101
|
Batista da Silva I, Aciole Barbosa D, Kavalco KF, Nunes LR, Pasa R, Menegidio FB. Discovery of putative long non-coding RNAs expressed in the eyes of Astyanax mexicanus (Actinopterygii: Characidae). Sci Rep 2023; 13:12051. [PMID: 37491348 PMCID: PMC10368750 DOI: 10.1038/s41598-023-34198-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/25/2023] [Indexed: 07/27/2023] Open
Abstract
Astyanax mexicanus is a well-known model species, that has two morphotypes, cavefish, from subterranean rivers and surface fish, from surface rivers. They are morphologically distinct due to many troglomorphic traits in the cavefish, such as the absence of eyes. Most studies on A. mexicanus are focused on eye development and protein-coding genes involved in the process. However, lncRNAs did not get the same attention and very little is known about them. This study aimed to fill this knowledge gap, identifying, describing, classifying, and annotating lncRNAs expressed in the embryo's eye tissue of cavefish and surface fish. To do so, we constructed a concise workflow to assemble and evaluate transcriptomes, annotate protein-coding genes, ncRNAs families, predict the coding potential, identify putative lncRNAs, map them and predict interactions. This approach resulted in the identification of 33,069 and 19,493 putative lncRNAs respectively mapped in cavefish and surface fish. Thousands of these lncRNAs were annotated and identified as conserved in human and several species of fish. Hundreds of them were validated in silico, through ESTs. We identified lncRNAs associated with genes related to eye development. This is the case of a few lncRNAs associated with sox2, which we suggest being isomorphs of the SOX2-OT, a lncRNA that can regulate the expression of sox2. This work is one of the first studies to focus on the description of lncRNAs in A. mexicanus, highlighting several lncRNA targets and opening an important precedent for future studies focusing on lncRNAs expressed in A. mexicanus.
Collapse
Affiliation(s)
- Iuri Batista da Silva
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
- Laboratory of Ecological and Evolutionary Genetics, Institute of Biological and Health Sciences, Federal University of Viçosa Campus Rio Paranaíba, Rio Paranaíba, MG, 38810-000, Brazil
| | - David Aciole Barbosa
- Integrated Biotechnology Center, University of Mogi das Cruzes (UMC), Av. Dr. Cândido X. de Almeida and Souza, 200 - Centro Cívico, Mogi das Cruzes, SP, 08780-911, Brazil
| | - Karine Frehner Kavalco
- Laboratory of Ecological and Evolutionary Genetics, Institute of Biological and Health Sciences, Federal University of Viçosa Campus Rio Paranaíba, Rio Paranaíba, MG, 38810-000, Brazil
| | - Luiz R Nunes
- Center for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo, SP, 09606-045, Brazil
| | - Rubens Pasa
- Laboratory of Ecological and Evolutionary Genetics, Institute of Biological and Health Sciences, Federal University of Viçosa Campus Rio Paranaíba, Rio Paranaíba, MG, 38810-000, Brazil.
| | - Fabiano B Menegidio
- Integrated Biotechnology Center, University of Mogi das Cruzes (UMC), Av. Dr. Cândido X. de Almeida and Souza, 200 - Centro Cívico, Mogi das Cruzes, SP, 08780-911, Brazil.
| |
Collapse
|
102
|
Kiełbowski K, Herian M, Bakinowska E, Banach B, Sroczyński T, Pawlik A. The Role of Genetics and Epigenetic Regulation in the Pathogenesis of Osteoarthritis. Int J Mol Sci 2023; 24:11655. [PMID: 37511413 PMCID: PMC10381003 DOI: 10.3390/ijms241411655] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Osteoarthritis (OA) is progressive disease characterised by cartilage degradation, subchondral bone remodelling and inflammation of the synovium. The disease is associated with obesity, mechanical load and age. However, multiple pro-inflammatory immune mediators regulate the expression of metalloproteinases, which take part in cartilage degradation. Furthermore, genetic factors also contribute to OA susceptibility. Recent studies have highlighted that epigenetic mechanisms may regulate the expression of OA-associated genes. This review aims to present the mechanisms of OA pathogenesis and summarise current evidence regarding the role of genetics and epigenetics in this process.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (M.H.); (E.B.); (B.B.); (T.S.)
| |
Collapse
|
103
|
Shree B, Das K, Sharma V. Emerging role of transforming growth factor-β-regulated long non-coding RNAs in prostate cancer pathogenesis. CANCER PATHOGENESIS AND THERAPY 2023; 1:195-204. [PMID: 38327834 PMCID: PMC10846338 DOI: 10.1016/j.cpt.2022.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 02/09/2024]
Abstract
Prostate cancer (PCa) is the most common malignancy in men. Despite aggressive therapy involving surgery and hormonal treatments, the recurrence and emergence of metastatic castration-resistant prostate cancer (CRPCa) remain a major challenge. Dysregulation of the transforming growth factor-β (TGF-β) signaling pathway is crucial to PCa development and progression. This also contributes to androgen receptor activation and the emergence of CRPC. In addition, TGF-β signaling regulates long non-coding RNA (lncRNA) expression in multiple cancers, including PCa. Here, we discuss the complex regulatory network of lncRNAs and TGF-β signaling in PCa and their potential applications in diagnosing, prognosis, and treating PCa. Further investigations on the role of lncRNAs in the TGF-β pathway will help to better understand PCa pathogenesis.
Collapse
Affiliation(s)
- Bakhya Shree
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Koyel Das
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Vivek Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
104
|
Hao K, Li J, Zhang Y, Zhao W, Chen X, Xu J, Tian Y, Li X, Fen J, He X. Expression and prognostic signatures of m6A-related lncRNAs in hepatocellular carcinoma. J Cancer Res Clin Oncol 2023; 149:4429-4441. [PMID: 36121511 DOI: 10.1007/s00432-022-04338-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND N6-methyladenosine (m6A) is a common modification and plays an important role in various biological processes, but m6A-related lncRNA functions in hepatocellular carcinoma (HCC) have not been systematically clarified. METHODS The clinical data and RNA-seq transcriptome of 375 cases of HCC and 50 cases of normal tissues were obtained from the Cancer Gene Atlas database. Co-expression analysis was used to obtain m6A-related lncRNA. The independent prognostic factors were identified by univariate and multivariate Cox regression models. Kaplan-Meier method was used in survival analysis. The core gene of the mRNA-mRNA interaction network is related to m6A-related lncRNAs obtained by the CytoHubba plugin of Cytoscape. Gene ontology and Kyoto Gene Encyclopedia were analyzed to find out the potential mechanism. CIBERSORT algorithm was used to calculate the relative proportion of immune infiltrating cells. RESULTS We identified two subgroups (cluster 1 and cluster 2) according to the expression level. The survival analysis curve and receiver operating characteristic curve proved that this model could predict the prognosis of HCC patients. The univariate and multivariate Cox regression analyses showed the independent prognostic value. UBE2C was screened as the pivotal gene. The expression level of m6A-related lncRNAs causes changes in the tumor immune microenvironment. CONCLUSION The expression levels of m6A-related lncRNAs were significantly different and the prognostic value of m6A-related lncRNAs was confirmed. The m6A-related lncRNAs are expected to be prognostic signatures in HCC.
Collapse
Affiliation(s)
- Kenan Hao
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Jincheng Li
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
- Radiology Department, Guangdong Second Provincial Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Youao Zhang
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Wei Zhao
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Xiaojing Chen
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Jiabin Xu
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Ye Tian
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Xinmin Li
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Jianyu Fen
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Xiaofeng He
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
105
|
Huang LH, Rau CS, Liu YW, Wu CJ, Chien PC, Lin HP, Wu YC, Huang CY, Hsieh TM, Hsieh CH. Exploring the Regulatory Role of XIST-microRNAs/mRNA Network in Circulating CD4 + T Cells of Hepatocellular Carcinoma Patients. Biomedicines 2023; 11:1848. [PMID: 37509488 PMCID: PMC10376435 DOI: 10.3390/biomedicines11071848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers and the main cause of cancer-related death globally. Immune dysregulation of CD4+ T cells has been identified to play a role in the development of HCC. Nevertheless, the underlying molecular pathways of CD4+ T cells in HCC are not completely known. Thus, a better understanding of the dysregulation of the lncRNA-miRNA/mRNA network may yield novel insights into the etiology or progression of HCC. In this study, circulating CD4+ T cells were isolated from the whole blood of 10 healthy controls and 10 HCC patients for the next-generation sequencing of the expression of lncRNAs, miRNAs, and mRNAs. Our data showed that there were different expressions of 34 transcripts (2 lncRNAs, XISTs, and MIR222HGs; 29 mRNAs; and 3 other types of RNA) and 13 miRNAs in the circulating CD4+ T cells of HCC patients. The expression of lncRNA-XIST-related miRNAs and their target mRNAs was confirmed using real-time quantitative polymerase chain reaction (qPCR) on samples from 100 healthy controls and 60 HCC patients. The lncRNA-miRNA/mRNA regulation network was created using interaction data generated from ENCORI and revealed there are positive correlations in the infiltration of total CD4+ T cells, particularly resting memory CD4+ T cells, and negative correlations in the infiltration of Th1 CD4+ T cells.
Collapse
Affiliation(s)
- Lien-Hung Huang
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Cheng-Shyuan Rau
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Yueh-Wei Liu
- Department of General Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Chia-Jung Wu
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Peng-Chen Chien
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Hui-Ping Lin
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Yi-Chan Wu
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Chun-Ying Huang
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Ting-Min Hsieh
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Ching-Hua Hsieh
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| |
Collapse
|
106
|
Hou J, Liang WY, Xiong S, Long P, Yue T, Wen X, Wang T, Deng H. Identification of hub genes and potential ceRNA networks of diabetic cardiomyopathy. Sci Rep 2023; 13:10258. [PMID: 37355664 PMCID: PMC10290640 DOI: 10.1038/s41598-023-37378-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023] Open
Abstract
Diabetic cardiomyopathy (DCM), a common complication of diabetes, is defined as ventricular dysfunction in the absence of underlying heart disease. Noncoding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs) and microRNAs (miRNAs), play a crucial role in the development of DCM. Weighted Gene Co-Expression Network Analysis (WGCNA) was used to identify key modules in DCM-related pathways. DCM-related miRNA-mRNA network and DCM-related ceRNA network were constructed by miRNA-seq to identify hub genes in these modules. We identified five hub genes that are associated with the onset of DCM, including Troponin C1 (Tnnc1), Phospholamban (Pln), Fatty acid binding proteins 3 (Fabp3), Popeye domain containing 2 (Popdc2), and Tripartite Motif-containing Protein 63 (Trim63). miRNAs that target the hub genes were mainly involved in TGF-β and Wnt signaling pathways. GO BP enrichment analysis found these miRNAs were involved in the signaling of TGF-β and glucose homeostasis. Q-PCR results found the gene expressions of Pln, Fabp3, Trim63, Tnnc1, and Popdc2 were significantly increased in DCM. Our study identified five hub genes (Tnnc1, Pln, Fabp3, Popdc2, Trim63) whose associated ceRNA networks are responsible for the onset of DCM.
