101
|
Prabhakar NR, Semenza GL. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev 2012; 92:967-1003. [PMID: 22811423 DOI: 10.1152/physrev.00030.2011] [Citation(s) in RCA: 478] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hypoxia is a fundamental stimulus that impacts cells, tissues, organs, and physiological systems. The discovery of hypoxia-inducible factor-1 (HIF-1) and subsequent identification of other members of the HIF family of transcriptional activators has provided insight into the molecular underpinnings of oxygen homeostasis. This review focuses on the mechanisms of HIF activation and their roles in physiological and pathophysiological responses to hypoxia, with an emphasis on the cardiorespiratory systems. HIFs are heterodimers comprised of an O(2)-regulated HIF-1α or HIF-2α subunit and a constitutively expressed HIF-1β subunit. Induction of HIF activity under conditions of reduced O(2) availability requires stabilization of HIF-1α and HIF-2α due to reduced prolyl hydroxylation, dimerization with HIF-1β, and interaction with coactivators due to decreased asparaginyl hydroxylation. Stimuli other than hypoxia, such as nitric oxide and reactive oxygen species, can also activate HIFs. HIF-1 and HIF-2 are essential for acute O(2) sensing by the carotid body, and their coordinated transcriptional activation is critical for physiological adaptations to chronic hypoxia including erythropoiesis, vascularization, metabolic reprogramming, and ventilatory acclimatization. In contrast, intermittent hypoxia, which occurs in association with sleep-disordered breathing, results in an imbalance between HIF-1α and HIF-2α that causes oxidative stress, leading to cardiorespiratory pathology.
Collapse
Affiliation(s)
- Nanduri R Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, Illinois, USA.
| | | |
Collapse
|
102
|
Lee SW, Jeong HK, Lee JY, Yang J, Lee EJ, Kim SY, Youn SW, Lee J, Kim WJ, Kim KW, Lim JM, Park JW, Park YB, Kim HS. Hypoxic priming of mESCs accelerates vascular-lineage differentiation through HIF1-mediated inverse regulation of Oct4 and VEGF. EMBO Mol Med 2012; 4:924-938. [PMID: 22821840 PMCID: PMC3491825 DOI: 10.1002/emmm.201101107] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 05/15/2012] [Accepted: 05/18/2012] [Indexed: 12/21/2022] Open
Abstract
Hypoxic microenvironment plays an important role in determining stem cell fates. However, it is controversial to which direction between self-renewal and differentiation the hypoxia drives the stem cells. Here, we investigated whether a short exposure to hypoxia (termed 'hypoxic-priming') efficiently directed and promoted mouse embryonic stem cells (mESCs) to differentiate into vascular-lineage. During spontaneous differentiation of embryoid bodies (EBs), hypoxic region was observed inside EB spheroids even under normoxic conditions. Indeed, hypoxia-primed EBs more efficiently differentiated into cells of vascular-lineage, than normoxic EBs did. We found that hypoxia suppressed Oct4 expression via direct binding of HIF-1 to reverse hypoxia-responsive elements (rHREs) in the Oct4 promoter. Furthermore, vascular endothelial growth factor (VEGF) was highly upregulated in hypoxia-primed EBs, which differentiated towards endothelial cells in the absence of exogenous VEGF. Interestingly, this differentiation was abolished by the HIF-1 or VEGF blocking. In vivo transplantation of hypoxia-primed EBs into mice ischemic limb elicited enhanced vessel differentiation. Collectively, our findings identify that hypoxia enhanced ESC differentiation by HIF-1-mediated inverse regulation of Oct4 and VEGF, which is a novel pathway to promote vascular-lineage differentiation.
Collapse
Affiliation(s)
- Sae-Won Lee
- Department of Internal Medicine, Innovative Research Institute for Cell Therapy, Seoul National University HospitalSeoul, Korea
| | - Han-Kyul Jeong
- Department of Internal Medicine, Innovative Research Institute for Cell Therapy, Seoul National University HospitalSeoul, Korea
| | - Ji-Young Lee
- Department of Internal Medicine, Innovative Research Institute for Cell Therapy, Seoul National University HospitalSeoul, Korea
| | - Jimin Yang
- Department of Internal Medicine, Innovative Research Institute for Cell Therapy, Seoul National University HospitalSeoul, Korea
| | - Eun Ju Lee
- Department of Internal Medicine, Innovative Research Institute for Cell Therapy, Seoul National University HospitalSeoul, Korea
| | - Su-Yeon Kim
- Department of Internal Medicine, Innovative Research Institute for Cell Therapy, Seoul National University HospitalSeoul, Korea
| | - Seock-Won Youn
- Department of Internal Medicine, Innovative Research Institute for Cell Therapy, Seoul National University HospitalSeoul, Korea
| | - Jaewon Lee
- Department of Internal Medicine, Innovative Research Institute for Cell Therapy, Seoul National University HospitalSeoul, Korea
| | - Woo Jean Kim
- National Research Laboratory of Regenerative Sexual Medicine, Department of Urology, Inha University School of MedicineIncheon, Korea
| | - Kyu-Won Kim
- Division of Pharmaceutical Biosciences, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National UniversitySeoul, Korea
- WCU Program, Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National UniversitySeoul, Korea
| | - Jeong Mook Lim
- WCU Biomodulation Program, Department of Agricultural Biotechnology, Seoul National UniversitySeoul, Korea
| | - Jong-Wan Park
- Ischemic/Hypoxic Disease Institute, Seoul National University College of MedicineSeoul, Korea
| | - Young-Bae Park
- Department of Internal Medicine, Innovative Research Institute for Cell Therapy, Seoul National University HospitalSeoul, Korea
| | - Hyo-Soo Kim
- Department of Internal Medicine, Innovative Research Institute for Cell Therapy, Seoul National University HospitalSeoul, Korea
- WCU Program, Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National UniversitySeoul, Korea
| |
Collapse
|
103
|
Zhou J, Zhang S, Xue J, Avery J, Wu J, Lind SE, Ding WQ. Activation of peroxisome proliferator-activated receptor α (PPARα) suppresses hypoxia-inducible factor-1α (HIF-1α) signaling in cancer cells. J Biol Chem 2012; 287:35161-35169. [PMID: 22932900 DOI: 10.1074/jbc.m112.367367] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of peroxisome proliferator-activated receptor α (PPARα) has been demonstrated to inhibit tumor growth and angiogenesis, yet the mechanisms behind these actions remain to be characterized. In this study, we examined the effects of PPARα activation on the hypoxia-inducible factor-1α (HIF-1α) signaling pathway in human breast (MCF-7) and ovarian (A2780) cancer cells under hypoxia. Incubation of cancer cells under 1% oxygen for 16 h significantly induced HIF-1α expression and activity as assayed by Western blotting and reporter gene analysis. Treatment of the cells with PPARα agonists, but not a PPARγ agonist, prior to hypoxia diminished hypoxia-induced HIF-1α expression and activity, and addition of a PPARα antagonist attenuated the suppression of HIF-1α signaling. Activation of PPARα attenuated hypoxia-induced HA-tagged HIF-1α protein expression without affecting the HA-tagged HIF-1α mutant protein level, indicating that PPARα activation promotes HIF-1α degradation in these cells. This was further confirmed using proteasome inhibitors, which reversed PPARα-mediated suppression of HIF-1α expression under hypoxia. Using the co-immunoprecipitation technique, we found that activation of PPARα enhances the binding of HIF-1α to von Hippel-Lindau tumor suppressor (pVHL), a protein known to mediate HIF-1α degradation through the ubiquitin-proteasome pathway. Following PPARα-mediated suppression of HIF-1α signaling, VEGF secretion from the cancer cells was significantly reduced, and tube formation by endothelial cells was dramatically impaired. Taken together, these findings demonstrate for the first time that activation of PPARα suppresses hypoxia-induced HIF-1α signaling in cancer cells, providing novel insight into the anticancer properties of PPARα agonists.
