 values ranging from 3.42 ± 1.31 to 17.16 ± 0.37 μM. Both 5a and 5b showed the most cytotoxicity and selectivity toward HepG-2, with IC50 values of 3.42 ± 1.31 μM and 3.56 ± 1.5 μM, respectively. The enzyme assay demonstrated that 5a and 5b had inhibition potency on c-Met with IC50 values in nanomolar range of 4.27 ± 0.31 and 7.95 ± 0.17 nM, respectively in comparison with the reference drug cabozantinib (IC50; 5.38 ± 0.35 nM). The impact of 5a on the cell cycle and apoptosis induction potential in HepG-2 and on the apoptotic parameters; Bax, Bcl-2, p53, and caspase-3 was also investigated. Finally, the molecular docking simulation of the most promising derivatives 5a and 5b was screened against c-Met to investigate the binding patterns of both compounds in the active site of the c-Met enzyme. In silico ADME studies were also performed for 5a and 5b to predict their physicochemical and pharmacokinetic characteristics.
Collapse
Affiliation(s)
- Zahra M Alamshany
- Department of Chemistry, Faculty of Science, King Abdulaziz University P.O. Box 42805 Jeddah 21551 Saudi Arabia
| | - Eman M Algamdi
- Department of Chemistry, Faculty of Science, King Abdulaziz University P.O. Box 42805 Jeddah 21551 Saudi Arabia
| | - Ismail M M Othman
- Department of Chemistry, Faculty of Science, Al-Azhar University Assiut 71524 Egypt
| | - Manal M Anwar
- Department of Therapeutic Chemistry, National Research Centre Dokki Cairo 12622 Egypt
| | - Eman S Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University Cairo 11754 Egypt
- The National Committee of Drugs, Academy of Scientific Research and Technology Cairo 11516 Egypt
| |
Collapse
|
102
|
Ismail MA, Abusaif MS, El-Gaby MSA, Ammar YA, Ragab A. A new class of anti-proliferative activity and apoptotic inducer with molecular docking studies for a novel of 1,3-dithiolo[4,5- b]quinoxaline derivatives hybrid with a sulfonamide moiety. RSC Adv 2023; 13:12589-12608. [PMID: 37101951 PMCID: PMC10123497 DOI: 10.1039/d3ra01635h] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023] Open
Abstract
A new series of 6-(pyrrolidin-1-ylsulfonyl)-[1,3]dithiolo[4,5-b]quinoxaline-2-ylidines 10a-f, 12, 14, 16, and 18 were designed, synthesized, and evaluated for their in vitro anticancer activity. The structures of the novel compounds were systematically characterized by 1H NMR, 13C NMR, and elemental analysis. The synthesized derivatives were evaluated for their in vitro antiproliferative activity against three human cancer cell lines (HepG-2, HCT-116, and MCF-7) with more sensitivity to MCF-7. Moreover, three derivatives 10c, 10f, and 12 were the most promising candidates with sub-micromole values. These derivatives were further evaluated against MDA-MB-231, and the results displayed significant IC50 values ranging from 2.26 ± 0.1 to 10.46 ± 0.8 μM and showed low cellular cytotoxicity against WI-38. Surprisingly, the most active derivative 12 revealed sensitivity towards the breast cell lines MCF-7 (IC50 = 3.82 ± 0.2 μM) and MDA-MB-231 (IC50 = 2.26 ± 0.1 μM) compared with doxorubicin (IC50 = 4.17 ± 0.2 and 3.18 ± 0.1 M). Cell cycle analysis showed that compound 12 arrests and inhibits the growth of MCF-7 cells in the S phase with values of 48.16% compared with the untreated control 29.79% and exhibited a significantly higher apoptotic effect in MCF-7 with a value of 42.08% compared to control cell at 1.84%. Furthermore, compound 12 decreased Bcl-2 protein 0.368-fold and activation on pro-apoptotic genes Bax and P53 by 3.97 and 4.97 folds, respectively, in MCF-7 cells. Compound 12 exhibited higher inhibitory activity to EGFRWt, EGFRL858R, and VEGFR-2 with IC50 values (0.19 ± 0.009, 0.026 ± 0.001, and 0.42 ± 0.021 μM) compared with erlotinib (IC50 = 0.037 ± 0.002 and 0.026 ± 0.001 μM) and sorafenib (IC50 = 0.035 ± 0.002 μM). Finally, in silico ADMET prediction presented that 1,3-dithiolo[4,5-b]quinoxaline derivative 12 obeys the Lipinski rule of five and the Veber rule with no PAINs alarms and moderately soluble properties. Additionally, toxicity prediction revealed that compound 12 demonstrated inactivity to hepatotoxic carcinogenicity, immunotoxicity, mutagenicity, and cytotoxicity. Moreover, molecular docking studies showed good binding affinity with lower binding energy inside the active site of Bcl-2 (PDB: 4AQ3), EGFR (PDB: 1M17), and VEGFR (PDB: 4ASD).
Collapse
Affiliation(s)
- Mostafa A Ismail
- Chemistry Department, Faculty of Science, Al-Azhar University Assiut 71524 Egypt
| | - Moustafa S Abusaif
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University Nasr City Cairo 11884 Egypt
| | - Mohamed S A El-Gaby
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University Nasr City Cairo 11884 Egypt
| | - Yousry A Ammar
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University Nasr City Cairo 11884 Egypt
| | - Ahmed Ragab
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University Nasr City Cairo 11884 Egypt
| |
Collapse
|
103
|
Fantoukh OI, Al-Hamoud GA, Nasr FA, Almarfadi OM, Hawwal MF, Ali Z, Alobaid WA, Binawad A, Alrashidi M, Alasmari F, Ahmed MZ, Noman OM. Revisiting the Flora of Saudi Arabia: Phytochemical and Biological Investigation of the Endangered Plant Species Euphorbia saudiarabica. Metabolites 2023; 13:metabo13040556. [PMID: 37110214 PMCID: PMC10144502 DOI: 10.3390/metabo13040556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Euphorbia plants have a significant place in traditional medicine due to their numerous therapeutic properties, including their anti-tumor effects, which have been observed in several species. In the current study, a phytochemical investigation of Euphorbia saudiarabica methanolic extract led to the isolation and characterization of four secondary metabolites from the chloroform (CHCl3) and ethyl acetate (EtOAc) fractions, which are reported for the first time in this species. One of the constituents, saudiarabicain F (2), is a rare C-19 oxidized ingol-type diterpenoid that has not been previously reported. The structures of these compounds were determined by extensive spectroscopic (HR-ESI-MS, 1D and 2D NMR) analyses. The anticancer properties of the E. saudiarabica crude extract, its fractions and its isolated compounds were examined against several cancer cells. The active fractions were evaluated for their effects on cell-cycle progression and apoptosis induction using flow cytometry. Furthermore, RT-PCR was employed to estimate the gene-expression levels of the apoptosis-related genes. It was demonstrated that the E. saudiarabica CHCl3 and EtOAc fractions suppressed the proliferation of the cancer cells. The MCF-7 cells were the most sensitive to both fractions, with IC50 values of 22.6 and 23.2 µg/mL, respectively. Notably, both fractions caused cell-cycle arrest in the G2/M phase of the treated MCF-7 cells. The inhibition of the MCF-7 cells' proliferation was also linked with apoptosis induction by flow-cytometry analysis. Additionally, the activation of apoptosis by both fractions was demonstrated by an increase in the ratio of Bax to Bcl-2, with an increase in the expression of caspase-7. Among the isolated compounds, glutinol (1) showed potent activity against the MCF-7 cell line, with an IC50 value of 9.83 µg/mL. Our findings suggest that E. saudiarabica has apoptosis-inducing effects and shows promise as a potential source of new chemotherapeutic drugs.
Collapse
Affiliation(s)
- Omer I Fantoukh
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Gadah A Al-Hamoud
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahd A Nasr
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Omer M Almarfadi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed F Hawwal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zulfiqar Ali
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA
| | - Waleed A Alobaid
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulaziz Binawad
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Menwer Alrashidi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Z Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Omar M Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
104
|
Tang X, Wang Z, Wang J, Cui S, Xu R, Wang Y. Functions and regulatory mechanisms of resting hematopoietic stem cells: a promising targeted therapeutic strategy. Stem Cell Res Ther 2023; 14:73. [PMID: 37038215 PMCID: PMC10088186 DOI: 10.1186/s13287-023-03316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/29/2023] [Indexed: 04/12/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are the common and essential precursors of all blood cells, including immune cells, and they are responsible for the lifelong maintenance and damage repair of blood tissue homeostasis. The vast majority (> 95%) of HSCs are in a resting state under physiological conditions and are only activated to play a functional role under stress conditions. This resting state affects their long-term survival and is also closely related to the lifelong maintenance of hematopoietic function; however, abnormal changes may also be an important factor leading to the decline of immune function in the body and the occurrence of diseases in various systems. While the importance of resting HSCs has attracted increasing research attention, our current understanding of this topic remains insufficient, and the direction of clinical targeted treatments is unclear. Here, we describe the functions of HSCs, analyze the regulatory mechanisms that affect their resting state, and discuss the relationship between resting HSCs and different diseases, with a view to providing guidance for the future clinical implementation of related targeted treatments.
Collapse
Affiliation(s)
- Xinyu Tang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhenzhen Wang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingyi Wang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Siyuan Cui
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruirong Xu
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, China.
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China.