Collapse
Affiliation(s)
- Jun Hou
- Department of Cardiology, The Third People's Hospital of Chengdu/Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Wan Yi Liang
- Department of Microbiology and Immunology, Faculty of Science, University of British Columbia, Vancouver, BC, Canada
| | - Shiqiang Xiong
- Department of Cardiology, The Third People's Hospital of Chengdu/Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Pan Long
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Tian Yue
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xudong Wen
- Department of Gastroenterology and Hepatology, Chengdu First People's Hospital, Chengdu, Sichuan, China
| | - Tianchen Wang
- Alfred E. Mann Department of Biomedical Engineering, University of South California, Los Angeles, CA, USA
| | - Haoyu Deng
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
- Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, 1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada.
| |
Collapse
|
107
|
Liu A, Wang X, Hu L, Yan D, Yin Y, Zheng H, Liu G, Zhang J, Li Y. A predictive molecular signature consisting of lncRNAs associated with cellular senescence for the prognosis of lung adenocarcinoma. PLoS One 2023; 18:e0287132. [PMID: 37352167 PMCID: PMC10289466 DOI: 10.1371/journal.pone.0287132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/31/2023] [Indexed: 06/25/2023] Open
Abstract
The role of long noncoding RNAs (lncRNAs) has been verified by more and more researches in recent years. However, there are few reports on cellular senescence-associated lncRNAs in lung adenocarcinoma (LUAD). Therefore, to explore the prognostic effect of lncRNAs in LUAD, 279 cellular senescence-related genes, survival information and clinicopathologic parameters were derived from the CellAge database and The Cancer Genome Atlas (TCGA) database. Then, we constructed a novel cellular senescence-associated lncRNAs predictive signature (CS-ALPS) consisting of 6 lncRNAS (AC026355.1, AL365181.2, AF131215.5, C20orf197, GAS6-AS1, GSEC). According to the median of the risk score, 480 samples were divided into high-risk and low-risk groups. Furthermore, the clinicopathological and biological functions, immune characteristics and common drug sensitivity were analyzed between two risk groups. In conclusion, the CS-ALPS can independently forecast the prognosis of LUAD, which reveals the potential molecular mechanism of cellular senescence-associated lncRNAs, and provides appropriate strategies for the clinical treatment of patients with LUAD.
Collapse
Affiliation(s)
- Anbang Liu
- Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaohuai Wang
- Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Liu Hu
- Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dongqing Yan
- Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yin Yin
- Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hongjie Zheng
- Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Gengqiu Liu
- Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Junhang Zhang
- Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yun Li
- Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
108
|
de Almeida MC, Felix JDS, Lopes MFDS, de Athayde FRF, Troiano JA, Scaramele NF, Furlan ADO, Lopes FL. Co-expression analysis of lncRNA and mRNA suggests a role for ncRNA-mediated regulation of host-parasite interactions in primary skin lesions of patients with American tegumentary leishmaniasis. Acta Trop 2023:106966. [PMID: 37302689 DOI: 10.1016/j.actatropica.2023.106966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/25/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Leishmaniasis, caused by different Leishmania species, manifests as cutaneous or visceral forms. In the American continent, the cutaneous form is called American tegumentary leishmaniasis (ATL) and is primarily caused by Leishmania (Viannia) braziliensis. Mucosal leishmaniasis (ML), the most severe form of ATL, arises in approximately 20% of patients from a primary cutaneous lesion. Evidence indicates changes in overall expression patterns of mRNAs and lncRNAs of the host in response to Leishmania infection, with the parasite capable of modulating host immune response, which may contribute to disease progression. We evaluated whether the co-expression of lncRNAs and their putative target mRNAs in primary cutaneous lesions of patients with ATL could be associated with the development of ML. Previously available public RNA-Seq data from primary skin lesions of patients infected with L. braziliensis was employed. We identified 579 mRNAs and 46 lncRNAs differentially expressed in the primary lesion that subsequently progressed to mucosal disease. Co-expression analysis revealed 1,324 significantly correlated lncRNA-mRNA pairs. Among these, we highlight the positive correlation and trans-action between lncRNA SNHG29 and mRNA S100A8, both upregulated in the ML group. S100A8 and its heterodimeric partner S100A9 form a pro-inflammatory complex expressed by immune cells and seems to participate in host innate immune response processes of infection. These findings expand the knowledge of the Leishmania-host interaction and indicate that the expression of lncRNAs in the primary cutaneous lesion could regulate mRNAs and play roles in disease progression.
Collapse
Affiliation(s)
- Mariana Cordeiro de Almeida
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Juliana de Souza Felix
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Maria Fernanda da Silva Lopes
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Flávia Regina Florencio de Athayde
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Jéssica Antonini Troiano
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Natália Francisco Scaramele
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Amanda de Oliveira Furlan
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Flavia Lombardi Lopes
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil.
| |
Collapse
|
109
|
DeSouza NR, Quaranto D, Carnazza M, Jarboe T, Tiwari RK, Geliebter J. Interactome of Long Non-Coding RNAs: Transcriptomic Expression Patterns and Shaping Cancer Cell Phenotypes. Int J Mol Sci 2023; 24:9914. [PMID: 37373059 PMCID: PMC10298192 DOI: 10.3390/ijms24129914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
RNA biology has gained extensive recognition in the last two decades due to the identification of novel transcriptomic elements and molecular functions. Cancer arises, in part, due to the accumulation of mutations that greatly contribute to genomic instability. However, the identification of differential gene expression patterns of wild-type loci has exceeded the boundaries of mutational study and has significantly contributed to the identification of molecular mechanisms that drive carcinogenic transformation. Non-coding RNA molecules have provided a novel avenue of exploration, providing additional routes for evaluating genomic and epigenomic regulation. Of particular focus, long non-coding RNA molecule expression has been demonstrated to govern and direct cellular activity, thus evidencing a correlation between aberrant long non-coding RNA expression and the pathological transformation of cells. lncRNA classification, structure, function, and therapeutic utilization have expanded cancer studies and molecular targeting, and understanding the lncRNA interactome aids in defining the unique transcriptomic signatures of cancer cell phenotypes.
Collapse
Affiliation(s)
- Nicole R. DeSouza
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Danielle Quaranto
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Michelle Carnazza
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Tara Jarboe
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Raj K. Tiwari
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10591, USA
| | - Jan Geliebter
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10591, USA
| |
Collapse
|
110
|
Bassal MA. The Interplay between Dysregulated Metabolism and Epigenetics in Cancer. Biomolecules 2023; 13:944. [PMID: 37371524 DOI: 10.3390/biom13060944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular metabolism (or energetics) and epigenetics are tightly coupled cellular processes. It is arguable that of all the described cancer hallmarks, dysregulated cellular energetics and epigenetics are the most tightly coregulated. Cellular metabolic states regulate and drive epigenetic changes while also being capable of influencing, if not driving, epigenetic reprogramming. Conversely, epigenetic changes can drive altered and compensatory metabolic states. Cancer cells meticulously modify and control each of these two linked cellular processes in order to maintain their tumorigenic potential and capacity. This review aims to explore the interplay between these two processes and discuss how each affects the other, driving and enhancing tumorigenic states in certain contexts.
Collapse
Affiliation(s)
- Mahmoud Adel Bassal
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
111
|
Spinetti G, Mutoli M, Greco S, Riccio F, Ben-Aicha S, Kenneweg F, Jusic A, de Gonzalo-Calvo D, Nossent AY, Novella S, Kararigas G, Thum T, Emanueli C, Devaux Y, Martelli F. Cardiovascular complications of diabetes: role of non-coding RNAs in the crosstalk between immune and cardiovascular systems. Cardiovasc Diabetol 2023; 22:122. [PMID: 37226245 PMCID: PMC10206598 DOI: 10.1186/s12933-023-01842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/25/2023] [Indexed: 05/26/2023] Open
Abstract
Diabetes mellitus, a group of metabolic disorders characterized by high levels of blood glucose caused by insulin defect or impairment, is a major risk factor for cardiovascular diseases and related mortality. Patients with diabetes experience a state of chronic or intermittent hyperglycemia resulting in damage to the vasculature, leading to micro- and macro-vascular diseases. These conditions are associated with low-grade chronic inflammation and accelerated atherosclerosis. Several classes of leukocytes have been implicated in diabetic cardiovascular impairment. Although the molecular pathways through which diabetes elicits an inflammatory response have attracted significant attention, how they contribute to altering cardiovascular homeostasis is still incompletely understood. In this respect, non-coding RNAs (ncRNAs) are a still largely under-investigated class of transcripts that may play a fundamental role. This review article gathers the current knowledge on the function of ncRNAs in the crosstalk between immune and cardiovascular cells in the context of diabetic complications, highlighting the influence of biological sex in such mechanisms and exploring the potential role of ncRNAs as biomarkers and targets for treatments. The discussion closes by offering an overview of the ncRNAs involved in the increased cardiovascular risk suffered by patients with diabetes facing Sars-CoV-2 infection.
Collapse
Affiliation(s)
- Gaia Spinetti
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy.
| | - Martina Mutoli
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | - Federica Riccio
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Soumaya Ben-Aicha
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Franziska Kenneweg
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | | | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Anne Yaël Nossent
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Susana Novella
- Department of Physiology, University of Valencia - INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Georgios Kararigas
- Department of Physiology, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Costanza Emanueli
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy.
| |
Collapse
|
112
|
Ghafouri-Fard S, Askari A, Mahmud Hussen B, Taheri M, Kiani A. Sarcopenia and noncoding RNAs: A comprehensive review. J Cell Physiol 2023. [PMID: 37183312 DOI: 10.1002/jcp.31031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/16/2023]
Abstract
Sarcopenia is an elderly disease and is related to frailty and loss of muscle mass (atrophy) of older adults. The exact molecular mechanisms contributing to the pathogenesis of disease are yet to be discovered. In recent years, the role of noncoding RNAs in the pathogenesis of almost every kind of malignant and nonmalignant conditions is pinpointed. Regarding their regulatory function, there have been an increased number of studies on the role of noncoding RNAs in the progress of sarcopenia. In this manuscript, we review the role of microRNAs and long noncoding RNAs in development and progression of disease. We also discuss their potential as therapeutic targets in this condition.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Askari
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Arda Kiani
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
113
|
Du H, Hou S, Zhang L, Liu C, Yu T, Zhang W. LncRNA FALEC increases the proliferation, migration and drug resistance of cholangiocarcinoma through competitive regulation of miR-20a-5p/SHOC2 axis. Aging (Albany NY) 2023; 15:3759-3770. [PMID: 37166421 PMCID: PMC10449288 DOI: 10.18632/aging.204709] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND LncRNA is an important regulatory factor in the human genome. We aim to explore the roles of LncFALEC and miR-20a-5p/SHOC2 axis on the proliferation, migration, and Fluorouracil (5-FU) resistance of cholangiocarcinoma (CCA). METHODS In this study, the expression of FALEC and miR-20a-5p in CCA tissues and cell lines (HuCCT1, QBC939, and Huh-28) was detected by RT-qPCR. The FALEC in 5-FU-resistant CCA cell lines (QBC939-R, Huh-28-R) was knocked down to evaluate its effects on cell proliferation, migration, invasion, and drug resistance. RESULTS Our analysis showed that compared with the adjacent non-tumor tissues, FALEC was significantly higher in the CCA tissues and even higher in the samples from 5-FU-resistant patients. Knockdown FALEC increased the sensitivity of 5-FU and decreased migration and invasion of CCA cells. Dual luciferase reporter confirmed that FALEC sponges miR-20a-5p and down-regulated its expression. Moreover, SHOC2 leucine-rich repeat scaffold protein (SHOC2) was the target gene of miR-20a-5p. We found overexpression of FALEC (FALEC-OE) increased resistance of CCA cells to 5-FU significantly, which might contribute to increased SHOC2 expression and activation of the ERK1/2 signaling pathway. CONCLUSIONS In summary, our study revealed that down-regulation of FALEC could inhibit the proliferation, migration, and invasion of CCA cells in vitro by regulating the miR-20a-5p/SHOC2 axis and participating in 5-FU resistance by mediating the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Haiming Du
- The Biliopancreatic Endoscopic Surgery Department, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Senlin Hou
- The Biliopancreatic Endoscopic Surgery Department, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Lichao Zhang
- The Biliopancreatic Endoscopic Surgery Department, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Chao Liu
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Tingting Yu
- The Biliopancreatic Endoscopic Surgery Department, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Wei Zhang
- The Biliopancreatic Endoscopic Surgery Department, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| |
Collapse
|
114
|
Liu X, Yan R, Liu H, Zhang S, Wang R, Zhang B, Sun L. Genome-Wide Expression Analysis of Long Noncoding RNAs and Their Target Genes in Metafemale Drosophila. Int J Mol Sci 2023; 24:ijms24098381. [PMID: 37176087 PMCID: PMC10179461 DOI: 10.3390/ijms24098381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Aneuploidy is usually more detrimental than altered ploidy of the entire set of chromosomes. To explore the regulatory mechanism of gene expression in aneuploidy, we analyzed the transcriptome sequencing data of metafemale Drosophila. The results showed that most genes on the X chromosome undergo dosage compensation, while the genes on the autosomal chromosomes mainly present inverse dosage effects. Furthermore, long noncoding RNAs (lncRNAs) have been identified as key regulators of gene expression, and they are more sensitive to dosage changes than mRNAs. We analyzed differentially expressed mRNAs (DEGs) and differentially expressed lncRNAs (DELs) in metafemale Drosophila and performed functional enrichment analyses of DEGs and the target genes of DELs, and we found that they are involved in several important biological processes. By constructing lncRNA-mRNA interaction networks and calculating the maximal clique centrality (MCC) value of each node in the network, we also identified two key candidate lncRNAs (CR43940 and CR42765), and two of their target genes, Sin3A and MED1, were identified as inverse dosage modulators. These results suggest that lncRNAs play an important role in the regulation of genomic imbalances. This study may deepen the understanding of the gene expression regulatory mechanisms in aneuploidy from the perspective of lncRNAs.