Collapse
Affiliation(s)
- Jundong Zhou
- Department of Radio-Oncology, Nanjing Medical University Affiliated Suzhou Hospital; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Shuyu Zhang
- School of Radiation Medicine and Protection, Soochow University, Suzhou 205123, China; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Jing Xue
- Department of Radio-Oncology, Nanjing Medical University Affiliated Suzhou Hospital; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Jori Avery
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Jinchang Wu
- Department of Radio-Oncology, Nanjing Medical University Affiliated Suzhou Hospital
| | - Stuart E Lind
- Department of Pathology and Medicine, University of Colorado Denver, Denver, Colorado 80217
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104.
| |
Collapse
|
104
|
Liu Y, Wang C, Wang Y, Ma Z, Xiao J, McClain C, Li X, Feng W. Cobalt chloride decreases fibroblast growth factor-21 expression dependent on oxidative stress but not hypoxia-inducible factor in Caco-2 cells. Toxicol Appl Pharmacol 2012; 264:212-21. [PMID: 22917661 DOI: 10.1016/j.taap.2012.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 08/02/2012] [Accepted: 08/03/2012] [Indexed: 01/29/2023]
Abstract
Fibroblast growth factor-21 (FGF21) is a potential metabolic regulator with multiple beneficial effects on metabolic diseases. FGF21 is mainly expressed in the liver, but is also found in other tissues including the intestine, which expresses β-klotho abundantly. The intestine is a unique organ that operates in a physiologically hypoxic environment, and is responsible for the fat absorption processes including triglyceride breakdown, re-synthesis and absorption into the portal circulation. In the present study, we investigated the effects of hypoxia and the chemical hypoxia inducer, cobalt chloride (CoCl(2)), on FGF21 expression in Caco-2 cells and the consequence of fat accumulation. Physical hypoxia (1% oxygen) and CoCl(2) treatment decreased both FGF21 mRNA and secreted protein levels. Gene silence and inhibition of hypoxia-inducible factor-α (HIFα) did not affect the reduction of FGF21 mRNA and protein levels by hypoxia. However, CoCl(2) administration caused a significant increase in oxidative stress. The addition of n-acetylcysteine (NAC) suppressed CoCl(2)-induced reactive oxygen species (ROS) formation and completely negated CoCl(2)-induced FGF21 loss. mRNA stability analysis demonstrated that the CoCl(2) administration caused a remarkable reduction in FGF21 mRNA stability. Furthermore, CoCl(2) increased intracellular triglyceride (TG) accumulation, along with a reduction in mRNA levels of lipid lipase, hormone sensitive lipase (HSL) and adipose triglyceride lipase (ATGL), and an increase of sterol regulatory element-binding protein-1c (SREBP1c) and stearoyl-coenzyme A (SCD1). Addition of both NAC and recombinant FGF21 significantly attenuated the CoCl(2)-induced TG accumulation. In conclusion, the decrease of FGF21 in Caco-2 cells by chemical hypoxia is independent of HIFα, but dependent on an oxidative stress-mediated mechanism. The regulation of FGF21 by hypoxia may contribute to intestinal lipid metabolism and absorption.
Collapse
Affiliation(s)
- Yanlong Liu
- School of Pharmacy, Wenzhou Medical College, Wenzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Ge RL, Simonson TS, Cooksey RC, Tanna U, Qin G, Huff CD, Witherspoon DJ, Xing J, Zhengzhong B, Prchal JT, Jorde LB, McClain DA. Metabolic insight into mechanisms of high-altitude adaptation in Tibetans. Mol Genet Metab 2012; 106:244-7. [PMID: 22503288 PMCID: PMC3437309 DOI: 10.1016/j.ymgme.2012.03.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/09/2012] [Accepted: 03/09/2012] [Indexed: 11/26/2022]
Abstract
Recent studies have identified genes involved in high-altitude adaptation in Tibetans. Genetic variants/haplotypes within regions containing three of these genes (EPAS1, EGLN1, and PPARA) are associated with relatively decreased hemoglobin levels observed in Tibetans at high altitude, providing corroborative evidence for genetic adaptation to this extreme environment. The mechanisms that afford adaptation to high-altitude hypoxia, however, remain unclear. Considering the strong metabolic demands imposed by hypoxia, we hypothesized that a shift in fuel preference to glucose oxidation and glycolysis at the expense of fatty acid oxidation would improve adaptation to decreased oxygen availability. Correlations between serum free fatty acid and lactate concentrations in Tibetan groups living at high altitude and putatively selected haplotypes provide insight into this hypothesis. An EPAS1 haplotype that exhibits a signal of positive selection is significantly associated with increased lactate concentration, the product of anaerobic glycolysis. Furthermore, the putatively advantageous PPARA haplotype is correlated with serum free fatty acid concentrations, suggesting a possible decrease in the activity of fatty acid oxidation. Although further studies are required to assess the molecular mechanisms underlying these patterns, these associations suggest that genetic adaptation to high altitude involves alteration in energy utilization pathways.
Collapse
Affiliation(s)
- Ri-Li Ge
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining, Qinghai 810001, People’s Republic of China
| | - Tatum S. Simonson
- University of Utah School of Medicine, Department of Human Genetics and Divisions of Endocrinology, Metabolism, and Diabetes and Division of Hematology, Salt Lake City, UT 84112, USA
| | - Robert C. Cooksey
- University of Utah School of Medicine, Department of Human Genetics and Divisions of Endocrinology, Metabolism, and Diabetes and Division of Hematology, Salt Lake City, UT 84112, USA
| | - Uran Tanna
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining, Qinghai 810001, People’s Republic of China
| | - Ga Qin
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining, Qinghai 810001, People’s Republic of China
| | - Chad D. Huff
- University of Utah School of Medicine, Department of Human Genetics and Divisions of Endocrinology, Metabolism, and Diabetes and Division of Hematology, Salt Lake City, UT 84112, USA
| | - David J. Witherspoon
- University of Utah School of Medicine, Department of Human Genetics and Divisions of Endocrinology, Metabolism, and Diabetes and Division of Hematology, Salt Lake City, UT 84112, USA
| | - Jinchuan Xing
- University of Utah School of Medicine, Department of Human Genetics and Divisions of Endocrinology, Metabolism, and Diabetes and Division of Hematology, Salt Lake City, UT 84112, USA
| | - Bai Zhengzhong
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining, Qinghai 810001, People’s Republic of China
| | - Josef T. Prchal
- University of Utah School of Medicine, Department of Human Genetics and Divisions of Endocrinology, Metabolism, and Diabetes and Division of Hematology, Salt Lake City, UT 84112, USA
| | - Lynn B. Jorde
- University of Utah School of Medicine, Department of Human Genetics and Divisions of Endocrinology, Metabolism, and Diabetes and Division of Hematology, Salt Lake City, UT 84112, USA
| | - Donald A. McClain
- University of Utah School of Medicine, Department of Human Genetics and Divisions of Endocrinology, Metabolism, and Diabetes and Division of Hematology, Salt Lake City, UT 84112, USA
- Address for correspondence: Donald McClain, Division of Endocrinology, University of Utah, 30 N. 2030 E, Salt Lake City, UT 84132, Tel.: (801) 581-7755, Fax: (801) 585-0956,
| |
Collapse
|
106
|
Hypoxia-inducible factors and their roles in energy metabolism. Int J Hematol 2012; 95:457-63. [PMID: 22535382 DOI: 10.1007/s12185-012-1069-y] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 03/29/2012] [Accepted: 03/29/2012] [Indexed: 01/03/2023]
Abstract
Over the course of evolution, aerobic organisms have developed sophisticated systems for responding to alterations in oxygen concentration, as oxygen acts as a final electron acceptor in oxidative phosphorylation for energy production. Hypoxia-inducible factor (HIF) plays a central role in the adaptive regulation of energy metabolism, by triggering a switch from mitochondrial oxidative phosphorylation to anaerobic glycolysis in hypoxic conditions. HIF also reduces oxygen consumption in mitochondria by inhibiting conversion of pyruvate to acetyl CoA, suppressing mitochondrial biogenesis and activating autophagy of mitochondria concomitantly with reduction in reactive oxygen species production. In addition, metabolic reprogramming in response to hypoxia through HIF activation is not limited to the regulation of carbohydrate metabolism; it occurs in lipid metabolism as well. Recent studies using in vivo gene-targeting technique have revealed unexpected, but novel functions of HIF in energy metabolism in a context- and cell type-specific manner, and shed light on the possibility of pharmaceutical targeting HIF as a new therapy against many diseases, including cancer, diabetes, and fatty liver.
