101
|
Chen CW, Yuan L, Zhang YS, Mgomi FC, Wang Y, Yang ZQ, Jiao XA. Comparision of biological and genomic characteristics of five virulent bacteriophages against Enterobacter hormaechei. Microb Pathog 2022; 162:105375. [PMID: 34974119 DOI: 10.1016/j.micpath.2021.105375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/13/2021] [Accepted: 12/28/2021] [Indexed: 11/24/2022]
Abstract
Enterobacter hormaechei is a zoonotic bacteria that may cause respiratory diseases in animals and neonatal sepsis in humans. Bacteriophages are increasingly considered as potential biocontrol agents to control pathogens in the food industry. In this study, five E. hormaechei virulent phages, named as Ehp-YZU08, Ehp-YZU10, Ehp-YZU9-1, Ehp-YZU9-2 and Ehp-YZU9-3, were isolated from sewage in China and analyzed for their biological and whole-genome characteristics, and a comparative genomic analysis was performed to study the functional genes and phylogenetic evolution of phages. The results showed that four of the phage strains belong to the Podoviridae family and one belongs to the Myoviridae family. The burst sizes were 70-283 PFU/cell after a latent period of 5-40 min. Phages were able to survive in a pH range of 5-10 and resist temperatures up to 60 °C for 60 min. The sequencing results showed that the full length of the genomes of the five phages ranged from 39,502 to 173,418 bp. Each phage contained multiple genes related to phage replication, and genes related to bacterial virulence or drug resistance were not found. The five phages belonged to three different groups by a construction of a phylogenetic tree, and the significant genetic evolutionary distance from each E. hormaechei phage was observed. The inhibition assay showed that all five phages could completely inhibit the growth of E. hormaechei at 37 °C within 8 h, suggesting that the phages in this study have great potential for the development of biocontrol agents against E. hormaechei in the food industry.
Collapse
Affiliation(s)
- Cao-Wei Chen
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Lei Yuan
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Yuan-Song Zhang
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Fedrick C Mgomi
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Yang Wang
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Zhen-Quan Yang
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China; Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu, 225009, PR China.
| | - Xin-An Jiao
- Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| |
Collapse
|
102
|
Qv L, Mao S, Li Y, Zhang J, Li L. Roles of Gut Bacteriophages in the Pathogenesis and Treatment of Inflammatory Bowel Disease. Front Cell Infect Microbiol 2021; 11:755650. [PMID: 34900751 PMCID: PMC8656360 DOI: 10.3389/fcimb.2021.755650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, are chronic, relapsing intestinal inflammatory disorders. Although the molecular mechanisms governing the pathogenesis of IBD are not completely clear, the main factors are presumed to be a complex interaction between genetic predisposition, host immune response and environmental exposure, especially the intestinal microbiome. Currently, most studies have focused on the role of gut bacteria in the onset and development of IBD, whereas little attention has been paid to the enteroviruses. Among of them, viruses that infect prokaryotes, called bacteriophages (phages) occupy the majority (90%) in population. Moreover, several recent studies have reported the capability of regulating the bacterial population in the gut, and the direct and indirect influence on host immune response. The present review highlights the roles of gut phages in IBD pathogenesis and explores the potentiality of phages as a therapeutic target for IBD treatment.
Collapse
Affiliation(s)
- Lingling Qv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Sunbing Mao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yongjun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jia Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
103
|
Sørensen PE, Baig S, Stegger M, Ingmer H, Garmyn A, Butaye P. Spontaneous Phage Resistance in Avian Pathogenic Escherichia coli. Front Microbiol 2021; 12:782757. [PMID: 34966369 PMCID: PMC8711792 DOI: 10.3389/fmicb.2021.782757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/23/2021] [Indexed: 01/19/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is one of the most important bacterial pathogens affecting poultry worldwide. The emergence of multidrug-resistant pathogens has renewed the interest in the therapeutic use of bacteriophages (phages). However, a major concern for the successful implementation of phage therapy is the emergence of phage-resistant mutants. The understanding of the phage-host interactions, as well as underlying mechanisms of resistance, have shown to be essential for the development of a successful phage therapy. Here, we demonstrate that the strictly lytic Escherichia phage vB_EcoM-P10 rapidly selected for resistance in the APEC ST95 O1 strain AM621. Whole-genome sequence analysis of 109 spontaneous phage-resistant mutant strains revealed 41 mutants with single-nucleotide polymorphisms (SNPs) in their core genome. In 32 of these, a single SNP was detected while two SNPs were identified in a total of nine strains. In total, 34 unique SNPs were detected. In 42 strains, including 18 strains with SNP(s), gene losses spanning 17 different genes were detected. Affected by genetic changes were genes known to be involved in phage resistance (outer membrane protein A, lipopolysaccharide-, O- antigen-, or cell wall-related genes) as well as genes not previously linked to phage resistance, including two hypothetical genes. In several strains, we did not detect any genetic changes. Infecting phages were not able to overcome the phage resistance in host strains. However, interestingly the initial infection was shown to have a great fitness cost for several mutant strains, with up to ∼65% decrease in overall growth. In conclusion, this study provides valuable insights into the phage-host interaction and phage resistance in APEC. Although acquired resistance to phages is frequently observed in pathogenic E. coli, it may be associated with loss of fitness, which could be exploited in phage therapy.
Collapse
Affiliation(s)
- Patricia E. Sørensen
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Merelbeke, Belgium
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Sharmin Baig
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - An Garmyn
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Merelbeke, Belgium
| | - Patrick Butaye
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Merelbeke, Belgium
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
104
|
Characterization of N4-like Pseudomonas Phage vB_Pae-PA14 Isolated from Seawater Sampled in Thailand. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage, a predator virus of bacteria, is an abundant biological entity in the biosphere. With ultimate applications in medicine and biotechnology, new phages are extensively being isolated and characterized. The objective of the present study was to characterize lytic bacteriophage vB_Pae-PA14 infecting Pseudomonas aeruginosa ATCC 27853 that was isolated from seawater in Thailand. vB_Pae-PA14 was subjected to whole genome phylogenetic analysis, host range test, biofilm test and characterization. Results showed that the phage belonged to a group of N4-like viruses, could infect P. aeruginosa isolates including carbapenem-resistant P. aeruginosa. The burst size of vB_Pae-PA14 was 86 plaque-forming unit/infected cells. Also, the phage showed a greater ability to control planktonic P. aeruginosa cells than the biofilm cells. Phage could withstand physical stresses especially the high salt concentration. In brief, lytic bacteriophage vB_Pae-PA14 infecting P. aeruginosa was isolated and characterized, which might be useful in further bacteriophage lytic applications.