Collapse
Affiliation(s)
- Xinyu Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ran Yan
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Haosheng Liu
- State Key Laboratory of Earth Surface Process and Resource Ecology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Shuai Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ruixue Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Bowen Zhang
- State Key Laboratory of Earth Surface Process and Resource Ecology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Lin Sun
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
115
|
Barangi S, Hayes AW, Karimi G. The role of lncRNAs/miRNAs/Sirt1 axis in myocardial and cerebral injury. Cell Cycle 2023; 22:1062-1073. [PMID: 36703306 PMCID: PMC10081082 DOI: 10.1080/15384101.2023.2172265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 01/28/2023] Open
Abstract
In recent years, researchers have begun to realize the importance of the role of non-coding RNAs in the treatment of cancer and cardiovascular and neurological diseases. LncRNAs and miRNAs are important non-coding RNAs, which regulate gene expression and activate mRNA translation through binding to diverse target sites. Their involvement in the regulation of protein function and the modulation of physiological and pathological conditions continues to be investigated. Sirtuins, especially Sirt1, have a critical function in regulating a variety of physiological processes such as oxidative stress, inflammation, apoptosis, and autophagy. The lncRNAs/miRNAs/Sirt1 axis may be a novel regulatory mechanism, which is involved in the progression and/or prevention of numerous diseases. This review focuses on recent findings on the crosstalk between non-coding RNAs and Sirt1 in myocardial and cerebral injuries and may provide some insight into the development of novel approaches in the treatment of these disorders.Abbreviation: BMECs, brain microvascular endothelial cells; C2dat1, calcium/calmodulin-dependent protein kinase type II subunit delta (CAMK2D)-associated transcript 1; EPCs, endothelial progenitor cells; FOXOs, forkhead transcription factors; GAS5, growth arrest-specific 5; HAECs, human aortic endothelial cells; HAND2-AS1, HAND2 Antisense RNA 1; HIF-1α, hypoxia-inducible factor-1α; ILF3-AS1, interleukin enhancer-binding factor 3-antisense RNA 1; KLF3-AS1, KLF3 antisense RNA 1; LncRNA, long noncoding RNA; LUADT1, Lung Adenocarcinoma Associated Transcript 1; MALAT1, Metastasis-associated lung adenocarcinoma transcript 1; miRNA, microRNA; NEAT1, nuclear enriched abundant transcript 1; NF-κB, nuclear factor kappa B; OIP5-AS1, Opa-interacting protein 5-antisense transcript 1; Sirt1-AS, Sirt1 Antisense RNA; SNHG7, small nucleolar RNA host gene 7; SNHG8, small nucleolar RNA host gene 8; SNHG12, small nucleolar RNA host gene 12; SNHG15, small nucleolar RNA host gene 15; STAT3, signal transducers and activators of transcription 3; TUG1, taurine up-regulated gene 1; VSMCs, vascular smooth muscle cells; XIST, X inactive specific transcript; ZFAS1, ZNFX1 Antisense RNA 1.
Collapse
Affiliation(s)
- Samira Barangi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A. Wallace Hayes
- Michigan State University, East Lansing, MI, USA
- University of South Florida, Tampa, FL, USA
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
116
|
Schwarzenbach H, Gahan PB. Interplay between LncRNAs and microRNAs in Breast Cancer. Int J Mol Sci 2023; 24:ijms24098095. [PMID: 37175800 PMCID: PMC10179369 DOI: 10.3390/ijms24098095] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
(1) Although long noncoding RNAs (lncRNAs) are known to be precursors of microRNAs (miRNAs), they frequently act as competing endogoneous RNAs (ceRNAs), yet still their interplay with miRNA is not well known. However, their interaction with miRNAs may result in the modulation of miRNA action. (2) To determine the contribution of these RNA molecules in tumor resistance to chemotherapeutic drugs, it is essential to consider not only the oncogenic and tumor suppressive function of miRNAs but also the impact of lncRNAs on miRNAs. Therefore, we performed an extensive search in different databases including PubMed. (3) The present study concerns the interplay between lncRNAs and miRNAs in the regulatory post-transcriptional network and their impact on drugs used in the treatment of breast cancer. (4) Consideration of this interplay may improve the search for new drugs to circumvent chemoresistance.
Collapse
Affiliation(s)
- Heidi Schwarzenbach
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Peter B Gahan
- Fondazione "Enrico Puccinelli" Onlus, 06126 Perugia, Italy
| |
Collapse
|
117
|
Tedford E, Badya NB, Laing C, Asaoka N, Kaneko S, Filippi BM, McConkey GA. Infection-induced extracellular vesicles evoke neuronal transcriptional and epigenetic changes. Sci Rep 2023; 13:6913. [PMID: 37106020 PMCID: PMC10140046 DOI: 10.1038/s41598-023-34074-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/24/2023] [Indexed: 04/29/2023] Open
Abstract
Infection with the protozoan Toxoplasma gondii induces changes in neurotransmission, neuroinflammation, and behavior, yet it remains elusive how these changes come about. In this study we investigated how norepinephrine levels are altered by infection. TINEV (Toxoplasma-induced neuronal extracellular vesicles) isolated from infected noradrenergic cells down-regulated dopamine ß-hydroxylase (DBH) gene expression in human and rodent cells. Here we report that intracerebral injection of TINEVs into the brain is sufficient to induce DBH down-regulation and distrupt catecholaminergic signalling. Further, TINEV treatment induced hypermethylation upstream of the DBH gene. An antisense lncRNA to DBH was found in purified TINEV preparations. Paracrine signalling to induce transcriptional gene silencing and DNA methylation may be a common mode to regulate neurologic function.
Collapse
Affiliation(s)
- Ellen Tedford
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Norhidayah Binti Badya
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Conor Laing
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Nozomi Asaoka
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-Cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-Cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Beatrice Maria Filippi
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Glenn Alan McConkey
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
118
|
Terra Machado D, Bernardes Brustolini OJ, Côrtes Martins Y, Grivet Mattoso Maia MA, Ribeiro de Vasconcelos AT. Inference of differentially expressed genes using generalized linear mixed models in a pairwise fashion. PeerJ 2023; 11:e15145. [PMID: 37033732 PMCID: PMC10078460 DOI: 10.7717/peerj.15145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/09/2023] [Indexed: 04/05/2023] Open
Abstract
Background
Technological advances involving RNA-Seq and Bioinformatics allow quantifying the transcriptional levels of genes in cells, tissues, and cell lines, permitting the identification of Differentially Expressed Genes (DEGs). DESeq2 and edgeR are well-established computational tools used for this purpose and they are based upon generalized linear models (GLMs) that consider only fixed effects in modeling. However, the inclusion of random effects reduces the risk of missing potential DEGs that may be essential in the context of the biological phenomenon under investigation. The generalized linear mixed models (GLMM) can be used to include both effects.
Methods
We present DEGRE (Differentially Expressed Genes with Random Effects), a user-friendly tool capable of inferring DEGs where fixed and random effects on individuals are considered in the experimental design of RNA-Seq research. DEGRE preprocesses the raw matrices before fitting GLMMs on the genes and the derived regression coefficients are analyzed using the Wald statistical test. DEGRE offers the Benjamini-Hochberg or Bonferroni techniques for P-value adjustment.
Results
The datasets used for DEGRE assessment were simulated with known identification of DEGs. These have fixed effects, and the random effects were estimated and inserted to measure the impact of experimental designs with high biological variability. For DEGs’ inference, preprocessing effectively prepares the data and retains overdispersed genes. The biological coefficient of variation is inferred from the counting matrices to assess variability before and after the preprocessing. The DEGRE is computationally validated through its performance by the simulation of counting matrices, which have biological variability related to fixed and random effects. DEGRE also provides improved assessment measures for detecting DEGs in cases with higher biological variability. We show that the preprocessing established here effectively removes technical variation from those matrices. This tool also detects new potential candidate DEGs in the transcriptome data of patients with bipolar disorder, presenting a promising tool to detect more relevant genes.
Conclusions
DEGRE provides data preprocessing and applies GLMMs for DEGs’ inference. The preprocessing allows efficient remotion of genes that could impact the inference. Also, the computational and biological validation of DEGRE has shown to be promising in identifying possible DEGs in experiments derived from complex experimental designs. This tool may help handle random effects on individuals in the inference of DEGs and presents a potential for discovering new interesting DEGs for further biological investigation.
Collapse
Affiliation(s)
- Douglas Terra Machado
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil
| | | | - Yasmmin Côrtes Martins
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
119
|
Camargo-Forero N, Orozco-Arias S, Perez Agudelo JM, Guyot R. HERV-K (HML-2) insertion polymorphisms in the 8q24.13 region and their potential etiological associations with acute myeloid leukemia. Arch Virol 2023; 168:125. [PMID: 36988711 DOI: 10.1007/s00705-023-05747-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 02/03/2023] [Indexed: 03/30/2023]
Abstract
Human endogenous retroviruses (HERVs) are LTR retrotransposons that are present in the human genome. Among them, members of the HERV-K (HML-2) group are suspected to play a role in the development of different types of cancer, including lung, ovarian, and prostate cancer, as well as leukemia. Acute myeloid leukemia (AML) is an important disease that causes 1% of cancer deaths in the United States and has a survival rate of 28.7%. Here, we describe a method for assessing the statistical association between HERV-K (HML-2) transposable element insertion polymorphisms (or TIPs) and AML, using whole-genome sequencing and read mapping using TIP_finder software. Our results suggest that 101 polymorphisms involving HERV-K (HML-2) elements were correlated with AML, with a percentage between 44.4 to 56.6%, most of which (70) were located in the region from 8q24.13 to 8q24.21. Moreover, it was found that the TRIB1, LRATD2, POU5F1B, MYC, PCAT1, PVT1, and CCDC26 genes could be displaced or fragmented by TIPs. Furthermore, a general method was devised to facilitate analysis of the correlation between transposable element insertions and specific diseases. Finally, although the relationship between HERV-K (HML-2) TIPs and AML remains unclear, the data reported in this study indicate a statistical correlation, as supported by the χ2 test with p-values < 0.05.
Collapse
Affiliation(s)
- Nicolás Camargo-Forero
- School of Biology, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| | - Simon Orozco-Arias
- Department of Computer Science, Universidad Autónoma de Manizales, Manizales, Caldas, Colombia.
