101
|
Aziz MA, Sarwar MS, Akter T, Uddin MS, Xun S, Zhu Y, Islam MS, Hongjie Z. Polyphenolic molecules targeting STAT3 pathway for the treatment of cancer. Life Sci 2021; 268:118999. [PMID: 33421525 DOI: 10.1016/j.lfs.2020.118999] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 01/17/2023]
Abstract
Cancer is accounted as the second-highest cause of morbidity and mortality throughout the world. Numerous preclinical and clinical investigations have consistently highlighted the role of natural polyphenolic compounds against various cancers. A plethora of potential bioactive polyphenolic molecules, primarily flavonoids, phenolic acids, lignans and stilbenes, have been explored from the natural sources for their chemopreventive and chemoprotective activities. Moreover, combinations of these polyphenols with current chemotherapeutic agents have also demonstrated their strong role against both progression and resistance of malignancies. Signal transducer and activator of transcription 3 (STAT3) is a ubiquitously-expressed signaling molecule in almost all body cells. Thousands of literatures have revealed that STAT3 plays significant roles in promoting the cellular proliferation, differentiation, cell cycle progression, metastasis, angiogenesis and immunosuppression as well as chemoresistance through the regulation of its downstream target genes such as Bcl-2, Bcl-xL, cyclin D1, c-Myc and survivin. For its key role in cancer development, researchers considered STAT3 as a major target for cancer therapy that mainly focuses on abrogating the expression (activation or phosphorylation) of STAT3 in tumor cells both directly and indirectly. Polyphenolic molecules have explicated their protective actions in malignant cells via targeting STAT3 both in vitro and in vivo. In this article, we reviewed how polyphenolic compounds as well as their combinations with other chemotherapeutic drugs inhibit cancer cells by targeting STAT3 signaling pathway.
Collapse
Affiliation(s)
- Md Abdul Aziz
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Shahid Sarwar
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
| | - Tahmina Akter
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Song Xun
- School of Pharmaceutical Science, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yu Zhu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Mohammad Safiqul Islam
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Zhang Hongjie
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China.
| |
Collapse
|
102
|
Li H, Feng Y, Sun W, Kong Y, Jia L. Antioxidation, anti-inflammation and anti-fibrosis effect of phosphorylated polysaccharides from Pleurotus djamor mycelia on adenine-induced chronic renal failure mice. Int J Biol Macromol 2021; 170:652-663. [PMID: 33359803 DOI: 10.1016/j.ijbiomac.2020.12.159] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/14/2020] [Accepted: 12/20/2020] [Indexed: 01/16/2023]
Abstract
The mycelia polysaccharides (MPS) from Pleurotus djamor were prepared and purified by anion exchange column chromatography, and the phosphate content of phosphorylated MPS (PMPS) was 15.22 ± 0.37%. FT-IR spectra, HPLC and 1H and 13C-NMR results showed the PMPS contained α-pyranose structure and the peak area percentage composition of galacturonic acid and glucose were 13.01% and 85.82%, respectively. Animal experiment investigated the antioxidant, anti-inflammation, anti-fibrosis effects of PMPS on kidney in adenine-induced chronic renal failure (CRF) mice. All results including serum biochemical indices, histopathological observation, qRT-PCR, western blotting, immunohistochemical staining manifested the kidney injury could be remitted by PMPS interventions. This experiment suggested that PMPS could remit CRF and other kidney injury related diseases as one kind of dietary supplements and functional foods without toxic side effects.
Collapse
Affiliation(s)
- Huaping Li
- College of Life Science, Shandong Agricultural University, Taian 271018, China
| | - Yanbo Feng
- College of Life Science, Shandong Agricultural University, Taian 271018, China
| | - Wenxue Sun
- College of Life Science, Shandong Agricultural University, Taian 271018, China
| | - Yi Kong
- Tai'an Academy of Agricultural Sciences, 271000 Tai'an, China.
| | - Le Jia
- College of Life Science, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
103
|
Sood A, Kumar B, Singh SK, Prashar P, Gautam A, Gulati M, Pandey NK, Melkani I, Awasthi A, Saraf SA, Vidari G, Ozdemir M, Hussain FHS, Anwar ET, Ameen MSM, Gupta S, Porwal O. Flavonoids as Potential Therapeutic Agents for the Management of Diabetic Neuropathy. Curr Pharm Des 2020; 26:5468-5487. [DOI: 10.2174/1381612826666200826164322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022]
Abstract
Flavonoids are secondary metabolites that are widely distributed in plants. These phenolic compounds
are classified into various subgroups based on their structures: flavones, flavonols, isoflavones, flavanones, and
anthocyanins. They are known to perform various pharmacological actions like antioxidant, anti-inflammatory,
anticancer, antimicrobial, antidiabetic and antiallergic, etc. Diabetes is a chronic progressive metabolic disorder
that affects several biochemical pathways and leads to secondary complications such as neuropathy, retinopathy,
nephropathy, and cardiomyopathy. Among them, the management of diabetic neuropathy is one of the major
challenges for physicians as well as the pharmaceutical industries. Naturally occurring flavonoids are extensively
used for the treatment of diabetes and its related complications due to their antioxidant properties. Moreover,
flavonoids inhibit various pathways that are involved in the progression of diabetic neuropathy like the reduction
of oxidative stress, decrease in glycogenolysis, increase glucose utilization, decrease in the formation of advanced
glycation end products, and inhibition of the α-glucosidase enzyme. This review entails current updates on the
therapeutic perspectives of flavonoids in the treatment of neuropathic pain. This manuscript explains the pathological
aspects of neuropathic pain, the chemistry of flavonoids, and their application in amelioration of neuropathic
pain through preclinical studies either alone or in combination with other therapeutic agents.
Collapse
Affiliation(s)
- Ankita Sood
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Pankaj Prashar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Anamika Gautam
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Narendra Kumar Pandey
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Indu Melkani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Subhini A Saraf
- Department of Pharmaceutical Sciences, School of Bioscience and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Giovani Vidari
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Mehmet Ozdemir
- Department of Densitry, Tishk International University- Erbil, Kurdistan Region, Iraq
| | | | - Esra Tariq Anwar
- Department of Pharmacy, Tishk International University-Erbil, Kurdistan Region, Iraq
| | | | - Saurabh Gupta
- Department of Pharmacology, Chitkara University, Rajpura, Punjab, India
| | - Omji Porwal
- Department of Pharmacy, Tishk International University-Erbil, Kurdistan Region, Iraq
| |
Collapse
|
104
|
Based on Network Pharmacology to Explore the Molecular Targets and Mechanisms of Gegen Qinlian Decoction for the Treatment of Ulcerative Colitis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5217405. [PMID: 33299870 PMCID: PMC7710413 DOI: 10.1155/2020/5217405] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/02/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022]
Abstract
Background Gegen Qinlian (GGQL) decoction is a common Chinese herbal compound for the treatment of ulcerative colitis (UC). In this study, we aimed to identify its molecular target and the mechanism involved in UC treatment by network pharmacology and molecular docking. Material and Methods. The active ingredients of Puerariae, Scutellariae, Coptis, and Glycyrrhiza were screened using the TCMSP platform with drug‐like properties (DL) ≥ 0.18 and oral availability (OB) ≥ 30%. To find the intersection genes and construct the TCM compound-disease regulatory network, the molecular targets were determined in the UniProt database and then compared with the UC disease differential genes with P value < 0.005 and ∣log2 (fold change) | >1 obtained in the GEO database. The intersection genes were subjected to protein-protein interaction (PPI) construction and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. After screening the key active ingredients and target genes, the AutoDock software was used for molecular docking, and the best binding target was selected for molecular docking to verify the binding activity. Results A total of 146 active compounds were screened, and quercetin, kaempferol, wogonin, and stigmasterol were identified as the active ingredients with the highest associated targets, and NOS2, PPARG, and MMP1 were the targets associated with the maximum number of active ingredients. Through topological analysis, 32 strongly associated proteins were found, of which EGFR, PPARG, ESR1, HSP90AA1, MYC, HSPA5, AR, AKT1, and RELA were predicted targets of the traditional Chinese medicine, and PPARG was also an intersection gene. It was speculated that these targets were the key to the use of GGQL in UC treatment. GO enrichment results showed significant enrichment of biological processes, such as oxygen levels, leukocyte migration, collagen metabolic processes, and nutritional coping. KEGG enrichment showed that genes were particularly enriched in the IL-17 signaling pathway, AGE-RAGE signaling pathway, toll-like receptor signaling pathway, tumor necrosis factor signaling pathway, transcriptional deregulation in cancer, and other pathways. Molecular docking results showed that key components in GGQL had good potential to bind to the target genes MMP3, IL1B, NOS2, HMOX1, PPARG, and PLAU. Conclusion GGQL may play a role in the treatment of ulcerative colitis by anti-inflammation, antioxidation, and inhibition of cancer gene transcription.
Collapse
|
105
|
Niu YB, Yang YY, Xiao X, Sun Y, Zhou YM, Zhang YH, Dong D, Li CR, Wu XL, Li YH, Mei QB. Quercetin prevents bone loss in hindlimb suspension mice via stanniocalcin 1-mediated inhibition of osteoclastogenesis. Acta Pharmacol Sin 2020; 41:1476-1486. [PMID: 32934346 DOI: 10.1038/s41401-020-00509-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/16/2020] [Indexed: 12/13/2022]
Abstract
Recent studies demonstrate that diet quercetin (Quer) has obvious bone protective effects on ovariectomized rodents but thus far there is no direct evidence to support the inhibitory effect of Quer on bone loss caused by long-term unloading. In the present study, we investigated whether Quer could prevent bone loss induced by unloading in mice. Mice were subjected to hindlimb suspension (HLS) and received Quer (25, 50, 100 mg· kg-1 ·day-1, ig) for 4 weeks. Before euthanasia blood sample was collected; the femurs were harvested and subjected to MicroCT analysis. We showed that Quer administration markedly improved bone microstructure evidenced by dose-dependently reversing the reduction in bone volume per tissue volume, trabecular number, and bone mineral density, and the increase of trabecular spacing in mice with HLS. Analysis of serum markers and bone histometric parameters confirmed that Quer at both middle and high doses significantly decreased bone resorption-related markers collagen type I and tartrate-resistant acid phosphatase 5b, and increased bone formation-related marker procollagen 1 N-terminal propeptide as compared with HLS group. Treatment with Quer (1, 2, 5 μM) dose-dependently inhibited RANKL-induced osteoclastogenesis through promoting the expression of antioxidant hormone stanniocalcin 1 (STC1) and decreasing ROS generation; knockdown of STC1 blocked the inhibitory effect of Quer on ROS generation. Knockdown of STC1 also significantly promoted osteoclastogenesis in primary osteoclasts. In conclusion, Quer protects bones and prevents unloading-caused bone loss in mice through STC1-mediated inhibition of osteoclastogenesis. The findings suggest that Quer has the potential to prevent and treat off-load bone loss as an alternative supplement.
