101
|
Sreevani K, Anierudhe VV. Synthesis and Characterization of Molybdenum Oxide Nanoparticles by Green Method Useful in Antifungal Applications Against Colletotrichum Gloeosporioides. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the present study, the synthesis of molybdenum oxide nanoparticles is done by the reduction of Ammonium molybdate with the extract from the leaves of Citrus sinensis. The optical studies like Fourier Transform Infrared studies and UV-vis-NIR gives insight on the details of presence
of functional groups and absorption of light. The X ray diffraction studies reveal its crystallinity and its particle size have been calculated. The zeta potential, which is used to characterize the metal nanoparticles, has been studied. The antifungal property of the nanoparticles has been
studied and a plot for disease index has been discussed. This natural method of synthesizing the molybdenum oxide nanoparticles can find numerous applications in biophysics.
Collapse
Affiliation(s)
- K. Sreevani
- Center for Nanoscience and Technology, Chennai Institute of Technology, Kundrathur, Chennai 600069, Tamil Nadu, India
| | - V. V. Anierudhe
- Department of Biotechnology, B. S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai 600048, Tamil Nadu, India
| |
Collapse
|
102
|
Modulation of Steroid and Triterpenoid Metabolism in Calendula officinalis Plants and Hairy Root Cultures Exposed to Cadmium Stress. Int J Mol Sci 2022; 23:ijms23105640. [PMID: 35628449 PMCID: PMC9145312 DOI: 10.3390/ijms23105640] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 12/10/2022] Open
Abstract
The present study investigated the changes in the content of steroids and triterpenoids in C. officinalis hairy root cultures and plants exposed to cadmium stress. The observed effects included the content and composition of analyzed groups of compounds, particularly the proportions among individual sterols (e.g., stigmasterol-to-sitosterol ratio), their ester and glycoside conjugates. The total sterol content increased in roots (by 30%) and hairy root culture (by 44%), whereas it decreased in shoots (by 15%); moreover, these effects were inversely correlated with Cd-induced growth suppression. Metabolic alterations of sterols and their forms seemed to play a greater role in the response to Cd stress in roots than in shoots. The symptoms of the competition between general metabolites (sterols) and specialized metabolites (triterpenoids) were also observed, i.e., the increase of the sterol biosynthesis parallel to the decrease of the triterpenoid content in C. officinalis plant roots and hairy root culture, and the inverse phenomenon in shoots. The similarity of the metabolic modifications observed in the present study on C. officinalis plant roots and hairy roots confirmed the possibility of application of plant in vitro cultures in initial studies for physiological research on plant response to environmental stresses.
Collapse
|
103
|
Higgins S, Biswas S, Goff NK, Septiningsih EM, Kurouski D. Raman Spectroscopy Enables Non-invasive and Confirmatory Diagnostics of Aluminum and Iron Toxicities in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:754735. [PMID: 35651767 PMCID: PMC9149412 DOI: 10.3389/fpls.2022.754735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/28/2022] [Indexed: 05/26/2023]
Abstract
Metal toxicities can be detrimental to a plant health, as well as to the health of animals and humans that consume such plants. Metal content of plants can be analyzed using colorimetric, atomic absorption- or mass spectroscopy-based methods. However, these techniques are destructive, costly and laborious. In the current study, we investigate the potential of Raman spectroscopy (RS), a modern spectroscopic technique, for detection and identification of metal toxicities in rice. We modeled medium and high levels of iron and aluminum toxicities in hydroponically grown plants. Spectroscopic analyses of their leaves showed that both iron and aluminum toxicities can be detected and identified with ∼100% accuracy as early as day 2 after the stress initiation. We also showed that diagnostics accuracy was very high not only on early, but also on middle (day 4-day 8) and late (day 10-day 14) stages of the stress development. Importantly this approach only requires an acquisition time of 1 s; it is non-invasive and non-destructive to plants. Our findings suggest that if implemented in farming, RS can enable pre-symptomatic detection and identification of metallic toxins that would lead to faster recovery of crops and prevent further damage.