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yan Wang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, China.
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China.
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
105
|
Shen Z, Yu M, Dong Z. Research Progress on the Pharmacodynamic Mechanisms of Sini Powder against Depression from the Perspective of the Central Nervous System. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040741. [PMID: 37109699 PMCID: PMC10141708 DOI: 10.3390/medicina59040741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023]
Abstract
Depression is a highly prevalent emotional disorder characterized by persistent low mood, diminished interest, and loss of pleasure. The pathological causes of depression are associated with neuronal atrophy, synaptic loss, and neurotransmitter activity decline in the central nervous system (CNS) resulting from injuries, such as inflammatory responses. In Traditional Chinese Medicine (TCM) theory, patients with depression often exhibit the liver qi stagnation syndrome type. Sini Powder (SNP) is a classic prescription for treating such depression-related syndrome types in China. This study systematically summarized clinical applications and experimental studies of SNP for treatments of depression. We scrutinized the active components of SNP with blood-brain barrier (BBB) permeability and speculated about the corresponding pharmacodynamic pathways relevant to depression treatment through intervening in the CNS. Therefore, this article can enhance our understanding of SNP's pharmacological mechanisms and formula construction for depression treatment. Moreover, a re-demonstration of this classic TCM prescription in the modern-science language is of great significance for future drug development and research.
Collapse
Affiliation(s)
- Zhongqi Shen
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Meng Yu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhenfei Dong
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
106
|
Alesi LR, Nguyen QN, Stringer JM, Winship AL, Hutt KJ. The future of fertility preservation for women treated with chemotherapy. REPRODUCTION AND FERTILITY 2023; 4:RAF-22-0123. [PMID: 37068157 PMCID: PMC10235927 DOI: 10.1530/raf-22-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/17/2023] [Indexed: 04/19/2023] Open
Abstract
Cytotoxic chemotherapies have been a mainstay of cancer treatment, but are associated with numerous systemic adverse effects, including impacts to fertility and endocrine health. Irreversible ovarian damage and follicle depletion are side-effects of chemotherapy that can lead to infertility and premature menopause, both being major concerns of young cancer patients. Notably, many women will proceed with fertility preservation, but unfortunately existing strategies don't entirely solve the problem. Most significantly, oocyte and embryo freezing do not prevent cancer treatment-induced ovarian damage from occurring, which may result in the impairment of long-term hormone production. Unfortunately, loss of endogenous endocrine function is not fully restored by hormone replacement therapy. Additionally, while GnRH agonists are standard care for patients receiving alkylating chemotherapy to lessen the risk of premature menopause, their efficacy is incomplete. The lack of more broadly effective options stems, in part, from our poor understanding of how different treatments damage the ovary. Here, we summarise the impacts of two commonly utilised chemotherapies - cyclophosphamide and cisplatin - on ovarian function and fertility, and discuss the mechanisms underpinning this damage. Additionally, we critically analyse current research avenues in the development of novel fertility preservation strategies, with a focus on fertoprotective agents.
Collapse
Affiliation(s)
- Lauren R Alesi
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Quynh-Nhu Nguyen
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Paediatric Integrated Cancer Service, VIC, Australia
| | - Jessica M Stringer
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Amy L Winship
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Karla J Hutt
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
107
|
Petrikaite V, D'Avanzo N, Celia C, Fresta M. Nanocarriers overcoming biological barriers induced by multidrug resistance of chemotherapeutics in 2D and 3D cancer models. Drug Resist Updat 2023; 68:100956. [PMID: 36958083 DOI: 10.1016/j.drup.2023.100956] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
Multidrug resistance (MDR) is currently a big challenge in cancer therapy and limits its success in several patients. Tumors use the MDR mechanisms to colonize the host and reduce the efficacy of chemotherapeutics that are injected as single agents or combinations. MDR mechanisms are responsible for inactivation of drugs and formbiological barriers in cancer like the drug efflux pumps, aberrant extracellular matrix, hypoxic areas, altered cell death mechanisms, etc. Nanocarriers have some potential to overcome these barriers and improve the efficacy of chemotherapeutics. In fact, they are versatile and can deliver natural and synthetic biomolecules, as well as RNAi/DNAi, thus providing a controlled release of drugs and a synergistic effect in tumor tissues. Biocompatible and safe multifunctional biopolymers, with or without specific targeting molecules, modify the surface and interface properties of nanocarriers. These modifications affect the interaction of nanocarriers with cellular models as well as the selection of suitable models for in vitro experiments. MDR cancer cells, and particularly their 2D and 3D models, in combination with anatomical and physiological structures of tumor tissues, can boost the design and preparation of nanomedicines for anticancer therapy. 2D and 3D cancer cell cultures are suitable models to study the interaction, internalization, and efficacy of nanocarriers, the mechanisms of MDR in cancer cells and tissues, and they are used to tailor a personalized medicine and improve the efficacy of anticancer treatment in patients. The description of molecular mechanisms and physio-pathological pathways of these models further allow the design of nanomedicine that can efficiently overcome biological barriers involved in MDR and test the activity of nanocarriers in 2D and 3D models of MDR cancer cells.
Collapse
Affiliation(s)
- Vilma Petrikaite
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-50162 Kaunas, Lithuania; Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Nicola D'Avanzo
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy; Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100 Catanzaro, Italy
| | - Christian Celia
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-50162 Kaunas, Lithuania; Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
| | - Massimo Fresta
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta" s.n.c., 88100 Catanzaro, Italy
| |
Collapse
|
108
|
Ampelopsin induces MDA-MB-231 cell cycle arrest through cyclin B1-mediated PI3K/AKT/mTOR pathway in vitro and in vivo. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:75-90. [PMID: 36692465 DOI: 10.2478/acph-2023-0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/31/2022] [Indexed: 01/25/2023]
Abstract
Breast cancer is one of the most common malignant tumors in women and it is the most frequently diagnosed cancer in the world. Ampelopsin (AMP) is a purified component from the root of Ampelopsis grossedentata. It is reported that AMP could significantly inhibit the proliferation of breast cancer cells. However, the antitumor mechanism against breast cancer has not yet been fully elucidated. The purpose of this work was to study the role of AMP against breast cancer MDA-MB-231 cells and to further investigate the underlying mechanism. PI3K/AKT/mTOR plays a very important role in tumor cell growth and proliferation and we hypothesize that AMP may inhibit this pathway. In the present work, the results showed that AMP could significantly inhibit the growth of breast cancer MDA-MB-231 cells in vitro and in vivo. In addition, treatment with AMP decreased the levels of PI3K, AKT and mTOR, as well as cyclin B1 expression, followed by p53/p21 pathway activation to arrest the cell cycle at G2/M. Moreover, it demonstrated a positive association between cyclin B1 and PI3K/AKT/mTOR levels. Importantly, this pathway was found to be regulated by cyclin B1 in MDA-MB-231 cells treated with AMP. Also, it was observed that cyclin B1 overexpression attenuated cell apoptosis and weakened the inhibitory effects of AMP on cell proliferation. Together, AMP could inhibit breast cancer MDA-MB-231 cell proliferation in vitro and in vivo, due to cell cycle arrest at G2/M by inactivating PI3K/AKT/mTOR pathway regulated by cyclin B1.
Collapse
|
109
|
Yang LX, Zhang CT, Yang MY, Zhang XH, Liu HC, Luo CH, Jiang Y, Wang ZM, Yang ZY, Shi ZP, Yang YC, Wei RQ, Zhou L, Mi J, Zhou AW, Yao ZR, Xia L, Yan JS, Lu Y. C1Q labels a highly aggressive macrophage-like leukemia population indicating extramedullary infiltration and relapse. Blood 2023; 141:766-786. [PMID: 36322939 PMCID: PMC10651790 DOI: 10.1182/blood.2022017046] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/22/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
Extramedullary infiltration (EMI) is a concomitant manifestation that may indicate poor outcome of acute myeloid leukemia (AML). The underlying mechanism remains poorly understood and therapeutic options are limited. Here, we employed single-cell RNA sequencing on bone marrow (BM) and EMI samples from a patient with AML presenting pervasive leukemia cutis. A complement C1Q+ macrophage-like leukemia subset, which was enriched within cutis and existed in BM before EMI manifestations, was identified and further verified in multiple patients with AML. Genomic and transcriptional profiling disclosed mutation and gene expression signatures of patients with EMI that expressed high levels of C1Q. RNA sequencing and quantitative proteomic analysis revealed expression dynamics of C1Q from primary to relapse. Univariate and multivariate analysis demonstrated adverse prognosis significance of C1Q expression. Mechanistically, C1Q expression, which was modulated by transcription factor MAF BZIP transcription factor B, endowed leukemia cells with tissue infiltration ability, which could establish prominent cutaneous or gastrointestinal EMI nodules in patient-derived xenograft and cell line-derived xenograft models. Fibroblasts attracted migration of the C1Q+ leukemia cells through C1Q-globular C1Q receptor recognition and subsequent stimulation of transforming growth factor β1. This cell-to-cell communication also contributed to survival of C1Q+ leukemia cells under chemotherapy stress. Thus, C1Q served as a marker for AML with adverse prognosis, orchestrating cancer infiltration pathways through communicating with fibroblasts and represents a compelling therapeutic target for EMI.