- Department of Systems and Informatics, Universidad de Caldas, Manizales, Caldas, Colombia.
| | | | - Romain Guyot
- UMR DIADE, Université de Montpellier, Institut de recherche pour le développement, CIRAD, Montpellier, France
- Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales, Caldas, Colombia
| |
Collapse
|
120
|
Xie K, Yan Z, Yang Q, Huang X, Wang P, Gao X, Li J, Gun S. lnc001776 Affects CPB2 Toxin-Induced Excessive Injury of Porcine Intestinal Epithelial Cells via Activating JNK/NF-kB Pathway through ssc-let-7i-5p/IL-6 Axis. Cells 2023; 12:cells12071036. [PMID: 37048109 PMCID: PMC10093645 DOI: 10.3390/cells12071036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Piglet diarrhea caused by Clostridium perfringens (C. perfringens) type C (CpC) seriously endangers the development of the pig production industry. C. perfringens beta2 (CPB2) toxin is a virulent toxin produced by CpC. Long non-coding RNAs (lncRNAs) are key regulators in the immune inflammatory response to bacterial infection. Nevertheless, the functional mechanism of lncRNAs in bacterial piglet diarrhea is unclear. Herein, a novel lncRNA lnc001776 expression was confirmed to be substantially elevated in the ileum tissue of CpC-infected diarrhea piglets and in CPB2 toxin-treated porcine small intestinal epithelial cells (IPEC-J2). lnc001776 knockdown restrained CPB2 toxin-induced apoptosis, inflammatory injury, barrier dysfunction and activation of JNK/NF-kB pathway in IPEC-J2 cells. Additionally, ssc-let-7i-5p was identified as sponge for lnc001776. Overexpression of ssc-let-7i-5p repressed CPB2-induced injury in IPEC-J2 cells. Interleukin 6 (IL-6), a target gene of ssc-let-7i-5p, was enhanced in CPB2 toxin-treated IPEC-J2 cells. Rescue experiments demonstrated that a ssc-let-7i-5p mimic reversed the effect of lnc001776 overexpression on CPB2 toxin-induced IPEC-J2 cell injury and JNK/NF-kB pathway, whereas IL-6 overexpression partially restored the impact of lnc001776. Overall, lnc001776 overexpression exacerbated CPB2 toxin-induced IPEC-J2 cell damage by sponging ssc-let-7i-5p to regulate IL-6 to activate JNK/NF-kB pathway, indicating that lnc001776 could be a key target for piglet resistance to CpC-induced diarrhea.
Collapse
|
121
|
Guardia T, Zhang Y, Thompson KN, Lee SJ, Martin SS, Konstantopoulos K, Kontrogianni-Konstantopoulos A. OBSCN restoration via OBSCN-AS1 long-noncoding RNA CRISPR-targeting suppresses metastasis in triple-negative breast cancer. Proc Natl Acad Sci U S A 2023; 120:e2215553120. [PMID: 36877839 PMCID: PMC10089184 DOI: 10.1073/pnas.2215553120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/23/2023] [Indexed: 03/08/2023] Open
Abstract
Mounting evidence implicates the giant, cytoskeletal protein obscurin (720 to 870 kDa), encoded by the OBSCN gene, in the predisposition and development of breast cancer. Accordingly, prior work has shown that the sole loss of OBSCN from normal breast epithelial cells increases survival and chemoresistance, induces cytoskeletal alterations, enhances cell migration and invasion, and promotes metastasis in the presence of oncogenic KRAS. Consistent with these observations, analysis of Kaplan-Meier Plotter datasets reveals that low OBSCN levels correlate with significantly reduced overall and relapse-free survival in breast cancer patients. Despite the compelling evidence implicating OBSCN loss in breast tumorigenesis and progression, its regulation remains elusive, limiting any efforts to restore its expression, a major challenge given its molecular complexity and gigantic size (~170 kb). Herein, we show that OBSCN-Antisense RNA 1 (OBSCN-AS1), a novel nuclear long-noncoding RNA (lncRNA) gene originating from the minus strand of OBSCN, and OBSCN display positively correlated expression and are downregulated in breast cancer biopsies. OBSCN-AS1 regulates OBSCN expression through chromatin remodeling involving H3 lysine 4 trimethylation enrichment, associated with open chromatin conformation, and RNA polymerase II recruitment. CRISPR-activation of OBSCN-AS1 in triple-negative breast cancer cells effectively and specifically restores OBSCN expression and markedly suppresses cell migration, invasion, and dissemination from three-dimensional spheroids in vitro and metastasis in vivo. Collectively, these results reveal the previously unknown regulation of OBSCN by an antisense lncRNA and the metastasis suppressor function of the OBSCN-AS1/OBSCN gene pair, which may be used as prognostic biomarkers and/or therapeutic targets for metastatic breast cancer.
Collapse
Affiliation(s)
- Talia Guardia
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD21201
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD21201
| | - Yuqi Zhang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD21218
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD21218
| | - Keyata N. Thompson
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD21201
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD21201
| | - Se Jong Lee
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD21218
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD21218
| | - Stuart S. Martin
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD21201
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD21201
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD21218
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD21218
| | - Aikaterini Kontrogianni-Konstantopoulos
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD21201
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD21201
| |
Collapse
|
122
|
Treeck O, Haerteis S, Ortmann O. Non-Coding RNAs Modulating Estrogen Signaling and Response to Endocrine Therapy in Breast Cancer. Cancers (Basel) 2023; 15:cancers15061632. [PMID: 36980520 PMCID: PMC10046587 DOI: 10.3390/cancers15061632] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
The largest part of human DNA is transcribed into RNA that does not code for proteins. These non-coding RNAs (ncRNAs) are key regulators of protein-coding gene expression and have been shown to play important roles in health, disease and therapy response. Today, endocrine therapy of ERα-positive breast cancer (BC) is a successful treatment approach, but resistance to this therapy is a major clinical problem. Therefore, a deeper understanding of resistance mechanisms is important to overcome this resistance. An increasing amount of evidence demonstrate that ncRNAs affect the response to endocrine therapy. Thus, ncRNAs are considered versatile biomarkers to predict or monitor therapy response. In this review article, we intend to give a summary and update on the effects of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) on estrogen signaling in BC cells, this pathway being the target of endocrine therapy, and their role in therapy resistance. For this purpose, we reviewed articles on these topics listed in the PubMed database. Finally, we provide an assessment regarding the clinical use of these ncRNA types, particularly their circulating forms, as predictive BC biomarkers and their potential role as therapy targets to overcome endocrine resistance.
Collapse
Affiliation(s)
- Oliver Treeck
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
- Correspondence:
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
123
|
Rastad H, Mozafary Bazargany MH, Samimisedeh P, Farahani M, Hashemnejad M, Moghadam S, Khodaparast Z, Shams R, Seifi-Alan M. Clinicopathological and prognostic value of lncRNA TPT1-AS1 in cancer: a systematic review study and meta-analysis. Pathol Res Pract 2023; 245:154403. [PMID: 37004278 DOI: 10.1016/j.prp.2023.154403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
INTRODUCTION Aberrant expression of lncRNAs in cancer cells can impact their key phenotypes. We aimed to summarize available evidence on clinicopathological and prognostic value of lncRNA TPT1-AS1 in cancer. METHODS A systematic search was performed on Medline and Embase databases using relevant key terms covering lncRNA TPT1-AS1, cancer, and clinical outcomes. The effect size estimates and their 95 % confidence interval (CI) were pooled using random-effects models. Meta- analyses were conducted using STATA 16.0 software. RESULTS Seventeen articles met our eligibility criteria. Tumor tissue compared to normal tissue showed increased level of lncRNA TPT1-AS1 expression (pooled standardized mean difference (95 % CI): 0.65 (0.52-0.79)). Overexpression of this lncRNA was a significant predictor for poor prognosis (Pooled log-rank test P-value < 0.001); in patients with high-level of lncRNA TPT1-AS1, the risk of death at five years was 1.40 times greater than their counterparts. The pooled Odds ratios for association lncRNA TPT1-AS1 with tumor stage, tumor size, and lymph node metastasis were 1.94 (95 % CI: 0.90-4.19, 8 studies, I2 = 79.6 %), 2.33 (95 % CI: 1.31-4.14, 5 studies, I2 = 40.0 %), and 1.89 (95 % CI: 1.08-3.36, 5 studies, I2 = 61.7 %), respectively. Regarding the identified potential mechanisms, lncRNA TPT1-AS1 plays a role in cancer growth mainly by sponging miRNAs and regulating their downstream targets or controlling the expression of key cell cycle regulators. CONCLUSION In cancer patients, elevated expression of lncRNA TPT1-AS1 might be associated with a shorter Overall Survival, advanced stages, larger tumor size, and lymph node metastasis.
Collapse
Affiliation(s)
- Hadith Rastad
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Parham Samimisedeh
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Masoumeh Farahani
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Hashemnejad
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Somaye Moghadam
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Khodaparast
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roshanak Shams
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mahnaz Seifi-Alan
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
124
|
Xuan P, Zhao Y, Cui H, Zhan L, Jin Q, Zhang T, Nakaguchi T. Semantic Meta-Path Enhanced Global and Local Topology Learning for lncRNA-Disease Association Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:1480-1491. [PMID: 36173783 DOI: 10.1109/tcbb.2022.3209571] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Since abnormal expression of long non-coding RNAs (lncRNAs) is associated with various human diseases, identifying disease-related lncRNAs helps reveal the pathogenesis of diseases. Existing methods for lncRNA-disease association prediction mainly focus on multi-sourced data related to lncRNAs and diseases. The rich semantic information of meta-paths, composed of multiple kinds of connections between lncRNA and disease nodes, is neglected. We propose a new prediction method, MGLDA, to encode and integrate the semantics of multiple meta-paths, the global topology of heterogeneous graph, and pairwise attributes of lncRNA and disease nodes. First, a tri-layer heterogeneous graph is constructed to associate multi-sourced data across the lncRNA, disease, and miRNA nodes. Afterwards, we establish multiple meta-paths connecting the lncRNA and disease nodes to derive and denote various semantics. Each meta-path contains its specific semantics formulated by an embedding strategy, and each embedding covers local topology formed by the diverse semantic connections among the lncRNA, disease, and miRNA nodes. We construct multiple graph convolutional autoencoders (GCA) with topology-level attention to learn global and multiple local topologies from the tri-layer graph and each meta-path, respectively. The topology-level attention mechanism can learn the importance of various global and local topologies for adaptive pairwise topology fusion. Finally, a convolutional autoencoder learns the attribute representations of lncRNA-disease pairs, which integrates the learnt detailed and representative pairwise features. Experimental results show that MGLDA outperforms other state-of-the-art prediction methods in comparison and retrieves more real lncRNA-disease associations in the top-ranked candidates. The ablation study also demonstrates the important contributions of the local and global topology learning, and pairwise attribute learning. Case studies on three diseases further demonstrate MGLDA's ability to identify potential disease-related lncRNAs.
Collapse
|
125
|
Dwivedi M, Ghosh D, Saha A, Hasan S, Jindal D, Yadav H, Yadava A, Dwivedi M. Biochemistry of exosomes and their theranostic potential in human diseases. Life Sci 2023; 315:121369. [PMID: 36639052 DOI: 10.1016/j.lfs.2023.121369] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023]
Abstract
Exosomes are classified as special extracellular vesicles in the eukaryotic system having diameters ranging from 30 to 120 nm. These vesicles carry various endogenous molecules including DNA, mRNA, microRNA, circular RNA, and proteins, crucial for numerous metabolic reactions and can be proposed as therapeutic or diagnostic targets for several disorders. The donor exosomes release their content to recipient cells and further establish the significant intercellular communication showing biological effects by triggering environmental alterations. Exosomes derived from mesenchymal and dendritic cells have demonstrated their therapeutic potential against organ injury. Yet, various intricacies are involved in exosomal transport and its inclusion in cancer and other disease pathogenesis needs to be explored. The exosomes represent profound potential as diagnostic biomarkers and therapeutic carriers in various pathophysiological conditions such as neurodegenerative diseases, chronic cancers, infectious diseases, female reproductive diseases and cardiovascular diseases. In the current study, we demonstrate the advancements in the implication of exosomes as one of the irrefutable prognostic biological targets in human health and diseases.