Collapse
|
107
|
Brown EA. Genetic explorations of recent human metabolic adaptations: hypotheses and evidence. Biol Rev Camb Philos Soc 2012; 87:838-55. [DOI: 10.1111/j.1469-185x.2012.00227.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
108
|
Abstract
PURPOSE OF REVIEW During critical illness, alterations of intestinal blood supply and inflammatory activation can result in severe intestinal hypoxia (limited oxygen availability). Conditions of hypoxia lead to the activation of a transcriptional program that is under the control of the transcription factor hypoxia-inducible factor (HIF). In many instances, HIF-dependent alterations of gene expression represent endogenous adaptive responses that dampen pathologic inflammation and could be targeted to treat intestinal injury. RECENT FINDINGS Post-translational stabilization of the HIF transcription factor and corresponding changes in gene expression are central to the resolution of intestinal injury. Examples for such responses that we discuss in this review include hypoxia-elicited increases in extracellular adenosine production and signaling, particularly through the A2B adenosine receptor, and intestinal protection provided by hypoxia-inducible netrin-1. SUMMARY The present review focuses on HIF-elicited anti-inflammatory pathways that result in intestinal protection during critical illness. Many of these pathways represent novel therapeutic targets for attenuating multiorgan failure and critical illness. Whereas these therapeutic approaches are currently being investigated in cell culture models or in genetic mouse models, we are optimistic that at least some of these novel targets can be translated from bench to bedside in the near future.
Collapse
Affiliation(s)
- Almut Grenz
- Mucosal Inflammation Program, Department of Anesthesiology, University of Colorado, Aurora, Colorado 80045, USA.
| | | | | |
Collapse
|
109
|
Oka T, Lam VH, Zhang L, Keung W, Cadete VJJ, Samokhvalov V, Tanner BA, Beker DL, Ussher JR, Huqi A, Jaswal JS, Rebeyka IM, Lopaschuk GD. Cardiac hypertrophy in the newborn delays the maturation of fatty acid β-oxidation and compromises postischemic functional recovery. Am J Physiol Heart Circ Physiol 2012; 302:H1784-94. [PMID: 22408020 DOI: 10.1152/ajpheart.00804.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During the neonatal period, cardiac energy metabolism progresses from a fetal glycolytic profile towards one more dependent on mitochondrial oxidative metabolism. In this study, we identified the effects of cardiac hypertrophy on neonatal cardiac metabolic maturation and its impact on neonatal postischemic functional recovery. Seven-day-old rabbits were subjected to either a sham or a surgical procedure to induce a left-to-right shunt via an aortocaval fistula to cause RV volume-overload. At 3 wk of age, hearts were isolated from both groups and perfused as isolated, biventricular preparations to assess cardiac energy metabolism. Volume-overload resulted in cardiac hypertrophy (16% increase in cardiac mass, P < 0.05) without evidence of cardiac dysfunction in vivo or in vitro. Fatty acid oxidation rates were 60% lower (P < 0.05) in hypertrophied hearts than controls, whereas glycolysis increased 246% (P < 0.05). In contrast, glucose and lactate oxidation rates were unchanged. Overall ATP production rates were significantly lower in hypertrophied hearts, resulting in increased AMP-to-ATP ratios in both aerobic hearts and ischemia-reperfused hearts. The lowered energy generation of hypertrophied hearts depressed functional recovery from ischemia. Decreased fatty acid oxidation rates were accompanied by increased malonyl-CoA levels due to decreased malonyl-CoA decarboxylase activity/expression. Increased glycolysis in hypertrophied hearts was accompanied by a significant increase in hypoxia-inducible factor-1α expression, a key transcriptional regulator of glycolysis. Cardiac hypertrophy in the neonatal heart results in a reemergence of the fetal metabolic profile, which compromises ATP production in the rapidly maturing heart and impairs recovery of function following ischemia.
Collapse
Affiliation(s)
- Tatsujiro Oka
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Departments of Pediatrics and Surgery, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Levett DZ, Radford EJ, Menassa DA, Graber EF, Morash AJ, Hoppeler H, Clarke K, Martin DS, Ferguson-Smith AC, Montgomery HE, Grocott MPW, Murray AJ. Acclimatization of skeletal muscle mitochondria to high-altitude hypoxia during an ascent of Everest. FASEB J 2011; 26:1431-41. [PMID: 22186874 DOI: 10.1096/fj.11-197772] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ascent to high altitude is associated with a fall in the partial pressure of inspired oxygen (hypobaric hypoxia). For oxidative tissues such as skeletal muscle, resultant cellular hypoxia necessitates acclimatization to optimize energy metabolism and restrict oxidative stress, with changes in gene and protein expression that alter mitochondrial function. It is known that lowlanders returning from high altitude have decreased muscle mitochondrial densities, yet the underlying transcriptional mechanisms and time course are poorly understood. To explore these, we measured gene and protein expression plus ultrastructure in muscle biopsies of lowlanders at sea level and following exposure to hypobaric hypoxia. Subacute exposure (19 d after initiating ascent to Everest base camp, 5300 m) was not associated with mitochondrial loss. After 66 d at altitude and ascent beyond 6400 m, mitochondrial densities fell by 21%, with loss of 73% of subsarcolemmal mitochondria. Correspondingly, levels of the transcriptional coactivator PGC-1α fell by 35%, suggesting down-regulation of mitochondrial biogenesis. Sustained hypoxia also decreased expression of electron transport chain complexes I and IV and UCP3 levels. We suggest that during subacute hypoxia, mitochondria might be protected from oxidative stress. However, following sustained exposure, mitochondrial biogenesis is deactivated and uncoupling down-regulated, perhaps to improve the efficiency of ATP production.