Collapse
Affiliation(s)
- Li-Xue Yang
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng-Tao Zhang
- Department of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meng-Ying Yang
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xue-Hong Zhang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Hong-Chen Liu
- Department of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Chen-Hui Luo
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Jiang
- Department of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Zhang-Man Wang
- Department of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Zhong-Yin Yang
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhao-Peng Shi
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Basic Medical Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Ci Yang
- Department of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Ruo-Qu Wei
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Zhou
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Basic Medical Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Mi
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Basic Medical Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ai-Wu Zhou
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Basic Medical Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Rong Yao
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Xia
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Basic Medical Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin-Song Yan
- Department of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Ying Lu
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
110
|
The Role of Silver Nanoparticles in the Diagnosis and Treatment of Cancer: Are There Any Perspectives for the Future? Life (Basel) 2023; 13:life13020466. [PMID: 36836823 PMCID: PMC9965924 DOI: 10.3390/life13020466] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Cancer is a fatal disease with a complex pathophysiology. Lack of specificity and cytotoxicity, as well as the multidrug resistance of traditional cancer chemotherapy, are the most common limitations that often cause treatment failure. Thus, in recent years, significant efforts have concentrated on the development of a modernistic field called nano-oncology, which provides the possibility of using nanoparticles (NPs) with the aim to detect, target, and treat cancer diseases. In comparison with conventional anticancer strategies, NPs provide a targeted approach, preventing undesirable side effects. What is more, nanoparticle-based drug delivery systems have shown good pharmacokinetics and precise targeting, as well as reduced multidrug resistance. It has been documented that, in cancer cells, NPs promote reactive oxygen species (ROS) production, induce cell cycle arrest and apoptosis, activate ER (endoplasmic reticulum) stress, modulate various signaling pathways, etc. Furthermore, their ability to inhibit tumor growth in vivo has also been documented. In this paper, we have reviewed the role of silver NPs (AgNPs) in cancer nanomedicine, discussing numerous mechanisms by which they render anticancer properties under both in vitro and in vivo conditions, as well as their potential in the diagnosis of cancer.
Collapse
|
111
|
Inhibition of Macropinocytosis Enhances the Sensitivity of Osteosarcoma Cells to Benzethonium Chloride. Cancers (Basel) 2023; 15:cancers15030961. [PMID: 36765917 PMCID: PMC9913482 DOI: 10.3390/cancers15030961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Osteosarcoma (OS) is a primary malignant tumor of bone. Chemotherapy is one of the crucial approaches to prevent its metastasis and improve prognosis. Despite continuous improvements in the clinical treatment of OS, tumor resistance and metastasis remain dominant clinical challenges. Macropinocytosis, a form of non-selective nutrient endocytosis, has received increasing attention as a novel target for cancer therapy, yet its role in OS cells remains obscure. Benzethonium chloride (BZN) is an FDA-approved antiseptic and bactericide with broad-spectrum anticancer effects. Here, we described that BZN suppressed the proliferation, migration, and invasion of OS cells in vitro and in vivo, but simultaneously promoted the massive accumulation of cytoplasmic vacuoles as well. Mechanistically, BZN repressed the ERK1/2 signaling pathway, and the ERK1/2 activator partially neutralized the inhibitory effect of BZN on OS cells. Subsequently, we demonstrated that vacuoles originated from macropinocytosis and indicated that OS cells might employ macropinocytosis as a compensatory survival mechanism in response to BZN. Remarkably, macropinocytosis inhibitors enhanced the anti-OS effect of BZN in vitro and in vivo. In conclusion, our results suggest that BZN may inhibit OS cells by repressing the ERK1/2 signaling pathway and propose a potential strategy to enhance the BZN-induced inhibitory effect by suppressing macropinocytosis.
Collapse
|
112
|
Combined chemotherapy based on bioactive black phosphorus for pancreatic cancer therapy. J Control Release 2023; 354:889-901. [PMID: 36586672 DOI: 10.1016/j.jconrel.2022.12.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/02/2023]
Abstract
Pancreatic cancer is the most aggressive malignant tumor with difficulty in early diagnosis, very short survival time in advanced stage, and lack of effective treatment options. In this work, a novel combination chemotherapy strategy based on bioactive black phosphorus (BP) and gemcitabine (GEM) is developed for efficient treatment of pancreatic cancer. The combined cell cycle blockage in G2/M phase induced by BP and G0/G1 phase by GEM results in synergistic killing of pancreatic cancer cells with the combination index (CI) < 1. The iRGD modified zein nanoparticles co-loaded with BP quantum dots (BPQDs) and GEM are designed and prepared as a targeted nanoplatform (BP-GEM@NPs). After intravenous injection, the in vivo distribution and pharmacokinetics results demonstrate that BP-GEM@NPs shows excellent tumor targeting capability and significantly prolonged blood circulation time. The targeted co-delivery of BPQDs and GEM induces much more pancreatic tumor cell apoptosis and synergistically inhibits tumor growth in both subcutaneous xenograft and orthotopic models. Meanwhile, BP-GEM@NPs exhibit good biocompatibility without bring adverse effects. This work indicates the great potential of BP-GEM@NPs as a combination chemotherapy for pancreatic cancer and provides insights into development of biomedicine by exploring the intrinsic bioactivities of nanomaterials.
Collapse
|
113
|
Pandey P, Khan F, Upadhyay TK, Sharangi AB. Deciphering the Immunomodulatory Role of Cyclin-Dependent Kinase 4/6 Inhibitors in the Tumor Microenvironment. Int J Mol Sci 2023; 24:ijms24032236. [PMID: 36768557 PMCID: PMC9916547 DOI: 10.3390/ijms24032236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Cancer is characterized by persistent cell proliferation driven by aberrant cell cycle regulation and stimulation of cyclin-dependent kinases (CDKs). A very intriguing and potential approach for the development of antitumor medicines is the suppression of CDKs that lead to induction of apoptosis and cell cycle arrest. The shift of the cell cycle from the G0/G1 phase to the S phase, which is characterized by active transcription and synthesis, depends on the development of the cyclin D-CDK4/6 complex. A precise balance between anticancer activity and general toxicity is demonstrated by CDK inhibitors, which can specifically block CDK4/6 and control the cell cycle by reducing the G1 to S phase transition. CDK4/6 inhibitors have recently been reported to exhibit significant cell growth inhibition via modulating the tumour microenvironment in cancerous cells. One significant new understanding is that these inhibitors serve important functions in the interaction among tumour cells and the host immune system in addition to being cytostatic. Herein, we discuss the biological significance of CDK4/6 inhibitors in cancer therapeutics, as well as their biological impact on T cells and other important immune cells. Furthermore, we explore the integration of preclinical findings of these pharmaceuticals' ability to enhance antitumor immunity.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida 201306, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida 201306, India
- Correspondence:
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, India
| | - Amit Baran Sharangi
- Department of Plantation Spices Medicinal and Aromatic Crops, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India
| |
Collapse
|
114
|
Zhou X, Min J, Che M, Yang Y, Yang Y, Zhang J, Zhang L, Zheng X, Chen Y, Yuan L, Nan Y. Investigation on the mechanism of Shaoyao-Gancao Decoction in the treatment of gastric carcinoma based on network pharmacology and experimental verification. Aging (Albany NY) 2023; 15:148-163. [PMID: 36602525 PMCID: PMC9876642 DOI: 10.18632/aging.204465] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Shaoyao-Gancao Decoction (SG-D) is a famous classical Chinese prescription that has been used in the treatment of numerous kinds of diseases. However, its mechanism of action in the treatment of Gastric carcinoma (GC) is not clear. METHODS The active ingredients and targets of SG-D were screened using network pharmacology, and GC-related targets were retrieved through several databases. The protein-protein interaction network was then further constructed and GO and KEGG enrichment analysis were performed. Subsequently, molecular docking was carried out. Finally, we validated the results of the network pharmacology by performing in vitro cell experiments on CCK-8, apoptosis, cell cycle, platelet clone formation, and Western blotting with AGS cells. RESULTS Three key active ingredients and 8 core targets were screened through a network pharmacological analysis, and the results of the KEGG indicated that the PI3K/Akt and MAPK signaling pathways are critical signaling pathways for SG-D to treat GC. Experimental results revealed that SG-D was able to inhibit AGS cells proliferation, induce apoptosis and arrest the cell cycle, and reduce the ability of cell clone formation by regulating the PI3K/Akt and MAPK signaling pathways. CONCLUSIONS Network pharmacology has shown that SG-D can act on multiple targets through multiple ingredients and treat GC by regulating multiple signaling pathways. In vitro cell experiments have also confirmed this, so as to provide a reference for subsequent related research.
Collapse
Affiliation(s)
- Xin Zhou
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous, China
| | - Jiao Min
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Mengying Che
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yating Yang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous, China
| | - Yi Yang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Junfei Zhang
- Clinical Medical College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous, China
| | - Lei Zhang
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Xiaosha Zheng
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yan Chen
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
115
|
Li H, Yang C, Chen K, Sun M. Expression significance of Emi1, UBCH10 and CyclinB1 in esophageal squamous cell carcinoma. Pathol Oncol Res 2023; 29:1611081. [PMID: 37168048 PMCID: PMC10164988 DOI: 10.3389/pore.2023.1611081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023]
Abstract
Despite significant advances in the diagnosis and treatment of esophageal squamous cell carcinoma (ESCC), esophageal cancer is still a heavy social and medical burden due to its high incidence. Uncontrolled division and proliferation is one of the characteristics of tumor cells, which will promote rapid tumor growth and metastasis. Early mitotic inhibitor 1 (Emi1), ubiquitin-conjugating enzyme 10 (UBCH10) and CyclinB1 are important proteins involved in the regulation of cell cycle. In this study, the expression of Emi1, UBCH10 and CyclinB1 in ESCC tissues and adjacent normal tissues will be analyzed by immunohistochemistry and in-situ hybridization techniques, and their relationship with tumor proliferation and apoptosis will be analyzed. The results showed that Emi1, UBCH10 and CyclinB1 genes and proteins were highly expressed in tumor tissues, which were correlated with tumor grade, lymph node metastasis and pathological stage, and positively correlated with tumor proliferation. Emi1, UBCH10 and CyclinB1 are also positively correlated. It is speculated that Emi1, UBCH10 and CyclinB1 genes synergically promote tumor proliferation and inhibit apoptosis, which may be potential diagnostic and therapeutic targets for ESCC.