Collapse
|
106
|
Erpel F, Mateos R, Pérez-Jiménez J, Pérez-Correa JR. Phlorotannins: From isolation and structural characterization, to the evaluation of their antidiabetic and anticancer potential. Food Res Int 2020; 137:109589. [PMID: 33233195 DOI: 10.1016/j.foodres.2020.109589] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/19/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
Phlorotannins are phenolic characteristic compounds of brown seaweeds that are only constituted by phloroglucinol (1,3,5-trihydroxybenzene). They are chain- and net-like structures of diverse molecular weights and have been widely identified in Ecklonia, Eisenia, and Ishige species. Since the time they were discovered in the '70 s, phlorotannins have been suggested as a main factor responsible for the antimicrobial activities attributed to algae extracts. Currently, cumulative in vitro and in vivo research evidence the diverse bioactivities of phlorotannin extracts -such as antidiabetic, anticancer, and antibacterial- pointing out their potential pharmacological and food applications. However, metabolomic studies and clinical trials are scarce, and thus many phlorotannins health-beneficial effects in humans are not yet confirmed. This article reviews recent studies assessing the antidiabetic and anticancer activities of phlorotannins. Particularly, their potential to prevent and control the progression of these non-communicable diseases is discussed, considering in vitro and animal studies, as well as clinical interventions. In contrast to other approaches, we only included investigations with isolated phlorotannins or phlorotannin-rich extracts. Thus, phlorotannin extraction, purification and characterization procedures are briefly addressed. Overall, although considerable research showing the antidiabetic and anticancer potential of phlorotannins is now available, further clinical trials are still necessary to conclusively demonstrate the efficacy of these compounds as adjuvants for diabetes and cancer prevention or treatment.
Collapse
Affiliation(s)
- Fernanda Erpel
- Chemical and Bioprocess Engineering Department, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, P.O. Box 306, Santiago 7820436, Chile.
| | - Raquel Mateos
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Calle José Antonio Novais, 10, Madrid 28040, Spain.
| | - Jara Pérez-Jiménez
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Calle José Antonio Novais, 10, Madrid 28040, Spain.
| | - José Ricardo Pérez-Correa
- Chemical and Bioprocess Engineering Department, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, P.O. Box 306, Santiago 7820436, Chile.
| |
Collapse
|
107
|
Hodjat M, Khan F, Saadat KA. Epigenetic alterations in aging tooth and the reprogramming potential. Ageing Res Rev 2020; 63:101140. [PMID: 32795505 DOI: 10.1016/j.arr.2020.101140] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
Tooth compartments and associated supportive tissues exhibit significant alterations during aging, leading to their impaired functioning. Aging not only affects the structure and function of dental tissue but also reduces its capacity to maintain physiological homeostasis and the healing process. Decreased cementocyte viability; diminished regenerative potential of stem cells residing in the pulp, alveolar bone and periodontal ligament; and impaired osteogenic and odontogenic differentiation capacity of progenitor cells are among the cellular impacts associated with oral aging. Various physiological and pathological phenomena are regulated by the epigenome, and hence, changes in epigenetic markers due to external stimuli have been reported in aging oral tissues and are considered a possible molecular mechanism underlying dental aging. The role of nutri-epigenetics in aging has emerged as an attractive research area. Thus far, various nutrients and bioactive compounds have been identified to have a modulatory effect on the epigenetic machinery, showing a promising response in dental aging. The human microbiota is another key player in aging and can be a target for anti-aging interventions in dental tissue. Considering the reversible characteristics of epigenetic markers and the potential for environmental factors to manipulate the epigenome, to minimize the deteriorative effects of aging, it is important to evaluate the linkage between external stimuli and their effects in terms of age-related epigenetic modifications.
Collapse
|
108
|
Xu W, Song Y, Li K, Zhang B, Zhu X. Quercetin Inhibits Adenomyosis by Attenuating Cell Proliferation, Migration and Invasion of Ectopic Endometrial Stromal Cells. Drug Des Devel Ther 2020; 14:3815-3826. [PMID: 33061289 PMCID: PMC7519414 DOI: 10.2147/dddt.s265066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/02/2020] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To evaluate the effects of quercetin on proliferation, invasion and migration of endometrial stromal cells (ESCs) from adenomyosis patients. METHODS Primary ectopic ESCs (EESCs) and eutopic ESCs (EuESCs) were obtained and purified from patients undergoing total hysterectomy for adenomyosis and identified by immunocytochemistry staining. The cytotoxicity and inhibition rate were determined by CCK-8 assay to obtain the IC50 value. Cell proliferative, migratory, and invasive abilities were detected by BrdU, wound scratch, transwell assays, respectively. Western blot analysis was employed to explore the effects of quercetin on the expression of MMP-2, MMP-9, Ezrin and Fascin proteins in cells. RESULTS Both EESCs and EuESCs were characterized with strongly positive staining for vimentin and almost negative for cytokeratin. Quercetin inhibited the viability of EESCs and EuESCs in a dose- and time-dependent manner, with an IC50 = 33.00 μM for EuESCs and IC50 = 74.88 μM for EESCs at 72 h. Thus, the final concentrations and action time of quercetin in EuESCs (0, 20, 40, and 80 μM for 72 h) and EESCs (0, 40, 80, and 160 μM for 72 h) were selected. BrdU assay showed that quercetin dose-dependently suppressed the proliferation of EESCs and EuESCs, while the inhibition rate in EESCs was higher. Similarly, administration of quercetin in EESCs and EuESCs significantly decreased the motility and invasiveness in a dose-dependent fashion, with stronger inhibitory effects on EESCs. Finally, Western blot analysis demonstrated that invasion- and migration-related proteins (MMP-2, MMP-9, Erzin, and Fascin) were significantly downregulated with the quercetin concentration increasing. Moreover, the decreased level of these proteins in EESCs under quercetin exposure was greater than that in EuESCs. CONCLUSION Quercetin can inhibit the proliferation of EESCs in adenomyosis and reduce their mobility and invasiveness. These inhibitory effects may be related to the downregulation of MMP-2, MMP-9, Fascin, and Erzin proteins.
Collapse
Affiliation(s)
- Wenbin Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou325027, Zhejiang, People’s Republic of China
| | - Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou325027, Zhejiang, People’s Republic of China
| | - Kehan Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou325027, Zhejiang, People’s Republic of China
| | - Biyun Zhang
- Department of Obstetrics and Gynecology, Cixi Maternity and Child Health Hospital, Ningbo315300, Zhejiang, People’s Republic of China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou325027, Zhejiang, People’s Republic of China
| |
Collapse
|
109
|
Sugawara T, Sakamoto K. Quercetin enhances motility in aged and heat-stressed Caenorhabditis elegans nematodes by modulating both HSF-1 activity, and insulin-like and p38-MAPK signalling. PLoS One 2020; 15:e0238528. [PMID: 32881908 PMCID: PMC7470330 DOI: 10.1371/journal.pone.0238528] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/18/2020] [Indexed: 12/20/2022] Open
Abstract
Quercetin is a yellow pigment that is found in many common dietary plants, and that protects against oxidative stress, inflammation, and arteriosclerosis. It has also been suggested to prolong the lifespan of, and enhance heat-stress tolerance in nematodes; thus, the present study investigated its effects on both the nematode life- and health span by assessing its capacity to promote nematode motility after aging and/or heat stress, as well as the mechanisms underlying these effects. The results of the conducted analyses showed that quercetin feeding prolonged lifespan, suppressed age-related motility retardation, improved motility recovery after heat stress, and decreased the production of both intercellular and mitochondrial reactive oxygen species in the analysed Caenorhabditis elegans strains, likely by modulating the insulin-like signalling (ILS) pathway and p38-mitogen-activated protein kinase (MAPK) pathway. In particular, the transcription factors DAF-16 and SKN-1 were found to mediate the observed quercetin-induced effects, consistent with their previously demonstrated roles as regulators of aging. Furthermore, we demonstrated, for the first time, that quercetin induced heat-stress tolerance in C. elegans by modulating HSF-1 expression and/or activity. Thus, the present study provides valuable insights into the mechanisms by which quercetin inhibit aging and enhance heat-stress tolerance via ILS and MAPK pathway in C. elegans.
Collapse
Affiliation(s)
- Takaya Sugawara
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuichi Sakamoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
110
|
Wilkinson HN, Hardman MJ. Senescence in Wound Repair: Emerging Strategies to Target Chronic Healing Wounds. Front Cell Dev Biol 2020; 8:773. [PMID: 32850866 PMCID: PMC7431694 DOI: 10.3389/fcell.2020.00773] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/22/2020] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a fundamental stress response that restrains tumour formation. Yet, senescence cells are also present in non-cancerous states, accumulating exponentially with chronological age and contributing to age- and diabetes-related cellular dysfunction. The identification of hypersecretory and phagocytic behaviours in cells that were once believed to be non-functional has led to a recent explosion of senescence research. Here we discuss the profound, and often opposing, roles identified for short-lived vs. chronic tissue senescence. Transiently induced senescence is required for development, regeneration and acute wound repair, while chronic senescence is widely implicated in tissue pathology. We recently demonstrated that sustained senescence contributes to impaired diabetic healing via the CXCR2 receptor, which when blocked promotes repair. Further studies have highlighted the beneficial effects of targeting a range of senescence-linked processes to fight disease. Collectively, these findings hold promise for developing clinically viable strategies to tackle senescence in chronic wounds and other cutaneous pathologies.
Collapse
Affiliation(s)
- Holly N Wilkinson
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Matthew J Hardman
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, United Kingdom
| |
Collapse
|
111
|
Kıyga E, Şengelen A, Adıgüzel Z, Önay Uçar E. Investigation of the role of quercetin as a heat shock protein inhibitor on apoptosis in human breast cancer cells. Mol Biol Rep 2020; 47:4957-4967. [PMID: 32638319 DOI: 10.1007/s11033-020-05641-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
High expression of heat shock proteins (Hsp) in breast cancer has been closely associated with tumor cell proliferation and thus a poor clinical outcome. Quercetin, a good Hsp inhibitor as a dietary flavonoid, possesses anticarcinogenic properties. Although there are many studies on the effects of quercetin on Hsp levels in human breast cancer cells, research on elucidation of its molecular mechanism continues. Herein, we aimed to investigate the effect of quercetin on Hsp levels and whether quercetin is a suitable therapeutic for two breast cancer cell lines (MCF-7 and MDA-MB-231) representing breast tumors which differed in hormone receptor, aggressiveness and treatment responses. To examine the response to high and low doses of quercetin, the cells were treated with three doses of quercetin (10, 25 and 100 μM) determined by MTT. The effects of quercetin on Hsp levels, apoptosis and DNA damage were examined by western blot analysis, caspase activity assay, comet assay and microscopy in human breast cancer cells. Compared to MDA-MB231 cells, MCF-7 cells were more affected by quercetin treatments. Quercetin effectively suppressed the expression of Hsp27, Hsp70 and Hsp90. While quercetin did not induce DNA damage, it triggered apoptosis at high levels. Although an increase in NF-κB levels is observed in the cells exposed to quercetin, the net result is the anticancer effect in case of Hsp depletion and apoptosis induction. Taken together our findings suggested that quercetin can be an effective therapeutic agent for breast cancer therapy regardless of the presence or absence of hormone receptors.