Collapse
|
105
|
Sørensen PE, Ng DYK, Duchateau L, Ingmer H, Garmyn A, Butaye P. Classification of In Vitro Phage-Host Population Growth Dynamics. Microorganisms 2021; 9:2470. [PMID: 34946072 PMCID: PMC8708399 DOI: 10.3390/microorganisms9122470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 11/23/2022] Open
Abstract
The therapeutic use of bacteriophages (phage therapy) represents a promising alternative to antibiotics to control bacterial pathogens. However, the understanding of the phage-bacterium interactions and population dynamics seems essential for successful phage therapy implementation. Here, we investigated the effect of three factors: phage species (18 lytic E. coli-infecting phages); bacterial strain (10 APEC strains); and multiplicity of infection (MOI) (MOI 10, 1, and 0.1) on the bacterial growth dynamics. All factors had a significant effect, but the phage appeared to be the most important. The results showed seven distinct growth patterns. The first pattern corresponded to the normal bacterial growth pattern in the absence of a phage. The second pattern was complete bacterial killing. The remaining patterns were in-between, characterised by delayed growth and/or variable killing of the bacterial cells. In conclusion, this study demonstrates that the phage-host dynamics is an important factor in the capacity of a phage to eliminate bacteria. The classified patterns show that this is an essential factor to consider when developing a phage therapy. This methodology can be used to rapidly screen for novel phage candidates for phage therapy. Accordingly, the most promising candidates were phages found in Group 2, characterised by growth dynamics with high bacterial killing.
Collapse
Affiliation(s)
- Patricia E. Sørensen
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, 9820 Merelbeke, Belgium; (A.G.); (P.B.)
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre 42123, Saint Kitts and Nevis
| | - Duncan Y. K. Ng
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, 2300 Copenhagen, Denmark;
| | - Luc Duchateau
- Biometrics Research Center, Ghent University, 9820 Merelbeke, Belgium;
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark;
| | - An Garmyn
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, 9820 Merelbeke, Belgium; (A.G.); (P.B.)
| | - Patrick Butaye
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, 9820 Merelbeke, Belgium; (A.G.); (P.B.)
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre 42123, Saint Kitts and Nevis
| |
Collapse
|
106
|
Shang J, Sun Y. Predicting the hosts of prokaryotic viruses using GCN-based semi-supervised learning. BMC Biol 2021; 19:250. [PMID: 34819064 PMCID: PMC8611875 DOI: 10.1186/s12915-021-01180-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/29/2021] [Indexed: 11/23/2022] Open
Abstract
Background Prokaryotic viruses, which infect bacteria and archaea, are the most abundant and diverse biological entities in the biosphere. To understand their regulatory roles in various ecosystems and to harness the potential of bacteriophages for use in therapy, more knowledge of viral-host relationships is required. High-throughput sequencing and its application to the microbiome have offered new opportunities for computational approaches for predicting which hosts particular viruses can infect. However, there are two main challenges for computational host prediction. First, the empirically known virus-host relationships are very limited. Second, although sequence similarity between viruses and their prokaryote hosts have been used as a major feature for host prediction, the alignment is either missing or ambiguous in many cases. Thus, there is still a need to improve the accuracy of host prediction. Results In this work, we present a semi-supervised learning model, named HostG, to conduct host prediction for novel viruses. We construct a knowledge graph by utilizing both virus-virus protein similarity and virus-host DNA sequence similarity. Then graph convolutional network (GCN) is adopted to exploit viruses with or without known hosts in training to enhance the learning ability. During the GCN training, we minimize the expected calibrated error (ECE) to ensure the confidence of the predictions. We tested HostG on both simulated and real sequencing data and compared its performance with other state-of-the-art methods specifically designed for virus host classification (VHM-net, WIsH, PHP, HoPhage, RaFAH, vHULK, and VPF-Class). Conclusion HostG outperforms other popular methods, demonstrating the efficacy of using a GCN-based semi-supervised learning approach. A particular advantage of HostG is its ability to predict hosts from new taxa. Supplementary Information The online version contains supplementary material available at (10.1186/s12915-021-01180-4).
Collapse
Affiliation(s)
- Jiayu Shang
- Electrical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yanni Sun
- Electrical Engineering, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
107
|
Wójcicki M, Średnicka P, Błażejak S, Gientka I, Kowalczyk M, Emanowicz P, Świder O, Sokołowska B, Juszczuk-Kubiak E. Characterization and Genome Study of Novel Lytic Bacteriophages against Prevailing Saprophytic Bacterial Microflora of Minimally Processed Plant-Based Food Products. Int J Mol Sci 2021; 22:12460. [PMID: 34830335 PMCID: PMC8624825 DOI: 10.3390/ijms222212460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
The food industry is still searching for novel solutions to effectively ensure the microbiological safety of food, especially fresh and minimally processed food products. Nowadays, the use of bacteriophages as potential biological control agents in microbiological food safety and preservation is a promising strategy. The aim of the study was the isolation and comprehensive characterization of novel bacteriophages with lytic activity against saprophytic bacterial microflora of minimally processed plant-based food products, such as mixed leaf salads. From 43 phages isolated from municipal sewage, four phages, namely Enterobacter phage KKP 3263, Citrobacter phage KKP 3664, Enterobacter phage KKP 3262, and Serratia phage KKP 3264 have lytic activity against Enterobacter ludwigii KKP 3083, Citrobacter freundii KKP 3655, Enterobacter cloacae KKP 3082, and Serratia fonticola KKP 3084 bacterial strains, respectively. Transmission electron microscopy (TEM) and whole-genome sequencing (WGS) identified Enterobacter phage KKP 3263 as an Autographiviridae, and Citrobacter phage KKP 3664, Enterobacter phage KKP 3262, and Serratia phage KKP 3264 as members of the Myoviridae family. Genome sequencing revealed that these phages have linear double-stranded DNA (dsDNA) with sizes of 39,418 bp (KKP 3263), 61,608 bp (KKP 3664), 84,075 bp (KKP 3262), and 148,182 bp (KKP 3264). No antibiotic resistance genes, virulence factors, integrase, recombinase, or repressors, which are the main markers of lysogenic viruses, were annotated in phage genomes. Serratia phage KKP 3264 showed the greatest growth inhibition of Serratia fonticola KKP 3084 strain. The use of MOI 1.0 caused an almost 5-fold decrease in the value of the specific growth rate coefficient. The phages retained their lytic activity in a wide range of temperatures (from -20 °C to 50 °C) and active acidity values (pH from 4 to 11). All phages retained at least 70% of lytic activity at 60 °C. At 80 °C, no lytic activity against tested bacterial strains was observed. Serratia phage KKP 3264 was the most resistant to chemical factors, by maintaining high lytic activity across a broader range of pH from 3 to 11. The results indicated that these phages could be a potential biological control agent against saprophytic bacterial microflora of minimally processed plant-based food products.
Collapse
Affiliation(s)
- Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.K.); (P.E.)