Collapse
Affiliation(s)
- Hui Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| | - Chenbo Yang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| | - Kuisheng Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
- *Correspondence: Kuisheng Chen, ; Miaomiao Sun,
| | - Miaomiao Sun
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
- *Correspondence: Kuisheng Chen, ; Miaomiao Sun,
| |
Collapse
|
116
|
Targeting the "hallmarks of aging" to slow aging and treat age-related disease: fact or fiction? Mol Psychiatry 2023; 28:242-255. [PMID: 35840801 PMCID: PMC9812785 DOI: 10.1038/s41380-022-01680-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 01/09/2023]
Abstract
Aging is a major risk factor for a number of chronic diseases, including neurodegenerative and cerebrovascular disorders. Aging processes have therefore been discussed as potential targets for the development of novel and broadly effective preventatives or therapeutics for age-related diseases, including those affecting the brain. Mechanisms thought to contribute to aging have been summarized under the term the "hallmarks of aging" and include a loss of proteostasis, mitochondrial dysfunction, altered nutrient sensing, telomere attrition, genomic instability, cellular senescence, stem cell exhaustion, epigenetic alterations and altered intercellular communication. We here examine key claims about the "hallmarks of aging". Our analysis reveals important weaknesses that preclude strong and definitive conclusions concerning a possible role of these processes in shaping organismal aging rate. Significant ambiguity arises from the overreliance on lifespan as a proxy marker for aging, the use of models with unclear relevance for organismal aging, and the use of study designs that do not allow to properly estimate intervention effects on aging rate. We also discuss future research directions that should be taken to clarify if and to what extent putative aging regulators do in fact interact with aging. These include multidimensional analytical frameworks as well as designs that facilitate the proper assessment of intervention effects on aging rate.
Collapse
|
117
|
Xia Q, Shen J, Wang Q, Ke Y, Yan Q, Li H, Zhang D, Duan S. LINC00324 in cancer: Regulatory and therapeutic implications. Front Oncol 2022; 12:1039366. [PMID: 36620587 PMCID: PMC9815511 DOI: 10.3389/fonc.2022.1039366] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
LINC00324 is a 2082 bp intergenic noncoding RNA. Aberrant expression of LINC00324 was associated with the risk of 11 tumors and was closely associated with clinicopathological features and prognostic levels of 7 tumors. LINC00324 can sponge multiple miRNAs to form complex ceRNA networks, and can also recruit transcription factors and bind RNA-binding protein HuR, thereby regulating the expression of a number of downstream protein-coding genes. LINC00324 is involved in 4 signaling pathways, including the PI3K/AKT signaling pathway, cell cycle regulatory pathway, Notch signaling pathway, and Jak/STAT3 signaling pathway. High expression of LINC00324 was associated with larger tumors, a higher degree of metastasis, a higher TNM stage and clinical stage, and shorter OS. Currently, four downstream genes in the LINC00324 network have targeted drugs. In this review, we summarize the molecular mechanisms and clinical value of LINC00324 in tumors and discuss future directions and challenges for LINC00324 research.
Collapse
Affiliation(s)
- Qing Xia
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, Zhejiang, China,College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, China,Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Jinze Shen
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, Zhejiang, China
| | - Qurui Wang
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, Zhejiang, China
| | - Yufei Ke
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, Zhejiang, China
| | - Qibin Yan
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, Zhejiang, China
| | - Hanbing Li
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Dayong Zhang
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, Zhejiang, China,*Correspondence: Dayong Zhang, ; Shiwei Duan,
| | - Shiwei Duan
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, Zhejiang, China,*Correspondence: Dayong Zhang, ; Shiwei Duan,
| |
Collapse
|
118
|
Hain BA, Waning DL. Bone-Muscle Crosstalk: Musculoskeletal Complications of Chemotherapy. Curr Osteoporos Rep 2022; 20:433-441. [PMID: 36087213 DOI: 10.1007/s11914-022-00749-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW Chemotherapy drugs combat tumor cells and reduce metastasis. However, a significant side effect of some chemotherapy strategies is loss of skeletal muscle and bone. In cancer patients, maintenance of lean tissue is a positive prognostic indicator of outcomes and helps to minimize the toxicity associated with chemotherapy. Bone-muscle crosstalk plays an important role in the function of the musculoskeletal system and this review will focus on recent findings in preclinical and clinical studies that shed light on chemotherapy-induced bone-muscle crosstalk. RECENT FINDINGS Chemotherapy-induced loss of bone and skeletal muscle are important clinical problems. Bone antiresorptive drugs prevent skeletal muscle weakness in preclinical models. Chemotherapy-induced loss of bone can cause muscle weakness through both changes in endocrine signaling and mechanical loading between muscle and bone. Chemotherapy-induced changes to bone-muscle crosstalk have implications for treatment strategies and patient quality of life. Recent findings have begun to determine the role of chemotherapy in bone-muscle crosstalk and this review summarizes the most relevant clinical and preclinical studies.
Collapse
Affiliation(s)
- Brian A Hain
- Department of Cellular and Molecular Physiology, The Penn State University College of Medicine, H166, rm. C4710E, 500 University Drive, Hershey, PA, 17033, USA
| | - David L Waning
- Department of Cellular and Molecular Physiology, The Penn State University College of Medicine, H166, rm. C4710E, 500 University Drive, Hershey, PA, 17033, USA.
| |
Collapse
|
119
|
Hasim H, Mantik YA, Husnawati H, Priosoeryanto BP, Puspita R. Antiproliferative Potency of God’s Crown Fruit (Phaleria macrocarpa) Extract Against Breast Cancer Cell. BORNEO JOURNAL OF PHARMACY 2022. [DOI: 10.33084/bjop.v5i4.2822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Breast cancer is a sickness caused by abnormal cell growth in the breast. Mahkota Dewa fruit or god’s crown fruit products (Phaleria macrocarpa) contain flavonoids, alkaloids, polyphenols, and tannins associated with active compounds. This work directs to influence the potency of P. macrocarpa fruit as an antiproliferative agent against breast cancer cells (MCF-7 cells). The antiproliferative potency of P. macrocarpa fruit was proved by extracting and fractionating P. macrocarpa fruit using maceration. The cytotoxicity of extracts and fractions was determined using Brine Shrimp Lethality Test (BSLT). The antiproliferative potency against MCF-7 cells was tested using the hemacytometer approach. This work demonstrates the crude ethanol extract, n-hexane fraction, ethyl acetate fraction, and water fraction. The LC50 values in crude ethanol extract, n-hexane fraction, ethyl acetate fraction, and water fraction were 13.72 ppm, 147.55 ppm, 405.81 ppm, and 149. 07 ppm severally. Phaleria macrocarpa fruit has shown antiproliferation potency against MCF-7 cells. The maximum part of crude ethanol extract antiproliferative potency (56 ppm) effectively suppressed MCF-7 cell growth by 70. 9% while doxorubicin (100 ppm) by 46. 92%. This work confirms that crude ethanol extract of P. macrocarpa fruit interacts synergistically as an antiproliferative compound against MCF-7 cells.
Collapse
|
120
|
Gassl V, Aberle MR, Boonen B, Vaes RDW, Olde Damink SWM, Rensen SS. Chemosensitivity of 3D Pancreatic Cancer Organoids Is Not Affected by Transformation to 2D Culture or Switch to Physiological Culture Medium. Cancers (Basel) 2022; 14:cancers14225617. [PMID: 36428711 PMCID: PMC9688175 DOI: 10.3390/cancers14225617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Organoids are increasingly used to investigate patient-specific drug responsiveness, but organoid culture is complex and expensive, and carried out in rich, non-physiological media. We investigated reproducibility of drug-responsiveness of primary cell cultures in 2D versus 3D and in conventional versus physiological cell culture medium. 3D pancreatic ductal adenocarcinoma organoid cultures PANCO09b and PANCO11b were converted to primary cell cultures growing in 2D. Transformed 2D cultures were grown in physiological Plasmax medium or Advanced-DMEM/F12. Sensitivity towards gemcitabine, paclitaxel, SN-38, 5-fluorouacil, and oxaliplatin was investigated by cell viability assays. Growth rates of corresponding 2D and 3D cultures were comparable. PANCO09b had a shorter doubling time in physiological media. Chemosensitivity of PANCO09b and PANCO11b grown in 2D or 3D was similar, except for SN-38, to which PANCO11b cultured in 3D was more sensitive (2D: 8.2 ×10-3 ± 2.3 ×10-3 vs. 3D: 1.1 ×10-3 ± 0.6 ×10-3, p = 0.027). PANCO09b and PANCO11b showed no major differences in chemosensitivity when cultured in physiological compared to conventional media, although PANCO11b was more sensitive to SN-38 in physiological media (9.8 × 10-3 ± 0.7 × 10-3 vs. 5.2 × 10-3 ± 1.8 × 10-3, p = 0.015). Collectively, these data indicate that the chemosensitivity of organoids is not affected by culture medium composition or culture dimensions. This implies that organoid-based drug screens can be simplified to become more cost-effective.