Collapse
Affiliation(s)
- Samantha Higgins
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Sudip Biswas
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Nicolas K. Goff
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Endang M. Septiningsih
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX, United States
| |
Collapse
|
104
|
Asgher M, Sehar Z, Rehaman A, Rashid S, Ahmed S, Per TS, Alyemeni MN, Khan NA. Exogenously-applied L-glutamic acid protects photosynthetic functions and enhances arsenic tolerance through increased nitrogen assimilation and antioxidant capacity in rice (Oryza sativa L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:119008. [PMID: 35189299 DOI: 10.1016/j.envpol.2022.119008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/22/2022] [Accepted: 02/14/2022] [Indexed: 05/25/2023]
Abstract
L-Glutamic acid (Glu) is used as an effective bio-stimulant to reduce arsenic (As) stress in plants. The role of Glu was studied in the protection of photosynthesis and growth of rice (Oryza sativa L. Japonica Type Taipie-309) plants grown with 50 μM As stress by studying the oxidative stress, photosynthetic and growth characteristics. Among the Glu concentrations (0, 2.5, 5 and 10 μM), 10 μM Glu maximally enhanced photosynthesis and growth parameters with the least cellular oxidative stress level. The supplementation of 10 μM Glu resulted in the reduced effects of As stress on gas exchange parameters, PSII activity and growth attributes through enhancement of antioxidant and proline metabolism. The enzymes of nitrogen (N) assimilation, such as nitrate reductase, nitrite reductase, glutamine synthetase and glutamate synthase were increased with Glu treatment under As stress. The Glu-induced metabolite synthesis showed the role of various metabolites in As stress responses. The role of Glu as a signalling molecule in reducing the adverse effects of As through accelerating the antioxidant enzymes, PSII activity, proline metabolism and nitrogen assimilation has been discussed.
Collapse
Affiliation(s)
- Mohd Asgher
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India
| | - Zebus Sehar
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Abdul Rehaman
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India
| | - Shaista Rashid
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India
| | - Sajad Ahmed
- Plant Biotechnology Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, Jammu and Kashmir, 180001, India
| | - Tasir S Per
- Department of Botany, Government Degree College, Doda, Jammu and Kashmir, 182202, India
| | - Mohammed Nasser Alyemeni
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
105
|
Quantitative Estimation of Synergistic Toxicity of Cu and Zn on Growth of Arabidopsis thaliana by Isobolographic Method. TOXICS 2022; 10:toxics10040195. [PMID: 35448456 PMCID: PMC9031100 DOI: 10.3390/toxics10040195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/01/2023]
Abstract
Heavy metal is one of the most frequent soil contaminants and contaminated soils generally include numerous metals. Although exposure to multiple metals may increase the toxicity to humans and ecosystems, only additive effects are considered in the risk assessment. In this study, the synergistic effect of heavy metals (Cu and Zn) on a model plant, Arabidopsis thaliana, was quantified by the isobolographic method. The plant was cultured via the growth assay method on a plant agar containing individual heavy metals or combinations of Cu + Zn in a growth chamber. The concentration of Cu varied by eight levels from 0 to 200 μM and the concentration of Zn also varied by eight levels from 0 to 400 μM. In the combination of metals, each of the three levels of Cu (25–75 μM) and Zn (20–100 μM) were applied. After 8 days, plants were harvested for root/shoot weight and measured for leaf chlorophyll and carotenoid content. The primary and secondary root elongation of A. thaliana was estimated using image analysis to calculate total root length. The EC50 values of Cu and Zn on A. thaliana, based on the total root length, were 40.0 and 76.4 μM, respectively. When two heavy metals were administered in combination, the EC values decreased less than those of the individual metals. The average value of the combination index was 0.6, proving the synergistic toxic effect on the root growth of A. Thaliana. As a result, the isobolograhic method is a useful tool for estimating the quantitative toxic effect of chemicals on plants.
Collapse
|
106
|
Wang Y, Kang Y, Yu W, Lyi SM, Choi HW, Xiao E, Li L, Klessig DF, Liu J. AtTIP2;2 facilitates resistance to zinc toxicity via promoting zinc immobilization in the root and limiting root-to-shoot zinc translocation in Arabidopsis thaliana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113333. [PMID: 35203006 DOI: 10.1016/j.ecoenv.2022.113333] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Zinc (Zn) is an essential micronutrient for plants. However, excess Zn is toxic to non-accumulating plants like Arabidopsis thaliana. To cope with Zn toxicity, non-accumulating plants need to keep excess Zn in the less sensitive root tissues and restrict its translocation to the vulnerable shoot tissues, a process referred to as Zn immobilization in the root. However, the mechanism underlying Zn immobilization is not fully understood. In Arabidopsis, sequestration of excess Zn to the vacuole of root cells is crucial for Zn immobilization, facilitated by distinct tonoplast-localized transporters. As some members of the aquaporin superfamily have been implicated in transporting metal ions besides polar but non-charged small molecules, we tested whether Arabidopsis thaliana tonoplast intrinsic proteins (AtTIPs) could be involved in Zn immobilization and resistance. We found that AtTIP2;2 is involved in retaining excess Zn in the root, limiting its translocation to the shoot, and facilitating its accumulation in the leaf trichome. Furthermore, when expressed in yeast, the tonoplast-localized AtTIP2;2 renders glutathione (GSH)-dependent Zn resistance to yeast cells, suggesting that AtTIP2;2 facilitates the across-tonoplast transport of GSH-Zn complexes. Our findings provide new insights into aquaporins' roles in heavy metal resistance and detoxification in plants.