Collapse
Affiliation(s)
- Ezgi Kıyga
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkey
| | - Aslıhan Şengelen
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkey
| | - Zelal Adıgüzel
- Basic Medical Sciences Department of Molecular Biology and Genetics, School of Medicine, Koç University, Istanbul, Turkey
| | - Evren Önay Uçar
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul, Turkey.
| |
Collapse
|
112
|
Gali L, Bedjou F, Velikov KP, Ferrari G, Donsì F. High-pressure homogenization-assisted extraction of bioactive compounds from Ruta chalepensis. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00525-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
113
|
Rashidi Z, Khosravizadeh Z, Talebi A, Khodamoradi K, Ebrahimi R, Amidi F. Overview of biological effects of Quercetin on ovary. Phytother Res 2020; 35:33-49. [PMID: 32557927 DOI: 10.1002/ptr.6750] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/14/2020] [Accepted: 05/13/2020] [Indexed: 12/14/2022]
Abstract
Over the last few decades, using natural products has been increased to treat different diseases. Today, great attention has been pointed toward the usage of natural products such as flavonoids, especially Quercetin (QUR), in the treatment of diseases. QUR as a natural antioxidant has been traditionally used to prevent or treat a variety of diseases such as cancer, cardiovascular disease, polycystic ovary syndrome (PCOS), obesity, chronic inflammation, and reproductive system dysfunction. Several studies demonstrated that QUR acts as an anti-inflammatory, anti-apoptotic, antioxidant, and anticancer agent. With this in view, in this study, we intended to describe an overview of the biological effects of QUR on the ovary. QUR improves the quality of oocytes and embryos. It affects the proliferation and apoptosis and decreases the oxidative stress in granulosa cells (GCs). Furthermore, QUR can be used as a complementary and alternative therapy in ovarian cancer and it has beneficial effects in the treatment of PCOS patients. It seems that QUR as a supplementary factor has different activities for the treatment of different disorders and it also has bidirectional activities. However, further investigations are needed for understanding the efficacy of QUR in the treatment and improvement of gynecological patients.
Collapse
Affiliation(s)
- Zahra Rashidi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Khosravizadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Talebi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.,Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Kajal Khodamoradi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reyhane Ebrahimi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.,Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
114
|
Flavonoid Treatment of Breast Cancer Cells has Multifarious Consequences on Alpha-1-Syntrophin Expression and other Downstream Processes. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04508-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
115
|
Wang D, Jiang Y, Sun-Waterhouse DX, Zhai H, Guan H, Rong X, Li F, Yu JC, Li DP. MicroRNA-based regulatory mechanisms underlying the synergistic antioxidant action of quercetin and catechin in H 2O 2-stimulated HepG2 cells: Roles of BACH1 in Nrf2-dependent pathways. Free Radic Biol Med 2020; 153:122-131. [PMID: 32344103 DOI: 10.1016/j.freeradbiomed.2020.04.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022]
Abstract
The microRNA-based mechanisms underlying the antioxidant action(s) of co-existing flavonoids in response to oxidative stress are of high interest. This study aimed to extend the existing knowledge and provide insights into the potential regulatory network in response to oxidative stress and the co-presence of quercetin and catechin antioxidants, via a preclinical approach using H2O2-stimulated HepG2 cells. It was confirmed that BACH1 serves as an essential and direct negative regulator of the Keap1-Nrf2 signaling pathway and the antioxidant synergism between quercetin and catechin. BACH1 promoted reactive oxygen species (ROS) accumulation while inhibiting cell growth, which could be reversed by the synergistic action of let-7a-5p and miR-25-3p in the co-presence of quercetin and catechin. Both let-7a-5p and miR-25-3p could directly regulate the expression and function of BACH1 (e.g. upregulation of the two miRNAs could rescue largely overexpression of BACH1). Although these molecular interactions likely represented only some aspects of the overall regulatory network, this research confirms the feasibility of the combined uses of dietary flavonoids with chemopreventive properties in synergy during multiple-target interactions and multiple-pathway regulation.
Collapse
Affiliation(s)
- Dan Wang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, PR China; Shandong Institute of Pomology, Taian, PR China
| | - Yang Jiang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, PR China
| | - Dong-Xiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, PR China; School of Chemical Sciences, The University of Auckland, New Zealand
| | - Hao Zhai
- Shandong Institute of Pomology, Taian, PR China
| | - Hui Guan
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, PR China
| | - Xue Rong
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, PR China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, PR China
| | - Jia-Cheng Yu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, PR China
| | - Da-Peng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, PR China.
| |
Collapse
|
116
|
C ordia lutea L. Flowers: A Promising Medicinal Plant as Chemopreventive in Induced Prostate Carcinogenesis in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5062942. [PMID: 32565864 PMCID: PMC7271285 DOI: 10.1155/2020/5062942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/06/2020] [Indexed: 11/28/2022]
Abstract
The objective of this study was to evaluate the chemopreventive effect of the ethanolic extract of Cordia lutea flowers (EECL) on N-methyl-N-nitrosourea- (MNU), cyproterone-, and testosterone-induced prostate cancer in rats. 40 Holtzman male rats were used and assigned to 5 groups (n = 8). In Group I, rats received normal saline (10 mL/Kg); Group II: rats were induced for prostate cancer with cyproterone, testosterone, and NMU; Groups III, IV, and V: rats received EECL daily, at doses of 50, 250, and 500 mg/kg body weight, respectively. After the period of treatment, animals were sacrificed by an overdose of pentobarbital and blood samples were collected for determination of prostate-specific antigen (PSA). The prostate was dissected and weighed accurately. The ventral lobe of the prostate was processed for histopathology analysis. The somatic prostate index decreased with EECL at dependent dose, from 0.34 ± 0.04 to 0.23 ± 0.05 (P < 0.05). The PSA levels also decreased significantly at doses of 250 and 500 mg/kg. Histopathological analysis showed a decrease in the number of prostatic layers with high-grade prostatic intraepithelial neoplasia (HG-PIN) and low-grade prostatic intraepithelial neoplasia (LG-PIN) at the dose of 500 mg/kg. The ethanolic extract of Cordia lutea flowers had a chemopreventive effect on induced prostate cancer in rats.
Collapse
|
117
|
Tavana E, Mollazadeh H, Mohtashami E, Modaresi SMS, Hosseini A, Sabri H, Soltani A, Javid H, Afshari AR, Sahebkar A. Quercetin: A promising phytochemical for the treatment of glioblastoma multiforme. Biofactors 2020; 46:356-366. [PMID: 31880372 DOI: 10.1002/biof.1605] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Abstract
Quercetin, a plant-derived flavonoid, is known for its antitumor and antiproliferative activities. Glioblastoma multiforme (GBM), as a highly aggressive cerebrum tumor, has a poor prognosis that is approximately 12 months despite standard therapy. Therefore, because of the low effectiveness of the current therapeutic strategies, additional medications in combination with chemotherapy and radiotherapy are needed, which could improve the prognosis of GBM patients. Multiple lines of evidence have shown that quercetin regulates many proteins involved in the cellular signal transduction in GBM. In this review, recent findings on the targeting of particular signaling pathways by quercetin and the subsequent effect on the pathogenesis of GBM are presented and discussed.
Collapse
Affiliation(s)
- Erfan Tavana
- Student Research Committee, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elmira Mohtashami
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Sabri
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Soltani
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Javid
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
118
|
Maruszewska A, Tarasiuk J. Quercetin Triggers Induction of Apoptotic and Lysosomal Death of Sensitive and Multidrug Resistant Leukaemia HL60 Cells. Nutr Cancer 2020; 73:484-501. [PMID: 32329631 DOI: 10.1080/01635581.2020.1752745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Multidrug resistance (MDR) constitutes the major cause of the failure in anticancer therapy. One of the most important mechanisms leading to the occurrence of MDR is related to the modulation of cellular death pathways. The aim of this study was to determine the effect of quercetin (Q) on triggering the programed death of human promyelocytic leukemia sensitive cells HL60 as well as multidrug resistant HL60/VINC cells overexpressing P-glycoprotein and HL60/MX2 cells characterized by the presence of mutated α isoform of topoisomerase II and the absence of β isoform of this enzyme. Q exerted comparable cytotoxic activities toward sensitive HL60 cells and their MDR counterparts. It was also found that this compound modulated the cellular level of reactive oxygen species (ROS) and led to the marked decrease in cellular GSH level. Furthermore, it was demonstrated that Q used at IC50 and IC90 significantly increased the percentage of sub-G1 subpopulation of all studied leukemia cells causing oligonucleosomal DNA fragmentation. The present study also indicated that Q used at IC90 triggers predominantly programed cell death of sensitive HL60 cells and their MDR counterparts by induction of apoptosis occurring with the involvement of caspase-3 and caspase-8 as well as by lysosome membrane permeabilization-dependent mechanisms.
Collapse
Affiliation(s)
- Agnieszka Maruszewska
- Department of Biochemistry, Faculty of Biology, University of Szczecin, Szczecin, Poland.,Molecular Biology and Biotechnology Center, Faculty of Biology, University of Szczecin, Szczecin, Poland
| | - Jolanta Tarasiuk
- Department of Biochemistry, Faculty of Biology, University of Szczecin, Szczecin, Poland.,Molecular Biology and Biotechnology Center, Faculty of Biology, University of Szczecin, Szczecin, Poland
| |
Collapse
|
119
|
Bonta RK. Dietary Phenolic Acids and Flavonoids as Potential Anti-Cancer Agents: Current State of the Art and Future Perspectives. Anticancer Agents Med Chem 2020; 20:29-48. [PMID: 31648651 DOI: 10.2174/1871520619666191019112712] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/28/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022]
Abstract
Background:
Cancer is a rapidly growing disease and the second most leading cause of death
worldwide. Breast, colon, lung, and prostate cancer are the most diagnosed types of cancer among the majority
of the population. The prevalence of these cancers is increasing rapidly due to the lack of effective drugs. The
search for anti-cancer bioactive components from natural plant sources is gaining immense significance. The
aim of the paper is to introduce the readers about the in vitro and in vivo biochemical mechanisms of phenolic
acids and flavonoids in these four types of cancers.