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.K.); (P.E.)
| | - Stanisław Błażejak
- Department of Biotechnology and Food Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 166 Street, 02-776 Warsaw, Poland; (S.B.); (I.G.)
| | - Iwona Gientka
- Department of Biotechnology and Food Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 166 Street, 02-776 Warsaw, Poland; (S.B.); (I.G.)
| | - Monika Kowalczyk
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.K.); (P.E.)
| | - Paulina Emanowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.K.); (P.E.)
| | - Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland;
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Wacław Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland;
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.K.); (P.E.)
| |
Collapse
|
108
|
Deka D, Annapure US, Shirkole SS, Thorat BN. Bacteriophages: An organic approach to food decontamination. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Darshana Deka
- Department of Food Engineering and Technology Institute of Chemical Technology Mumbai, ICT – IOC Campus Bhubaneswar India
| | - U. S. Annapure
- Department of Food Engineering and Technology Institute of Chemical Technology Mumbai India
| | - S. S. Shirkole
- Department of Food Engineering and Technology Institute of Chemical Technology Mumbai, ICT – IOC Campus Bhubaneswar India
| | - B. N. Thorat
- Department of Food Engineering and Technology Institute of Chemical Technology Mumbai, ICT – IOC Campus Bhubaneswar India
| |
Collapse
|
109
|
Sharma A, Yadav SP, Sarma D, Mukhopadhaya A. Modulation of host cellular responses by gram-negative bacterial porins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:35-77. [PMID: 35034723 DOI: 10.1016/bs.apcsb.2021.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The outer membrane of a gram-negative bacteria encapsulates the plasma membrane thereby protecting it from the harsh external environment. This membrane acts as a sieving barrier due to the presence of special membrane-spanning proteins called "porins." These porins are β-barrel channel proteins that allow the passive transport of hydrophilic molecules and are impermeable to large and charged molecules. Many porins form trimers in the outer membrane. They are abundantly present on the bacterial surface and therefore play various significant roles in the host-bacteria interactions. These include the roles of porins in the adhesion and virulence mechanisms necessary for the pathogenesis, along with providing resistance to the bacteria against the antimicrobial substances. They also act as the receptors for phage and complement proteins and are involved in modulating the host cellular responses. In addition, the potential use of porins as adjuvants, vaccine candidates, therapeutic targets, and biomarkers is now being exploited. In this review, we focus briefly on the structure of the porins along with their important functions and roles in the host-bacteria interactions.
Collapse
Affiliation(s)
- Arpita Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Shashi Prakash Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Dwipjyoti Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Arunika Mukhopadhaya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India.
| |
Collapse
|
110
|
Bdira FB, Erkelens AM, Qin L, Volkov AN, Lippa A, Bowring N, Boyle A, Ubbink M, Dove S, Dame R. Novel anti-repression mechanism of H-NS proteins by a phage protein. Nucleic Acids Res 2021; 49:10770-10784. [PMID: 34520554 PMCID: PMC8501957 DOI: 10.1093/nar/gkab793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022] Open
Abstract
H-NS family proteins, bacterial xenogeneic silencers, play central roles in genome organization and in the regulation of foreign genes. It is thought that gene repression is directly dependent on the DNA binding modes of H-NS family proteins. These proteins form lateral protofilaments along DNA. Under specific environmental conditions they switch to bridging two DNA duplexes. This switching is a direct effect of environmental conditions on electrostatic interactions between the oppositely charged DNA binding and N-terminal domains of H-NS proteins. The Pseudomonas lytic phage LUZ24 encodes the protein gp4, which modulates the DNA binding and function of the H-NS family protein MvaT of Pseudomonas aeruginosa. However, the mechanism by which gp4 affects MvaT activity remains elusive. In this study, we show that gp4 specifically interferes with the formation and stability of the bridged MvaT-DNA complex. Structural investigations suggest that gp4 acts as an 'electrostatic zipper' between the oppositely charged domains of MvaT protomers, and stabilizes a structure resembling their 'half-open' conformation, resulting in relief of gene silencing and adverse effects on P. aeruginosa growth. The ability to control H-NS conformation and thereby its impact on global gene regulation and growth might open new avenues to fight Pseudomonas multidrug resistance.
Collapse
Affiliation(s)
- Fredj Ben Bdira
- Department of Macromolecular Biochemistry, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Amanda M Erkelens
- Department of Macromolecular Biochemistry, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Liang Qin
- Department of Macromolecular Biochemistry, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Alexander N Volkov
- VIB-VUB Structural Biology Research Center, Pleinlaan 2, 1050 Brussels, Belgium
- Jean Jeener NMR Centre, VUB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Andrew M Lippa
- Boston Children's Hospital, Division of Infectious Diseases, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas Bowring
- Department of Macromolecular Biochemistry, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Aimee L Boyle
- Department of Macromolecular Biochemistry, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Marcellus Ubbink
- Department of Macromolecular Biochemistry, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Simon L Dove
- Boston Children's Hospital, Division of Infectious Diseases, Harvard Medical School, Boston, MA 02115, USA
| | - Remus T Dame
- Department of Macromolecular Biochemistry, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
111
|
Ongenae V, Briegel A, Claessen D. Cell wall deficiency as an escape mechanism from phage infection. Open Biol 2021; 11:210199. [PMID: 34465216 PMCID: PMC8437236 DOI: 10.1098/rsob.210199] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/09/2021] [Indexed: 01/04/2023] Open
Abstract
The cell wall plays a central role in protecting bacteria from some environmental stresses, but not against all. In fact, in some cases, an elaborate cell envelope may even render the cell more vulnerable. For example, it contains molecules or complexes that bacteriophages recognize as the first step of host invasion, such as proteins and sugars, or cell appendages such as pili or flagella. In order to counteract phages, bacteria have evolved multiple escape mechanisms, such as restriction-modification, abortive infection, CRISPR/Cas systems or phage inhibitors. In this perspective review, we present the hypothesis that bacteria may have additional means to escape phage attack. Some bacteria are known to be able to shed their cell wall in response to environmental stresses, yielding cells that transiently lack a cell wall. In this wall-less state, the bacteria may be temporarily protected against phages, since they lack the essential entities that are necessary for phage binding and infection. Given that cell wall deficiency can be triggered by clinically administered antibiotics, phage escape could be an unwanted consequence that limits the use of phage therapy for treating stubborn infections.
Collapse
Affiliation(s)
- Véronique Ongenae
- Molecular Biotechnology, Institute of Biology, Leiden University, PO Box 9505, 2300 RA Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Ariane Briegel
- Molecular Biotechnology, Institute of Biology, Leiden University, PO Box 9505, 2300 RA Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Dennis Claessen
- Molecular Biotechnology, Institute of Biology, Leiden University, PO Box 9505, 2300 RA Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
112
|
Haverkamp THA, Lossouarn J, Zhaxybayeva O, Lyu J, Bienvenu N, Geslin C, Nesbø CL. Newly identified proviruses in Thermotogota suggest that viruses are the vehicles on the highways of interphylum gene sharing. Environ Microbiol 2021; 23:7105-7120. [PMID: 34398506 DOI: 10.1111/1462-2920.15723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/24/2021] [Accepted: 08/13/2021] [Indexed: 11/30/2022]
Abstract
Phylogenomic analyses of bacteria from the phylum Thermotogota have shown extensive lateral gene transfer with distantly related organisms, particularly with Firmicutes. One likely mechanism of such DNA transfer is viruses. However, to date, only three temperate viruses have been characterized in this phylum, all infecting bacteria from the Marinitoga genus. Here we report 17 proviruses integrated into genomes of bacteria belonging to eight Thermotogota genera and induce viral particle production from one of the proviruses. All except an incomplete provirus from Mesotoga fall into two groups based on sequence similarity, gene synteny and taxonomic classification. Proviruses of Group 1 are found in the genera Geotoga, Kosmotoga, Marinitoga, Thermosipho and Mesoaciditoga and are similar to the previously characterized Marinitoga viruses, while proviruses from Group 2 are distantly related to the Group 1 proviruses, have different genome organization and are found in Petrotoga and Defluviitoga. Genes carried by both groups are closely related to Firmicutes and Firmicutes (pro)viruses in phylogenetic analyses. Moreover, one of the groups show evidence of recent gene exchange and may be capable of infecting cells from both phyla. We hypothesize that viruses are responsible for a large portion of the observed gene flow between Firmicutes and Thermotogota.