Collapse
Affiliation(s)
- Yuqi Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China; Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Yan Kang
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia 010021, China
| | - Wancong Yu
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Medical Plant Laboratory, Tianjin Research Center of Agricultural Biotechnology, Tianjin, China
| | - Sangbom M Lyi
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Hyong Woo Choi
- Boyce Thompson Institute, Ithaca, NY 14853, USA; Department of Plant Medicals, Andong National University, Andong 36729, South Korea
| | - Enzong Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Daniel F Klessig
- Boyce Thompson Institute, Ithaca, NY 14853, USA; Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Jiping Liu
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
107
|
Murawska-Wlodarczyk K, Korzeniak U, Chlebicki A, Mazur E, Dietrich CC, Babst-Kostecka A. Metalliferous habitats and seed microbes affect the seed morphology and reproductive strategy of Arabidopsis halleri. PLANT AND SOIL 2022; 472:175-192. [PMID: 36389645 PMCID: PMC9648182 DOI: 10.1007/s11104-021-05203-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/22/2021] [Indexed: 05/13/2023]
Abstract
Purpose Plant reproduction in metalliferous habitats is challenged by elevated concentrations of metal trace elements in soil. As part of their survival strategy, metal-tolerant plants have adjusted reproductive traits, including seed morphology, dormancy, and germination rate. These traits are particularly relevant, yet poorly understood, in metal hyperaccumulators that are promising candidates for phytoremediation. Methods We assessed seed shape characteristics, dormancy, and germination rate in the hyperaccumulating model species Arabidopsis halleri. Seed morphological parameters were evaluated using seeds collected from two metalliferous and two non-metalliferous sites (~ 1000 seeds per location). We also addressed the potential influence of seed surface-associated microbes and endophytic fungi on germination success. Results Seeds from non-metallicolous populations were on average 18% bigger than those from metal-contaminated post-mining sites, which contrasts the general expectation about reproductive parts in metallicolous plants. Irrespective of their origin, surface-sterilized seeds had up to ~ 20% higher germination rates and germinated earlier than non-sterilized seeds, hinting at a negative effect of seed-associated microbial communities. Surface sterilization also facilitated the emergence of an endophytic fungus (Aspergillus niger) that is a known seed-borne pathogen. Interestingly, A. niger actually promoted germination in surface-sterilized seeds from some locations. Conclusion Despite species-wide metal tolerance in A. halleri, metalliferous conditions seem to differently affect reproductive traits compared to non-metalliferous environments (e.g., smaller seeds). Yet, higher germination rates in these populations hint at the potential of A. halleri to successfully colonize post-mining habitats. This process is modulated by site-specific interactions with seed microbiota.