Methods:
A literature search was carried out in databases, including Scopus, SciFinder, Springer, Science direct
and Google. The main keywords used were fruits & vegetables, phenolic acids, flavonoids, anticancer, bioavailability,
etc. The data obtained were integrated and analyzed.
Results:
The study revealed the potential molecular mechanisms of phenolic acids and flavonoids, which include
the induction of apoptosis, inhibition of cell proliferation, cell-cycle arrest, induction of Poly ADP ribose
polymerase cleavage, downregulation of Matrix metalloproteinases-2 and Matrix metalloproteinases-9 activities,
decreased levels of B-cell lymphoma-2, etc. Promising effects of phenolic acids and flavonoids have been observed
against breast, colon, lung and prostate cancers.
Conclusion:
The in vitro and in vivo anti-cancer mechanisms of phenolic acids and flavonoids have been revealed
in this study. With the knowledge of specific molecular targets and the structural-functional relationship
of bioactive compounds, the current review will open a new gateway for the scientific community and provide
them a viable option to exploit more of these compounds for the development of novel and efficacious anticancer
compounds.
Collapse
Affiliation(s)
- Ramesh K. Bonta
- Plant Metabolic Pathway Laboratory, Rajiv Gandhi School of Intellectual Property Law, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| |
Collapse
|
120
|
Khaltourina D, Matveyev Y, Alekseev A, Cortese F, Ioviţă A. Aging Fits the Disease Criteria of the International Classification of Diseases. Mech Ageing Dev 2020; 189:111230. [PMID: 32251691 DOI: 10.1016/j.mad.2020.111230] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022]
Abstract
The disease criteria used by the World Health Organization (WHO) were applied to human biological aging in order to assess whether aging can be classified as a disease. These criteria were developed for the 11th revision of the International Classification of Diseases (ICD) and included disease diagnostics, mechanisms, course and outcomes, known interventions, and linkage to genetic and environmental factors. RESULTS: Biological aging can be diagnosed with frailty indices, functional, blood-based biomarkers. A number of major causal mechanisms of human aging involved in various organs have been described, such as inflammation, replicative cellular senescence, immune senescence, proteostasis failures, mitochondrial dysfunctions, fibrotic propensity, hormonal aging, body composition changes, etc. We identified a number of clinically proven interventions, as well as genetic and environmental factors of aging. Therefore, aging fits the ICD-11 criteria and can be considered a disease. Our proposal was submitted to the ICD-11 Joint Task force, and this led to the inclusion of the extension code for "Ageing-related" (XT9T) into the "Causality" section of the ICD-11. This might lead to greater focus on biological aging in global health policy and might provide for more opportunities for the new therapy developers.
Collapse
Affiliation(s)
- Daria Khaltourina
- Department of Risk Factor Prevention, Federal Research Institute for Health Organization and Informatics of Ministry of Health of the Russian Federation, Dobrolyubova St. 11, Moscow, 127254, Russia; International Longevity Alliance, 19 avenue Jean Jaurès, Sceaux, 92330, France.
| | - Yuri Matveyev
- Research Lab, Moscow Regional Research and Clinical Institute, Schepkina St. 61/2 k.1, Moscow, 129110, Russia
| | - Aleksey Alekseev
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, GSP-1, Moscow, 119991, Russia
| | - Franco Cortese
- Biogerontology Research Foundation, Apt 2354 Chynoweth House, Trevissome Park, Truro, London, TR4 8UN, UK
| | - Anca Ioviţă
- International Longevity Alliance, 19 avenue Jean Jaurès, Sceaux, 92330, France
| |
Collapse
|
121
|
Ben Othmen K, Elfalleh W, García Beltrán JM, Esteban MÁ, Haddad M. An in vitro study of the effect of carob (Ceratonia siliqua L.) leaf extracts on gilthead seabream (Sparus aurata L.) leucocyte activities. Antioxidant, cytotoxic and bactericidal properties. FISH & SHELLFISH IMMUNOLOGY 2020; 99:35-43. [PMID: 32032761 DOI: 10.1016/j.fsi.2020.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 01/24/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Carob leaves, the main residues of the carob tree, were investigated as a renewable and abundant source of bioactive compounds for fish aquaculture. Aqueous and ethanolic extracts obtained from carob leaves were characterized in terms of biochemical composition, antiradical and cytotoxic effects and immunostimulant and antibacterial activities. The ethanolic extract showed higher levels of total phenolics, flavonoids and condensed tannins and higher antioxidant activity than the aqueous extract. No significant immunostimulant effects were observed on gilthead seabream (Sparus aurata) head kidney leucocytes (viability, phagocytosis and respiratory burst activities and peroxidase content) after incubation for 24 h with different extracts. Furthermore, the ethanolic extracts used at 0.5, 0.75 and 1 mg mL-1 and aqueous extracts at 1 g mL-1 had a cytotoxic effect on PLHC-1 cells. When the bactericidal activity was tested against three fish pathogenic bacteria (Vibrio harveyi, Vibrio anguillarum and Photobacterium damselae) notable activity of the different extracts was detected against P. damselae at all three concentrations. A similar effect was demonstrated against V. haryeri when ethanolic extracts were used in the same range of concentrations. This work demonstrates interesting in vitro effects of carob leaf extracts and suggests it could be used as an alternative to chemical compounds with farmed fish. The concentration and nature of the extracts were very important in terms of any positive results.
Collapse
Affiliation(s)
- Khajida Ben Othmen
- Laboratoire d'Aridocultures et des Cultures Oasiennes, Institut des Régions Arides, Nahel, Gabès, 6051, Tunisia
| | - Walid Elfalleh
- Unité de Recherche Catalyse et Matériaux pour l'Environnement et les Procédés URCMEP (UR11ES85), Faculté des Sciences de Gabès/Université de Gabès, Campus Universitaire Cité Erriadh, Gabès, 6072, Tunisia
| | - José María García Beltrán
- Fish Innate Immune System Group. Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - M Ángeles Esteban
- Fish Innate Immune System Group. Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| | - Mansour Haddad
- Laboratoire d'Aridocultures et des Cultures Oasiennes, Institut des Régions Arides, Nahel, Gabès, 6051, Tunisia
| |
Collapse
|
122
|
Ersoz M, Erdemir A, Derman S, Arasoglu T, Mansuroglu B. Quercetin-loaded nanoparticles enhance cytotoxicity and antioxidant activity on C6 glioma cells. Pharm Dev Technol 2020; 25:757-766. [PMID: 32192406 DOI: 10.1080/10837450.2020.1740933] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Quercetin (Qu) is a natural flavonoid present in many commonly consumed food items. The dietary phytochemical quercetin prevents tumor proliferation and is a potent therapeutic cancer agent. The purpose of this study was to synthesize and characterize quercetin-loaded poly(lactic-co-glycolic acid) nanoparticles (Qu1NP, Qu2NP, and Qu3NP) with different size and encapsulation properties and to evaluate their in vitro activity on C6 glioma cells. Nanoparticles were synthesized by single emulsion solvent evaporation method. Then, particle size, zeta potential, polydispersity index and encapsulation efficiency of nanoparticles were determined. Particle size of Qu1NP, Qu2NP, and Qu3NPs were determined as 215.2 ± 6.2, 282.3 ± 7.9, and 584.5 ± 15.2 nm respectively. Treating C6 glioma cells with all nanoparticle formulations effectively inhibited the cell proliferation. Qu1NPs were showed the lowest IC50 value in 48 h with 29.9 μg/ml and achieved higher cellular uptake among other nanoparticles and Qu. Additionally, 48-h treatment with Qu1NPs significantly decreased MDA level (14.90 nmol/µg protein) on C6 glioma cells which is related to reduced oxidative stress in cells. Findings of this study revealed that quercetin's cellular uptake and anti-oxidant activity is improved by small-sized Qu1NPs in C6 glioma cells.
Collapse
Affiliation(s)
- Melike Ersoz
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Demiroglu Bilim University, Istanbul, Turkey
| | - Aysegul Erdemir
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Yildiz Technical University, Istanbul, Turkey
| | - Serap Derman
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Tulin Arasoglu
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Yildiz Technical University, Istanbul, Turkey
| | - Banu Mansuroglu
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
123
|
Moody R, Wilson K, Jaworowski A, Plebanski M. Natural Compounds with Potential to Modulate Cancer Therapies and Self-Reactive Immune Cells. Cancers (Basel) 2020; 12:cancers12030673. [PMID: 32183059 PMCID: PMC7139800 DOI: 10.3390/cancers12030673] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer-related deaths are approaching 10 million each year. Survival statistics for some cancers, such as ovarian cancer, have remained unchanged for decades, with women diagnosed at stage III or IV having over 80% chance of a lethal cancer recurrence after standard first-line treatment (reductive surgery and chemotherapy). New treatments and adjunct therapies are needed. In ovarian cancer, as in other cancers, the immune response, particularly cytotoxic (CD8+) T cells are correlated with a decreased risk of recurrence. As well as completely new antigen targets resulting from DNA mutations (neo-antigens), these T cells recognize cancer-associated overexpressed, re-expressed or modified self-proteins. However, there is concern that activation of self-reactive responses may also promote off-target pathology. This review considers the complex interplay between cancer-reactive and self-reactive immune cells and discusses the potential uses for various leading immunomodulatory compounds, derived from plant-based sources, as a cancer therapy option or to modulate potential autoimmune pathology. Along with reviewing well-studied compounds such as curcumin (from turmeric), epigallocatechin gallate (EGCG, from green tea) and resveratrol (from grapes and certain berries), it is proposed that compounds from novel sources, for example, native Australian plants, will provide a useful source for the fine modulation of cancer immunity in patients.
Collapse
|
124
|
Zonyane S, Fawole OA, la Grange C, Stander MA, Opara UL, Makunga NP. The Implication of Chemotypic Variation on the Anti-Oxidant and Anti-Cancer Activities of Sutherlandia frutescens (L.) R.Br. (Fabaceae) from Different Geographic Locations. Antioxidants (Basel) 2020; 9:E152. [PMID: 32069826 PMCID: PMC7070296 DOI: 10.3390/antiox9020152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 01/07/2023] Open
Abstract
Extracts of Sutherlandia frutescens (cancer bush) exhibit considerable qualitative and quantitative chemical variability depending on their natural wild origins. The purpose of this study was thus to determine bioactivity of extracts from different regions using in vitro antioxidant and anti-cancer assays. Extracts of the species are complex and are predominantly composed of a species-specific set of triterpene saponins (cycloartanol glycosides), the sutherlandiosides, and flavonoids (quercetin and kaempferol glycosides), the sutherlandins. For the Folin-Ciocalteu phenolics test values of 93.311 to 125.330 mg GAE/g DE were obtained. The flavonoids ranged from 54.831 to 66.073 mg CE/g DE using the aluminum chloride assay. Extracts from different sites were also assayed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH•) radical scavenging method and ferric reducing anti-oxidant power (FRAP) methods. This was followed by an in vitro Cell Titer-Glo viability assay of various ecotypes using the DLD-1 colon cancer cell line. All test extracts displayed anti-oxidant activity through the DPPH• radical scavenging mechanism, with IC50 values ranging from 3.171 to 7.707 µg·mL-1. However, the degree of anti-oxidant effects differed on a chemotypic basis with coastal plants from Gansbaai and Pearly Beach (Western Cape) exhibiting superior activity whereas the Victoria West inland group from the Northern Cape, consistently showed the weakest anti-oxidant activity for both the DPPH• and FRAP methods. All extracts showed cytotoxicity on DLD-1 colon cancer cells at the test concentration of 200 µg·mL-1 but Sutherlandia plants from Colesburg (Northern Cape) exhibited the highest anti-cancer activity. These findings confirm that S. frutescens specimens display variability in their bioactive capacities based on their natural location, illustrating the importance of choosing relevant ecotypes for medicinal purposes.