Collapse
Affiliation(s)
- Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India.
| | - Diya Ghosh
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, West Bengal, India
| | - Anwesha Saha
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, West Bengal, India
| | - Saba Hasan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| | - Divya Jindal
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Hitendra Yadav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| | - Anuradha Yadava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| | - Medha Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| |
Collapse
|
126
|
Heidarzadehpilehrood R, Pirhoushiaran M, Binti Osman M, Abdul Hamid H, Ling KH. Weighted Gene Co-Expression Network Analysis (WGCNA) Discovered Novel Long Non-Coding RNAs for Polycystic Ovary Syndrome. Biomedicines 2023; 11:biomedicines11020518. [PMID: 36831054 PMCID: PMC9953234 DOI: 10.3390/biomedicines11020518] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) affects reproductive-age women. This condition causes infertility, insulin resistance, obesity, and heart difficulties. The molecular basis and mechanism of PCOS might potentially generate effective treatments. Long non-coding RNAs (lncRNAs) show control over multifactorial disorders' growth and incidence. Numerous studies have emphasized its significance and alterations in PCOS. We used bioinformatic methods to find novel dysregulated lncRNAs in PCOS. To achieve this objective, the gene expression profile of GSE48301, comprising PCOS patients and normal control tissue samples, was evaluated using the R limma package with the following cut-off criterion: p-value < 0.05. Firstly, weighted gene co-expression network analysis (WGCNA) was used to determine the co-expression genes of lncRNAs; subsequently, hub gene identification and pathway enrichment analysis were used. With the defined criteria, nine novel dysregulated lncRNAs were identified. In WGCNA, different colors represent different modules. In the current study, WGCNA resulted in turquoise, gray, blue, and black co-expression modules with dysregulated lncRNAs. The pathway enrichment analysis of these co-expressed modules revealed enrichment in PCOS-associated pathways, including gene expression, signal transduction, metabolism, and apoptosis. In addition, CCT7, EFTUD2, ESR1, JUN, NDUFAB1, CTTNB1, GRB2, and CTNNB1 were identified as hub genes, and some of them have been investigated in PCOS. This study uncovered nine novel PCOS-related lncRNAs. To confirm how these lncRNAs control translational modification in PCOS, functional studies are required.
Collapse
Affiliation(s)
- Roozbeh Heidarzadehpilehrood
- Department of Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Maryam Pirhoushiaran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Malina Binti Osman
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Habibah Abdul Hamid
- Department of Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: (H.A.H.); (K.-H.L.)
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: (H.A.H.); (K.-H.L.)
| |
Collapse
|
127
|
Zhang Z, Shi S, Li J, Costa M. Long Non-Coding RNA MEG3 in Metal Carcinogenesis. TOXICS 2023; 11:toxics11020157. [PMID: 36851033 PMCID: PMC9962265 DOI: 10.3390/toxics11020157] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 06/06/2023]
Abstract
Most transcripts from human genomes are non-coding RNAs (ncRNAs) that are not translated into proteins. ncRNAs are divided into long (lncRNAs) and small non-coding RNAs (sncRNAs). LncRNAs regulate their target genes both transcriptionally and post-transcriptionally through interactions with proteins, RNAs, and DNAs. Maternally expressed gene 3 (MEG3), a lncRNA, functions as a tumor suppressor. MEG3 regulates cell proliferation, cell cycle, apoptosis, hypoxia, autophagy, and many other processes involved in tumor development. MEG3 is downregulated in various cancer cell lines and primary human cancers. Heavy metals, such as hexavalent chromium (Cr(VI)), arsenic, nickel, and cadmium, are confirmed human carcinogens. The exposure of cells to these metals causes a variety of cancers. Among them, lung cancer is the one that can be induced by exposure to all of these metals. In vitro studies have demonstrated that the chronic exposure of normal human bronchial epithelial cells (BEAS-2B) to these metals can cause malignant cell transformation. Metal-transformed cells have the capability to cause an increase in cell proliferation, resistance to apoptosis, elevated migration and invasion, and properties of cancer stem-like cells. Studies have revealed that MEG is downregulated in Cr(VI)-transformed cells, nickel-transformed cells, and cadmium (Cd)-transformed cells. The forced expression of MEG3 reduces the migration and invasion of Cr(VI)-transformed cells through the downregulation of the neuronal precursor of developmentally downregulated protein 9 (NEDD9). MEG3 suppresses the malignant cell transformation of nickel-transformed cells. The overexpression of MEG3 decreases Bcl-xL, causing reduced apoptosis resistance in Cd-transformed cells. This paper reviews the current knowledge of lncRNA MEG3 in metal carcinogenesis.
Collapse
|
128
|
Zhang Q, Ren H, Ge L, Zhang W, Song F, Huang P. A review on the role of long non-coding RNA and microRNA network in clear cell renal cell carcinoma and its tumor microenvironment. Cancer Cell Int 2023; 23:16. [PMID: 36732762 PMCID: PMC9893571 DOI: 10.1186/s12935-023-02861-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Renal cell carcinoma (RCC) is the second lethal urogenital malignancy with the increasing incidence and mortality in the world. Clear cell renal cell carcinoma (ccRCC) is one major subtype of RCC, which accounts for about 70 to 80% of all RCC cases. Although many innovative therapeutic options have emerged during the last few decades, the efficacy of these treatments for ccRCC patients is very limited. To date, the prognosis of patients with advanced or metastatic ccRCC is still poor. The 5-year survival rate of these patients remains less than 10%, which mainly attributes to the complexity and heterogeneity of the tumor microenvironment (TME). It has been demonstrated that long non-coding RNAs (lncRNAs) perform an indispensable role in the initiation and progression of various tumors. They mostly function as sponges for microRNAs (miRNAs) to regulate the expression of target genes, finally influence the growth, metastasis, apoptosis, drug resistance and TME of tumor cells. However, the role of lncRNA/miRNA/mRNA axis in the TME of ccRCC remains poorly understood. In this review, we summarized the biological function of lncRNA/miRNA/mRNA axis in the pathogenesis of ccRCC, then discussed how lncRNA/miRNA/mRNA axis regulate the TME, finally highlighted their potential application as novel biomarkers and therapeutic targets for ccRCC.
Collapse
Affiliation(s)
- Qi Zhang
- grid.469325.f0000 0004 1761 325XDepartment of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China ,Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Hao Ren
- grid.469325.f0000 0004 1761 325XDepartment of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China ,Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Luqi Ge
- grid.469325.f0000 0004 1761 325XDepartment of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China ,Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Wen Zhang
- grid.469325.f0000 0004 1761 325XDepartment of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Feifeng Song
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China ,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China ,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
129
|
Anbari DM, Al-Harithy RN. Ghrelin intronic lncRNAs, lnc-GHRL-3:2 and lnc-GHRL-3:3, as novel biomarkers in type 2 diabetes mellitus. Arch Physiol Biochem 2023; 129:241-245. [PMID: 32921167 DOI: 10.1080/13813455.2020.1817095] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND We aim to identify circulating lncRNAs located in the region of the ghrelin (GHRL) gene that play a role in the development of T2DM. METHODS Bioinformatic tool was used to identify candidates GHRL-lncRNAs. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to compare the expression levels of selected lncRNAs on diabetic patients and non-diabetic controls.Receiver operating characteristic (ROC) curve analysis was performed to evaluate the discriminatory power of selected GHRL-lncRNAs. RESULTS The bioinformatic analysis predicted three antisense and eight sense-intronic GHRL- lncRNAs. Two differentially expressed GHRL-lncRNAs were detected in diabetic patients. The expression levels of lnc-GHRL-3:2, lnc-GHRL-3:3, and the GHRL mRNA were significantly (p ≤ .0001) lower in the diabetic patients. ROC analysis showed that the area under the curve (AUC) value was 0.93 for lnc-GHRL-3:2 and 0.90 for lnc-GHRL-3:3. CONCLUSION lnc-GHRL-3:2 and lnc-GHRL-3:3 are novel biomarkers and might play a regulatory role in T2DM pathogenesis.
Collapse
Affiliation(s)
- Dalia M Anbari
- Department of Biochemistry, King AbdulAziz University, Jeddah, Saudi Arabia
| | | |
Collapse
|
130
|
Zhang X, Yu H, Wang N, Li C. Comprehensive analysis of long noncoding RNAs and lncRNA-mRNA networks in snakehead (Channa argus) response to Nocardia seriolae infection. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108558. [PMID: 36690266 DOI: 10.1016/j.fsi.2023.108558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Evidence has been demonstrated that lncRNAs are involved in a variety of immune responses in vertebrate. It has been demonstrated that immune-related lncRNAs play vital functions in immune regulation against infections in teleost. Nocardia seriolae, as one of the Gram-positive bacteria, can cause chronic systemic granulomatous disease for snakehead (Channa argus). However, how lncRNAs function in the immune regulation process once snakehead was infected with N. seriolae infection has not been studied so far. Accordingly, transcription landscapes of lncRNAs and mRNAs in snakehead were investigated. A total of 1,991 lncRNA were obtained. Totally, we predicted 57,584 co-expression and 16,047 co-location lncRNA-mRNA pairs. To further analyze the potential function of these lncRNAs, GO enrichment analysis and KEGG signal pathways were performed on the target mRNAs of these differently expressed lncRNAs, suggesting that lncRNAs may play essential roles in modulating mRNA expression levels, and subsequently trigger downstream immune signaling pathways to regulate the immune response in snakehead. In addition, 9 DEmRNA and 3 lncRNAs were randomly selected for qRT-PCR analyzed, which confirmed the accuracy of transcriptome data. These results can provide novel knowledge about lncRNAs in immune responses process in snakehead, and can serve as important resources for further investigating the roles of lncRNAs during pathogen infections in teleost.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Haohui Yu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ningning Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
131
|
Vosough P, Khatami SH, Hashemloo A, Tajbakhsh A, Karimi-Fard F, Taghvimi S, Taheri-Anganeh M, Soltani Fard E, Savardashtaki A, Movahedpour A. Exosomal lncRNAs in gastrointestinal cancer. Clin Chim Acta 2023; 540:117216. [PMID: 36592922 DOI: 10.1016/j.cca.2022.117216] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Gastrointestinal cancer (GIC) remains a leading cause of morbidity and mortality worldwide. Unfortunately, these cancers are diagnosed in advanced metastatic stages due to lack of reliable biomarkers that are sufficiently specific and sensitive in early disease. There has been growing evidence that circulating exosomes can be used to diagnose cancer non-invasively with limited risks and side effects. Furthermore, exosomal long non-coding RNAs (lncRNAs) are emerging as a new class of promising biomarkers in cancer. This review provides an overview of the extraction and detection of exosomal lncRNAs with a focus on their potential role in GIC.
Collapse
Affiliation(s)
- Parisa Vosough
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sina Taghvimi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Elahe Soltani Fard
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | |
Collapse
|
132
|
Transcriptomic Analysis of Long Non-Coding RNA during Candida albicans Infection. Genes (Basel) 2023; 14:genes14020251. [PMID: 36833177 PMCID: PMC9956080 DOI: 10.3390/genes14020251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Candida albicans is one of the most commonly found species in fungal infections. Due to its clinical importance, molecular aspects of the host immune defense against the fungus are of interest to biomedical sciences. Long non-coding RNAs (lncRNAs) have been investigated in different pathologies and gained widespread attention regarding their role as gene regulators. However, the biological processes in which most lncRNAs perform their function are still unclear. This study investigates the association between lncRNAs with host response to C. albicans using a public RNA-Seq dataset from lung samples of female C57BL/6J wild-type Mus musculus with induced C. albicans infection. The animals were exposed to the fungus for 24 h before sample collection. We selected lncRNAs and protein-coding genes related to the host immune response by combining the results from different computational approaches used for gene selection: differential expression gene analysis, co-expression genes network analysis, and machine learning-based gene selection. Using a guilt by association strategy, we inferred connections between 41 lncRNAs and 25 biological processes. Our results indicated that nine up-regulated lncRNAs were associated with biological processes derived from the response to wounding: 1200007C13Rik, 4833418N02Rik, Gm12840, Gm15832, Gm20186, Gm38037, Gm45774, Gm4610, Mir22hg, and Mirt1. Additionally, 29 lncRNAs were related to genes involved in immune response, while 22 lncRNAs were associated with processes related to reactive species production. These results support the participation of lncRNAs during C. albicans infection, and may contribute to new studies investigating lncRNA functions in the immune response.