Collapse
Affiliation(s)
| | - Urszula Korzeniak
- Department of Ecology, W. Szafer Institute of Botany Polish Academy of Sciences, Krakow, Poland
| | - Andrzej Chlebicki
- Department of Ecology, W. Szafer Institute of Botany Polish Academy of Sciences, Krakow, Poland
| | - Edyta Mazur
- Department of Ecology, W. Szafer Institute of Botany Polish Academy of Sciences, Krakow, Poland
| | - Charlotte C Dietrich
- Department of Ecology, W. Szafer Institute of Botany Polish Academy of Sciences, Krakow, Poland
| | - Alicja Babst-Kostecka
- Department of Environmental Science, The University of Arizona, Tucson, AZ, USA
- Department of Ecology, W. Szafer Institute of Botany Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
108
|
Pedroza-Garcia JA, Xiang Y, De Veylder L. Cell cycle checkpoint control in response to DNA damage by environmental stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:490-507. [PMID: 34741364 DOI: 10.1111/tpj.15567] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Being sessile organisms, plants are ubiquitously exposed to stresses that can affect the DNA replication process or cause DNA damage. To cope with these problems, plants utilize DNA damage response (DDR) pathways, consisting of both highly conserved and plant-specific elements. As a part of this DDR, cell cycle checkpoint control mechanisms either pause the cell cycle, to allow DNA repair, or lead cells into differentiation or programmed cell death, to prevent the transmission of DNA errors in the organism through mitosis or to its offspring via meiosis. The two major DDR cell cycle checkpoints control either the replication process or the G2/M transition. The latter is largely overseen by the plant-specific SOG1 transcription factor, which drives the activity of cyclin-dependent kinase inhibitors and MYB3R proteins, which are rate limiting for the G2/M transition. By contrast, the replication checkpoint is controlled by different players, including the conserved kinase WEE1 and likely the transcriptional repressor RBR1. These checkpoint mechanisms are called upon during developmental processes, in retrograde signaling pathways, and in response to biotic and abiotic stresses, including metal toxicity, cold, salinity, and phosphate deficiency. Additionally, the recent expansion of research from Arabidopsis to other model plants has revealed species-specific aspects of the DDR. Overall, it is becoming evidently clear that the DNA damage checkpoint mechanisms represent an important aspect of the adaptation of plants to a changing environment, hence gaining more knowledge about this topic might be helpful to increase the resilience of plants to climate change.
Collapse
Affiliation(s)
- José Antonio Pedroza-Garcia
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, B-9052, Belgium
| | - Yanli Xiang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, B-9052, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, B-9052, Belgium
| |
Collapse
|
109
|
Hong Y, Chen Y, Shi H, Kong X, Yao J, Lei M, Zhu JK, Wang Z. SUMO E3 ligase SIZ1 negatively regulates arsenite resistance via depressing GSH biosynthesis in Arabidopsis. STRESS BIOLOGY 2022; 2:9. [PMID: 37676515 PMCID: PMC10441941 DOI: 10.1007/s44154-021-00029-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/13/2021] [Indexed: 09/08/2023]
Abstract
Arsenic is a metalloid toxic to plants, animals and human beings. Small ubiquitin-like modifier (SUMO) conjugation is involved in many biological processes in plants. However, the role of SUMOylation in regulating plant arsenic response is still unclear. In this study, we found that dysfunction of SUMO E3 ligase SIZ1 improves arsenite resistance in Arabidopsis. Overexpression of the dominant-negative SUMO E2 variant resembled the arsenite-resistant phenotype of siz1 mutant, indicating that SUMOylation plays a negative role in plant arsenite detoxification. The siz1 mutant accumulated more glutathione (GSH) than the wild type under arsenite stress, and the arsenite-resistant phenotype of siz1 was depressed by inhibiting GSH biosynthesis. The transcript levels of the genes in the GSH biosynthetic pathway were increased in the siz1 mutant comparing with the wild type in response to arsenite treatment. Taken together, our findings revealed a novel function of SIZ1 in modulating plant arsenite response through regulating the GSH-dependent detoxification.
Collapse
Affiliation(s)
- Yechun Hong
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yunjuan Chen
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Xiangfeng Kong
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Juanjuan Yao
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Mingguang Lei
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhen Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
110
|
Potentially Toxic Elements’ Contamination of Soils Affected by Mining Activities in the Portuguese Sector of the Iberian Pyrite Belt and Optional Remediation Actions: A Review. ENVIRONMENTS 2022. [DOI: 10.3390/environments9010011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Both sectors of the Iberian Pyrite Belt, Portuguese and Spanish, have been exploited since ancient times, but more intensively during and after the second half of the 19th century. Large volumes of polymetallic sulfide ore were extracted in open pits or in underground works, processed without environmental concerns, and the generated waste rocks and tailings were simply deposited in the area. Many of these mining sites were abandoned for years under the action of erosive agents, leading to the spread of trace elements and the contamination of soils, waters and sediments. Some of these mine sites have been submitted to rehabilitation actions, mostly using constructive techniques to dig and contain the contaminated tailings and other waste materials, but the remaining soil still needs to be treated with the best available techniques to recover its ecosystem functions. Besides the degraded physical structure and poor nutritional status of these soils, they have common characteristics, as a consequence of the pyrite oxidation and acid drainage produced, such as a high concentration of trace elements and low pH, which must be considered in the remediation plans. This manuscript aims to review the results from studies which have already covered these topics in the Iberian Pyrite Belt, especially in its Portuguese sector, considering: (i) soils’ physicochemical characteristics; (ii) potentially toxic trace elements’ concentration; and (iii) sustainable remediation technologies to cope with this type of soil contamination. Phytostabilization, after the amelioration of the soil’s properties with organic and inorganic amendments, was investigated at the lab and field scale by several authors, and their results were also considered.