Collapse
Affiliation(s)
- Vincent Gassl
- Department of Surgery, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
- NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Merel R. Aberle
- Department of Surgery, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
- NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Bas Boonen
- Department of Surgery, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
- NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Rianne D. W. Vaes
- Department of Surgery, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
- NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Steven W. M. Olde Damink
- Department of Surgery, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
- NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Visceral and Transplantation Surgery, RWTH Aachen University, 52074 Aachen, Germany
| | - Sander S. Rensen
- Department of Surgery, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
- NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands
- Correspondence:
| |
Collapse
|
121
|
Targeting the "undruggable": RNA-binding proteins in the spotlight in cancer therapy. Semin Cancer Biol 2022; 86:69-83. [PMID: 35772609 DOI: 10.1016/j.semcancer.2022.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/19/2022] [Accepted: 06/24/2022] [Indexed: 01/27/2023]
Abstract
Tumors refractory to conventional therapy belong to specific subpopulations of cancer cells, which have acquired a higher number of mutations/epigenetic changes than the majority of cancer cells. This property provides them the ability to become resistant to therapy. Aberrant expression of certain RNA-binding proteins (RBPs) can regulate the sensitivity of tumor cells to chemotherapeutic drugs by binding to specific regions present in the 3´-UTR of certain mRNAs to promote or repress mRNA translation or by interacting with other proteins (including RBPs) and non-coding RNAs that are part of ribonucleoprotein complexes. In particular, an increasing interest in the RBPs involved in chemoresistance has recently emerged. In this review, we discuss how RBPs are not only affected by chemotherapeutic treatments, but also play an active role in therapeutic responses via the direct modulation of crucial cancer-related proteins. A special focus is being placed on the development of therapeutic strategies targeting these RBPs.
Collapse
|
122
|
Zhang J, Zhao WR, Shi WT, Tan JJ, Zhang KY, Tang JY, Chen XL, Zhou ZY. Tribulus terrestris L. extract ameliorates atherosclerosis by inhibition of vascular smooth muscle cell proliferation in ApoE -/- mice and A7r5 cells via suppression of Akt/MEK/ERK signaling. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115547. [PMID: 35870688 DOI: 10.1016/j.jep.2022.115547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/03/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atherosclerosis (AS) is one of major threatens of death worldwide, and vascular smooth muscle cell (VSMC) proliferation is an important characteristic in the progression of AS. Tribulus terrestris L. is a well-known Chinese Materia Medica for treating skin pruritus, vertigo and cardiovascular diseases in traditional Chinese medicine. However, its anti-AS activity and inhibition effect on VSMC proliferation are not fully elucidated. AIMS We hypothesize that the furostanol saponins enriched extract (FSEE) of T. terrestris L. presents anti-AS effect by inhibition of VSMC proliferation. The molecular action mechanism underlying the anti-VSMC proliferation effect of FSEE is also investigated. MATERIALS AND METHODS Apolipoprotein-E deficient (ApoE-/-) mice and rat thoracic smooth muscle cell A7r5 were employed as the in vivo and in vitro models respectively to evaluate the anti- AS and VSMC proliferation effects of FSEE. In ApoE-/- mice, the amounts of total cholesterol, triglyceride, low density lipoprotein and high density lipoprotein in serum were measured by commercially available kits. The size of atherosclerotic plaque was observed by hematoxylin & eosin staining. The protein expressions of α-smooth muscle actin (α-SMA) and osteopontin (OPN) in the plaque were examined by immunohistochemistry. In A7r5 cells, the cell viability and proliferation were tested by MTT and Real Time Cell Analysis assays. The cell migration was evaluated by wound healing assay. Propidium iodide staining followed by flow cytometry was used to analyze the cell cycle progression. The expression of intracellular total and phosphorylated proteins including protein kinase B (Akt) and mitogen-activated protein kinases (MAPKs), such as mitogen-activated extracellular signal-regulated kinase (MEK), extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), were detected by western blotting analysis. RESULTS FSEE significantly reduced the area of atherosclerotic plaque in high-fat diet-fed ApoE-/- mice. And FSEE increased the protein expression level of α-SMA and decreased the level of OPN in atherosclerotic plaque, which revealed the inhibition of VSMC phenotype switching and proliferation. In A7r5 cells, FSEE suppressed fetal bovine serum (FBS) or oxidized low density lipoprotein (oxLDL)-triggered VSMC proliferation and migration in a concentration dependent manner. FSEE protected against the elevation of cell numbers in S phase induced by FBS or oxLDL and the reduction of cell numbers in G0/G1 phase induced by oxLDL. Moreover, the phosphorylation of Akt and MAPKs including MEK, ERK and JNK could be facilitated by FBS or oxLDL, while co-treatment of FSEE attenuated the phosphorylation of Akt induced by oxLDL as well as the phosphorylation of MEK and ERK induced by FBS. In addition, (25R)-terrestrinin B (JL-6), which was the main ingredient of FSEE, and its potential active pharmaceutical ingredients tigogenin (Tigo) and hecogenin (Heco) also significantly attenuated FBS or oxLDL-induced VSMC proliferation in A7r5 cells. CONCLUSION FSEE presents potent anti- AS and VSMC proliferation activities and the underlying mechanism is likely to the suppression of Akt/MEK/ERK signaling. The active components of FSEE are JL-6 and its potential active pharmaceutical ingredients Tigo and Heco. So, FSEE and its active compounds may be potential therapeutic drug candidates for AS.
Collapse
Affiliation(s)
- Jing Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Wai-Rong Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Wen-Ting Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jun-Jie Tan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Kai-Yu Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jing-Yi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xin-Lin Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Zhong-Yan Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
123
|
[Progress of NRF2 Signaling Pathway in Promoting Proliferation
of Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:735-741. [PMID: 36167459 PMCID: PMC9619341 DOI: 10.3779/j.issn.1009-3419.2022.102.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The morbidity and mortality of lung cancer ranks among the top cancers in the world. Non-small cell lung cancer (NSCLC) is the main pathological type of lung cancer, with limited treatment options and poor prognosis. The nuclear factor E2-related factor 2 (NRF2) signaling pathway is highly mutated and activated in NSCLC, and promotes the malignant progression of lung cancer through various mechanisms. NRF2-targeted therapy will provide new treatment strategies for patients with NSCLC. This article will review the basic structure and response pathways of the NRF2 pathway, the mechanism of NRF2 regulating lung cancer cell proliferation, and the research and development progress of NRF2 inhibitors.
.
Collapse
|
124
|
Lv D, Lai Q, Zhang Q, Wang JH, Li YC, Zeng GZ, Yin JL. 3-Deoxysappanchalcone isolated from Caesalpinia sinensis shows anticancer effects on HeLa and PC3 cell lines: invasion, migration, cell cycle arrest, and signaling pathway. Heliyon 2022; 8:e11013. [PMID: 36276736 PMCID: PMC9582709 DOI: 10.1016/j.heliyon.2022.e11013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/19/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
To study the antitumor activity of compound 3-desoxysulforaphane (3-DSC) isolated from Caesalpinia sinensis, SRB assay, clone formation assay, flow cytometric cell cycle assay, scratch assay, transwell assay, and molecular docking were used to investigate the inhibitory effect of 3-DSC on HeLa and PC3 cells. The results showed that 3-DSC inhibited the cell migration and invasion by down-regulating expression of N-cadherin, Vimentin, MMP-2, and MMP-9 in HeLa and PC3 cells; It also inhibits cell proliferation by promoting the expression of CDK1 (cyclin-dependent kinases 1) and CDK2 (cyclin-dependent kinases 2), which arrests the tumor cell cycle at G2 phase. 3-DSC inhibits phosphorylation of AKT and ERK and upregulates the expression of the tumor suppressor gene p53. Molecular docking results confirmed that 3-DSC could bind firmly to AKT. In conclusion, 3-DSC inhibited the proliferation, migration and invasion of HeLa and PC3 cells.
Collapse
|
125
|
Yadav P, Ambudkar SV, Rajendra Prasad N. Emerging nanotechnology-based therapeutics to combat multidrug-resistant cancer. J Nanobiotechnology 2022; 20:423. [PMID: 36153528 PMCID: PMC9509578 DOI: 10.1186/s12951-022-01626-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer often develops multidrug resistance (MDR) when cancer cells become resistant to numerous structurally and functionally different chemotherapeutic agents. MDR is considered one of the principal reasons for the failure of many forms of clinical chemotherapy. Several factors are involved in the development of MDR including increased expression of efflux transporters, the tumor microenvironment, changes in molecular targets and the activity of cancer stem cells. Recently, researchers have designed and developed a number of small molecule inhibitors and derivatives of natural compounds to overcome various mechanisms of clinical MDR. Unfortunately, most of the chemosensitizing approaches have failed in clinical trials due to non-specific interactions and adverse side effects at pharmacologically effective concentrations. Nanomedicine approaches provide an efficient drug delivery platform to overcome the limitations of conventional chemotherapy and improve therapeutic effectiveness. Multifunctional nanomaterials have been found to facilitate drug delivery by improving bioavailability and pharmacokinetics, enhancing the therapeutic efficacy of chemotherapeutic drugs to overcome MDR. In this review article, we discuss the major factors contributing to MDR and the limitations of existing chemotherapy- and nanocarrier-based drug delivery systems to overcome clinical MDR mechanisms. We critically review recent nanotechnology-based approaches to combat tumor heterogeneity, drug efflux mechanisms, DNA repair and apoptotic machineries to overcome clinical MDR. Recent successful therapies of this nature include liposomal nanoformulations, cRGDY-PEG-Cy5.5-Carbon dots and Cds/ZnS core–shell quantum dots that have been employed for the effective treatment of various cancer sub-types including small cell lung, head and neck and breast cancers.