Collapse
Affiliation(s)
- Thomas H A Haverkamp
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Julien Lossouarn
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, 78350, France
| | - Olga Zhaxybayeva
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Jie Lyu
- Université Brest, CNRS, IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, F-29280, France
| | - Nadège Bienvenu
- Université Brest, CNRS, IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, F-29280, France
| | - Claire Geslin
- Université Brest, CNRS, IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, F-29280, France
| | - Camilla L Nesbø
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| |
Collapse
|
113
|
Alves-Barroco C, Caço J, Roma-Rodrigues C, Fernandes AR, Bexiga R, Oliveira M, Chambel L, Tenreiro R, Mato R, Santos-Sanches I. New Insights on Streptococcus dysgalactiae subsp. dysgalactiae Isolates. Front Microbiol 2021; 12:686413. [PMID: 34335512 PMCID: PMC8319831 DOI: 10.3389/fmicb.2021.686413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Streptococcus dysgalactiae subsp. dysgalactiae (SDSD) has been considered a strict animal pathogen. Nevertheless, the recent reports of human infections suggest a niche expansion for this subspecies, which may be a consequence of the virulence gene acquisition that increases its pathogenicity. Previous studies reported the presence of virulence genes of Streptococcus pyogenes phages among bovine SDSD (collected in 2002-2003); however, the identity of these mobile genetic elements remains to be clarified. Thus, this study aimed to characterize the SDSD isolates collected in 2011-2013 and compare them with SDSD isolates collected in 2002-2003 and pyogenic streptococcus genomes available at the National Center for Biotechnology Information (NCBI) database, including human SDSD and S. dysgalactiae subsp. equisimilis (SDSE) strains to track temporal shifts on bovine SDSD genotypes. The very close genetic relationships between humans SDSD and SDSE were evident from the analysis of housekeeping genes, while bovine SDSD isolates seem more divergent. The results showed that all bovine SDSD harbor Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas IIA system. The widespread presence of this system among bovine SDSD isolates, high conservation of repeat sequences, and the polymorphism observed in spacer can be considered indicators of the system activity. Overall, comparative analysis shows that bovine SDSD isolates carry speK, speC, speL, speM, spd1, and sdn virulence genes of S. pyogenes prophages. Our data suggest that these genes are maintained over time and seem to be exclusively a property of bovine SDSD strains. Although the bovine SDSD genomes characterized in the present study were not sequenced, the data set, including the high homology of superantigens (SAgs) genes between bovine SDSD and S. pyogenes strains, may indicate that events of horizontal genetic transfer occurred before habitat separation. All bovine SDSD isolates were negative for genes of operon encoding streptolysin S, except for sagA gene, while the presence of this operon was detected in all SDSE and human SDSD strains. The data set of this study suggests that the separation between the subspecies "dysgalactiae" and "equisimilis" should be reconsidered. However, a study including the most comprehensive collection of strains from different environments would be required for definitive conclusions regarding the two taxa.
Collapse
Affiliation(s)
- Cinthia Alves-Barroco
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology/FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| | - João Caço
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology/FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Catarina Roma-Rodrigues
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology/FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology/FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Ricardo Bexiga
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| | - Manuela Oliveira
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| | - Lélia Chambel
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Edifício TecLabs, Lisbon, Portugal
| | - Rogério Tenreiro
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Edifício TecLabs, Lisbon, Portugal
| | - Rosario Mato
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology/FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Ilda Santos-Sanches
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology/FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
114
|
Makalatia K, Kakabadze E, Bakuradze N, Grdzelishvili N, Stamp B, Herman E, Tapinos A, Coffey A, Lee D, Papadopoulos NG, Robertson DL, Chanishvili N, Megremis S. Investigation of Salmonella Phage-Bacteria Infection Profiles: Network Structure Reveals a Gradient of Target-Range from Generalist to Specialist Phage Clones in Nested Subsets. Viruses 2021; 13:1261. [PMID: 34203492 PMCID: PMC8310288 DOI: 10.3390/v13071261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages that lyse Salmonella enterica are potential tools to target and control Salmonella infections. Investigating the host range of Salmonella phages is a key to understand their impact on bacterial ecology, coevolution and inform their use in intervention strategies. Virus-host infection networks have been used to characterize the "predator-prey" interactions between phages and bacteria and provide insights into host range and specificity. Here, we characterize the target-range and infection profiles of 13 Salmonella phage clones against a diverse set of 141 Salmonella strains. The environmental source and taxonomy contributed to the observed infection profiles, and genetically proximal phages shared similar infection profiles. Using in vitro infection data, we analyzed the structure of the Salmonella phage-bacteria infection network. The network has a non-random nested organization and weak modularity suggesting a gradient of target-range from generalist to specialist species with nested subsets, which are also observed within and across the different phage infection profile groups. Our results have implications for our understanding of the coevolutionary mechanisms shaping the ecological interactions between Salmonella phages and their bacterial hosts and can inform strategies for targeting Salmonella enterica with specific phage preparations.
Collapse
Affiliation(s)
- Khatuna Makalatia
- Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0162, Georgia; (K.M.); (E.K.); (N.B.); (N.G.)