Collapse
Affiliation(s)
- Denny Z Levett
- Centre for Altitude, Space, and Extreme Environment Medicine, University College London (UCL) Institute of Child Health, University College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Romney SJ, Newman BS, Thacker C, Leibold EA. HIF-1 regulates iron homeostasis in Caenorhabditis elegans by activation and inhibition of genes involved in iron uptake and storage. PLoS Genet 2011; 7:e1002394. [PMID: 22194696 PMCID: PMC3240588 DOI: 10.1371/journal.pgen.1002394] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 10/10/2011] [Indexed: 12/31/2022] Open
Abstract
Caenorhabditis elegans ftn-1 and ftn-2, which encode the iron-storage protein ferritin, are transcriptionally inhibited during iron deficiency in intestine. Intestinal specific transcription is dependent on binding of ELT-2 to GATA binding sites in an iron-dependent enhancer (IDE) located in ftn-1 and ftn-2 promoters, but the mechanism for iron regulation is unknown. Here, we identify HIF-1 (hypoxia-inducible factor -1) as a negative regulator of ferritin transcription. HIF-1 binds to hypoxia-response elements (HREs) in the IDE in vitro and in vivo. Depletion of hif-1 by RNA interference blocks transcriptional inhibition of ftn-1 and ftn-2 reporters, and ftn-1 and ftn-2 mRNAs are not regulated in a hif-1 null strain during iron deficiency. An IDE is also present in smf-3 encoding a protein homologous to mammalian divalent metal transporter-1. Unlike the ftn-1 IDE, the smf-3 IDE is required for HIF-1–dependent transcriptional activation of smf-3 during iron deficiency. We show that hif-1 null worms grown under iron limiting conditions are developmentally delayed and that depletion of FTN-1 and FTN-2 rescues this phenotype. These data show that HIF-1 regulates intestinal iron homeostasis during iron deficiency by activating and inhibiting genes involved in iron uptake and storage. Due to its presence in proteins involved in hemoglobin synthesis, DNA synthesis, and mitochondrial respiration, eukaryotic cells require iron for survival. Excess iron can lead to oxidative damage, while iron deficiency reduces cell growth and causes cell death. Dysregulation of iron homeostasis in humans caused by iron deficiency or excess leads to anemia, diabetes, and neurodegenerative disorders. All organisms have thus developed mechanisms to sense, acquire, and store iron. We use Caenorhabditis elegans as a model organism to study mechanisms of iron regulation. Our previous studies show that the iron-storage protein ferritin (FTN-1, FTN-2) is transcriptionally inhibited in intestine during iron deficiency, but the mechanisms regulating iron regulation are not known. Here, we find that hypoxia-inducible factor 1 (HIF-1) transcriptionally inhibits ftn-1 and ftn-2 during iron deficiency. We also show that HIF-1 activates the iron uptake gene smf-3. Transcriptional activation and inhibition by HIF-1 is dependent on an iron enhancer in the promoters of these genes. HIF-1 is a known transcriptional activator, but its role in transcriptional inhibition is not well understood. Our data show that HIF-1 regulates iron homeostasis by activating and inhibiting iron uptake and storage genes, and they provide insight into HIF-1 transcriptional inhibition.
Collapse
Affiliation(s)
- Steven Joshua Romney
- Department of Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Ben S. Newman
- University of Washington, Seattle, Washington, United States of America
| | - Colin Thacker
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Elizabeth A. Leibold
- Department of Medicine, University of Utah, Salt Lake City, Utah, United States of America
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
112
|
Xu J, Wang B, Xu Y, Sun L, Tian W, Shukla D, Barod R, Grillari J, Grillari-Voglauer R, Maxwell PH, Esteban MA. Epigenetic regulation of HIF-1α in renal cancer cells involves HIF-1α/2α binding to a reverse hypoxia-response element. Oncogene 2011; 31:1065-72. [PMID: 21841824 DOI: 10.1038/onc.2011.305] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene underlies the majority of sporadic clear cell renal cell carcinomas (CCRCCs) and is also responsible for the hereditary VHL cancer syndrome. VHL loss of function results in constitutive stabilization of hypoxia-inducible factors (HIF-1α and HIF-2α) due to insufficient proteolysis in the presence of oxygen. This activates multiple genes relevant to tumorigenesis, allowing cells to acquire further mutations and undergo malignant transformation. However, the specific role of each HIF-α subunit in CCRCC tumorigenesis is not yet well understood. The current paradigm supports that in the first stages of CCRCC formation the stabilization of HIF-1α is dominant and this limits proliferation, but later on HIF-2α increases and this induces a more aggressive cell behavior. Understanding how this transition happens is highly relevant, as it may provide novel ways to treat these cancers. Here, we show that VHL inactivation in CCRCC cells results in HIF-1α/2α-dependent downregulation of HIF-1α mRNA through direct binding of either subunit to a reverse hypoxia-response element in the HIF-1α proximal promoter. This binding activates a series of repressive histone modification marks including histone 3 lysine 27 trimethylation (H3K27me3) to make the changes stable, and if overturned reduces CCRCC cell proliferation due to excessive HIF-1α expression level. Our findings thus help understand how HIF-α subunits influence each other and also reinforce the idea that epigenetic mechanisms are a key step of CCRCC progression.
Collapse
Affiliation(s)
- J Xu
- Stem Cell and Cancer Biology Group, Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, GuangzhouInstitutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
A Comparative Study of Mouse Hepatic and Intestinal Gene Expression Profiles under PPARα Knockout by Gene Set Enrichment Analysis. PPAR Res 2011; 2011:629728. [PMID: 21811494 PMCID: PMC3147148 DOI: 10.1155/2011/629728] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/05/2011] [Accepted: 06/07/2011] [Indexed: 11/18/2022] Open
Abstract
Gene expression profiling of PPARα has been used in several studies, but fewer studies went further to identify the tissue-specific pathways or genes involved in PPARα activation in genome-wide. Here, we employed and applied gene set enrichment analysis to two microarray datasets both PPARα related respectively in mouse liver and intestine. We suggested that the regulatory mechanism of PPARα activation by WY14643 in mouse small intestine is more complicated than in liver due to more involved pathways. Several pathways were cancer-related such as pancreatic cancer and small cell lung cancer, which indicated that PPARα may have an important role in prevention of cancer development. 12 PPARα dependent pathways and 4 PPARα independent pathways were identified highly common in both liver and intestine of mice. Most of them were metabolism related, such as fatty acid metabolism, tryptophan metabolism, pyruvate metabolism with regard to PPARα regulation but gluconeogenesis and propanoate metabolism independent of PPARα regulation. Keratan sulfate biosynthesis, the pathway of regulation of actin cytoskeleton, the pathways associated with prostate cancer and small cell lung cancer were not identified as hepatic PPARα independent but as WY14643 dependent ones in intestinal study. We also provided some novel hepatic tissue-specific marker genes.
Collapse
|
114
|
Kumar P, Mendelson CR. Estrogen-related receptor gamma (ERRgamma) mediates oxygen-dependent induction of aromatase (CYP19) gene expression during human trophoblast differentiation. Mol Endocrinol 2011; 25:1513-26. [PMID: 21757507 DOI: 10.1210/me.2011-1012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Differentiation of human cytotrophoblasts to syncytiotrophoblast and the associated induction of aromatase/hCYP19 gene expression are dependent upon a critical O(2) tension; however, the underlying molecular mechanisms remain undefined. In this study, we provide compelling evidence that expression of the orphan nuclear receptor, estrogen-related receptor γ (ERRγ), is also O(2) dependent, induced during human syncytiotrophoblast differentiation, and plays an obligatory role in the induction of placenta-specific hCYP19I.1 gene expression. Treatment with the selective ERRγ agonist, DY131, or overexpression of ERRγ, stimulated hCYP19 expression in syncytiotrophoblast. Overexpression of ERRγ prevented effects of hypoxia to repress hCYP19 gene expression in cultured trophoblasts. Conversely, small interfering RNA-mediated knockdown of endogenous ERRγ in primary trophoblasts markedly inhibited hCYP19 expression. Promoter and site-directed mutagenesis studies in transfected placental cells identified a nuclear receptor element within placenta-specific hCYP19 promoter I.1 required for ERRγ-stimulated activity. Recruitment of endogenous ERRγ to the nuclear receptor element region in hCYP19 promoter during trophoblast differentiation, assessed by chromatin immunoprecipitation, was prevented by hypoxia. Deferoxamine-induced hypoxia-inducible factor-1α (HIF-1α) levels decreased ERRγ expression, whereas knockdown of endogenous HIF-1α prevented ERRγ suppression by hypoxia. Chromatin immunoprecipitation analysis of trophoblasts cultured in hypoxia revealed recruitment of HIF-1α to one of two putative hypoxia response elements in the ERRγ promoter, providing in vivo evidence of a direct HIF-1α involvement in ERRγ expression. Collectively, these novel findings identify ERRγ as an O(2)-dependent transcription factor and HIF-1α target gene that serves a critical role in the induction of hCYP19 expression during human trophoblast differentiation.