Collapse
|
126
|
Gong L, Chen C, Liu X, Wu X, Zhu L, Luo J, Kong L. Hainanolide inhibits the progression of colon cancer via inducing the cell cycle arrest, cell apoptosis and activation of the MAPK signaling pathway. Toxicol Appl Pharmacol 2022; 454:116249. [PMID: 36126765 DOI: 10.1016/j.taap.2022.116249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 12/24/2022]
Abstract
Hainanolide (HN) is a norditerpenoid metabolite extract from Cephalotaxus fortunei Hook. f. C. fortunei Hook. f. is renowned for the active alkaloids, such as harringtonine (HT) and homoharringtonin (HTT), which have been clinically used to treat chronic myeloid leukemia. Nowadays, diterpenoids, another important metabolite, attracted the attention of chemists. Among them, Hainanolide (HN), a cephalotane-type diterpenoid, has been proven to possess potent antitumor activities. However, the underlying therapeutic mechanisms of HN in anti-tumor have not been investigated yet. Our present study demonstrated that HN inhibited HCT-116 and HCT-15 cell proliferation in a dose- and time-dependent manner. Further studies demonstrated that HN can induce G2/M phase arrest and alter the Cdc25C/Cdc2/CyclinB1 proteins. Western blot indicated that HN promoted apoptosis by up-regulating Bax and down-regulated Bcl-2. And the caspase-3 and caspase-9 activities of HCT-116 and HCT-15 cells were increased. Transcriptome analysis is used to reveal the possible mechanism. Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses suggested the genes were mainly enriched in the MAPK signaling pathway. Certainly, HN activates MAPK signaling pathway. In vivo, HN prevented the AOM/DSS-induced tumorigenesis of colon cancer in C57BL/6 mice. Our study indicated that HN inhibits the progression of colon cancer cells by blocking the cell cycle, inducing apoptosis, and activating the MAPK pathway. This study provides a theoretical and experimental scientific basis for future investigations of the antitumor effects of HN against colon cancer.
Collapse
Affiliation(s)
- Lijie Gong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Chen Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Xiaoqin Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Xiutao Wu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Ling Zhu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Jianguang Luo
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
127
|
Sancha SAR, Gomes AV, Loureiro JB, Saraiva L, Ferreira MJU. Amaryllidaceae-Type Alkaloids from Pancratium maritimum: Apoptosis-Inducing Effect and Cell Cycle Arrest on Triple-Negative Breast Cancer Cells. Molecules 2022; 27:molecules27185759. [PMID: 36144504 PMCID: PMC9501014 DOI: 10.3390/molecules27185759] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022] Open
Abstract
Aiming to find Amaryllidaceae alkaloids against breast cancer, including the highly aggressive triple-negative breast cancer, the phytochemical study of Pancratium maritimum was carried out. Several Amaryllidaceae-type alkaloids, bearing scaffolds of the haemanthamine-, homolycorine-, lycorine-, galanthamine-, and tazettine-type were isolated (3–11), along with one alkamide (2) and a phenolic compound (1). The antiproliferative effect of compounds (1–11) was evaluated by the sulforhodamine B assay against triple-negative breast cancer cell lines MDA-MB-231 and MDA-MB-468, breast cancer cells MCF-7, and the non-malignant fibroblast (HFF-1) and breast (MCF12A) cell lines. The alkaloids 3, 5, 7, and 11 showed significant growth inhibitory effects against all breast cancer cell lines, with IC50 (half-maximal inhibitory concentration) values ranging from 0.73 to 16.3 µM. The homolycorine-type alkaloid 7 was selected for further investigation in MDA-MB-231 cells. In the annexin-V assay, compound 7 increased cell death by apoptosis, which was substantiated, in western blot analyses, by the increased expression of the pro-apoptotic protein Bax, and the decreased expression of the anti-apoptotic protein Bcl-xL. Consistently, it further stimulated mitochondrial reactive oxygen species (ROS) generation. The antiproliferative effect of compound 7 was also associated with G2/M cell cycle arrest, which was supported by an increase in the p21 protein expression levels. In MDA-MB-231 cells, compound 7 also exhibited synergistic effects with conventional chemotherapeutic drugs such as etoposide.
Collapse
Affiliation(s)
- Shirley A. R. Sancha
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Adriana V. Gomes
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Joana B. Loureiro
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
- Correspondence: (L.S.); (M.J.U.F.); Tel.: +351-217946475 (M.J.U.F.); Fax: +351-217946470 (M.J.U.F.)
| | - Maria José U. Ferreira
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Correspondence: (L.S.); (M.J.U.F.); Tel.: +351-217946475 (M.J.U.F.); Fax: +351-217946470 (M.J.U.F.)
| |
Collapse
|
128
|
Ye C, Wei M, Huang H, Wang Y, Zhang L, Yang C, Huang Y, Luo J. Nitazoxanide inhibits osteosarcoma cells growth and metastasis by suppressing AKT/mTOR and Wnt/β-catenin signaling pathways. Biol Chem 2022; 403:929-943. [PMID: 35946850 DOI: 10.1515/hsz-2022-0148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/30/2022] [Indexed: 11/15/2022]
Abstract
Osteosarcoma (OS) is the most prevalent malignant bone tumor with poor prognosis. Developing new drugs for the chemotherapy of OS has been a focal point and a major obstacle of OS treatment. Nitazoxanide (NTZ), a conventional anti-parasitic agent, has got increasingly noticed because of its favorable antitumor potential. Herein, we investigated the effect of NTZ on human OS cells in vitro and in vivo. The results obtained in vitro showed that NTZ inhibited the proliferation, migration and invasion, arrested cell cycle at G1 phase, while induced apoptosis of OS cells. Mechanistically, NTZ suppressed the activity of AKT/mTOR and Wnt/β-catenin signaling pathways of OS cells. Consistent with the results in vitro, orthotopic implantation model of 143B OS cells further confirmed that NTZ inhibited OS cells growth and lung metastasis in vivo. Notably, NTZ caused no apparent damage to normal cells/tissues. In conclusion, NTZ may inhibit tumor growth and metastasis of human OS cells through suppressing AKT/mTOR and Wnt/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Caihong Ye
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 40016, P.R. China
| | - Mengqi Wei
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 40016, P.R. China
| | - Huakun Huang
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 40016, P.R. China
| | - Yuping Wang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 40016, P.R. China
| | - Lulu Zhang
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 40016, P.R. China
| | - Chunmei Yang
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 40016, P.R. China
| | - Yanran Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 40016, P.R. China
| | - Jinyong Luo
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 40016, P.R. China
| |
Collapse
|
129
|
Effect of Fumonisin B1 on Proliferation and Apoptosis of Intestinal Porcine Epithelial Cells. Toxins (Basel) 2022; 14:toxins14070471. [PMID: 35878209 PMCID: PMC9323054 DOI: 10.3390/toxins14070471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022] Open
Abstract
Fumonisin B1 (FB1), which is a mycotoxin produced by Fusarium moniliforme and Fusarium rotarum, has a number of toxic effects in animals. Moldy feed containing FB1 can damage the intestine. In this study, we used intestinal porcine epithelial cells (IPEC-J2) as an in vitro model to explore the effects of FB1 on cell cycle and apoptosis. The results showed that IPEC-J2 cells treated with 10, 20, and 40 μg/mL FB1 for 48 h experienced different degrees of damage manifested as decreases in cell number and viability, as well as cell shrinkage and floating. In addition, FB1 reduced cell proliferation and the mRNA and protein expression of proliferating cell nuclear antigen (PCNA), cyclin-dependent kinase 2 (CDK2), CDK4, cyclinD1, and cyclinE1. FB1 blocked the cell cycle in the G1 phase. FB1 also induced mitochondrial pathway apoptosis, reduced mitochondrial membrane potential, and promoted mRNA and protein expression of Caspase3, Caspase9, and Bax. The findings suggest that FB1 can induce IPEC-J2 cell damage, block the cell cycle, and promote cell apoptosis.