Collapse
|
133
|
Lv N, Shen S, Chen Q, Tong J. Long noncoding RNAs: glycolysis regulators in gynaecologic cancers. Cancer Cell Int 2023; 23:4. [PMID: 36639695 PMCID: PMC9838043 DOI: 10.1186/s12935-023-02849-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
The three most common gynaecologic cancers that seriously threaten female lives and health are ovarian cancer, cervical cancer, and endometrial cancer. Glycolysis plays a vital role in gynaecologic cancers. Several long noncoding RNAs (lncRNAs) are known to function as oncogenic molecules. LncRNAs impact downstream target genes by acting as ceRNAs, guides, scaffolds, decoys, or signalling molecules. However, the role of glycolysis-related lncRNAs in regulating gynaecologic cancers remains poorly understood. In this review, we emphasize the functional roles of many lncRNAs that have been found to promote glycolysis in gynaecologic cancers and discuss reasonable strategies for future research.
Collapse
Affiliation(s)
- Nengyuan Lv
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| | - Siyi Shen
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| | - Qianying Chen
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| | - Jinyi Tong
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| |
Collapse
|
134
|
Dutta S, Zhu Y, Han Y, Almuntashiri S, Wang X, Zhang D. Long Noncoding RNA: A Novel Insight into the Pathogenesis of Acute Lung Injury. J Clin Med 2023; 12:604. [PMID: 36675533 PMCID: PMC9861694 DOI: 10.3390/jcm12020604] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), represent an acute stage of lung inflammation where the alveolar epithelium loses its functionality. ALI has a devastating impact on the population as it not only has a high rate of incidence, but also has high rates of morbidity and mortality. Due to the involvement of multiple factors, the pathogenesis of ALI is complex and is not fully understood yet. Long noncoding RNAs (lncRNAs) are a group of non-protein-coding transcripts longer than 200 nucleotides. Growing evidence has shown that lncRNAs have a decisive role in the pathogenesis of ALI. LncRNAs can either promote or hinder the development of ALI in various cell types in the lungs. Mechanistically, current studies have found that lncRNAs play crucial roles in the pathogenesis of ALI via the regulation of small RNAs (e.g., microRNAs) or downstream proteins. Undoubtedly, lncRNAs not only have the potential to reveal the underlying mechanisms of ALI pathogenesis but also serve as diagnostic and therapeutic targets for the therapy of ALI.
Collapse
Affiliation(s)
- Saugata Dutta
- Clinical and Experimental Therapeutics, Charlie Norwood VA Medical Center, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
| | - Yin Zhu
- Clinical and Experimental Therapeutics, Charlie Norwood VA Medical Center, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
| | - Yohan Han
- Clinical and Experimental Therapeutics, Charlie Norwood VA Medical Center, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
| | - Sultan Almuntashiri
- Clinical and Experimental Therapeutics, Charlie Norwood VA Medical Center, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 55473, Saudi Arabia
| | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, Charlie Norwood VA Medical Center, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
| | - Duo Zhang
- Clinical and Experimental Therapeutics, Charlie Norwood VA Medical Center, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
135
|
Zhou G, Fichorova RN, Holzman C, Chen B, Chang C, Kasten EP, Hoffmann HM. Placental circadian lincRNAs and spontaneous preterm birth. Front Genet 2023; 13:1051396. [PMID: 36712876 PMCID: PMC9874002 DOI: 10.3389/fgene.2022.1051396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have a much higher cell- and/or tissue-specificity compared to mRNAs in most cases, making them excellent candidates for therapeutic applications to reduce off-target effects. Placental long non-coding RNAs have been investigated in the pathogenesis of preeclampsia (often causing preterm birth (PTB)), but less is known about their role in preterm birth. Preterm birth occurs in 11% of pregnancies and is the most common cause of death among infants in the world. We recently identified that genes that drive circadian rhythms in cells, termed molecular clock genes, are deregulated in maternal blood of women with spontaneous PTB (sPTB) and in the placenta of women with preeclampsia. Next, we focused on circadian genes-correlated long intergenic non-coding RNAs (lincRNAs, making up most of the long non-coding RNAs), designated as circadian lincRNAs, associated with sPTB. We compared the co-altered circadian transcripts-correlated lincRNAs expressed in placentas of sPTB and term births using two published independent RNAseq datasets (GSE73712 and GSE174415). Nine core clock genes were up- or downregulated in sPTB versus term birth, where the RORA transcript was the only gene downregulated in sPTB across both independent datasets. We found that five circadian lincRNAs (LINC00893, LINC00265, LINC01089, LINC00482, and LINC00649) were decreased in sPTB vs term births across both datasets (p ≤ .0222, FDR≤.1973) and were negatively correlated with the dataset-specific clock genes-based risk scores (correlation coefficient r = -.65 ∼ -.43, p ≤ .0365, FDR≤.0601). Gene set variation analysis revealed that 65 pathways were significantly enriched by these same five differentially expressed lincRNAs, of which over 85% of the pathways could be linked to immune/inflammation/oxidative stress and cell cycle/apoptosis/autophagy/cellular senescence. These findings may improve our understanding of the pathogenesis of spontaneous preterm birth and provide novel insights into the development of potentially more effective and specific therapeutic targets against sPTB.
Collapse
Affiliation(s)
- Guoli Zhou
- Clinical and Translational Sciences Institute, Michigan State University, East Lansing, MI, United States,*Correspondence: Guoli Zhou, ; Hanne M. Hoffmann,
| | - Raina N. Fichorova
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Claudia Holzman
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
| | - Bin Chen
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI, United States
| | - Chi Chang
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
| | - Eric P. Kasten
- Clinical and Translational Sciences Institute, Michigan State University, East Lansing, MI, United States,Department of Radiology, Michigan State University, East Lansing, MI, United States
| | - Hanne M. Hoffmann
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States,*Correspondence: Guoli Zhou, ; Hanne M. Hoffmann,
| |
Collapse
|
136
|
Tantray I, Ojha R, Sharma AP. Non-coding RNA and autophagy: Finding novel ways to improve the diagnostic management of bladder cancer. Front Genet 2023; 13:1051762. [PMID: 36685879 PMCID: PMC9845264 DOI: 10.3389/fgene.2022.1051762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
Major fraction of the human genome is transcribed in to the RNA but is not translated in to any specific functional protein. These transcribed but not translated RNA molecules are called as non-coding RNA (ncRNA). There are thousands of different non-coding RNAs present inside the cells, each regulating different cellular pathway/pathways. Over the last few decades non-coding RNAs have been found to be involved in various diseases including cancer. Non-coding RNAs are reported to function both as tumor enhancer and/or tumor suppressor in almost each type of cancer. Urothelial carcinoma of the urinary bladder is the second most common urogenital malignancy in the world. Over the last few decades, non-coding RNAs were demonstrated to be linked with bladder cancer progression by modulating different signalling pathways and cellular processes such as autophagy, metastasis, drug resistance and tumor proliferation. Due to the heterogeneity of bladder cancer cells more in-depth molecular characterization is needed to identify new diagnostic and treatment options. This review emphasizes the current findings on non-coding RNAs and their relationship with various oncological processes such as autophagy, and their applicability to the pathophysiology of bladder cancer. This may offer an understanding of evolving non-coding RNA-targeted diagnostic tools and new therapeutic approaches for bladder cancer management in the future.
Collapse
Affiliation(s)
- Ishaq Tantray
- School of Medicine, Department of Pathology, Stanford University, Stanford, CA, United States
| | - Rani Ojha
- Department of Urology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India,*Correspondence: Rani Ojha, ; Aditya P. Sharma,
| | - Aditya P. Sharma
- Department of Urology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India,*Correspondence: Rani Ojha, ; Aditya P. Sharma,
| |
Collapse
|
137
|
Fernandes JCR, Gonçalves ANA, Floeter-Winter LM, Nakaya HI, Muxel SM. Comparative transcriptomic analysis of long noncoding RNAs in Leishmania-infected human macrophages. Front Genet 2023; 13:1051568. [PMID: 36685903 PMCID: PMC9845402 DOI: 10.3389/fgene.2022.1051568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/25/2022] [Indexed: 01/05/2023] Open
Abstract
It is well established that infection with Leishmania alters the host cell's transcriptome. Since mammalian cells have multiple mechanisms to control gene expression, different molecules, such as noncoding RNAs, can be involved in this process. MicroRNAs have been extensively studied upon Leishmania infection, but whether long noncoding RNAs (lncRNAs) are also altered in macrophages is still unexplored. We performed RNA-seq from THP-1-derived macrophages infected with Leishmania amazonensis (La), L. braziliensis (Lb), and L. infantum (Li), investigating a previously unappreciated fraction of macrophage transcriptome. We found that more than 24% of the total annotated transcripts and 30% of differentially expressed (DE) RNAs in Leishmania-infected macrophage correspond to lncRNAs. LncRNAs and protein coding RNAs with altered expression are similar among macrophages infected with the Leishmania species. Still, some species-specific alterations could occur due to distinct pathophysiology in which Li infection led to a more significant number of exclusively DE RNAs. The most represented classes among DE lncRNAs were intergenic and antisense lncRNAs. We also found enrichment for immune response-related pathways in the DE protein coding RNAs, as well as putative targets of the lncRNAs. We performed a coexpression analysis to explore potential cis regulation of coding and antisense noncoding transcripts. We identified that antisense lncRNAs are similarly regulated as its neighbor protein coding genes, such as the BAALC/BAALC-AS1, BAALC/BAALC-AS2, HIF1A/HIF1A-AS1, HIF1A/HIF1A-AS3 and IRF1/IRF1-AS1 pairs, which can occur as a species-specific modulation. These findings are a novelty in the field because, to date, no study has focused on analyzing lncRNAs in Leishmania-infected macrophage. Our results suggest that lncRNAs may account for a novel mechanism by which Leishmania can control macrophage function. Further research must validate putative lncRNA targets and provide additional prospects in lncRNA function during Leishmania infection.
Collapse
Affiliation(s)
- Juliane C. R. Fernandes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil,Instituto de Medicina Tropical da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Lucile M. Floeter-Winter
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | - Sandra M. Muxel
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil,*Correspondence: Sandra M. Muxel,
| |
Collapse
|
138
|
Tumolo MR, Scoditti E, Guarino R, Grassi T, Bagordo F, Sabina S. MIR-29A-3P, MIR-29C-3P, MIR-146B-5P AND MIR-150-5P, Their Target Genes and lncrnas in HIV Infection: A Bioinformatic Study. Curr HIV Res 2023; 21:128-139. [PMID: 37226785 DOI: 10.2174/1570162x21666230524151328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 05/26/2023]
Abstract
INTRODUCTION Increasing evidence suggests that microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) have emerged as attractive targets in viral infections, including Human immunodeficiency virus (HIV). OBJECTIVE To deepen the understanding of the molecular mechanisms that lead to HIV and provide potential targets for the future development of molecular therapies for its treatment. METHODS Four miRNAs were selected as candidates based on a previous systematic review. A combination of bioinformatic analyses was performed to identify their target genes, lncRNAs and biological processes that regulate them. RESULTS In the constructed miRNA-mRNA network, 193 gene targets are identified. These miRNAs potentially control genes from several important processes, including signal transduction and cancer. LncRNA-XIST, lncRNA-NEAT1 and lncRNA-HCG18 interact with all four miRNAs. CONCLUSION This preliminary result forms the basis for improving reliability in future studies to fully understand the role these molecules and their interactions play in HIV.