Collapse
Affiliation(s)
- Samkele Zonyane
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Merriman Avenue, Stellenbosch 7602, South Africa; (S.Z.); (C.l.G.)
| | - Olaniyi A. Fawole
- South African Research Chair in Postharvest Technology, Department of Horticultural Science, Stellenbosch University, Private Bag X1, Merriman Avenue, Stellenbosch 7602, South Africa; (O.A.F.); (U.L.O.)
- Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Chris la Grange
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Merriman Avenue, Stellenbosch 7602, South Africa; (S.Z.); (C.l.G.)
| | - Maria A. Stander
- Central Analytical Facility, Stellenbosch University, Private Bag X1, Merriman Avenue, Stellenbosch 7602, South Africa;
| | - Umezuruike L. Opara
- South African Research Chair in Postharvest Technology, Department of Horticultural Science, Stellenbosch University, Private Bag X1, Merriman Avenue, Stellenbosch 7602, South Africa; (O.A.F.); (U.L.O.)
| | - Nokwanda P. Makunga
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Merriman Avenue, Stellenbosch 7602, South Africa; (S.Z.); (C.l.G.)
| |
Collapse
|
125
|
Polyphenols and their potential role in preventing skeletal muscle atrophy. Nutr Res 2020; 74:10-22. [DOI: 10.1016/j.nutres.2019.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 10/18/2019] [Accepted: 11/18/2019] [Indexed: 12/27/2022]
|
126
|
Affiliation(s)
- Keith I. Block
- Block Center for Integrative Cancer Treatment, Skokie, IL, USA
| |
Collapse
|
127
|
Jafri A, Amjad S, Bano S, Kumar S, Serajuddin M, Arshad M. Efficacy of Nano-phytochemicals Over Pure Phytochemicals Against Various Cancers: Current Trends and Future Prospects. NANOMATERIALS AND ENVIRONMENTAL BIOTECHNOLOGY 2020. [DOI: 10.1007/978-3-030-34544-0_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
128
|
Vaezi M, Rezaei Behbehani G, Farasat A, Gheibi N. Thermodynamic, kinetic and docking studies of some unsaturated fatty acids-quercetin derivatives as inhibitors of mushroom tyrosinase. AIMS BIOPHYSICS 2020. [DOI: 10.3934/biophy.2020027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
129
|
Rogers RC, Burke SJ, Collier JJ, Ritter S, Hermann GE. Evidence that hindbrain astrocytes in the rat detect low glucose with a glucose transporter 2-phospholipase C-calcium release mechanism. Am J Physiol Regul Integr Comp Physiol 2020; 318:R38-R48. [PMID: 31596114 PMCID: PMC6985801 DOI: 10.1152/ajpregu.00133.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Astrocytes generate robust cytoplasmic calcium signals in response to reductions in extracellular glucose. This calcium signal, in turn, drives purinergic gliotransmission, which controls the activity of catecholaminergic (CA) neurons in the hindbrain. These CA neurons are critical to triggering glucose counter-regulatory responses (CRRs) that, ultimately, restore glucose homeostasis via endocrine and behavioral means. Although the astrocyte low-glucose sensor involvement in CRR has been accepted, it is not clear how astrocytes produce an increase in intracellular calcium in response to a decrease in glucose. Our ex vivo calcium imaging studies of hindbrain astrocytes show that the glucose type 2 transporter (GLUT2) is an essential feature of the astrocyte glucosensor mechanism. Coimmunoprecipitation assays reveal that the recombinant GLUT2 binds directly with the recombinant Gq protein subunit that activates phospholipase C (PLC). Additional calcium imaging studies suggest that GLUT2 may be connected to a PLC-endoplasmic reticular-calcium release mechanism, which is amplified by calcium-induced calcium release (CICR). Collectively, these data help outline a potential mechanism used by astrocytes to convert information regarding low-glucose levels into intracellular changes that ultimately regulate the CRR.
Collapse
Affiliation(s)
- Richard C. Rogers
- 1Laboratory of Autonomic Neuroscience, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Susan J. Burke
- 2Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - J. Jason Collier
- 3Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Sue Ritter
- 4Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, Washington
| | - Gerlinda E. Hermann
- 1Laboratory of Autonomic Neuroscience, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| |
Collapse
|
130
|
Ackova DG, Smilkov K, Bosnakovski D. Contemporary Formulations for Drug Delivery of Anticancer Bioactive Compounds. Recent Pat Anticancer Drug Discov 2019; 14:19-31. [PMID: 30636616 DOI: 10.2174/1574892814666190111104834] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/28/2018] [Accepted: 01/01/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND The immense development in the field of anticancer research has led to an increase in the research of bioactive compounds with anticancer potential. It has been known that many bioactive natural compounds have low solubility (and low bioavailability) as their main drawback when it comes to the formulation and drug delivery to specific sites. OBJECTIVE As many attempts have been made to overcome this issue, this review gives a summary of the current accomplishments regarding the development of new Drug Delivery Systems (DDSs) represented by nanoparticles (NPs) and exosomes. METHODS We analyzed the published data concerning selected compounds that present the most prominent plant secondary metabolites with anticancer potential, specifically flavone (quercetin), isoflavone (genistein and curcumin) and stilbene (resveratrol) groups that have been formulated as NPs and exosomes. In addition, we summarized the patent literature published from 2015-2018 that address these formulations. RESULTS Although the exact mechanism of action for the selected natural compounds still remains unclear, the anticancer effect is evident and the main research efforts are directed to finding the most suitable delivery systems. Recent patents in this field serve as evidence that these newly designed natural compound delivery systems could be powerful new anticancer agents in the very near future if the noted difficulties are overcome. CONCLUSION The focus of recent research is not only to clarify the exact mechanisms of action and therapeutic effects, but also to answer the issue of suitable delivery systems that can transport sufficient doses of bioactive compounds to the desired target.
Collapse
Affiliation(s)
- Darinka G Ackova
- Department of Pharmacy, Faculty of Medical Sciences, University Goce Delcev - Stip, Macedonia, the Former Yugoslav Republic of
| | - Katarina Smilkov
- Department of Pharmacy, Faculty of Medical Sciences, University Goce Delcev - Stip, Macedonia, the Former Yugoslav Republic of
| | - Darko Bosnakovski
- Department of Pharmacy, Faculty of Medical Sciences, University Goce Delcev - Stip, Macedonia, the Former Yugoslav Republic of.,Department of Pediatrics, University of Minnesota, Minneapolis, United States
| |
Collapse
|
131
|
Fernández-Palanca P, Fondevila F, Méndez-Blanco C, Tuñón MJ, González-Gallego J, Mauriz JL. Antitumor Effects of Quercetin in Hepatocarcinoma In Vitro and In Vivo Models: A Systematic Review. Nutrients 2019; 11:nu11122875. [PMID: 31775362 PMCID: PMC6950472 DOI: 10.3390/nu11122875] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/14/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Quercetin is a flavonoid present in fruits, vegetables and plants with antioxidant, anti-inflammatory and anticancer properties. Its beneficial activities have been demonstrated in different human pathologies, including hepatoprotective effects against liver disorders. High mortality and late diagnosis of the primary liver tumor hepatocarcinoma (HCC) makes this cancer an interesting target for the study of quercetin effects. Our aim was to systematically review antitumor activities of quercetin in HCC preclinical studies employing single, encapsulated, combined or derived quercetin forms. Literature search was conducted in PubMed, Scopus and Web of Science (WOS), and 39 studies were finally included. We found that 17 articles evaluated quercetin effects alone, six used encapsulated strategy, 10 combined this flavonoid, two decided to co-encapsulate it and only four studied effects of quercetin derivatives, highlighting that only nine included in vivo models. Results evidence the quercetin antiproliferative and proapoptotic properties against HCC either alone and with the mentioned strategies; nevertheless, few investigations assessed specific activities on different processes related with cancer progression. Overall, further studies including animal models are needed to deeper investigate the precise mechanisms of action of quercetin as antitumor agent, as well as the potential of novel strategies aimed to improve quercetin effects in HCC.
Collapse
Affiliation(s)
- Paula Fernández-Palanca
- Institute of Biomedicine, University of León, 24071 León, Spain; (P.F.-P.); (F.F.); (C.M.-B.); (M.J.T.); (J.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Flavia Fondevila
- Institute of Biomedicine, University of León, 24071 León, Spain; (P.F.-P.); (F.F.); (C.M.-B.); (M.J.T.); (J.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Carolina Méndez-Blanco
- Institute of Biomedicine, University of León, 24071 León, Spain; (P.F.-P.); (F.F.); (C.M.-B.); (M.J.T.); (J.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - María J. Tuñón
- Institute of Biomedicine, University of León, 24071 León, Spain; (P.F.-P.); (F.F.); (C.M.-B.); (M.J.T.); (J.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Javier González-Gallego
- Institute of Biomedicine, University of León, 24071 León, Spain; (P.F.-P.); (F.F.); (C.M.-B.); (M.J.T.); (J.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - José L. Mauriz
- Institute of Biomedicine, University of León, 24071 León, Spain; (P.F.-P.); (F.F.); (C.M.-B.); (M.J.T.); (J.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
132
|
Shah ST, Yehye WA, Chowdhury ZZ, Simarani K. Magnetically directed antioxidant and antimicrobial agent: synthesis and surface functionalization of magnetite with quercetin. PeerJ 2019; 7:e7651. [PMID: 31768301 PMCID: PMC6874855 DOI: 10.7717/peerj.7651] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 08/09/2019] [Indexed: 11/20/2022] Open
Abstract
Oxidative stress can be reduced substantially using nanoantioxidant materials by tuning its surface morphological features up to a greater extent. The physiochemical, biological and optical properties of the nanoantioxidants can be altered by controlling their size and shape. In view of that, an appropriate synthesis technique should be adopted with optimization of the process variables. Properties of magnetite nanoparticles (IONP) can be tailored to upgrade the performance of biomedicine. Present research deals with the functionalization IONP using a hydrophobic agent of quercetin (Q). The application of quercetin will control its size using both the functionalization method including in-situ and post-synthesis technique. In in-situ techniques, the functionalized magnetite nanoparticles (IONP@Q) have average particles size 6 nm which are smaller than the magnetite (IONP) without functionalization. After post functionalization technique, the average particle size of magnetite IONP@Q2 determined was 11 nm. The nanoparticles also showed high saturation magnetization of about 51-59 emu/g. Before starting the experimental lab work, Prediction Activity Spectra of Substances (PASS) software was used to have a preliminary idea about the biological activities of Q. The antioxidant activity was carried out using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay. The antibacterial studies were carried out using well diffusion method. The results obtained were well supported by the simulated results. Furthermore, the values of the half maximal inhibitory concentration (IC50) of the DPPH antioxidant assay were decreased using the functionalized one and it exhibited a 2-3 fold decreasing tendency than the unfunctionalized IONP. This exhibited that the functionalization process can easily enhance the free radical scavenging properties of IONPs up to three times. MIC values confirms that functionalized IONP have excellent antibacterial properties against the strains used (Staphylococcus aureus, Bacillus subtilis and Escherichia coli) and fungal strains (Aspergillus niger, Candida albicans, Trichoderma sp. and Saccharomyces cerevisiae). The findings of this research showed that the synthesized nanocomposite has combinatorial properties (magnetic, antioxidant and antimicrobial) which can be considered as a promising candidate for biomedical applications. It can be successfully used for the development of biomedicines which can be subsequently applied as antioxidant, anti-inflammatory, antimicrobial and anticancer agents.