Collapse
|
130
|
Kushwaha PP, Verma S, Kumar S, Gupta S. Role of prostate cancer stem-like cells in the development of antiandrogen resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:459-471. [PMID: 35800367 PMCID: PMC9255247 DOI: 10.20517/cdr.2022.07] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/16/2022] [Accepted: 03/24/2022] [Indexed: 12/22/2022]
Abstract
Androgen deprivation therapy (ADT) is the standard of care treatment for advance stage prostate cancer. Treatment with ADT develops resistance in multiple ways leading to the development of castration-resistant prostate cancer (CRPC). Present research establishes that prostate cancer stem-like cells (CSCs) play a central role in the development of treatment resistance followed by disease progression. Prostate CSCs are capable of self-renewal, differentiation, and regenerating tumor heterogeneity. The stemness properties in prostate CSCs arise due to various factors such as androgen receptor mutation and variants, epigenetic and genetic modifications leading to alteration in the tumor microenvironment, changes in ATP-binding cassette (ABC) transporters, and adaptations in molecular signaling pathways. ADT reprograms prostate tumor cellular machinery leading to the expression of various stem cell markers such as Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1), Prominin 1 (PROM1/CD133), Indian blood group (CD44), SRY-Box Transcription Factor 2 (Sox2), POU Class 5 Homeobox 1(POU5F1/Oct4), Nanog and ABC transporters. These markers indicate enhanced self-renewal and stemness stimulating CRPC evolution, metastatic colonization, and resistance to antiandrogens. In this review, we discuss the role of ADT in prostate CSCs differentiation and acquisition of CRPC, their isolation, identification and characterization, as well as the factors and pathways contributing to CSCs expansion and therapeutic opportunities.
Collapse
Affiliation(s)
- Prem Prakash Kushwaha
- Department of Urology, Case Western Reserve University, Cleveland, OH 44106, USA
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Shiv Verma
- Department of Urology, Case Western Reserve University, Cleveland, OH 44106, USA
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Shashank Kumar
- Molecular Signaling and Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda 151401, India
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, Cleveland, OH 44106, USA
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
- Divison of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|
131
|
Sapio L, Naviglio S. Innovation through Tradition: The Current Challenges in Cancer Treatment. Int J Mol Sci 2022; 23:5296. [PMID: 35628105 PMCID: PMC9141447 DOI: 10.3390/ijms23105296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 12/01/2022] Open
Abstract
Despite the huge efforts in identifying novel risk factors, earlier diagnostic markers and alternative therapeutic approaches, malignant disorders continue to pose the second leading cause of death worldwide [...].
Collapse
Affiliation(s)
- Luigi Sapio
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, L. De Crecchio 7, 80138 Naples, Italy
| | - Silvio Naviglio
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, L. De Crecchio 7, 80138 Naples, Italy
| |
Collapse
|
132
|
Song J, Yi X, Gao R, Sun L, Wu Z, Zhang S, Huang L, Han C, Ma J. Impact of Drp1-Mediated Mitochondrial Dynamics on T Cell Immune Modulation. Front Immunol 2022; 13:873834. [PMID: 35432303 PMCID: PMC9008543 DOI: 10.3389/fimmu.2022.873834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, various breakthroughs have been made in tumor immunotherapy that have contributed to prolonging the survival of tumor patients. However, only a subset of patients respond to immunotherapy, which limits its use. One reason for this is that the tumor microenvironment (TME) hinders the migration and infiltration of T cells and affects their continuous functioning, resulting in an exhausted phenotype. Therefore, clarifying the mechanism by which T cells become exhausted is of significance for improving the efficacy of immunotherapy. Several recent studies have shown that mitochondrial dynamics play an important role in the immune surveillance function of T cells. Dynamin-related protein 1 (Drp1) is a key protein that mediates mitochondrial fission and maintains the mitochondrial dynamic network. Drp1 regulates various activities of T cells in vivo by mediating the activation of a series of pathways. In addition, abnormal mitochondrial dynamics were observed in exhausted T cells in the TME. As a potential target for immunotherapy, in this review, we describe in detail how Drp1 regulates various physiological functions of T cells and induces changes in mitochondrial dynamics in the TME, providing a theoretical basis for further research.
Collapse
Affiliation(s)
- Jun Song
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaofang Yi
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ruolin Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Sun
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhixuan Wu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuling Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Letian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chengbo Han
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jietao Ma
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
133
|
Lin J, Chen H, Bai Y, Li S, Liang G, Fan T, Gao N, Wu X, Li H, Chen G, Gao Y, Fan J. Ganoderma immunomodulatory proteins: mushrooming functional FIPs. Appl Microbiol Biotechnol 2022; 106:2367-2380. [PMID: 35348851 DOI: 10.1007/s00253-022-11839-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022]
Abstract
Fungal immunomodulatory protein (FIP) is a novel functional protein family with specific immunomodulatory activity identified from several macro-fungi. A variety of biological activities of FIPs have been reported, such as anti-allergy, anti-tumor, mitogenic activity, and immunomodulation. Among all known FIPs, the firstly discovered FIP was isolated from Ganoderma lucidum, and most FIP members were from Ganoderma genus. Compared with other FIPs, Ganoderma FIPs possess some advantageous bioactivities, like stronger anti-tumor activity. Therein, gene sequences, protein structural features, biofunctions, and recombinant expression of Ganoderma FIPs were summarized and addressed, focusing on elucidating their anti-tumor activity and molecular mechanisms. Combined with current advances, development potential and application of Ganoderma FIPs were also prospected. KEY POINTS: • More than a dozen of reported FIPs are identified from Ganoderma species. • Ganoderma immunomodulatory proteins have superior anti-tumor activity with promising prospects and application. • Current review comprehensively addresses characterization, biofunctions, and anti-tumor mechanisms of Ganoderma FIPs.
Collapse
Affiliation(s)
- Jingwei Lin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110032, China.,Liaoning Province Key Laboratory of Agricultural Technology, Shenyang, 110866, China.,Liaoning Province Academy of Forest Sciences, Shenyang Agricultural University, Shenyang, 110866, China
| | - Huan Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110032, China.,Liaoning Province Key Laboratory of Agricultural Technology, Shenyang, 110866, China
| | - Yudong Bai
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110032, China.,Liaoning Province Key Laboratory of Agricultural Technology, Shenyang, 110866, China
| | - Shoukun Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110032, China.,Liaoning Province Key Laboratory of Agricultural Technology, Shenyang, 110866, China
| | - Gengyuan Liang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110032, China.,Liaoning Province Key Laboratory of Agricultural Technology, Shenyang, 110866, China
| | - Tianning Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110032, China.,Liaoning Province Key Laboratory of Agricultural Technology, Shenyang, 110866, China
| | - Ningyuan Gao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110032, China.,Liaoning Province Key Laboratory of Agricultural Technology, Shenyang, 110866, China
| | - Xiupeng Wu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110032, China.,Liaoning Province Key Laboratory of Agricultural Technology, Shenyang, 110866, China
| | - Hui Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110032, China.,Liaoning Province Key Laboratory of Agricultural Technology, Shenyang, 110866, China
| | - Gang Chen
- Liaoning Province Academy of Forest Sciences, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yingxu Gao
- Liaoning Province Academy of Forest Sciences, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Jungang Fan
- Liaoning Province Academy of Forest Sciences, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
134
|
Li T, Tang Z, Li C, Liu X, Cheng L, Yang Z, Zhu X, Liu W, Huang Y. Magnesium-Assisted Cisplatin Inhibits Bladder Cancer Cell Survival by Modulating Wnt/β-Catenin Signaling Pathway. Front Pharmacol 2022; 12:804615. [PMID: 35153759 PMCID: PMC8829071 DOI: 10.3389/fphar.2021.804615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/30/2021] [Indexed: 12/25/2022] Open
Abstract
Magnesium, an essential mineral micronutrient, plays a role in the activation of various transporters and enzymes. The present study aimed to investigate the possibility of applying magnesium to enhance the efficacy of cisplatin which is still ranked as one of the major chemotherapeutic drugs for bladder cancer patients. Results showed that the survival rate and colony formation of bladder cancer cells were reduced by combinatorial treatment with cisplatin and magnesium chloride (MgCl2). The proportion of apoptotic cells was also increased in UC3 bladder cancer cells treated with a combination of cisplatin and MgCl2. Most importantly, a marked decrease in nuclear β-catenin was observed in cells that received cisplatin treatment. In addition, the nuclear β-catenin in cisplatin treated cells was further down-regulated by supplementing MgCl2. 6-bromoindirubin-3′-oxime (BIO), an inhibitor of glycogen synthase kinase-3 (GSK-3) that activates the Wnt/β-catenin signaling pathway by modulating β-catenin activity, was thus applied to further exploit the role of this signaling pathway in magnesium aided cancer treatment. The survival rate of bladder cancer cells was decreased by BIO treatment at concentrations of 1.0, 2.5 and 5.0 μM accompanied by increased β-catenin expression. However, the expression of β-catenin in MgCl2-treated cells was lower than in untreated cells under the same BIO concentration. The expression of cleaved caspase-3, cleaved caspase-9 and microtubule-associated protein 1 light chain 3- II (LC3-II) was highest in cells treated with MgCl2 and 5.0 μM BIO among the examined groups. Our findings reveal that magnesium could contribute to cisplatin-based chemotherapy by moderately regulating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Tianye Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zihan Tang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Chunting Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xiaoya Liu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Linglin Cheng
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zhijing Yang
- Department of Oral and Maxillofacia Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaojin Zhu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Weiwei Liu
- Department of Oral and Maxillofacia Surgery, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Yongye Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
135
|
The Antiproliferative and Apoptotic Effects of a Novel Quinazoline Carrying Substituted-Sulfonamides: In Vitro and Molecular Docking Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030981. [PMID: 35164248 PMCID: PMC8838787 DOI: 10.3390/molecules27030981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 01/26/2023]
Abstract
In order to investigate for a new effective and safe anticancer drug, we synthesized a novel series of quinazoline containing biologically active substituted-sulfonamide moiety at 3- position 4a-n. The structure of the newly prepared compounds was proved by microanalysis, IR, 1H-NMR, 13C-NMR and mass spectral data. All the synthesized compounds were evaluated for their in vitro cytotoxic activity in numerous cancer cell lines including A549, HepG-2, LoVo and MCF-7 and normal HUVEC cell line. The two most active compounds 4d and 4f were then tested for their apoptosis induction using DNA content and Annexin V-FITC/PI staining. Moreover, apoptosis initiation was also confirmed using RT-PCR and Western blot. To further understand the binding preferences of quinazoline sulfonamides, docking simulations were used. Among the fourteen new synthesized compounds, we found that compounds 4d and 4f exerted the strongest cytotoxicity against MCF-7 cells with an IC50 value of 2.5 and 5 μM, respectively. Flow cytometry data revealed the ability of compounds 4d and 4f to mediate apoptosis and arrest cell cycle growth at G1 phase. Furthermore, RT-PCR and Western blot results suggested that both 4d and 4f activates apoptotic cell death pathway in MCF-7 cells. Molecular docking assessments indicated that compounds 4d and 4f fit perfectly into Bcl2's active site. Based on the biological properties, we conclude that both compounds 4d and 4f could be used as a new type of anticancer agent, which provides a scientific basis for further research into the treatment of cancer.