Collapse
Affiliation(s)
- Premlata Kumar
- Department of Biochemistry, North Texas March of Dimes Birth Defects Center, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9038, USA
| | | |
Collapse
|
115
|
Ronkainen VP, Skoumal R, Tavi P. Hypoxia and HIF-1 suppress SERCA2a expression in embryonic cardiac myocytes through two interdependent hypoxia response elements. J Mol Cell Cardiol 2011; 50:1008-16. [DOI: 10.1016/j.yjmcc.2011.02.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 02/14/2011] [Accepted: 02/25/2011] [Indexed: 11/28/2022]
|
116
|
Attenuated expression and function of the RECK tumor suppressor under hypoxic conditions is mediated by the MAPK signaling pathways. Arch Pharm Res 2011; 34:137-45. [DOI: 10.1007/s12272-011-0116-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/12/2010] [Accepted: 10/13/2010] [Indexed: 10/18/2022]
|
117
|
Lim W, Park Y, Cho J, Park C, Park J, Park YK, Park H, Lee Y. Estrogen receptor beta inhibits transcriptional activity of hypoxia inducible factor-1 through the downregulation of arylhydrocarbon receptor nuclear translocator. Breast Cancer Res 2011; 13:R32. [PMID: 21435239 PMCID: PMC3219195 DOI: 10.1186/bcr2854] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 12/12/2010] [Accepted: 03/24/2011] [Indexed: 02/08/2023] Open
Abstract
Introduction Estrogen receptor (ER) β is predicted to play an important role in prevention of breast cancer development and metastasis. We have shown previously that ERβ inhibits hypoxia inducible factor (HIF)-1α mediated transcription, but the mechanism by which ERβ works to exert this effect is not understood. Methods Vascular endothelial growth factor (VEGF) was measured in conditioned medium by enzyme-linked immunosorbent assays. Reverse transcription polymerase chain reaction (RT-PCR), Western blotting, immunoprecipitation, luciferase assays and chromatin immunoprecipitation (ChIP) assays were used to ascertain the implication of ERβ on HIF-1 function. Results In this study, we found that the inhibition of HIF-1 activity by ERβ expression was correlated with ERβ's ability to degrade aryl hydrocarbon receptor nuclear translocator (ARNT) via ubiquitination processes leading to the reduction of active HIF-1α/ARNT complexes. HIF-1 repression by ERβ was rescued by overexpression of ARNT as examined by hypoxia-responsive element (HRE)-driven luciferase assays. We show further that ERβ attenuated the hypoxic induction of VEGF mRNA by directly decreasing HIF-1α binding to the VEGF gene promoter. Conclusions These results show that ERβ suppresses HIF-1α-mediated transcription via ARNT down-regulation, which may account for the tumour suppressive function of ERβ.
Collapse
Affiliation(s)
- Wonchung Lim
- Department of Bioscience and Biotechnology, College of Life Science, Institute of Biotechnology, Sejong University, Kwangjingu, Kunjadong, Seoul 143-747, Korea
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Chang TT, Shyu MK, Huang MC, Hsu CC, Yeh SY, Chen MR, Lin CJ. Hypoxia-Mediated Down-Regulation of OCTN2 and PPARα Expression in Human Placentas and in BeWo Cells. Mol Pharm 2010; 8:117-25. [DOI: 10.1021/mp100137q] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ting-Ting Chang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100, Taiwan, Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Ming-Kwang Shyu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100, Taiwan, Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Min-Chuan Huang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100, Taiwan, Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chen-Chi Hsu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100, Taiwan, Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Szu-Yu Yeh
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100, Taiwan, Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Mei-Ru Chen
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100, Taiwan, Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chun-Jung Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100, Taiwan, Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
119
|
Sarkar J, Gou D, Turaka P, Viktorova E, Ramchandran R, Raj JU. MicroRNA-21 plays a role in hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration. Am J Physiol Lung Cell Mol Physiol 2010; 299:L861-71. [PMID: 20693317 PMCID: PMC3006273 DOI: 10.1152/ajplung.00201.2010] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 08/03/2010] [Indexed: 12/18/2022] Open
Abstract
Hypoxia stimulates pulmonary artery smooth muscle cell (PASMC) proliferation. Recent studies have implicated an important role for microRNAs (miRNAs) in hypoxia-mediated responses in various cellular processes, including cell proliferation. In this study, we investigated the role of microRNA-21 (miR-21) in hypoxia-induced PASMC proliferation and migration. We first demonstrated that miR-21 expression increased by ∼3-fold in human PASMC after 6 h of hypoxia (3% O₂) and remained high (∼2-fold) after 24 h of hypoxia. Knockdown of miR-21 with anti-miR-21 inhibitors significantly reduced hypoxia-induced cell proliferation, whereas miR-21 overexpression in normoxia enhanced cell proliferation. We also found that miR-21 is essential for hypoxia-induced cell migration. Protein expression of miR-21 target genes, specifically programmed cell death protein 4 (PDCD4), Sprouty 2 (SPRY2), and peroxisome proliferator-activated receptor-α (PPARα), was decreased in hypoxia and in PASMC overexpressing miR-21 in normoxia and increased in hypoxic cells in which miR-21 was knocked down. In addition, PPARα 3'-untranslated region (UTR) luciferase-based reporter gene assays demonstrated that PPARα is a direct target of miR-21. Taken together, our findings indicate that miR-21 plays a significant role in hypoxia-induced pulmonary vascular smooth muscle cell proliferation and migration by regulating multiple gene targets.
Collapse
Affiliation(s)
- Joy Sarkar
- Dept. of Pediatrics, University of Illinois College of Medicine at Chicago, 60612, USA.
| | | | | | | | | | | |
Collapse
|
120
|
Peroxisome Proliferator-Activated Receptor -β/δ, -γ Agonists and Resveratrol Modulate Hypoxia Induced Changes in Nuclear Receptor Activators of Muscle Oxidative Metabolism. PPAR Res 2010; 2010:129173. [PMID: 21113404 PMCID: PMC2991640 DOI: 10.1155/2010/129173] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 08/09/2010] [Accepted: 09/23/2010] [Indexed: 02/02/2023] Open
Abstract
PPAR-α, PPAR-β, and PPAR-γ, and RXR in conjunction with PGC-1α and SIRT1, activate oxidative metabolism genes determining insulin sensitivity. In utero, hypoxia is commonly observed in Intrauterine Growth Restriction (IUGR), and reduced insulin sensitivity is often observed in these infants as adults. We sought to investigate how changes in oxygen tension might directly impact muscle PPAR regulation of oxidative genes. Following eight days in culture at 1% oxygen, C2C12 muscle myoblasts displayed a reduction of PGC-1α, PPAR-α, and RXR-α mRNA, as well as CPT-1b and UCP-2 mRNA. SIRT1 and PGC-1α protein was reduced, and PPAR-γ protein increased. The addition of a PPAR-β agonist (L165,041) for the final 24 hours of 1% treatment resulted in increased levels of UCP-2 mRNA and protein whereas Rosiglitazone induced SIRT1, PGC-1α, RXR-α, PPAR-α, CPT-1b, and UCP-2 mRNA and SIRT1 protein. Under hypoxia, Resveratrol induced SIRT1, RXR-α, PPAR-α mRNA, and PPAR-γ and UCP-2 protein. These findings demonstrate that hypoxia alters the components of the PPAR pathway involved in muscle fatty acid oxidative gene transcription and translation. These results have implications for understanding selective hypoxia adaptation and how it might impact long-term muscle oxidative metabolism and insulin sensitivity.