- Faculty of Medicine, Teaching University Geomedi, Tbilisi 0114, Georgia
| | - Elene Kakabadze
- Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0162, Georgia; (K.M.); (E.K.); (N.B.); (N.G.)
| | - Nata Bakuradze
- Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0162, Georgia; (K.M.); (E.K.); (N.B.); (N.G.)
| | - Nino Grdzelishvili
- Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0162, Georgia; (K.M.); (E.K.); (N.B.); (N.G.)
| | - Ben Stamp
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK; (B.S.); (D.L.R.)
| | - Ezra Herman
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK;
| | - Avraam Tapinos
- Division of Evolution and Genomic Sciences, The University of Manchester, Manchester M13 9GB, UK;
| | - Aidan Coffey
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (A.C.); (D.L.)
| | - David Lee
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (A.C.); (D.L.)
| | - Nikolaos G. Papadopoulos
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester, Manchester M13 9PL, UK;
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - David L. Robertson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK; (B.S.); (D.L.R.)
| | - Nina Chanishvili
- Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0162, Georgia; (K.M.); (E.K.); (N.B.); (N.G.)
| | - Spyridon Megremis
- Division of Evolution and Genomic Sciences, The University of Manchester, Manchester M13 9GB, UK;
| |
Collapse
|
115
|
Friends or Foes-Microbial Interactions in Nature. BIOLOGY 2021; 10:biology10060496. [PMID: 34199553 PMCID: PMC8229319 DOI: 10.3390/biology10060496] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary Microorganisms like bacteria, archaea, fungi, microalgae, and viruses mostly form complex interactive networks within the ecosystem rather than existing as single planktonic cells. Interactions among microorganisms occur between the same species, with different species, or even among entirely different genera, families, or even domains. These interactions occur after environmental sensing, followed by converting those signals to molecular and genetic information, including many mechanisms and classes of molecules. Comprehensive studies on microbial interactions disclose key strategies of microbes to colonize and establish in a variety of different environments. Knowledge of the mechanisms involved in the microbial interactions is essential to understand the ecological impact of microbes and the development of dysbioses. It might be the key to exploit strategies and specific agents against different facing challenges, such as chronic and infectious diseases, hunger crisis, pollution, and sustainability. Abstract Microorganisms are present in nearly every niche on Earth and mainly do not exist solely but form communities of single or mixed species. Within such microbial populations and between the microbes and a eukaryotic host, various microbial interactions take place in an ever-changing environment. Those microbial interactions are crucial for a successful establishment and maintenance of a microbial population. The basic unit of interaction is the gene expression of each organism in this community in response to biotic or abiotic stimuli. Differential gene expression is responsible for producing exchangeable molecules involved in the interactions, ultimately leading to community behavior. Cooperative and competitive interactions within bacterial communities and between the associated bacteria and the host are the focus of this review, emphasizing microbial cell–cell communication (quorum sensing). Further, metagenomics is discussed as a helpful tool to analyze the complex genomic information of microbial communities and the functional role of different microbes within a community and to identify novel biomolecules for biotechnological applications.
Collapse
|
116
|
|
117
|
Isaev AB, Musharova OS, Severinov KV. Microbial Arsenal of Antiviral Defenses - Part I. BIOCHEMISTRY (MOSCOW) 2021; 86:319-337. [PMID: 33838632 DOI: 10.1134/s0006297921030081] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacteriophages or phages are viruses that infect bacterial cells (for the scope of this review we will also consider viruses that infect Archaea). Constant threat of phage infection is a major force that shapes evolution of the microbial genomes. To withstand infection, bacteria had evolved numerous strategies to avoid recognition by phages or to directly interfere with phage propagation inside the cell. Classical molecular biology and genetic engineering have been deeply intertwined with the study of phages and host defenses. Nowadays, owing to the rise of phage therapy, broad application of CRISPR-Cas technologies, and development of bioinformatics approaches that facilitate discovery of new systems, phage biology experiences a revival. This review describes variety of strategies employed by microbes to counter phage infection, with a focus on novel systems discovered in recent years. First chapter covers defense associated with cell surface, role of small molecules, and innate immunity systems relying on DNA modification.
Collapse
Affiliation(s)
- Artem B Isaev
- Skolkovo Institute of Science and Technology, Moscow, 143028, Russia.
| | - Olga S Musharova
- Skolkovo Institute of Science and Technology, Moscow, 143028, Russia. .,Institute of Molecular Genetics, Moscow, 119334, Russia
| | - Konstantin V Severinov
- Skolkovo Institute of Science and Technology, Moscow, 143028, Russia. .,Waksman Institute of Microbiology, Piscataway, NJ 08854, USA
| |
Collapse
|
118
|
The multi-drug efflux system AcrABZ-TolC is essential for infection of Salmonella Typhimurium by the flagellum-dependent bacteriophage Chi. J Virol 2021; 95:JVI.00394-21. [PMID: 33731456 PMCID: PMC8139690 DOI: 10.1128/jvi.00394-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteriophages are the most abundant biological entities in the biosphere. Due to their host specificity and ability to kill bacteria rapidly, bacteriophages have many potential healthcare applications, including therapy against antibiotic-resistant bacteria. Infection by flagellotropic bacteriophages requires a properly rotating bacterial flagellar filament. The flagella-dependent phage χ (Chi) infects serovars of the pathogenic enterobacterium Salmonella enterica However, cell surface receptors and proteins involved in other stages of χ infection have not been discovered to date. We screened a multi-gene deletion library of S. enterica serovar Typhimurium by spotting mutants on soft agar plates seeded with bacteriophage χ and monitoring their ability to grow and form a swim ring, a characteristic of bacteriophage-resistant motile mutants. Those multi-gene deletion regions identified to be important for χ infectivity were further investigated by characterizing the phenotypes of corresponding single-gene deletion mutants. This way, we identified motile mutants with varying degrees of resistance to χ. Deletions in individual genes encoding the AcrABZ-TolC multi-drug efflux system drastically reduced infection by bacteriophage χ. Furthermore, an acrABtolC triple deletion strain was fully resistant to χ. Infection was severely reduced but not entirely blocked by the deletion of the gene tig encoding the molecular chaperone trigger factor. Finally, deletion in genes encoding enzymes involved in the synthesis of the antioxidants glutathione (GSH) and uric acid resulted in reduced infectivity. Our findings begin to elucidate poorly understood processes involved in later stages of flagellotropic bacteriophage infection and informs research aimed at the use of bacteriophages to combat antibiotic-resistant bacterial infections.IMPORTANCEAntimicrobial resistance is a large concern in the healthcare field. With more multi-drug resistant bacterial pathogens emerging, other techniques for eliminating bacterial infections are being explored. Among these is phage therapy, where combinations of specific phages are used to treat infections. Generally, phages utilize cell appendages and surface receptors for the initial attachment to their host. Phages that are flagellotropic are of particular interest because flagella are often important in bacterial virulence, making resistance to attachment of these phages harder to achieve without reducing virulence. This study discovered the importance of a multi-drug efflux pump for the infection of Salmonella enterica by a flagellotropic phage. In theory, if a bacterial pathogen develops phage resistance by altering expression of the efflux pump then the pathogen would simultaneously become more susceptible to the antibiotic substrates of the pump. Thus, co-administering antibiotics and flagellotropic phage may be a particularly potent antibacterial therapy.