Collapse
|
136
|
Yang Y, Zhou M, Peng J, Wang X, Liu Y, Wang W, Wu D. Robust, anti-freezing and conductive bonding of chitosan-based double-network hydrogels for stable-performance flexible electronic. Carbohydr Polym 2022; 276:118753. [PMID: 34823782 DOI: 10.1016/j.carbpol.2021.118753] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 02/06/2023]
Abstract
Unstable hydrogel-substrate interfaces and defunctionalization at low temperature severely restrict versatile applications of hydrogel-based systems. Herein, various chitosan-polyacrylamide double-network (CS-PAM DN) ionic hydrogels were chemically linked with diverse substrates to construct robust and anti-freezing hydrogel-substrate combination, wherein the destructible CS physical network rendered effective energy dissipation mechanism to significantly enhanced the cohesion of hydrogels and the covalent linkage between PAM network with substrate surface strongly improved the interfacial adhesion. The synergistic effects enabled the CS-PAM DN hydrogels to be tightly bonded on diverse metals and inorganics. Impressively, the hydrogel-substrate combinations were freezing tolerant to well-maintain high interfacial toughness at low temperature. Notably, due to the high toughness and conductivity of hydrogel-metal interface, the hydrogel-metal combination can be utilized as a multi-model flexible sensor to detect strain and pressure within broad temperature range. This work may provide a platform for construction and emerging application of robust, anti-freezing and stable-performance hydrogel-based systems.
Collapse
Affiliation(s)
- Yanyu Yang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China; Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Manhua Zhou
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Junbo Peng
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yang Liu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China; Departments of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Wanjie Wang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Decheng Wu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
137
|
Meng Q, Zhong S, He S, Gao Y, Cui X. Synthesis and characterization of curcumin-loaded pH/reduction dual-responsive folic acid modified carboxymethyl cellulose-based microcapsules for targeted drug delivery. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
138
|
Janerin Induces Cell Cycle Arrest at the G2/M Phase and Promotes Apoptosis Involving the MAPK Pathway in THP-1, Leukemic Cell Line. Molecules 2021; 26:molecules26247555. [PMID: 34946628 PMCID: PMC8705386 DOI: 10.3390/molecules26247555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 12/02/2022] Open
Abstract
Janerin is a cytotoxic sesquiterpene lactone that has been isolated and characterized from different species of the Centaurea genus. In this study, janerin was isolated form Centaurothamnus maximus, and its cytotoxic molecular mechanism was studied in THP-1 human leukemic cells. Janerin inhibited the proliferation of THP-1 cells in a dose-dependent manner. Janerin caused the cell cycle arrest at the G2/M phase by decreasing the CDK1/Cyclin-B complex. Subsequently, we found that janerin promoted THP-1 cell death through apoptosis as indicated by flow cytometry. Moreover, apoptosis induction was confirmed by the upregulation of Bax, cleaved PARP-1, and cleaved caspase 3 and the downregulation of an anti-apoptotic Bcl-2 biomarker. In addition, immunoblotting indicated a dose dependent upregulation of P38-MAPK and ERK1/2 phosphorylation during janerin treatment. In conclusion, we have demonstrated for the first time that janerin may be capable of inducing cell cycle arrest and apoptosis through the MAPK pathway, which would be one of the mechanisms underlying its anticancer activity. As a result, janerin has the potential to be used as a therapeutic agent for leukemia.
Collapse
|
139
|
Meng Q, Hu H, Jing X, Sun Y, Zhou L, Zhu Y, Yu B, Cong H, Shen Y. A modular ROS-responsive platform co-delivered by 10-hydroxycamptothecin and dexamethasone for cancer treatment. J Control Release 2021; 340:102-113. [PMID: 34718005 DOI: 10.1016/j.jconrel.2021.10.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/23/2021] [Accepted: 10/24/2021] [Indexed: 01/10/2023]
Abstract
Traditional and single treatment strategies are difficult to achieve good results due to tumor resistance and complex mechanisms. Combination therapy through co-delivery systems is one of the methods to improve the effectiveness of cancer treatment. The polyprodrug platform has inherent advantages such as high drug loading and strong stability. Herein, a new reactive oxygen species (ROS)-responsive micelle composed of poly 10-hydroxycamptothecin (pHCPT) and PEG is reported, which loaded dexamethasone (DEX) as synergistic drugs. The micelles collapse in the complex microenvironment of tumor cells to release DEX. The first released DEX can increase the ROS level of tumor cells, thereby facilitating the cleavage of thioketal bonds to release intact HCPT molecules. Meanwhile, DEX can normalize tumor blood vessels, reduce adverse reactions, and further improve the efficacy of HCPT. This co-delivery system shows an ideal tumor suppressive effect in vivo and in vitro. Designing drugs into a modular multi-drug platform and selecting appropriate synergistic drugs according to the treatment plan provides a convenient strategy for future clinical treatment.
Collapse
Affiliation(s)
- Qingye Meng
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hao Hu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiaodong Jing
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Ying Sun
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Liping Zhou
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yaowei Zhu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; Laboratory for New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; Laboratory for New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
140
|
Anuraga G, Wang WJ, Phan NN, An Ton NT, Ta HDK, Berenice Prayugo F, Minh Xuan DT, Ku SC, Wu YF, Andriani V, Athoillah M, Lee KH, Wang CY. Potential Prognostic Biomarkers of NIMA (Never in Mitosis, Gene A)-Related Kinase (NEK) Family Members in Breast Cancer. J Pers Med 2021; 11:1089. [PMID: 34834441 PMCID: PMC8625415 DOI: 10.3390/jpm11111089] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Breast cancer remains the most common malignant cancer in women, with a staggering incidence of two million cases annually worldwide; therefore, it is crucial to explore novel biomarkers to assess the diagnosis and prognosis of breast cancer patients. NIMA-related kinase (NEK) protein kinase contains 11 family members named NEK1-NEK11, which were discovered from Aspergillus Nidulans; however, the role of NEK family genes for tumor development remains unclear and requires additional study. In the present study, we investigate the prognosis relationships of NEK family genes for breast cancer development, as well as the gene expression signature via the bioinformatics approach. The results of several integrative analyses revealed that most of the NEK family genes are overexpressed in breast cancer. Among these family genes, NEK2/6/8 overexpression had poor prognostic significance in distant metastasis-free survival (DMFS) in breast cancer patients. Meanwhile, NEK2/6 had the highest level of DNA methylation, and the functional enrichment analysis from MetaCore and Gene Set Enrichment Analysis (GSEA) suggested that NEK2 was associated with the cell cycle, G2M checkpoint, DNA repair, E2F, MYC, MTORC1, and interferon-related signaling. Moreover, Tumor Immune Estimation Resource (TIMER) results showed that the transcriptional levels of NEK2 were positively correlated with immune infiltration of B cells and CD4+ T Cell. Collectively, the current study indicated that NEK family genes, especially NEK2 which is involved in immune infiltration, and may serve as prognosis biomarkers for breast cancer progression.
Collapse
Affiliation(s)
- Gangga Anuraga
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (G.A.); (H.D.K.T.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia;
| | - Wei-Jan Wang
- Research Center for Cancer Biology, Department of Biological Science and Technology, China Medical University, Taichung 40604, Taiwan;
| | - Nam Nhut Phan
- Institute for Environmental Science, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam; (N.N.P.); (N.T.A.T.)
| | - Nu Thuy An Ton
- Institute for Environmental Science, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam; (N.N.P.); (N.T.A.T.)
| | - Hoang Dang Khoa Ta
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (G.A.); (H.D.K.T.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
| | - Fidelia Berenice Prayugo
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
| | - Do Thi Minh Xuan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
| | - Su-Chi Ku
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
| | - Yung-Fu Wu
- Department of Medical Research, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Vivin Andriani
- Department of Biological Science, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia;
| | - Muhammad Athoillah
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia;
| | - Kuen-Haur Lee
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (G.A.); (H.D.K.T.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Yang Wang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (G.A.); (H.D.K.T.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (F.B.P.); (D.T.M.X.); (S.-C.K.)
| |
Collapse
|