Collapse
Affiliation(s)
- Syed Tawab Shah
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Wageeh A. Yehye
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Zaira Zaman Chowdhury
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Khanom Simarani
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
133
|
Emerging Perspective: Role of Increased ROS and Redox Imbalance in Skin Carcinogenesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8127362. [PMID: 31636809 PMCID: PMC6766104 DOI: 10.1155/2019/8127362] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/25/2019] [Accepted: 07/31/2019] [Indexed: 02/08/2023]
Abstract
Strategies to battle malignant tumors have always been a dynamic research endeavour. Although various vehicles (e.g., chemotherapeutic therapy, radiotherapy, surgical resection, etc.) are used for skin cancer management, they mostly remain unsatisfactory due to the complex mechanism of carcinogenesis. Increasing evidence indicates that redox imbalance and aberrant reactive oxygen species (ROS) are closely implicated in the oncogenesis of skin cancer. When ROS production goes beyond their clearance, excessive or accumulated ROS could disrupt redox balance, induce oxidative stress, and activate the altered ROS signals. These would damage cellular DNA, proteins, and lipids, further leading to gene mutation, cell hyperproliferation, and fatal lesions in cells that contribute to carcinogenesis in the skin. It has been known that ROS-mediated skin carcinogenesis involves multiple ways, including modulating related signaling pathways, changing cell metabolism, and causing the instability of the genome and epigenome. Nevertheless, the exact role of ROS in skin cancer has not been thoroughly elucidated. In spite of ROS inducing skin carcinogenesis, toxic-dose ROS could trigger cell death/apoptosis and, therefore, may be an efficient therapeutic tool to battle skin cancer. Considering the dual role of ROS in the carcinogenesis and treatment of skin cancer, it would be essential to clarify the relationship between ROS and skin cancer. Thus, in this review, we get the related data together to seek the connection between ROS and skin carcinogenesis. Besides, strategies basing on ROS to fight skin cancer are discussed.
Collapse
|
134
|
Kim DH, Khan H, Ullah H, Hassan STS, Šmejkal K, Efferth T, Mahomoodally MF, Xu S, Habtemariam S, Filosa R, Lagoa R, Rengasamy KR. MicroRNA targeting by quercetin in cancer treatment and chemoprotection. Pharmacol Res 2019; 147:104346. [PMID: 31295570 DOI: 10.1016/j.phrs.2019.104346] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 02/08/2023]
Abstract
A growing number of evidences from clinical and preclinical studies have shown that dysregulation of microRNA (miRNA) function contributes to the progression of cancer and thus miRNA can be an effective target in therapy. Dietary phytochemicals, such as quercetin, are natural products that have potential anti-cancer properties due to their proven antioxidant, anti-inflammatory, and anti-proliferative effects. Available experimental studies indicate that quercetin could modulate multiple cancer-relevant miRNAs including let-7, miR-21, miR-146a and miR-155, thereby inhibiting cancer initiation and development. This paper reviews the data supporting the use of quercetin for miRNA-mediated chemopreventive and therapeutic strategies in various cancers, with the aim to comprehensively understand its health-promoting benefits and pharmacological potential. Integration of technology platforms for miRNAs biomarker and drug discovery is also presented.
Collapse
Affiliation(s)
- Doo Hwan Kim
- Department of Bioresources and Food Science, Konkuk University, Seoul, 05029, South Korea
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan.
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Sherif T S Hassan
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | | | - Suowen Xu
- University of Rochester, Aab Cardiovascular Research Institute, Rochester, NY, 14623, USA
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services UK, University of Greenwich, UK
| | - Rosanna Filosa
- Institute of Food Sciences, National Research Council, Roma str. 64, Avellino, 83100, Italy; Consorzio Sannio Tech, AMP Biotec, Appia Str, Apollosa, Benevento, 82030, Italy
| | - Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Portugal; UCIBIO-Faculty of Science and Technology, University NOVA of Lisbon, Portugal.
| | - Kannan Rr Rengasamy
- Department of Bioresources and Food Science, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
135
|
Li LJ, Liu XQ, Du XP, Wu L, Jiang ZD, Ni H, Li QB, Chen F. Preparation of isoquercitrin by biotransformation of rutin using α-L-rhamnosidase from Aspergillus niger JMU-TS528 and HSCCC purification. Prep Biochem Biotechnol 2019; 50:1-9. [PMID: 31441715 DOI: 10.1080/10826068.2019.1655763] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Isoquercitrin is a flavonoid with important applications in the pharmaceutical and nutraceutical industries. However, a low yield and high production cost hinders the industrial preparation of isoquercitrin. In the present study, isoquercitrin was prepared by biotransformation of rutin using α-L-rhamnosidase from Aspergillus niger JMU-TS528 combined with high-speed countercurrent chromatography (HSCCC) purification. As a result, the optimum transformation pH, temperature, and time were pH 4.0, 60 °C, and 60 min, respectively. The Km and Vmax were 0.36 mM and 0.460 mmol/min, respectively. For isoquercitrin production, the optimal rutin concentration and transformation time were approximately 1000 mg/L and 60 min. The rutin transformation rate reached 96.44%. The isoquercitrin was purified to a purity of 97.83% using one-step purification with HSCCC. The isoquercitrin was identified using UPLC-Q-TOF-MS. The comprehensive results indicated that the biotransformation procedure using the α-L-rhamnosidase from A. niger JMU-TS528 combined with HSCCC was a simple and effective process to prepare isoquercitrin, which might facilitate the production of isoquercitrin for industrial use.
Collapse
Affiliation(s)
- Li Jun Li
- College of Food and Biological Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Xiao Qing Liu
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Xi Ping Du
- College of Food and Biological Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Ling Wu
- College of Food and Biological Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Ze Dong Jiang
- College of Food and Biological Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Hui Ni
- College of Food and Biological Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Qing Biao Li
- College of Food and Biological Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Feng Chen
- College of Food and Biological Engineering, Jimei University, Xiamen, China.,Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC, USA
| |
Collapse
|
136
|
One pot synthesis of water-soluble quercetin derived multifunctional nanoparticles with photothermal and antioxidation capabilities. Colloids Surf B Biointerfaces 2019; 183:110429. [PMID: 31426025 DOI: 10.1016/j.colsurfb.2019.110429] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/18/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022]
Abstract
As a member of flavonoids, the application of quercetin has been mainly focused on antioxidation study. Fabrication of multifunctional nanoplatforms with quercetin is limited. In the present study, water-soluble quercetin derived nanoparticles (QFNPs) were fabricated through the one pot synthesis strategy with Fe3+, quercetin and poly (vinyl pyrrolidone) (PVP). The raw materials were dissolved in absolute ethanol and the mixed together. After stirring at room temperature for 6 h, the QFNPs could be simply harvested by centrifugation without the need of time-consuming dialysis procedure. Due to the protective effect of PVP, the synthesized nanoparticles could be well dispersed in water with the hydrodynamic size about 23 nm. DPPH free radical scavenging capacity assay showed QFNPs could act as efficient antioxidant. Besides antioxidation activity, the QFNPs also exhibited good photothermal capacity. Temperature stability result suggested the good stability of QFNPs between 35 and 95 °C. MTT and hemolysis assay showed the good biocompatibility of QFNPs. What's more, the QFNPs showed good cellular antioxidation activity and efficient photothermal killing effect to cancer cells (4T1 cells). The QFNPs could be promising nanoplatform for biomedical application.
Collapse
|
137
|
Zhou Z, Luo B, Liu X, Chen M, Lan W, Iovanna JL, Peng L, Xia Y. Flavonoid-alkylphospholipid conjugates elicit dual inhibition of cancer cell growth and lipid accumulation. Chem Commun (Camb) 2019; 55:8919-8922. [PMID: 31270526 DOI: 10.1039/c9cc04084f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer development is often associated with lipid metabolic reprogramming, including aberrant lipid accumulation. We create novel paradigms endowed with dual functions of anticancer activity and inhibition of lipid accumulation by conjugating the natural product quercetin and synthetic alkylphospholipid drugs, and harnessing the biomedical effects of both. These conjugates offer fresh perspectives in the search for anticancer candidates.
Collapse
Affiliation(s)
- Zhengwei Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, China.
| | - Biyao Luo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, China.
| | - Xi Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, China.
| | - Mimi Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, China.
| | - Wenjun Lan
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, Equipe Labellisé par La Ligue, France. and Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille 13288, France
| | - Juan L Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille 13288, France
| | - Ling Peng
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, Equipe Labellisé par La Ligue, France.
| | - Yi Xia
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, China.
| |
Collapse
|
138
|
Liu H, Lee JI, Ahn TG. Effect of quercetin on the anti-tumor activity of cisplatin in EMT6 breast tumor-bearing mice. Obstet Gynecol Sci 2019; 62:242-248. [PMID: 31338341 PMCID: PMC6629990 DOI: 10.5468/ogs.2019.62.4.242] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/25/2019] [Accepted: 03/03/2019] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE The purpose of this study was to determine the effect of quercetin on the antitumor activity of cisplatin and its side-effects. METHODS EMT6 cells, a mouse breast cancer cell line, were injected subcutaneously in mice to generate a breast tumor-bearing mouse model. Experimental groups were divided into four groups: control (C), quercetin (Q), cisplatin (CP), and cisplatin+quercetin (CP+Q). RESULTS The tumor volume of the CP+Q group was significantly lower than that of the CP group. Serum blood urea nitrogen and creatinine levels in the CP+Q group were lower than those in the CP group. Renal γ-glutamyltranspeptidase and alkaline phosphatase activities were significantly higher in the CP+Q group than in the CP group, and the content of renal thiobarbituric acid reactive substance was significantly lower in the CP+Q group than that in the CP group. These results suggested that quercetin and cisplatin synergistically increased cellular toxicity in breast cancer cells and mediated cancer growth inhibition, thereby enhancing the antitumor effect of cisplatin compared to when only cisplatin was administered. Quercetin also reduced renal toxicity, which arose as a potential a side effect of cisplatin. CONCLUSION The enhanced antitumor effect of cisplatin and decreased renal toxicity after quercetin treatment suggested the applicability of quercetin as an adjuvant for chemotherapeutic agents.