Collapse
|
119
|
Sabzali S, Bouzari M. Isolation, identification and some characteristics of two lytic bacteriophages against Salmonella enterica serovar Paratyphi B and S. enterica serovar Typhimurium from various food sources. FEMS Microbiol Lett 2021; 368:6217424. [PMID: 33830213 DOI: 10.1093/femsle/fnab037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Salmonellosis is an important worldwide food-borne disease. Increasing resistance to Salmonella spp. has been reported in recent years, and now the prevalence of multidrug-resistant Salmonella spp. is a worldwide problem. This necessitates alternative approaches like phage therapy. This study aimed to isolate bacteriophages specific for Salmonella enterica serovar Paratyphi B and S. enterica serovar Typhimurium isolated from different sources (chicken meat, beef and eggshells). The antibiotic resistance profiles of the bacteria were determined by phenotypic and genotypic methods. The prevalence of extended-spectrum β-lactamase genes was examined by polymerase chain reaction. In total, 75% of the isolated Salmonella strains were resistant to tetracycline, whereas 70% of them were resistant to azithromycin. All of the isolates from beef were resistant to nalidixic acid. The most common extended-spectrum β-lactamase genes among the isolates were blaSHV (15%) followed by blaTEM (10%) and blaCTX (5%). Two specific bacteriophages were isolated and characterized. The host range for vB_SparS-ui was Salmonella Paratyphi B, S. enterica serovar Paratyphi A and S. enterica, while that for vB_StyS-sam phage was Salmonella Typhimurium and S. enterica serovar Enteritidis. The characteristics of the isolated phages indicate that they are proper candidates to be used to control some foodstuff contaminations and also phage therapy of infected animals.
Collapse
Affiliation(s)
- Somaieh Sabzali
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, 81746-73441, Isfahan, Iran
| | - Majid Bouzari
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, 81746-73441, Isfahan, Iran
| |
Collapse
|
120
|
Hassan AY, Lin JT, Ricker N, Anany H. The Age of Phage: Friend or Foe in the New Dawn of Therapeutic and Biocontrol Applications? Pharmaceuticals (Basel) 2021; 14:199. [PMID: 33670836 PMCID: PMC7997343 DOI: 10.3390/ph14030199] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Extended overuse and misuse of antibiotics and other antibacterial agents has resulted in an antimicrobial resistance crisis. Bacteriophages, viruses that infect bacteria, have emerged as a legitimate alternative antibacterial agent with a wide scope of applications which continue to be discovered and refined. However, the potential of some bacteriophages to aid in the acquisition, maintenance, and dissemination of negatively associated bacterial genes, including resistance and virulence genes, through transduction is of concern and requires deeper understanding in order to be properly addressed. In particular, their ability to interact with mobile genetic elements such as plasmids, genomic islands, and integrative conjugative elements (ICEs) enables bacteriophages to contribute greatly to bacterial evolution. Nonetheless, bacteriophages have the potential to be used as therapeutic and biocontrol agents within medical, agricultural, and food processing settings, against bacteria in both planktonic and biofilm environments. Additionally, bacteriophages have been deployed in developing rapid, sensitive, and specific biosensors for various bacterial targets. Intriguingly, their bioengineering capabilities show great promise in improving their adaptability and effectiveness as biocontrol and detection tools. This review aims to provide a balanced perspective on bacteriophages by outlining advantages, challenges, and future steps needed in order to boost their therapeutic and biocontrol potential, while also providing insight on their potential role in contributing to bacterial evolution and survival.
Collapse
Affiliation(s)
- Ahmad Y. Hassan
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada;
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Janet T. Lin
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Nicole Ricker
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Hany Anany
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada;
- Department of Food Science, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
121
|
Schmalstig AA, Freidy S, Hanafin PO, Braunstein M, Rao GG. Reapproaching Old Treatments: Considerations for PK/PD Studies on Phage Therapy for Bacterial Respiratory Infections. Clin Pharmacol Ther 2021; 109:1443-1456. [PMID: 33615463 DOI: 10.1002/cpt.2214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Antibiotic resistant bacterial respiratory infections are a significant global health burden, and new therapeutic strategies are needed to control the problem. For bacterial respiratory infections, this need is emphasized by the rise in antibiotic resistance and a lean drug development pipeline. Bacteriophage (phage) therapy is a promising alternative to antibiotics. Phage are viruses that infect and kill bacteria. Because phage and antibiotics differ in their bactericidal mechanisms, phage are a treatment option for antibiotic-resistant bacteria. Here, we review the history of phage therapy and highlight recent preclinical and clinical case reports of its use for treating antibiotic-resistant respiratory infections. The ability of phage to replicate while killing the bacteria is both a benefit for treatment and a challenge for pharmacokinetic (PK) and pharmacodynamic (PD) studies. In this review, we will discuss how the phage lifecycle and associated bidirectional interactions between phage and bacteria can impact treatment. We will also highlight PK/PD considerations for designing studies of phage therapy to optimize the efficacy and feasibility of the approach.
Collapse
Affiliation(s)
- Alan A Schmalstig
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Soha Freidy
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Patrick O Hanafin
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Miriam Braunstein
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Gauri G Rao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
122
|
Chen CW, Yuan L, Zhou WY, Mgomi FC, Zhang YS, Wang Y, Zheng XF, Hu Q, Gao L, Rao SQ, Yang ZQ, Jiao XA. Isolation and genomic characterization of P.A-5, a novel virulent bacteriophage against Enterobacter hormaechei. Microb Pathog 2021; 152:104767. [PMID: 33524565 DOI: 10.1016/j.micpath.2021.104767] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 11/17/2022]
Abstract
Enterobacter hormaechei is a foodborne pathogen responsible for neonatal sepsis in humans and respiratory disease in animals. In this work, a new virulent phage (P.A-5) infecting E. hormaechei was isolated from domestic sewage samples and characterized. Transmission electron microscopy revealed that P.A-5 belonged to the family Myoviridae having a head size of 77.53 nm and a tail length of 72.24 nm. The burst size was 262 PFU/cell after a latent period of 20 min. Phage P.A-5 was able to survive in a pH range of 4-9 and resist temperatures up to 55 °C for 60 min. The genome sequence of P.A-5 had homology most similar to that of Shigellae phage MK-13 (GenBank: MK509462.1). Pork artificially contaminated with E. hormaechei was used as a model to evaluate the potential of P.A-5. The results clearly showed that P.A-5 treatment can completely inhibit E. hormaechei growth in pork within 8 h, indicating the potential use of P.A-5 as a biocontrol agent for E. hormaechei.
Collapse
Affiliation(s)
- Cao-Wei Chen
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Lei Yuan
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Wen-Yuan Zhou
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Fedrick C Mgomi
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Yuan-Song Zhang
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Yang Wang
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Xiang-Feng Zheng
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Qin Hu
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Lu Gao
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Sheng-Qi Rao
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Zhen-Quan Yang
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China; Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu, 225009, PR China.
| | - Xin-An Jiao
- Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu, 225009, PR China.