Collapse
|
111
|
Assessment of differences in anatomical and hydraulic properties of the root and xylem of three willow (Salix L.) clones during phytostabilization after exposure to elevated cadmium. ARCH BIOL SCI 2022. [DOI: 10.2298/abs220309016h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
An anatomical study of adventitious roots of three Salix clones, B-44, SV068
and SM4041, treated with 3 and 6 mg Cd kg-1 dry weight in soil in a
greenhouse experiment. The aim was to analyze the anatomical characteristics
of roots in response to pollution by cadmium and to assess the potential
application of anatomical and hydraulic characteristics in the selection of
the most suitable Salix clones for phytostabilization of pollutants in
soils. Anatomical parameters measured in this study included root
crosssectional area, root diameter, the proportion of periderm, secondary
phloem (cortex) and wood (secondary and primary xylem), and parameters of
the vessels (lumen area, diameter and frequency). Based on the measurements
of individual vessel lumens and the number of vessels, the theoretical
hydraulic conductivity (kh) of roots was calculated. The effects of applied
Cd concentrations on root traits were studied in clones and control plants.
Following treatments with both Cd concentrations, plants of clone B-44 had
the highest values of most parameters and significantly higher kh in
comparison with control samples due to the significantly larger root
cross-sectional area and lumen of vessels. It was concluded that these
characteristics can serve for effective evaluation and selection of clones
for remediation of sites contaminated with cadmium.
Collapse
|
112
|
Piracha MA, Ashraf M, Shahzad SM, Imtiaz M, Arif MS, Rizwan MS, Aziz A, Tu S, Albasher G, Alkahtani S, Shakoor A. Alteration in soil arsenic dynamics and toxicity to sunflower (Helianthus annuus L.) in response to phosphorus in different textured soils. CHEMOSPHERE 2022; 287:132406. [PMID: 34597649 DOI: 10.1016/j.chemosphere.2021.132406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Being analogue to arsenic (As), phosphorus (P) may affect As dynamics in soil and toxicity to plants depending upon many soil and plant factors. Two sets of experiments were conducted to determine the effect of P on As fractionation in soils, its accumulation by plants and subsequent impact on growth, yield and physiological characteristics of sunflower (Helianthus annuus L.). Experimental plan comprised of two As levels (60 and 120 mg As kg-1 soil), four P (0-5-10-20 g phosphate rock kg-1 soil) and three textural types (sandy, loamy and clayey) with three replications. Among different As fractions determined, labile, calcium-bound, organic matter-bound and residual As increased while iron-bound and aluminum-bound As decreased with increasing P in all the three textural types. Labile-As percentage increased in the presence of P by 16.9-48.0% at As60 while 36.0-68.1% at As120 in sandy, 19.1-64.0% at As60 while 11.5-52.3% at As120 in loamy, and 21.8-58.2% at As60 while 22.3-70.0% at As120 in clayey soil compared to respective As treatment without P. Arsenic accumulation in plant tissues at both contamination levels declined with P addition as evidenced by lower bioconcentration factor. Phosphorus mitigated the As-induced oxidative stress expressed in term of reduced hydrogen peroxide, malondialdehyde while increased glutathione, and consequently improved the achene yield. Although, P increased As solubility in soil but restricted its translocation to plant, leading to reversal of oxidative damage, and improved sunflower growth and yield in all the three soil textural types, more profound effect at highest P level and in sandy texture.