Collapse
Affiliation(s)
- Hyunju Liu
- Department of Obstetrics and Gynecology, College of Medicine, Chosun University, Gwangju, Korea
| | - Jung In Lee
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Korea
| | - Tae-Gyu Ahn
- Department of Obstetrics and Gynecology, College of Medicine, Chosun University, Gwangju, Korea
| |
Collapse
|
139
|
Önay Uçar E, Şengelen A. Resveratrol and siRNA in combination reduces Hsp27 expression and induces caspase-3 activity in human glioblastoma cells. Cell Stress Chaperones 2019; 24:763-775. [PMID: 31073903 PMCID: PMC6629732 DOI: 10.1007/s12192-019-01004-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/12/2019] [Accepted: 05/01/2019] [Indexed: 12/13/2022] Open
Abstract
GBM cells can easily gain resistance to conventional therapy, and therefore treatment of glioblastoma multiforme (GBM) is difficult. One of the hallmark proteins known to be responsible for this resistance is heat shock protein 27 (Hsp27) which has a key role in the cell survival. Resveratrol, a natural compound, exhibits antitumor effects against GBM, but there are no reports regarding its effect on Hsp27 expression in gliomas. The aim of the present study was to asses the effect of resveratrol on Hsp27 expression and apoptosis in non-transfected and transfected U-87 MG human glioblastoma cells. In order to block the Hsp27 expression, siRNA transfection was performed. Non-transfected and transfected cells were treated with either 10 or 15 μM resveratrol. The effects of resveratrol were compared with quercetin, a well-known Hsp27 inhibitor. Resveratrol was found to induce apoptosis more effectively than quercetin. Our data showed that resveratrol induces dose- and time-dependent cell death. We also determined that silencing of Hsp27 with siRNA makes the cells more vulnerable to apoptosis upon resveratrol treatment. The highest effect was observed in the 15 μM resveratrol and 25 nM siRNA combination group (suppressed Hsp27 expression by 93.4% and induced apoptosis by 101.2%). This study is the first report showing that resveratrol reduces Hsp27 levels, and siRNA-mediated Hsp27 silencing enhances the therapeutic effects of resveratrol in glioma cells. Our results suggest that resveratrol administration in combination with Hsp27 silencing has a potential to be used as a candidate for GBM treatment.
Collapse
Affiliation(s)
- Evren Önay Uçar
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, 34134, Vezneciler, Istanbul, Turkey.
| | - Aslıhan Şengelen
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkey
| |
Collapse
|
140
|
Sezer ED, Oktay LM, Karadadaş E, Memmedov H, Selvi Gunel N, Sözmen E. Assessing Anticancer Potential of Blueberry Flavonoids, Quercetin, Kaempferol, and Gentisic Acid, Through Oxidative Stress and Apoptosis Parameters on HCT-116 Cells. J Med Food 2019; 22:1118-1126. [PMID: 31241392 DOI: 10.1089/jmf.2019.0098] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In recent years, natural products gained popularity with their anti-inflammatory and antioxidant effects mediated by chemical compounds within their composition. Study results offering them as palliative therapy options in cancer or as anticancer agents with high levels of cytotoxicity brought a new approach to combine cancer treatment protocols with these products. From a different perspective, edible types of these products are suggested in daily diets due to their potential cancer preventive effects. Our preliminary work was on blueberry extracts (Vaccinium myrtillus) as a main representative of these natural products, and the contents of the extracts were analyzed with liquid chromatography tandem mass spectrometry (LC MS/MS) to reveal the composition and distribution of polyphenolic compounds within. The most abundant polyphenols detected in V. myrtillus extracts were quercetin, kaempferol, and a phenolic acid, gentisic acid (GA). The compounds were further evaluated on treated HCT-116 cells for their potential anticancer effects by measuring total antioxidant status, total oxidant status, and 8-hydroxydeoxyguanosine levels for evaluation of oxidative stress and through protein array analysis and flow cytometric analysis for evaluation of apoptosis. In analysis of oxidative stress parameters, reduced total oxidant levels and reduced oxidative stress index levels were found in cells treated with the compounds in comparison with untreated cells. In apoptosis-related protein profiles, at least twofold reduction in various apoptotic proteins was observed after quercetin and kaempferol treatment, whereas a different profile was observed for GA. Overall, results of this study showed that quercetin and kaempferol have strong cytotoxic, antioxidant, and apoptotic effects, although GA is mostly effective as an antioxidant polyphenol on HCT-116 cells.
Collapse
Affiliation(s)
- Ebru Demirel Sezer
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, Bornova, Turkey
| | - Latife Merve Oktay
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, Turkey
| | - Elif Karadadaş
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, Bornova, Turkey
| | - Hikmet Memmedov
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, Bornova, Turkey
| | - Nur Selvi Gunel
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, Turkey
| | - Eser Sözmen
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, Bornova, Turkey
| |
Collapse
|
141
|
Zlatić N, Jakovljević D, Stanković M. Temporal, Plant Part, and Interpopulation Variability of Secondary Metabolites and Antioxidant Activity of Inula helenium L. PLANTS 2019; 8:plants8060179. [PMID: 31213017 PMCID: PMC6630240 DOI: 10.3390/plants8060179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/11/2019] [Accepted: 06/15/2019] [Indexed: 11/14/2022]
Abstract
Variations in abiotic environmental factors have significant effects on quantity and quality of secondary metabolites, which is particularly important for plant species that possess biologically active compounds. The purpose of this study is determination of the total phenolic content, flavonoid concentration, and antioxidant activity of the different parts of Inula helenium L. (Asteraceae) sampled from different populations and in different time periods. The amounts obtained for the total phenolics varied from 16.73 to 89.85 mg of gallic acid (GA)/g. The concentration of flavonoids ranged from 9.32 to 376.22 mg of rutin (Ru)/g. The IC50 values of antioxidant activity determined using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical method varied from 161.60 to 1563.02 μg/ml. The inflorescence and roots possessed high concentration of phenolic compounds and significant antioxidant activity, while leaves contained the highest concentration of flavonoids. Additionally, the quantity of the phenolics, as well as antioxidant activity, significantly varied among the different populations due to different impacts of environmental factors. This research showed that I. helenium represents an abundant source of bioactive substances, and that the quantity of these compounds greatly differs among the different populations as well as in the same populations regarding the different time periods as well as plant parts.
Collapse
Affiliation(s)
- Nenad Zlatić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Republic of Serbia.
| | - Dragana Jakovljević
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Republic of Serbia.
| | - Milan Stanković
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Republic of Serbia.
| |
Collapse
|
142
|
Zhang C, Hao Y, Sun Y, Liu P. Quercetin suppresses the tumorigenesis of oral squamous cell carcinoma by regulating microRNA-22/WNT1/β-catenin axis. J Pharmacol Sci 2019; 140:128-136. [DOI: 10.1016/j.jphs.2019.03.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/11/2022] Open
|
143
|
Jiang X, Yu J, Wang X, Ge J, Li N. Quercetin improves lipid metabolism via SCAP-SREBP2-LDLr signaling pathway in early stage diabetic nephropathy. Diabetes Metab Syndr Obes 2019; 12:827-839. [PMID: 31239739 PMCID: PMC6554005 DOI: 10.2147/dmso.s195456] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/22/2019] [Indexed: 01/14/2023] Open
Abstract
Purpose: Quercetin, the most widely distributed flavonoid, has been shown to have multiple properties and beneficial effects on various metabolic diseases. Thus, our aim was to investigate the underlying mechanism whereby quercetin regulates renal lipid accumulation and ameliorates early diabetic renal injuries in Leprdb/Leprdb (db/db) mice, a model of type 2 diabetes. Methods: db/db mice were administered either 50 mg/kg or 100 mg/kg quercetin by oral gavage once a day to evaluate its effects on early stage diabetic nephropathy; mice were sacrificed at the end of the 10th week after intervention; a similar number of db/db and db/m mice were used as controls. During the experimental study, the general status of the animals was observed daily; body weight and blood glucose concentrations were measured at bi-weekly intervals. Biochemical parameters of lipid metabolism were measured by automatic biochemical analyzer. Renal function parameters were performed using commercial kits. Early renal histological changes and lipid accumulation were demonstrated by H&E staining and Oil-Red-O staining, respectively. Moreover, the expression of key proteins in the low-density lipoprotein receptors (LDLr)-SREBP-2-SREBP cSCAP signaling pathway in the kidneys of diabetic mice was detected by Western blot assay. Results: Compared with diabetic controls, quercetin not only ameliorated albuminuria and urinary albumin-to-creatinine ratio, but also decreased blood urea nitrogen and glucose, serum cholesterol, triglycerides, and low-density lipoprotein cholesterol, whereas it had no remarkable effect on the high-density lipoprotein cholesterol in diabetic db/db mice. Additionally, the evidently down regulated expression of LDLr, HMGCR, SREBP-2, and SCAP subsequently attenuated the renal lipid profile change and lipid droplet accumulation, resulting in the alleviation of renal injury of db/db mice. Conclusion: Quercetin safely and efficiently alleviates early diabetic renal injuries, possibly through improving the lipid metabolism via SCAP-SREBP2-LDLr signaling pathway.