| |
Collapse
|
123
|
Nale JY, Vinner GK, Lopez VC, Thanki AM, Phothaworn P, Thiennimitr P, Garcia A, AbuOun M, Anjum MF, Korbsrisate S, Galyov EE, Malik DJ, Clokie MRJ. An Optimized Bacteriophage Cocktail Can Effectively Control Salmonella in vitro and in Galleria mellonella. Front Microbiol 2021; 11:609955. [PMID: 33552020 PMCID: PMC7858669 DOI: 10.3389/fmicb.2020.609955] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022] Open
Abstract
Salmonella spp. is a leading cause of gastrointestinal enteritis in humans where it is largely contracted via contaminated poultry and pork. Phages can be used to control Salmonella infection in the animals, which could break the cycle of infection before the products are accessible for consumption. Here, the potential of 21 myoviruses and a siphovirus to eliminate Salmonella in vitro and in vivo was examined with the aim of developing a biocontrol strategy to curtail the infection in poultry and swine. Together, the phages targeted the twenty-three poultry and ten swine prevalent Salmonella serotype isolates tested. Although individual phages significantly reduced bacterial growth of representative isolates within 6 h post-infection, bacterial regrowth occurred 1 h later, indicating proliferation of resistant strains. To curtail bacteriophage resistance, a novel three-phage cocktail was developed in vitro, and further investigated in an optimized Galleria mellonella larva Salmonella infection model colonized with representative swine, chicken and laboratory strains. For all the strains examined, G. mellonella larvae given phages 2 h prior to bacterial exposure (prophylactic regimen) survived and Salmonella was undetectable 24 h post-phage treatment and throughout the experimental time (72 h). Administering phages with bacteria (co-infection), or 2 h post-bacterial exposure (remedial regimen) also improved survival (73-100% and 15-88%, respectively), but was less effective than prophylaxis application. These pre-livestock data support the future application of this cocktail for further development to effectively treat Salmonella infection in poultry and pigs. Future work will focus on cocktail formulation to ensure stability and incorporation into feeds and used to treat the infection in target animals.
Collapse
Affiliation(s)
- Janet Y Nale
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Gurinder K Vinner
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Viviana C Lopez
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Anisha M Thanki
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Preeda Phothaworn
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Parameth Thiennimitr
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Angela Garcia
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Manal AbuOun
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Muna F Anjum
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Edouard E Galyov
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Danish J Malik
- Department of Chemical Engineering, Loughborough University, Loughborough, United Kingdom
| | - Martha R J Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
124
|
Allué-Guardia A, Saranathan R, Chan J, Torrelles JB. Mycobacteriophages as Potential Therapeutic Agents against Drug-Resistant Tuberculosis. Int J Mol Sci 2021; 22:ijms22020735. [PMID: 33450990 PMCID: PMC7828454 DOI: 10.3390/ijms22020735] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 01/21/2023] Open
Abstract
The current emergence of multi-, extensively-, extremely-, and total-drug resistant strains of Mycobacterium tuberculosis poses a major health, social, and economic threat, and stresses the need to develop new therapeutic strategies. The notion of phage therapy against bacteria has been around for more than a century and, although its implementation was abandoned after the introduction of drugs, it is now making a comeback and gaining renewed interest in Western medicine as an alternative to treat drug-resistant pathogens. Mycobacteriophages are genetically diverse viruses that specifically infect mycobacterial hosts, including members of the M. tuberculosis complex. This review describes general features of mycobacteriophages and their mechanisms of killing M. tuberculosis, as well as their advantages and limitations as therapeutic and prophylactic agents against drug-resistant M. tuberculosis strains. This review also discusses the role of human lung micro-environments in shaping the availability of mycobacteriophage receptors on the M. tuberculosis cell envelope surface, the risk of potential development of bacterial resistance to mycobacteriophages, and the interactions with the mammalian host immune system. Finally, it summarizes the knowledge gaps and defines key questions to be addressed regarding the clinical application of phage therapy for the treatment of drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Correspondence: (A.A.-G.); (J.B.T.)
| | - Rajagopalan Saranathan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA; (R.S.); (J.C.)
| | - John Chan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA; (R.S.); (J.C.)
| | - Jordi B. Torrelles
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Correspondence: (A.A.-G.); (J.B.T.)
| |
Collapse
|
125
|
Düzgüneş N, Sessevmez M, Yildirim M. Bacteriophage Therapy of Bacterial Infections: The Rediscovered Frontier. Pharmaceuticals (Basel) 2021; 14:34. [PMID: 33466546 PMCID: PMC7824886 DOI: 10.3390/ph14010034] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 12/18/2022] Open
Abstract
Antibiotic-resistant infections present a serious health concern worldwide. It is estimated that there are 2.8 million antibiotic-resistant infections and 35,000 deaths in the United States every year. Such microorganisms include Acinetobacter, Enterobacterioceae, Pseudomonas, Staphylococcus and Mycobacterium. Alternative treatment methods are, thus, necessary to treat such infections. Bacteriophages are viruses of bacteria. In a lytic infection, the newly formed phage particles lyse the bacterium and continue to infect other bacteria. In the early 20th century, d'Herelle, Bruynoghe and Maisin used bacterium-specific phages to treat bacterial infections. Bacteriophages are being identified, purified and developed as pharmaceutically acceptable macromolecular "drugs," undergoing strict quality control. Phages can be applied topically or delivered by inhalation, orally or parenterally. Some of the major drug-resistant infections that are potential targets of pharmaceutically prepared phages are Pseudomonas aeruginosa, Mycobacterium tuberculosis and Acinetobacter baumannii.
Collapse
Affiliation(s)
- Nejat Düzgüneş
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA
| | - Melike Sessevmez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey;
| | - Metin Yildirim
- Department of Pharmacy Services, Vocational School of Health Services, Tarsus University, Mersin 33400, Turkey;
| |
Collapse
|
126
|
Effects of bacteriophage on inhibition and removal of mixed biofilm of enterohemorrhagic Escherichia coli O157:H7 and O91:H-. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
127
|
Pereira C, Costa P, Duarte J, Balcão VM, Almeida A. Phage therapy as a potential approach in the biocontrol of pathogenic bacteria associated with shellfish consumption. Int J Food Microbiol 2020; 338:108995. [PMID: 33316593 DOI: 10.1016/j.ijfoodmicro.2020.108995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022]
Abstract
Infectious human diseases acquired from bivalve shellfish consumption constitute a public health threat. These health threats are largely related to the filter-feeding phenomenon, by which bivalve organisms retain and concentrate pathogenic bacteria from their surrounding waters. Even after depuration, bivalve shellfish are still involved in outbreaks caused by pathogenic bacteria, which increases the demand for new and efficient strategies to control transmission of shellfish infection. Bacteriophage (or phage) therapy represents a promising, tailor-made approach to control human pathogens in bivalves, but its success depends on a deep understanding of several factors that include the bacterial communities present in the harvesting waters, the appropriate selection of phage particles, the multiplicity of infection that produces the best bacterial inactivation, chemical and physical factors, the emergence of phage-resistant bacterial mutants and the life cycle of bivalves. This review discusses the need to advance phage therapy research for bivalve decontamination, highlighting their efficiency as an antimicrobial strategy and identifying critical aspects to successfully apply this therapy to control human pathogens associated with bivalve consumption.