Collapse
Affiliation(s)
- Muhammad Awais Piracha
- Department of Soil & Environmental Sciences, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Ashraf
- Department of Soil Science, Bahauddin Zakariya University, Multan, Pakistan.
| | - Sher Muhammad Shahzad
- Department of Soil & Environmental Sciences, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Imtiaz
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Muhammad Saleem Arif
- Department of Environmental Sciences & Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Shahid Rizwan
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Ahsan Aziz
- Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Shuxin Tu
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, Avinguda Alcalde Rovira Roure 191, 25198, Lleida, Spain.
| |
Collapse
|
113
|
Ahammed GJ, Yang Y. Anthocyanin-mediated arsenic tolerance in plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118475. [PMID: 34763015 DOI: 10.1016/j.envpol.2021.118475] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/19/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Plants detoxify toxic metal(loid)s by accumulating diverse metabolites. Beside scavenging excess reactive oxygen species (ROS) induced by metal(loid)s, some metabolites chelate metal(loid) ions. Classically, thiol-containing compounds, especially glutathione (GSH) and phytochelatins (PCs) are thought to be the major chelators that conjugate with metal(loid)s in the cytoplasm followed by transport and sequestration in the vacuole. In addition to this classical detoxification pathway, a role for secondary metabolites in metal(loid) detoxification has recently emerged. In particular, anthocyanins, a kind of flavonoids with ROS scavenging potential, contribute to enhanced arsenic tolerance in several plant species. Evidence is accumulating that, in analogy to GSH and PCs, anthocyanins may conjugate with arsenic followed by vacuolar sequestration in the detoxification event. Exogenous application or endogenous accumulation of anthocyanins enhances arsenic tolerance, leading to improved plant growth and productivity. The application of some plant hormones and signaling molecules stimulates endogenous anthocyanin synthesis which confers tolerance to arsenic stress. Anthocyanin biosynthesis is transcriptionally regulated by several transcription factors, including myeloblastosis (MYBs). The light-regulated transcription factor elongated hypocotyl 5 (HY5) also affects anthocyanin biosynthesis, but its role in arsenic tolerance remains elusive. Here, we review the mechanism of arsenic detoxification in plants and the potential role of anthocyanins in arsenic tolerance beyond the classical points of view. Our analysis proposes that anthocyanin manipulation in crop plants may ensure sustainable crop yield and food safety in the marginal lands prone to arsenic pollution.
Collapse
Affiliation(s)
- Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Youxin Yang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
114
|
Alsherif EA, Al-Shaikh TM, Almaghrabi O, AbdElgawad H. High Redox Status as the Basis for Heavy Metal Tolerance of Sesuvium portulacastrum L. Inhabiting Contaminated Soil in Jeddah, Saudi Arabia. Antioxidants (Basel) 2021; 11:antiox11010019. [PMID: 35052523 PMCID: PMC8773048 DOI: 10.3390/antiox11010019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
Abstract
Because sewage sludge is contaminated with heavy metals, its disposal in the soil may pose risks to the ecosystem. Thus, heavy metal remediation is necessary to reduce the associated risks. The goal of this research is to introduce a heavy metal resistant species and to assess its phytoremediation, oxidative damage markers and stress tolerance mechanisms. To this end, field research was done to compare the vegetation of polluted sites to that of a healthy site. We found 42 plant species identified in the study, Sesuvium portulacastrum L. was chosen because of its high relative density (10.3) and maximum frequency (100 percent) in the most contaminated areas. In particular, S. portulacastrum plants were characterized by strong Cu, Ni, and As uptake. At the organ level, to control growth reduction and oxidase damage, particularly in roots, increased detoxification (e.g., metallothionein, phytochelatins) and antioxidants mechanisms (e.g., tocopherols, glutathione, peroxidases). On the other hand, flavonoids content and the activity of glutathione-S transferase, glutathione reductase and dehydroascorbate reductase were increased manly in the shoots. These biochemical markers can be applied to select tolerance plant species grown under complex heavy metal contamination. Our findings also introduced S. portulacastrum to reduce soil contamination0associated risks, making the land resource available for agricultural production.