Collapse
Affiliation(s)
- Maria Rosaria Tumolo
- Department of Biological and Environmental Sciences and Technology, University of Salento, Lecce, Italy
| | - Egeria Scoditti
- Institute of Clinical Physiology, National Research Council, Branch of Lecce, Lecce, Italy
| | - Roberto Guarino
- Institute of Clinical Physiology, National Research Council, Branch of Lecce, Lecce, Italy
| | - Tiziana Grassi
- Department of Biological and Environmental Sciences and Technology, University of Salento, Lecce, Italy
| | - Francesco Bagordo
- Department of Pharmacy- Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Saverio Sabina
- Institute of Clinical Physiology, National Research Council, Branch of Lecce, Lecce, Italy
| |
Collapse
|
139
|
Seelan RS, Greene RM, Pisano MM. Role of lncRNAs and circRNAs in Orofacial Clefts. Microrna 2023; 12:171-176. [PMID: 38009000 DOI: 10.2174/2211536612666230524153442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/27/2023] [Accepted: 04/25/2023] [Indexed: 11/28/2023]
Abstract
Different modes of gene regulation, such as histone modification, transcription factor binding, DNA methylation, and microRNA (miRNA) expression, are critical for the spatiotemporal expression of genes in developing orofacial tissues. Aberrant regulation in any of these modes may contribute to orofacial defects. Noncoding RNAs (ncRNAs), such as long ncRNAs (lncRNAs) and circular RNAs (circRNAs), have been shown to alter miRNA expression, and are thus emerging as novel contributors to gene regulation. Some of these appear to function as 'miRNA sponges', thereby diminishing the availability of these miRNAs to inhibit the expression of target genes. Such ncRNAs are also termed competitive endogenous RNAs (ceRNAs). Here, we examine emerging data that shed light on how lncRNAs and circRNAs may alter miRNA regulation, thus affecting orofacial development and potentially contributing to orofacial clefting.
Collapse
Affiliation(s)
- Ratnam S Seelan
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Robert M Greene
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - M Michele Pisano
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| |
Collapse
|
140
|
Lima DDS, Amichi LJA, Fernandez MA, Constantino AA, Seixas FAV. NCYPred: A Bidirectional LSTM Network With Attention for Y RNA and Short Non-Coding RNA Classification. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:557-565. [PMID: 34826297 DOI: 10.1109/tcbb.2021.3131136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Short non-coding RNAs (sncRNAs) are involved in multiple cellular processes and can be divided into dozens of classes. Among such classes, Y RNAs have been gaining attention, being essential factors for the initiation of DNA replication on vertebrates, as well as potential tumor biomarkers. Homologs have also been described in nematodes and insects, as well as related sequences in bacteria. Methods capable of accurately predicting Y RNA transcripts are lacking. In this work, we developed an attention-based LSTM network and built a classification model able to classify sncRNAs (including Y RNA) directly from nucleotide sequences. A dataset consisting of 45,447 sncRNA sequences, from a wide range of organisms, obtained from Rfam 14.3 was built. Performance evaluation demonstrated that our proposed method, NCYPred (Non-Coding/Y RNA Prediction), can accurately predict Y RNA sequences and their homologs, as well as 11 additional classes, achieving results comparable with state-of-the-art methods. We also demonstrate that applying t-SNE on learned sequence representations could be useful for sequence analysis. Our model is freely available as a web-server (https://www.gpea.uem.br/ncypred/).
Collapse
|
141
|
Duca M, Malagolini N, Dall’Olio F. The Mutual Relationship between Glycosylation and Non-Coding RNAs in Cancer and Other Physio-Pathological Conditions. Int J Mol Sci 2022; 23:ijms232415804. [PMID: 36555445 PMCID: PMC9781064 DOI: 10.3390/ijms232415804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Glycosylation, which consists of the enzymatic addition of sugars to proteins and lipids, is one of the most important post-co-synthetic modifications of these molecules, profoundly affecting their activity. Although the presence of carbohydrate chains is crucial for fine-tuning the interactions between cells and molecules, glycosylation is an intrinsically stochastic process regulated by the relative abundance of biosynthetic (glycosyltransferases) and catabolic (glycosidases) enzymes, as well as sugar carriers and other molecules. Non-coding RNAs, which include microRNAs, long non-coding RNAs and circRNAs, establish a complex network of reciprocally interacting molecules whose final goal is the regulation of mRNA expression. Likewise, these interactions are stochastically regulated by ncRNA abundance. Thus, while protein sequence is deterministically dictated by the DNA/RNA/protein axis, protein abundance and activity are regulated by two stochastic processes acting, respectively, before and after the biosynthesis of the protein axis. Consequently, the worlds of glycosylation and ncRNA are closely interconnected and mutually interacting. In this paper, we will extensively review the many faces of the ncRNA-glycosylation interplay in cancer and other physio-pathological conditions.
Collapse
|
142
|
Vazifehmand R, Ali DS, Othman Z, Chau DM, Stanslas J, Shafa M, Sekawi Z. The evaluation expression of non-coding RNAs in response to HSV-G47∆ oncolytic virus infection in glioblastoma multiforme cancer stem cells. J Neurovirol 2022; 28:566-582. [PMID: 35951174 DOI: 10.1007/s13365-022-01089-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 01/13/2023]
Abstract
Glioblastoma multiforme is the most aggressive astrocytes brain tumor. Glioblastoma cancer stem cells and hypoxia conditions are well-known major obstacles in treatment. Studies have revealed that non-coding RNAs serve a critical role in glioblastoma progression, invasion, and resistance to chemo-radiotherapy. The present study examined the expression levels of microRNAs (in normoxic condition) and long non-coding RNAs (in normoxic and hypoxic conditions) in glioblastoma stem cells treated with the HSV-G47∆. The expression levels of 43 miRNAs and 8 lncRNAs isolated from U251-GBM-CSCs were analyzed using a miRCURY LNA custom PCR array and a quantitative PCR assay, respectively. The data revealed that out of 43 miRNAs that only were checked in normoxic condition, the only 8 miRNAs, including miR-7-1, miR-let-7b, miR-130a, miR-137, miR-200b, miR-221, miR-222, and miR-874, were markedly upregulated. The expression levels of lncRNAs, including LEF1 antisense RNA 1 (LEF1-AS1), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), long intergenic non-protein coding RNA 470 (LINC00470), tumor suppressor candidate 7 (TUSC7), HOX transcript antisense RNA (HOTAIR), nuclear paraspeckle assembly transcript 1 (NEAT1), and X inactive specific transcript (XIST), were markedly downregulated in the hypoxic microenvironment, and H19-imprinted maternally expressed transcript (H19) was not observed to be dysregulated in this environment. Under normoxic conditions, LEF1-AS1, MALAT1, LINC00470, H19, HOTAIR, NEAT1, and XIST were downregulated and TUSC7 was not targeted by HSV-G47∆. Overall, the present data shows HSVG47Δ treatment deregulates non-coding RNA expression in GBM-CSC tumor microenvironments.
Collapse
Affiliation(s)
- Reza Vazifehmand
- Department of Medical Microbiology & Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor Darul Ehsan, 43400, Malaysia
| | - Dhuha Saeed Ali
- Halal Products Research Institute, Universiti Putra Malaysia UPM, Serdang, Selangor, 43400, Malaysia
| | - Zulkefley Othman
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor Darul Ehsan, 43400, Malaysia
| | - De-Ming Chau
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor Darul Ehsan, 43400, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia UPM, Serdang, Selangor, 43400, Malaysia
| | - Mehdi Shafa
- Cell Therapy process development, Lonza Houston Inc, Houston, TX, USA
| | - Zamberi Sekawi
- Department of Medical Microbiology & Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor Darul Ehsan, 43400, Malaysia.
| |
Collapse
|
143
|
Shi L, Li WL, Zeng HX, Shi Y, Liao XL. Systematic identification and functional analysis of long noncoding RNAs involved in indoxacarb resistance in Spodoptera litura. INSECT SCIENCE 2022; 29:1721-1736. [PMID: 35150054 DOI: 10.1111/1744-7917.13015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/12/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Long noncoding RNAs (lncRNAs) are noncoding transcripts that are more than 200 nucleotides long. They play essential roles in regulating a variety of biological processes in many species, including insects, and some lncRNAs have been found to be associated with insecticide resistance. However, the characteristics and biological functions of lncRNAs involved in indoxacarb resistance are unknown in Spodoptera litura. We performed RNA sequencing in the SS, InRS, and FInRS of S. litura and identified 11 978 lncRNAs, including 3 136 intergenic lncRNAs, 7 393 intronic lncRNAs, and 1 449 anti-sense lncRNAs. Compared with the SS, 51 lncRNAs were upregulated and 134 lncRNAs were downregulated in the two resistant strains, and 908 differentially expressed mRNAs were predicted as the target genes of the 185 differentially expressed lncRNAs. Further analysis showed that 112 of differentially expressed lncRNAs may be associated with indoxacarb resistance by regulating the expression of 14 P450s, seven CCEs, one GST, six UGTs, five ABC transporters, and 24 cuticle protein genes, and 79 of differentially expressed lncRNAs may regulate the expression of 14 detoxification genes and 19 cuticle protein genes to participate in indoxacarb resistance by sponging 10 microRNAs. Interestingly, 47 of differentially expressed lncRNAs may mediate indoxacarb resistance through both lncRNA-mRNA and lncRNA-miRNA-mRNA regulatory pathways. Furthermore, quantitative PCR, RNA interference, and indoxacarb bioassay analyses indicated that overexpressed LNC_004867 and LNC_006576 were involved in indoxacarb resistance. This study provides comprehensive information for lncRNAs of S. litura, and presents evidence that lncRNAs have key roles in conferring insecticide resistance in S. litura.
Collapse
Affiliation(s)
- Li Shi
- Hunan Provincial Engineering and Technology Research Center for Bio-pesticide and Formulation Processing, College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha, China
| | - Wen-Lin Li
- Hunan Provincial Engineering and Technology Research Center for Bio-pesticide and Formulation Processing, College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha, China
| | - Hai-Xin Zeng
- Hunan Provincial Engineering and Technology Research Center for Bio-pesticide and Formulation Processing, College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha, China
| | - Yao Shi
- Hunan Provincial Engineering and Technology Research Center for Bio-pesticide and Formulation Processing, College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha, China
| | - Xiao-Lan Liao
- Hunan Provincial Engineering and Technology Research Center for Bio-pesticide and Formulation Processing, College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha, China
| |
Collapse
|
144
|
Corral A, Alcala M, Carmen Duran-Ruiz M, Arroba AI, Ponce-Gonzalez JG, Todorčević M, Serra D, Calderon-Dominguez M, Herrero L. Role of long non-coding RNAs in adipose tissue metabolism and associated pathologies. Biochem Pharmacol 2022; 206:115305. [DOI: 10.1016/j.bcp.2022.115305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022]
|
145
|
Zhou Y, Wang X, Yao L, Zhu M. LDAformer: predicting lncRNA-disease associations based on topological feature extraction and Transformer encoder. Brief Bioinform 2022; 23:6696138. [PMID: 36094081 DOI: 10.1093/bib/bbac370] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/27/2022] [Accepted: 08/06/2022] [Indexed: 12/14/2022] Open
Abstract
The identification of long noncoding RNA (lncRNA)-disease associations is of great value for disease diagnosis and treatment, and it is now commonly used to predict potential lncRNA-disease associations with computational methods. However, the existing methods do not sufficiently extract key features during data processing, and the learning model parts are either less powerful or overly complex. Therefore, there is still potential to achieve better predictive performance by improving these two aspects. In this work, we propose a novel lncRNA-disease association prediction method LDAformer based on topological feature extraction and Transformer encoder. We construct the heterogeneous network by integrating the associations between lncRNAs, diseases and micro RNAs (miRNAs). Intra-class similarities and inter-class associations are presented as the lncRNA-disease-miRNA weighted adjacency matrix to unify semantics. Next, we design a topological feature extraction process to further obtain multi-hop topological pathway features latent in the adjacency matrix. Finally, to capture the interdependencies between heterogeneous pathways, a Transformer encoder based on the global self-attention mechanism is employed to predict lncRNA-disease associations. The efficient feature extraction and the intuitive and powerful learning model lead to ideal performance. The results of computational experiments on two datasets show that our method outperforms the state-of-the-art baseline methods. Additionally, case studies further indicate its capability to discover new associations accurately.