Collapse
Affiliation(s)
- Carla Pereira
- Department of Biology & CESAM, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Pedro Costa
- Department of Biology & CESAM, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - João Duarte
- Department of Biology & CESAM, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Victor M Balcão
- Department of Biology & CESAM, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal; PhageLab-Laboratory of Biofilms and Bacteriophages, University of Sorocaba, 18023-000 Sorocaba, São Paulo, Brazil
| | - Adelaide Almeida
- Department of Biology & CESAM, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
128
|
Unlocking the next generation of phage therapy: the key is in the receptors. Curr Opin Biotechnol 2020; 68:115-123. [PMID: 33202354 DOI: 10.1016/j.copbio.2020.10.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/21/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022]
Abstract
Phage therapy, the clinical use of viruses that kill bacteria, is a promising strategy in the fight against antimicrobial resistance. Before administration, phages undergo a careful examination of their safety and interactions with target bacteria. This characterization seldom includes identifying the receptor on the bacterial surface involved in phage adsorption. In this perspective article, we propose that understanding the function and location of these phage receptors can open the door to improved and innovative ways to use phage therapy. With knowledge of phage receptors, we can design intelligent phage cocktails, discover new phage-derived antimicrobials, and steer the evolution of phage-resistance towards clinically exploitable phenotypes. In an effort to jump-start this initiative, we recommend priority groups of hosts and phages. Finally, we review modern approaches for the identification of phage receptors, including molecular platforms for high-throughput mutagenesis, synthetic biology, and machine learning.
Collapse
|
129
|
Recent Progress in the Detection of Bacteria Using Bacteriophages: A Review. Viruses 2020; 12:v12080845. [PMID: 32756438 PMCID: PMC7472331 DOI: 10.3390/v12080845] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/09/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
Bacteria will likely become our most significant enemies of the 21st century, as we are approaching a post-antibiotic era. Bacteriophages, viruses that infect bacteria, allow us to fight infections caused by drug-resistant bacteria and create specific, cheap, and stable sensors for bacteria detection. Here, we summarize the recent developments in the field of phage-based methods for bacteria detection. We focus on works published after mid-2017. We underline the need for further advancements, especially related to lowering the detection (below 1 CFU/mL; CFU stands for colony forming units) and shortening the time of analysis (below one hour). From the application point of view, portable, cheap, and fast devices are needed, even at the expense of sensitivity.
Collapse
|
130
|
Bumunang EW, Ateba CN, Stanford K, Niu YD, Wang Y, McAllister TA. Activity of Bacteriophage and Complex Tannins against Biofilm-Forming Shiga Toxin-Producing Escherichia coli from Canada and South Africa. Antibiotics (Basel) 2020; 9:E257. [PMID: 32429187 PMCID: PMC7277190 DOI: 10.3390/antibiotics9050257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022] Open
Abstract
Bacteriophages, natural killers of bacteria, and plant secondary metabolites, such as condensed tannins, are potential agents for the control of foodborne pathogens. The first objective of this study evaluated the efficacy of a bacteriophage SA21RB in reducing pre-formed biofilms on stainless-steel produced by two Shiga toxin-producing Escherichia coli (STEC) strains, one from South Africa and the other from Canada. The second objective examined the anti-bacterial and anti-biofilm activity of condensed tannin (CT) from purple prairie clover and phlorotannins (PT) from brown seaweed against these strains. For 24-h-old biofilms, (O113:H21; 6.2 log10 colony-forming units per square centimeter (CFU/cm2) and O154:H10; 5.4 log10 CFU/cm2), 3 h of exposure to phage (1013 plaque-forming units per milliliter (PFU/mL)) reduced (p ≤ 0.05) the number of viable cells attached to stainless-steel coupons by 2.5 and 2.1 log10 CFU/cm2 for O113:H21 and O154:H10, respectively. However, as biofilms matured, the ability of phage to control biofilm formation declined. In biofilms formed for 72 h (O113:H21; 5.4 log10 CFU/cm2 and O154:H10; 7 log10 CFU/cm2), reductions after the same duration of phage treatment were only 0.9 and 1.3 log10 CFU/cm2 for O113:H21 and O154:H10, respectively. Initial screening of CT and PT for anti-bacterial activity by a microplate assay indicated that both STEC strains were less sensitive (p ≤ 0.05) to CT than PT over a concentration range of 25-400 µg/mL. Based on the lower activity of CT (25-400 µg/mL), they were not further examined. Accordingly, PT (50 µg/mL) inhibited (p ≤ 0.05) biofilm formation for up to 24 h of incubation at 22 °C, but this inhibition progressively declined over 72 h for both O154:H10 and O113:H21. Scanning electron microscopy revealed that both SA21RB and PT eliminated 24 h biofilms, but that both strains were able to adhere and form biofilms on stainless-steel coupons at longer incubation times. These findings revealed that phage SA21RB is more effective at disrupting 24 than 72 h biofilms and that PT were able to inhibit biofilm formation of both E. coli O154:H10 and O113:H21 for up to 24 h.
Collapse
Affiliation(s)
- Emmanuel W. Bumunang
- Department of Microbiology, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa; (E.W.B.); (C.N.A.)
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada;
- Alberta Agriculture and Forestry, Lethbridge, AB T1J 4V6, Canada;
| | - Collins N. Ateba
- Department of Microbiology, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa; (E.W.B.); (C.N.A.)
| | - Kim Stanford
- Alberta Agriculture and Forestry, Lethbridge, AB T1J 4V6, Canada;
| | - Yan D. Niu
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Y. Wang
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada;
| | - Tim A. McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada;
| |
Collapse
|
131
|
Mahony J, Casey E, van Sinderen D. The Impact and Applications of Phages in the Food Industry and Agriculture. Viruses 2020; 12:v12020210. [PMID: 32069940 PMCID: PMC7077338 DOI: 10.3390/v12020210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/11/2020] [Indexed: 12/23/2022] Open
Affiliation(s)
- Jennifer Mahony
- Correspondence: (J.M.); (D.v.S.); Tel.: +353-21-4901365 (D.v.S.); +353-21-4902443 (J.M.)
| | | | - Douwe van Sinderen
- Correspondence: (J.M.); (D.v.S.); Tel.: +353-21-4901365 (D.v.S.); +353-21-4902443 (J.M.)
| |
Collapse
|
132
|
Lewis R, Hill C. Overcoming barriers to phage application in food and feed. Curr Opin Biotechnol 2019; 61:38-44. [PMID: 31726332 DOI: 10.1016/j.copbio.2019.09.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 01/08/2023]
Abstract
Bacteriophages (phages) can play a useful role as narrow spectrum antimicrobials in food safety and in food production. Consumer attitudes towards traditional additives have led to a search for natural, potentially clean label, alternatives. At the same time, the rise in antimicrobial resistance has created a need for alternative antimicrobials for disease prevention and treatment in animal husbandry. Phages represent a viable option for both of these applications. We highlight important barriers which should be considered to improve the chance of a positive outcome when using phages in food and food production. These include the feasibility of adding high concentrations of phages, the physico-chemical properties of the food or target, how and when phages are applied, and which phages are chosen.
Collapse
Affiliation(s)
- Rhea Lewis
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland; School of Microbiology, University College Cork, Cork T12 YN60, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland; School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| |
Collapse
|