Collapse
Affiliation(s)
- Emad A. Alsherif
- Biology Department, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia;
- Correspondence:
| | - Turki M. Al-Shaikh
- Biology Department, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia;
| | - Omar Almaghrabi
- Department of Biology, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia;
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerp, Belgium;
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni Suef 62511, Egypt
| |
Collapse
|
115
|
Siemieniuk A, Burdach Z, Karcz W. A Comparison of the Effect of Lead (Pb) on the Slow Vacuolar (SV) and Fast Vacuolar (FV) Channels in Red Beet ( Beta vulgaris L.) Taproot Vacuoles. Int J Mol Sci 2021; 22:12621. [PMID: 34884427 PMCID: PMC8657509 DOI: 10.3390/ijms222312621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
Little is known about the effect of lead on the activity of the vacuolar K+ channels. Here, the patch-clamp technique was used to compare the impact of lead (PbCl2) on the slow-activating (SV) and fast-activating (FV) vacuolar channels. It was revealed that, under symmetrical 100-mM K+, the macroscopic currents of the SV channels exhibited a typical slow activation and a strong outward rectification of the steady-state currents, while the macroscopic currents of the FV channels displayed instantaneous currents, which, at the positive potentials, were about three-fold greater compared to the one at the negative potentials. When PbCl2 was added to the bath solution at a final concentration of 100 µM, it decreased the macroscopic outward currents of both channels but did not change the inward currents. The single-channel recordings demonstrated that cytosolic lead causes this macroscopic effect by a decrease of the single-channel conductance and decreases the channel open probability. We propose that cytosolic lead reduces the current flowing through the SV and FV channels, which causes a decrease of the K+ fluxes from the cytosol to the vacuole. This finding may, at least in part, explain the mechanism by which cytosolic Pb2+ reduces the growth of plant cells.
Collapse
Affiliation(s)
| | | | - Waldemar Karcz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellońska St., 40-032 Katowice, Poland; (A.S.); (Z.B.)
| |
Collapse
|
116
|
Zemanová V, Pavlíková D, Hnilička F, Pavlík M. Arsenic Toxicity-Induced Physiological and Metabolic Changes in the Shoots of Pteris cretica and Spinacia oleracea. PLANTS 2021; 10:plants10102009. [PMID: 34685818 PMCID: PMC8540401 DOI: 10.3390/plants10102009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/23/2022]
Abstract
Arsenic is a ubiquitous toxic element that can be accumulated into plant parts. The present study investigated the response of Pteris cretica and Spinacia oleracea to As treatment through the analysis of selected physiological and metabolic parameters. Plants were grown in pots in As(V) spiked soil (20 and 100 mg/kg). Plants’ physiological condition was estimated through the determination of elements, gas-exchange parameters, chlorophyll fluorescence, water potential, photosynthetic pigments, and free amino acid content. The results confirmed differing As accumulation in plants, as well as in shoots and roots, which indicated that P. cretica is an As-hyperaccumulator and that S. oleracea is an As-root excluder. Variations in physiological and metabolic parameters were observed among As treatments. Overall, the results revealed a significant effect of 100 mg/kg As treatment on the analysed parameters. In both plants, this treatment affected growth, N, Mg, S, Mn, and Zn content, as well as net photosynthetic rate, chlorophyll fluorescence, and total free amino acid content. In conclusion, the results reflect the similarity between P. cretica and S. oleracea in some aspects of plants’ response to As treatment, while physiological and metabolic parameter changes related to As treatments indicate the higher sensitivity of S. oleracea.
Collapse
Affiliation(s)
- Veronika Zemanová
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic;
- Correspondence: (V.Z.); (D.P.)
| | - Daniela Pavlíková
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic;
- Correspondence: (V.Z.); (D.P.)
| | - František Hnilička
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic;
| | - Milan Pavlík
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic;
| |
Collapse
|
117
|
Tissue Distribution and Biochemical Changes in Response to Copper Accumulation in Erica australis L. PLANTS 2021; 10:plants10071428. [PMID: 34371631 PMCID: PMC8309342 DOI: 10.3390/plants10071428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022]
Abstract
Copper uptake, accumulation in different tissues and organs and biochemical and physiological parameters were studied in Erica australis treated with different Cu concentrations (1, 50, 100 and 200 µM) under hydroponic culture. Copper treatments led to a significant reduction in growth rate, biomass production and water content in shoots, while photosynthetic pigments did not change. Copper treatments led to an increase in catalase and peroxidase activities. Copper accumulation followed the pattern roots > stems ≥ leaves, being roots the prevalent Cu sink. Analysis by scanning electron microscopy coupled with elemental X-ray analysis (SEM–EDX) showed a uniform Cu distribution in root tissues. On the contrary, in leaf tissues, Cu showed preferential storage in abaxial trichomes, suggesting a mechanism of compartmentation to restrict accumulation in mesophyll cells. The results show that the studied species act as a Cu-excluder, and Cu toxicity was avoided to a certain extent by root immobilization, leaf tissue compartmentation and induction of antioxidant enzymes to prevent cell damage.
Collapse
|