Collapse
|
121
|
Hindryckx P, De Vos M, Jacques P, Ferdinande L, Peeters H, Olievier K, Bogaert S, Brinkman B, Vandenabeele P, Elewaut D, Laukens D. Hydroxylase inhibition abrogates TNF-alpha-induced intestinal epithelial damage by hypoxia-inducible factor-1-dependent repression of FADD. THE JOURNAL OF IMMUNOLOGY 2010; 185:6306-16. [PMID: 20943999 DOI: 10.4049/jimmunol.1002541] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hydroxylase inhibitors stabilize hypoxia-inducible factor-1 (HIF-1), which has barrier-protective activity in the gut. Because the inflammatory cytokine TNF-α contributes to inflammatory bowel disease in part by compromising intestinal epithelial barrier integrity, hydroxylase inhibition may have beneficial effects in TNF-α-induced intestinal epithelial damage. The hydroxylase inhibitor dimethyloxalylglycin (DMOG) was tested in a murine model of TNF-α-driven chronic terminal ileitis. DMOG-treated mice experienced clinical benefit and showed clear attenuation of chronic intestinal inflammation compared with that of vehicle-treated littermates. Additional in vivo and in vitro experiments revealed that DMOG rapidly restored terminal ileal barrier function, at least in part through prevention of TNF-α-induced intestinal epithelial cell apoptosis. Subsequent transcriptional studies indicated that DMOG repressed Fas-associated death domain protein (FADD), a critical adaptor molecule in TNFR-1-mediated apoptosis, in an HIF-1α-dependent manner. Loss of this FADD repression by HIF-1α-targeting small interfering RNA significantly diminished the antiapoptotic action of DMOG. Additional molecular studies led to the discovery of a previously unappreciated HIF-1 binding site in the FADD promoter, which controls repression of FADD during hypoxia. As such, the results reported in this study allowed the identification of an innate mechanism that protects intestinal epithelial cells during (inflammatory) hypoxia, by direct modulation of death receptor signaling. Hydroxylase inhibition could represent a promising alternative treatment strategy for hypoxic inflammatory diseases, including inflammatory bowel disease.
Collapse
Affiliation(s)
- Pieter Hindryckx
- Department of Gastroenterology, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Expression, purification, and characterization of recombinant human hypoxia inducible factor 1α in E.coli. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0453-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
123
|
Simonson TS, Yang Y, Huff CD, Yun H, Qin G, Witherspoon DJ, Bai Z, Lorenzo FR, Xing J, Jorde LB, Prchal JT, Ge R. Genetic evidence for high-altitude adaptation in Tibet. Science 2010; 329:72-5. [PMID: 20466884 DOI: 10.1126/science.1189406] [Citation(s) in RCA: 851] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tibetans have lived at very high altitudes for thousands of years, and they have a distinctive suite of physiological traits that enable them to tolerate environmental hypoxia. These phenotypes are clearly the result of adaptation to this environment, but their genetic basis remains unknown. We report genome-wide scans that reveal positive selection in several regions that contain genes whose products are likely involved in high-altitude adaptation. Positively selected haplotypes of EGLN1 and PPARA were significantly associated with the decreased hemoglobin phenotype that is unique to this highland population. Identification of these genes provides support for previously hypothesized mechanisms of high-altitude adaptation and illuminates the complexity of hypoxia-response pathways in humans.
Collapse
Affiliation(s)
- Tatum S Simonson
- Eccles Institute of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Blanchard A, Iwasiow B, Yarmill A, Fresnosa A, Silha J, Myal Y, Murphy LC, Chrétien M, Seidah N, Shiu RPC. Targeted production of proprotein convertase PC1 enhances mammary development and tumorigenesis in transgenic mice. Can J Physiol Pharmacol 2010; 87:831-8. [PMID: 20052009 DOI: 10.1139/y09-073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Elevated production of proprotein convertases (PCs), proteolytic enzymes that posttranslationally modify the biological activities of diverse groups of cellular proteins, is a common occurrence in human breast carcinomas. A transgenic mouse model was developed to gain insight into the significance of PC production in breast development and neoplasia. Mammary epithelium-specific and early expression of PC1 was targeted by the use of the mouse mammary tumor virus promoter/enhancer. Whole-mount examinations revealed that the mammary glands of 83-day-old virgin PC1 transgenic mice exhibited an accelerated lobuloalveolar development compared with that of age-matched wild-type mice (p < 0.001). This phenotypic change was accompanied by extensive alterations in gene expression assessed by gene expression microarray analyses. Pathway analysis of PC1-induced alterations in gene expression has revealed possible mechanism of action of PC1 in the mammary gland. PC1 expression alone, however, did not promote spontaneous mammary tumorigenesis in the transgenic mice. PC1 transgene expression resulted in a significantly higher incidence (p = 0.008) and accelerated growth (p = 0.023) of 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary adenocarcinomas. The present study therefore shows that PC1 expression can promote normal and neoplastic mammary development and growth and suggests that proprotein convertases may be important etiological factors in human breast neoplasia.
Collapse
Affiliation(s)
- Anne Blanchard
- Department of Physiology, University of Manitoba, Winnipeg, MB R3E 0W3, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Lee KJ, Lee KY, Lee YM. Downregulation of a tumor suppressor RECK by hypoxia through recruitment of HDAC1 and HIF-1alpha to reverse HRE site in the promoter. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:608-16. [PMID: 20080132 DOI: 10.1016/j.bbamcr.2010.01.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 01/06/2010] [Indexed: 01/25/2023]
Abstract
Reversion-inducing cysteine-rich protein with Kazal motifs (RECK) is a tumor suppressor and the suppression of RECK is induced by Ras or Her-2/neu oncogenes. However, regulation of RECK under hypoxic microenvironment is largely unknown. Here, we identified that hypoxia significantly downregulates RECK mRNA and protein expression using semiquantitative RT-PCR, real-time RT-PCR and western blot analysis. This repression was reversed by the HDAC inhibitor, trichostatin A (TSA) and HIF-1 inhibitor, YC-1. Hypoxia-induced downregulation of RECK was abolished by knockdown of HDAC1 and HIF-1alpha with respective small interfering RNAs (siRNAs), whereas overexpression of HDAC1 and HIF-1alpha suppressed RECK expression similar to the level under hypoxic conditions. Transfection of a deletion mutant of the second reverse HRE (rHRE2, -2345 to -2333) site of RECK promoter completely removed RECK suppression under hypoxia, indicating that the rHRE2 site is responsible for the inhibition of RECK. Chromatin immunoprecipitation and DNA affinity precipitation assays demonstrated that HDAC1 and HIF-1alpha were recruited to the rHRE2 region of RECK promoter under hypoxic conditions, but the treatment of TSA or YC-1 inhibited their binding to the rHRE2 site. Moreover, TSA and YC-1 inhibited hypoxia-induced cancer cell migration, invasion and MMPs secretion. Taken together, we can conclude that hypoxia induces RECK downregulation through the recruitment of HDAC1 and HIF-1alpha to the rHRE2 site in the promoter and the inhibition of hypoxic RECK silencing would be a therapeutic and preventive target for early tumorigenesis.
Collapse
Affiliation(s)
- Kyung Ju Lee
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | | | | |
Collapse
|
126
|
Murray AJ. Metabolic adaptation of skeletal muscle to high altitude hypoxia: how new technologies could resolve the controversies. Genome Med 2009; 1:117. [PMID: 20090895 PMCID: PMC2808733 DOI: 10.1186/gm117] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In most tissues of the body, cellular ATP production predominantly occurs via mitochondrial oxidative phosphorylation of reduced intermediates, which are in turn derived from substrates such as glucose and fatty acids. In order to maintain ATP homeostasis, and therefore cellular function, the mitochondria require a constant supply of fuels and oxygen. In many disease states, or in healthy individuals at altitude, tissue oxygen levels fall and the cell must meet this hypoxic challenge to maintain energetics and limit oxidative stress. In humans at altitude and patients with respiratory disease, loss of skeletal muscle mitochondrial density is a consistent finding. Recent studies that have used cultured cells and genetic mouse models have elucidated a number of elegant adaptations that allow cells with a diminished mitochondrial population to function effectively in hypoxia. This article reviews these findings alongside studies of hypoxic human skeletal muscle, putting them into the context of whole-body physiology and acclimatization to high-altitude hypoxia. A number of current controversies are highlighted, which may eventually be resolved by a systems physiology approach that considers the time-or tissue-dependent nature of some adaptive responses. Future studies using high-throughput metabolomic, transcriptomic, and proteomic technologies to investigate hypoxic skeletal muscle in humans and animal models could resolve many of these controversies, and a case is therefore made for the integration of resulting data into computational models that account for factors such as duration and extent of hypoxic exposure, subjects' backgrounds, and whether data have been acquired from active or sedentary individuals. An integrated and more quantitative understanding of the body's metabolic response to hypoxia and the conditions under which adaptive processes occur could reveal much about the ways that tissues function in the very many disease states where hypoxia is a critical factor.