Collapse
Affiliation(s)
- Yi Zhou
- College of Computer Science, Sichuan University, 1st Ring Road South 1 Section, 610065, Chengdu, China
| | - Xinyi Wang
- College of Computer Science, Sichuan University, 1st Ring Road South 1 Section, 610065, Chengdu, China
| | - Lin Yao
- College of Computer Science, Sichuan University, 1st Ring Road South 1 Section, 610065, Chengdu, China
| | - Min Zhu
- College of Computer Science, Sichuan University, 1st Ring Road South 1 Section, 610065, Chengdu, China
| |
Collapse
|
146
|
Diffendall GM, Barcons-Simon A, Baumgarten S, Dingli F, Loew D, Scherf A. Discovery of RUF6 ncRNA-interacting proteins involved in P. falciparum immune evasion. Life Sci Alliance 2022; 6:6/1/e202201577. [PMID: 36379669 PMCID: PMC9670795 DOI: 10.26508/lsa.202201577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are emerging regulators of immune evasion and transmission of Plasmodium falciparum RUF6 is an ncRNA gene family that is transcribed by RNA polymerase III but actively regulates the Pol II-transcribed var virulence gene family. Understanding how RUF6 ncRNA connects to downstream effectors is lacking. We developed an RNA-directed proteomic discovery (ChIRP-MS) protocol to identify in vivo RUF6 ncRNA-protein interactions. The RUF6 ncRNA interactome was purified with biotinylated antisense oligonucleotides. Quantitative label-free mass spectrometry identified several unique proteins linked to gene transcription including RNA Pol II subunits, nucleosome assembly proteins, and a homologue of DEAD box helicase 5 (DDX5). Affinity purification of Pf-DDX5 identified proteins originally found by our RUF6-ChIRP protocol, validating the technique's robustness for identifying ncRNA interactomes in P. falciparum Inducible displacement of nuclear Pf-DDX5 resulted in significant down-regulation of the active var gene. Our work identifies a RUF6 ncRNA-protein complex that interacts with RNA Pol II to sustain the var gene expression, including a helicase that may resolve G-quadruplex secondary structures in var genes to facilitate transcriptional activation and progression.
Collapse
Affiliation(s)
- Gretchen M Diffendall
- Universite Paris Cité, Institut Pasteur, Biology of Host-Parasite Interactions Unit, INSERM U1201, CNRS EMR9195, Paris, France,Sorbonne Université Ecole doctorale Complexité du Vivant ED515, Paris, France
| | - Anna Barcons-Simon
- Universite Paris Cité, Institut Pasteur, Biology of Host-Parasite Interactions Unit, INSERM U1201, CNRS EMR9195, Paris, France,Sorbonne Université Ecole doctorale Complexité du Vivant ED515, Paris, France,Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Florent Dingli
- Institut Curie, PSL Research University, Centre de Recherche, CurieCoreTech Mass Spectrometry Proteomics, Paris, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, CurieCoreTech Mass Spectrometry Proteomics, Paris, France
| | - Artur Scherf
- Universite Paris Cité, Institut Pasteur, Biology of Host-Parasite Interactions Unit, INSERM U1201, CNRS EMR9195, Paris, France
| |
Collapse
|
147
|
Li Z, Zhou P, Kwon E, Fitzgerald KA, Weng Z, Zhou C. Flnc: Machine Learning Improves the Identification of Novel Long Noncoding RNAs from Stand-Alone RNA-Seq Data. Noncoding RNA 2022; 8:70. [PMID: 36287122 PMCID: PMC9607125 DOI: 10.3390/ncrna8050070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 01/16/2025] Open
Abstract
Long noncoding RNAs (lncRNAs) play critical regulatory roles in human development and disease. Although there are over 100,000 samples with available RNA sequencing (RNA-seq) data, many lncRNAs have yet to be annotated. The conventional approach to identifying novel lncRNAs from RNA-seq data is to find transcripts without coding potential but this approach has a false discovery rate of 30-75%. Other existing methods either identify only multi-exon lncRNAs, missing single-exon lncRNAs, or require transcriptional initiation profiling data (such as H3K4me3 ChIP-seq data), which is unavailable for many samples with RNA-seq data. Because of these limitations, current methods cannot accurately identify novel lncRNAs from existing RNA-seq data. To address this problem, we have developed software, Flnc, to accurately identify both novel and annotated full-length lncRNAs, including single-exon lncRNAs, directly from RNA-seq data without requiring transcriptional initiation profiles. Flnc integrates machine learning models built by incorporating four types of features: transcript length, promoter signature, multiple exons, and genomic location. Flnc achieves state-of-the-art prediction power with an AUROC score over 0.92. Flnc significantly improves the prediction accuracy from less than 50% using the conventional approach to over 85%. Flnc is available via GitHub platform.
Collapse
Affiliation(s)
- Zixiu Li
- Division of Biostatistics and Health Services Research, Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Peng Zhou
- Division of Biostatistics and Health Services Research, Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Euijin Kwon
- Division of Biostatistics and Health Services Research, Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Katherine A. Fitzgerald
- Program in Innate Immunity, Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Chan Zhou
- Division of Biostatistics and Health Services Research, Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- The RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- UMass Cancer Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
148
|
Huang Z, Lou K, Liu H. A novel prognostic signature based on N7-methylguanosine-related long non-coding RNAs in breast cancer. Front Genet 2022; 13:1030275. [PMID: 36313442 PMCID: PMC9608183 DOI: 10.3389/fgene.2022.1030275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/03/2022] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNA (lncRNA) are closely associated with the occurrence and progression of tumors. However, research on N7-methylguanosine (m7G)-related lncRNA in breast cancer is lacking. Therefore, the present study explored the prognostic value, gene expression characteristics, and effects of m7G-related lncRNA on tumor immune cell infiltration and tumor mutational burden (TMB) in breast cancer. lncRNA expression matrices and clinical follow-up data of patients with breast cancer were obtained from The Cancer Genome Atlas, revealing eight significantly differentially expressed and prognostically relevant m7G-related lncRNAs in breast cancer tissues: BAIAP2-DT, COL4A2-AS1, FARP1-AS1, RERE-AS1, NDUFA6-DT, TFAP2A-AS1, LINC00115, and MIR302CHG. A breast cancer prognostic signature was created based on these m7G-related lncRNAs according to least absolute shrinkage and selection operator Cox regression. The prognostic signature combined with potential prognostic factors showed independent prognostic value, reliability, and specificity. Meanwhile, we constructed a risk score-based nomogram to assist clinical decision-making. Gene set enrichment analysis revealed that low- and high-risk group were associated with metabolism-related pathways. Our study demonstrated the association between tumor immune cell infiltration based on analyses with the CIBERSORT algorithm and prognostic signature. We also assessed the correlation between prognostic signature and TMB. Lastly, quantitative real-time polymerase chain reaction analysis was performed to validate differentially expressed lncRNAs. The effective prognostic signature based on m7G-related lncRNAs has the potential to predict the survival prognosis of patients with breast cancer. The eight m7G-related lncRNAs identified in this study might represent potential biomarkers and therapeutic targets of breast cancer.
Collapse
|
149
|
Qiao Y, Wang B, Yan Y, Niu L. Long noncoding RNA ST8SIA6-AS1 promotes cell proliferation and metastasis in triple-negative breast cancer by targeting miR-145-5p/CDCA3 to inactivate the p53/p21 signaling pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:2398-2411. [PMID: 35730485 DOI: 10.1002/tox.23605] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/08/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC), the most aggressive subtype of breast cancer, always exhibits a poor prognosis due to high risk of early recurrence and distant metastasis. Long noncoding RNAs (lncRNAs) have been reported as crucial regulators in breast cancer. However, the functions and action mechanisms of lncRNA ST8SIA6-AS1 in TNBC are largely unknown. METHODS Quantitative real-time PCR and western blot assays were used to measure the expression levels of different genes and proteins. Cell proliferation ability was monitored by CCK-8, colony forming and flow cytometry assays. Wound healing and transwell assays were performed to evaluate cell migration and invasion. The regulatory mechanisms of ST8SIA6-AS1 in TNBC were confirmed by dual luciferase reporter and RIP assays. A mouse xenograft model was established to investigate the role of ST8SIA6-AS1 in TNBC tumor growth. RESULTS ST8SIA6-AS1 displayed a higher expression in TNBC cells. Silencing ST8SIA6-AS1 impaired cell proliferation, cell cycle progression, migration, and invasion in vitro, and slowed tumor growth in vivo. Mechanistically, ST8SIA6-AS1 could facilitate the expression of its target CDCA3 (cell division cycle associated protein 3) and inactivate the p53/p21 signaling by inhibiting miR-145-5p. Moreover, miR-145-5p exerted a tumor-suppressive activity by targeting CDCA3. The tumor-suppressive effects induced by ST8SIA6-AS1 knockdown were abated by the down-regulation of miR-145-5p or the up-regulation of CDCA3. CONCLUSION ST8SIA6-AS1 exerts an oncogenic role in TNBC by interacting with miR-145-5p to up-regulate CDCA3 expression and inactivate the p53/p21 signaling, highlighting ST8SIA6-AS1 as a promising molecular target to combat TNBC.
Collapse
Affiliation(s)
- Yan Qiao
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bin Wang
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yu Yan
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ligang Niu
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
150
|
Karami Fath M, Pourbagher Benam S, Salmani K, Naderi S, Fahham Z, Ghiabi S, Houshmand Kia SA, Naderi M, Darvish M, Barati G. Circular RNAs in neuroblastoma: Pathogenesis, potential biomarker, and therapeutic target. Pathol Res Pract 2022; 238:154094. [PMID: 36087416 DOI: 10.1016/j.prp.2022.154094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 10/15/2022]
Abstract
Neuroblastoma (NB) is a common cancer in childhood responsible for 15 % of fatalities by pediatric cancers. Epigenetic factors play an important role in the pathogenesis of NB. Recently, it has been demonstrated that circular RNAs (circRNAs, ciRNAs), a newly identified class of non-coding RNAs, are also dysregulated in NB. CircRNAs mediate their functions by regulating gene expression mainly through microRNA (miRNA) sponging. The dysregulation (abnormal upregulation or downregulation) of circRNAs is involved in tumorigenesis of a variety of tumors including NB. It seems that the expression of some circRNAs is correlated with NB prognosis and clinical features. CircRNAs might be favorable as a diagnostic/prognostic biomarker and therapeutic target. However, due to the lack of studies, it is difficult to make a conclusion regarding the clinical benefits of circRNAs. In this review, we discussed the circRNAs that experimentally have been proved to be dysregulated in NB tissues and cancer cells.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Kiana Salmani
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sina Naderi
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Fahham
- Faculty of Biology, Technische Universitat Dresden, Dresden, Germany
| | - Shamim Ghiabi
- Department of Medical Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Malihe Naderi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran; Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Darvish
- Department of Medical Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | | |
Collapse
|