Collapse
Affiliation(s)
- Xiyuan Jiang
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Jiangsu210029, People’s Republic of China
- Eodocrinology Department, KunShan Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, 215300, People’s Republic of China
| | - Jiangyi Yu
- Eodocrinology Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu213003, People’s Republic of China
| | - Xin Wang
- Eodocrinology Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu213003, People’s Republic of China
| | - Jing Ge
- Eodocrinology Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu213003, People’s Republic of China
| | - Nan Li
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Jiangsu210029, People’s Republic of China
| |
Collapse
|
144
|
Ryu S, Park S, Lim W, Song G. Quercetin augments apoptosis of canine osteosarcoma cells by disrupting mitochondria membrane potential and regulating PKB and MAPK signal transduction. J Cell Biochem 2019; 120:17449-17458. [PMID: 31131468 DOI: 10.1002/jcb.29009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/11/2019] [Accepted: 04/18/2019] [Indexed: 12/24/2022]
Abstract
Osteosarcoma is a mesenchymal malignant bone tumor accompanied by a high rate of lung metastasis and short survival in dogs. Although various therapies have been reported, the etiological mechanism of osteosarcoma remains undetermined and the development of novel therapeutic agents is warranted. In this study, we have reported the diverse functions of quercetin, one of the well-known flavonoid, in D-17 and DSN (canine osteosarcoma) cell lines. Current results indicate that quercetin decreases proliferative properties and increases programmed cell death, in addition to altering the cell cycle, mitochondrial depolarization, level of reactive oxygen species, and concentration of cytoplasmic calcium in both cells. Furthermore, it was observed that quercetin suppresses phosphorylation of AKT, P70S6K, and S6 proteins and upregulates phosphorylation of ERK1 or 2, P38, c-Jun N-terminal kinase, and P90RSK proteins in both cell lines. Collectively, we suggest that quercetin can be used as a pharmacological agent for suppressing the proliferation and inducing the apoptosis of canine osteosarcoma cells.
Collapse
Affiliation(s)
- Soomin Ryu
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sunwoo Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
145
|
Size-Dependent Biological Effects of Quercetin Nanocrystals. Molecules 2019; 24:molecules24071438. [PMID: 30979064 PMCID: PMC6479833 DOI: 10.3390/molecules24071438] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/12/2022] Open
Abstract
Quercetin (QE) is an attractive natural compound for cancer prevention due to its beneficial anti-oxidative and anti-proliferative effects. However, QE is poorly soluble in water and slightly soluble in oil, which results in its low oral bioavailability and limits its application in the clinic. The aim of this study was to prepare QE nanocrystals (QE-NCs) with improved solubility and high drug loading, furthermore, the size-dependent anti-cancer effects of QE-NCs were studied. We prepared QE-NCs with three different particle sizes by wet milling, then, cell proliferation, migration and invasion were studied in A549 cells. The QE-NCs had antitumor effects in a dose- and size-dependent manner. Compared with the large particles, the small particles had a strong inhibitory impact on cell biological effects (p < 0.05 or p < 0.01). Moreover, Western blot assay indicated that QE-NCs may inhibit the migration and invasion of A549 cells by inhibiting the STAT3 signaling pathway, and the particle size may have an effect on this process. In this study, it was proven that NCs could dramatically enhance the anticancer efficacy of QE at the cellular level. In addition, particle size had a considerable influence on the dissolution behavior and antitumor effects of NCs.
Collapse
|
146
|
Lagoa R, Silva J, Rodrigues JR, Bishayee A. Advances in phytochemical delivery systems for improved anticancer activity. Biotechnol Adv 2019; 38:107382. [PMID: 30978386 DOI: 10.1016/j.biotechadv.2019.04.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/23/2019] [Accepted: 04/06/2019] [Indexed: 12/15/2022]
Abstract
Natural compounds have significant anticancer pharmacological activities, but often suffer from low bioavailability and selectivity that limit therapeutic use. The present work critically analyzes the latest advances on drug delivery systems designed to enhance pharmacokinetics, targeting, cellular uptake and efficacy of anticancer phytoconstituents. Various phytochemicals, including flavonoids, resveratrol, celastrol, curcumin, berberine and camptothecins, carried by liposomes, nanoparticles, nanoemulsions and films showed promising results. Strategies to avoid drug metabolism, overcome physiological barriers and achieve higher concentration at cancer sites through skin, buccal, nasal, vaginal, pulmonary and colon targeted delivery are presented. Current limitations, challenges and future research directions are also discussed.
Collapse
Affiliation(s)
- Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal.
| | - João Silva
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Joaquim Rui Rodrigues
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA.
| |
Collapse
|
147
|
Chuang CH, Chan ST, Chen CH, Yeh SL. Quercetin enhances the antitumor activity of trichostatin A through up-regulation of p300 protein expression in p53 null cancer cells. Chem Biol Interact 2019; 306:54-61. [PMID: 30958996 DOI: 10.1016/j.cbi.2019.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 12/21/2022]
Abstract
In the present study, we investigated the p53-independent mechanism by which quercetin (Q) increased apoptosis in human lung cancer H1299 cells exposed to trichostatin A (TSA), a histone deacetylase inhibitor. We also investigated the role of Q in increasing the acetylation of histones H3 and H4 and the possible mechanism. Q at 5 μM significantly increased apoptosis by 88% in H1299 cells induced by TSA at 72 h. Q also significantly increased TSA-induced death receptor 5 (DR5) mRNA and protein expression as well as caspase-10/3 activities in H1299 cells. Transfection of DR5 siRNA into H1299 cells significantly diminished the enhancing effects of Q on TSA-induced apoptosis. Furthermore, TSA in combination with Q rather than TSA alone significantly increased p300 expression. Transfection of p300 siRNA in H1299 cells significantly diminished the increase of histone H3/H4 acetylation, DR5 protein expression, caspase-10/3 activity and apoptosis induced by Q. In addition, similar effects of Q were observed when Q was combined with vorinostat, another FDA-approved histone deacetylase inhibitor. These data suggest that the up-regulation of p300 expression, which in turn increases histone acetylation and DR5 expression, plays an important role in the enhancing effect of Q on TSA/vorinostat- induced apoptosis in H1299 cells.
Collapse
Affiliation(s)
- Cheng-Hung Chuang
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, 1018, Sec. 6 Taiwan Boulevard, Taichung, Taiwan
| | - Shu-Ting Chan
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Chao-Hsiang Chen
- Ko Da Pharmaceutical Co. Ltd, No. 20-1, Gongye 3rd Rd., Taoyuan county, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Shu-Lan Yeh
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan; Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
148
|
Zhao J, Fang Z, Zha Z, Sun Q, Wang H, Sun M, Qiao B. Quercetin inhibits cell viability, migration and invasion by regulating miR-16/HOXA10 axis in oral cancer. Eur J Pharmacol 2019; 847:11-18. [DOI: 10.1016/j.ejphar.2019.01.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/20/2018] [Accepted: 01/08/2019] [Indexed: 01/03/2023]
|
149
|
Minkiewicz P, Turło M, Iwaniak A, Darewicz M. Free Accessible Databases as a Source of Information about Food Components and Other Compounds with Anticancer Activity⁻Brief Review. Molecules 2019; 24:E789. [PMID: 30813234 PMCID: PMC6412331 DOI: 10.3390/molecules24040789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/26/2022] Open
Abstract
Diet is considered to be a significant factor in cancer prevention and therapy. Many food components reveal anticancer activity. The increasing number of experiments concerning the anticancer potential of chemical compounds, including food components, is a challenge for data searching. Specialized databases provide an opportunity to overcome this problem. Data concerning the anticancer activity of chemical compounds may be found in general databases of chemical compounds and databases of drugs, including specialized resources concerning anticancer compounds, databases of food components, and databases of individual groups of compounds, such as polyphenols or peptides. This brief review summarizes the state of knowledge of chemical databases containing information concerning natural anticancer compounds (e.g., from food). Additionally, the information about text- and structure-based search options and links between particular internet resources is provided in this paper. Examples of the application of databases in food and nutrition sciences are also presented with special attention to compounds that are interesting from the point of view of dietary cancer prevention. Simple examples of potential database search possibilities are also discussed.
Collapse
Affiliation(s)
- Piotr Minkiewicz
- University of Warmia and Mazury in Olsztyn, Chair of Food Biochemistry, Plac Cieszyński 1, 10-726 Olsztyn-Kortowo, Poland.
| | - Marta Turło
- University of Warmia and Mazury in Olsztyn, Chair of Food Biochemistry, Plac Cieszyński 1, 10-726 Olsztyn-Kortowo, Poland.
| | - Anna Iwaniak
- University of Warmia and Mazury in Olsztyn, Chair of Food Biochemistry, Plac Cieszyński 1, 10-726 Olsztyn-Kortowo, Poland.
| | - Małgorzata Darewicz
- University of Warmia and Mazury in Olsztyn, Chair of Food Biochemistry, Plac Cieszyński 1, 10-726 Olsztyn-Kortowo, Poland.
| |
Collapse
|
150
|
Chen X, Peng X, Luo Y, You J, Yin D, Xu Q, He H, He M. Quercetin protects cardiomyocytes against doxorubicin-induced toxicity by suppressing oxidative stress and improving mitochondrial function via 14-3-3γ. Toxicol Mech Methods 2019; 29:344-354. [PMID: 30636491 DOI: 10.1080/15376516.2018.1564948] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiotoxicity limits the clinical applications of doxorubicin (Dox), which mechanism might be excess generation of intracellular ROS. Quercetin (Que) is a flavonoid that possesses anti-oxidative activities, exerts myocardial protection. We hypothesized that the cardioprotection against Dox injury of Que involved 14-3-3γ, and mitochondria. To investigate the hypothesis, we treated primary cardiomyocytes with Dox and determined the effects of Que pretreatment with or without 14-3-3γ knockdown. We analyzed various cellular and molecular indexes. Our data showed that Que attenuated Dox-induced toxicity in cardiomyocytes by upregulating 14-3-3γ expression. Que pretreatment increased cell viability, SOD, catalase, and GPx activities, GSH levels, MMP and the GSH/GSSG ratio; decreased LDH and caspase-3 activities, MDA and ROS levels, mPTP opening and the percentage of apoptotic cells. However, Que's cardioprotection were attenuated by knocking down 14-3-3γ expression using pAD/14-3-3γ-shRNA. In conclusion, Que protects cardiomyocytes against Dox injury by suppressing oxidative stress and improving mitochondrial function via 14-3-3γ.
Collapse
Affiliation(s)
- Xuanying Chen
- a Department of Pharmacy, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Xiaoping Peng
- b Jiangxi Provincial Institute of Hypertension, The First Affiliated Hospital, Nanchang University , Nanchang , China
| | - Yong Luo
- c Jiangxi Provincial Key Laboratory of Women's Reproductive Health , Jiangxi Provincial Maternal and Child Health Hospital , Nanchang , China
| | - Jiegen You
- d Jiangxi Academy of Medical Science, Nanchang University , Nanchang , China
| | - Dong Yin
- e Jiangxi Provincial Key Laboratory of Molecular Medicine , The Second Affiliated Hospital, Nanchang University , Nanchang , China
| | - Qiang Xu
- f Drug Clinical Trial Institution, Jiangxi Province Tumor Hospital , Nanchang , China
| | - Huan He
- g Jiangxi Provincial Key Laboratory of Basic Pharmacology , Nanchang University School of Pharmaceutical Science , Nanchang , China
| | - Ming He
- b Jiangxi Provincial Institute of Hypertension, The First Affiliated Hospital, Nanchang University , Nanchang , China
| |
Collapse
|