Collapse
Affiliation(s)
- Andrew J Murray
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| |
Collapse
|
127
|
Man WDC, Kemp P, Moxham J, Polkey MI. Skeletal muscle dysfunction in COPD: clinical and laboratory observations. Clin Sci (Lond) 2009; 117:251-64. [PMID: 19681758 DOI: 10.1042/cs20080659] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025]
Abstract
COPD (chronic obstructive pulmonary disease), although primarily a disease of the lungs, exhibits secondary systemic manifestations. The skeletal muscles are of particular interest because their function (or dysfunction) not only influences the symptoms that limit exercise, but may contribute directly to poor exercise performance. Furthermore, skeletal muscle weakness is of great clinical importance in COPD as it is recognized to contribute independently to poor health status, increased healthcare utilization and even mortality. The present review describes the current knowledge of the structural and functional abnormalities of skeletal muscles in COPD and the possible aetiological factors. Increasing knowledge of the molecular pathways of muscle wasting will lead to the development of new therapeutic agents and strategies to combat COPD muscle dysfunction.
Collapse
|
128
|
Ahmetov II, Williams AG, Popov DV, Lyubaeva EV, Hakimullina AM, Fedotovskaya ON, Mozhayskaya IA, Vinogradova OL, Astratenkova IV, Montgomery HE, Rogozkin VA. The combined impact of metabolic gene polymorphisms on elite endurance athlete status and related phenotypes. Hum Genet 2009; 126:751-61. [DOI: 10.1007/s00439-009-0728-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 07/25/2009] [Indexed: 11/30/2022]
|
129
|
Rankin EB, Rha J, Selak MA, Unger TL, Keith B, Liu Q, Haase VH. Hypoxia-inducible factor 2 regulates hepatic lipid metabolism. Mol Cell Biol 2009; 29:4527-38. [PMID: 19528226 PMCID: PMC2725738 DOI: 10.1128/mcb.00200-09] [Citation(s) in RCA: 263] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 03/22/2009] [Accepted: 06/08/2009] [Indexed: 12/14/2022] Open
Abstract
In mammals, the liver integrates nutrient uptake and delivery of carbohydrates and lipids to peripheral tissues to control overall energy balance. Hepatocytes maintain metabolic homeostasis by coordinating gene expression programs in response to dietary and systemic signals. Hepatic tissue oxygenation is an important systemic signal that contributes to normal hepatocyte function as well as disease. Hypoxia-inducible factors 1 and 2 (HIF-1 and HIF-2, respectively) are oxygen-sensitive heterodimeric transcription factors, which act as key mediators of cellular adaptation to low oxygen. Previously, we have shown that HIF-2 plays an important role in both physiologic and pathophysiologic processes in the liver. HIF-2 is essential for normal fetal EPO production and erythropoiesis, while constitutive HIF-2 activity in the adult results in polycythemia and vascular tumorigenesis. Here we report a novel role for HIF-2 in regulating hepatic lipid metabolism. We found that constitutive activation of HIF-2 in the adult results in the development of severe hepatic steatosis associated with impaired fatty acid beta-oxidation, decreased lipogenic gene expression, and increased lipid storage capacity. These findings demonstrate that HIF-2 functions as an important regulator of hepatic lipid metabolism and identify HIF-2 as a potential target for the treatment of fatty liver disease.
Collapse
Affiliation(s)
- Erinn B Rankin
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
130
|
Krishnan J, Suter M, Windak R, Krebs T, Felley A, Montessuit C, Tokarska-Schlattner M, Aasum E, Bogdanova A, Perriard E, Perriard JC, Larsen T, Pedrazzini T, Krek W. Activation of a HIF1alpha-PPARgamma axis underlies the integration of glycolytic and lipid anabolic pathways in pathologic cardiac hypertrophy. Cell Metab 2009; 9:512-24. [PMID: 19490906 DOI: 10.1016/j.cmet.2009.05.005] [Citation(s) in RCA: 344] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 04/21/2009] [Accepted: 05/14/2009] [Indexed: 01/01/2023]
Abstract
Development of cardiac hypertrophy and progression to heart failure entails profound changes in myocardial metabolism, characterized by a switch from fatty acid utilization to glycolysis and lipid accumulation. We report that hypoxia-inducible factor (HIF)1alpha and PPARgamma, key mediators of glycolysis and lipid anabolism, respectively, are jointly upregulated in hypertrophic cardiomyopathy and cooperate to mediate key changes in cardiac metabolism. In response to pathologic stress, HIF1alpha activates glycolytic genes and PPARgamma, whose product, in turn, activates fatty acid uptake and glycerolipid biosynthesis genes. These changes result in increased glycolytic flux and glucose-to-lipid conversion via the glycerol-3-phosphate pathway, apoptosis, and contractile dysfunction. Ventricular deletion of Hif1alpha in mice prevents hypertrophy-induced PPARgamma activation, the consequent metabolic reprogramming, and contractile dysfunction. We propose a model in which activation of the HIF1alpha-PPARgamma axis by pathologic stress underlies key changes in cell metabolism that are characteristic of and contribute to common forms of heart disease.
Collapse
Affiliation(s)
- Jaya Krishnan
- Institute of Cell Biology and Competence Center for Systems Physiology and Metabolic Diseases, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Sena S, Hu P, Zhang D, Wang X, Wayment B, Olsen C, Avelar E, Abel ED, Litwin SE. Impaired insulin signaling accelerates cardiac mitochondrial dysfunction after myocardial infarction. J Mol Cell Cardiol 2009; 46:910-8. [PMID: 19249310 PMCID: PMC2683200 DOI: 10.1016/j.yjmcc.2009.02.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 02/11/2009] [Accepted: 02/12/2009] [Indexed: 01/08/2023]
Abstract
Diabetes increases mortality and accelerates left ventricular (LV) dysfunction following myocardial infarction (MI). This study sought to determine the impact of impaired myocardial insulin signaling, in the absence of diabetes, on the development of LV dysfunction following MI. Mice with cardiomyocyte-restricted knock out of the insulin receptor (CIRKO) and wildtype (WT) mice were subjected to proximal left coronary artery ligation (MI) and followed for 14 days. Despite equivalent infarct size, mortality was increased in CIRKO-MI vs. WT-MI mice (68% vs. 40%, respectively). In surviving mice, LV ejection fraction and dP/dt were reduced by >40% in CIRKO-MI vs. WT-MI. Relative to shams, isometric developed tension in LV papillary muscles increased in WT-MI but not in CIRKO-MI. Time to peak tension and relaxation times were prolonged in CIRKO-MI vs. WT-MI suggesting impaired, load-independent myocardial contractile function. To elucidate mechanisms for impaired LV contractility, mitochondrial function was examined in permeabilized cardiac fibers. Whereas maximal ADP-stimulated mitochondrial O(2) consumption rates (V(ADP)) with palmitoyl carnitine were unchanged in WT-MI mice relative to sham-operated animals, V(ADP) was significantly reduced in CIRKO-MI (13.17+/-0.94 vs. 9.14+/-0.88 nmol O(2)/min/mgdw, p<0.05). Relative to WT-MI, expression levels of GLUT4, PPAR-alpha, SERCA2, and the FA-Oxidation genes MCAD, LCAD, CPT2 and the electron transfer flavoprotein ETFDH were repressed in CIRKO-MI. Thus reduced insulin action in cardiac myocytes accelerates post-MI LV dysfunction, due in part to a rapid decline in mitochondrial FA oxidative capacity, which combined with limited glucose transport capacity that may reduce substrate utilization and availability.
Collapse
Affiliation(s)
- Sandra Sena
- Division of Endocrinology Metabolism and Diabetes, Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Sar A, Ponjevic D, Nguyen M, Box AH, Demetrick DJ. Identification and characterization of demethylase JMJD1A as a gene upregulated in the human cellular response to hypoxia. Cell Tissue Res 2009; 337:223-34. [PMID: 19471969 DOI: 10.1007/s00441-009-0805-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 04/06/2009] [Indexed: 11/30/2022]
Abstract
Hypoxia is commonly found in human solid cancers and serves as a selective environment for the survival of aggressive cancer cells and as protection from anti-cancer therapies. In addition to a shift to anaerobic metabolism, the cellular response to hypoxia includes cessation of cell division and/or cell death. These mechanisms have still not been defined. Identification of the members of hypoxia-induced growth arrest pathways remain incomplete. We have undertaken an expression microarray analysis of the cellular response to hypoxia in diverse cell lines. An identified cohort of genes is reliably upregulated in various cells in response to hypoxia, as validated by reverse-transcriptase polymerase chain reaction (RT-PCR). One of the upregulated targets corresponds to an expressed sequence tag encoded by JMJD1A (a gene also known as JHDM2A), which has been identified as a histone demethylase that regulates the transcription of androgen receptor targets. We confirm, by RT-PCR, the upregulation of JMJD1A after hypoxia and desferroxamine treatment in multiple cell lines. We also show that JMJD1A is predominantly, but not exclusively, a nuclear protein. Immunofluorescent staining of HeLa cells shows a shift of cytoplasmic JMJD1A into the nucleus on hypoxia treatment. Immunohistochemical staining has revealed that JMJD1A is widely expressed in tissues, even in cells that are not known to express the androgen receptor, and is significantly increased in smooth muscle cells upon hypoxia treatment.
Collapse
Affiliation(s)
- Aylin Sar
- The Department of Pathology, University of Calgary, AB, Canada
| | | | | | | | | |
Collapse
|
133
|
Aragonés J, Fraisl P, Baes M, Carmeliet P. Oxygen sensors at the crossroad of metabolism. Cell Metab 2009; 9:11-22. [PMID: 19117543 DOI: 10.1016/j.cmet.2008.10.001] [Citation(s) in RCA: 215] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 09/26/2008] [Accepted: 09/30/2008] [Indexed: 12/14/2022]
Abstract
Aerobic organisms developed mechanisms to protect themselves against a shortage of oxygen (O(2)). Recent studies reveal that O(2) sensors, belonging to the novel class of 2-oxoglutarate dependent iron(ii)-dioxygenases, have more important roles in metabolism than anticipated. Here, we provide a "metabolo-centric" overview of the role of the PHD/FIH members of this family in metabolism, in particular on how they regulate O(2) supply and consumption, energy compensation and conservation, O(2) conformance and hypoxia tolerance, redox and pH homeostasis, and other vital metabolic processes with implications in health and disease. These insights may offer novel opportunities for the treatment of ischemic diseases.
Collapse
Affiliation(s)
- Julián Aragonés
- Vesalius Research Center, K.U. Leuven, Leuven, B-3000, Belgium
| | | | | | | |
Collapse
|
134
|
Choi SM, Oh H, Park H. Microarray analyses of hypoxia-regulated genes in an aryl hydrocarbon receptor nuclear translocator (Arnt)-dependent manner. FEBS J 2008; 275:5618-34. [PMID: 18959748 DOI: 10.1111/j.1742-4658.2008.06686.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We investigated hypoxia-inducible factor (HIF)-dependent changes in the expression of 5592 genes in response to hypoxia (0.1% O(2), 16 h) by performing cDNA microarray analyses of mouse hepa1c1c7 and BpRc1 cells. BpRc1 cells are a hepa1c1c7 variant defective in HIF-beta/aryl hydrocarbon receptor nuclear translocator (Arnt), and are therefore unable to induce HIF target genes in response to hypoxia. By comparing hepa1c1c7 cells with BpRc1 cells, we were able to investigate hypoxia-regulated gene expression as well as the role played by HIF in regulating the hypoxic-dependent response of gene expression. This study identified 50 hypoxia-induced genes and 36 hypoxia-repressed genes. Quantitative PCR analysis of nine genes confirmed our ability to accurately analyze changes in hypoxia-induced gene expression by microarray analysis. By comparing quantitative PCR analyses of these nine genes in BpRc1 and hepa1c1c7 cells, we determined that eight of the nine hypoxia-induced genes are Arnt dependent. Additional quantitative PCR analyses of eight hypoxia-repressed genes confirmed, with a 50% probability, that microarray analysis was able to predict hypoxia-repressed gene expression. Only two of the four confirmed genes were found to be repressed in an Arnt-dependent manner. Collectively, six of these 13 genes (46.2% probability) showed a pattern of expression consistent with the microarray analysis with regard to Arnt dependence. Finally, we investigated the HIF-1alpha dependence of these 13 genes by quantitative PCR analysis in HIF-1alpha knockdown 3T3-L1 cells. These analyses identified novel hypoxia-regulated genes and confirmed the role of Arnt and HIF-1alpha in regulating their expression. These results identify additional HIF target genes and provide a more complete understanding of hypoxia signaling.
Collapse
Affiliation(s)
- Su Mi Choi
- Department of Life Science, University of Seoul, South Korea
| | | | | |
Collapse
|
135
|
Nishida K, Kyoi S, Yamaguchi O, Sadoshima J, Otsu K. The role of autophagy in the heart. Cell Death Differ 2008; 16:31-8. [DOI: 10.1038/cdd.2008.163] [Citation(s) in RCA: 304] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
136
|
Gleixner E, Abriss D, Adryan B, Kraemer M, Gerlach F, Schuh R, Burmester T, Hankeln T. Oxygen-induced changes in hemoglobin expression in Drosophila. FEBS J 2008; 275:5108-16. [PMID: 18795948 DOI: 10.1111/j.1742-4658.2008.06642.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The hemoglobin gene 1 (dmeglob1) of the fruit fly Drosophila melanogaster is expressed in the tracheal system and fat body, and has been implicated in hypoxia resistance. Here we investigate the expression levels of dmeglob1 and lactate dehydrogenase (a positive control) in embryos, third instar larvae and adult flies under various regimes of hypoxia and hyperoxia. As expected, mRNA levels of lactate dehydrogenase increased under hypoxia. We show that expression levels of dmeglob1 are decreased under both short- and long-term hypoxia, compared with the normoxic (21% O2) control. By contrast, a hypoxia/reoxygenation regime applied to third instar larvae elevated the level of dmeglob1 mRNA. An excess of O2 (hyperoxia) also triggered an increase in dmeglob1 mRNA. The data suggest that Drosophila hemoglobin may be unlikely to function merely as a myoglobin-like O2 storage protein. Rather, dmeglob1 may protect the fly from an excess of O2, either by buffering the flux of O2 from the tracheoles to the cells or by degrading noxious reactive oxygen species.
Collapse
Affiliation(s)
- Eva Gleixner
- Institute of Molecular Genetics, University of Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Expression of hypoxia inducible factor-1alpha in tumors of patients with glioblastoma multiforme and transitional meningioma. J Clin Neurosci 2008; 15:1036-42. [PMID: 18621534 DOI: 10.1016/j.jocn.2007.07.080] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 06/22/2007] [Accepted: 07/20/2007] [Indexed: 12/27/2022]
Abstract
Hypoxia-inducible factor-1 alpha (HIF-1alpha) is the major transcriptional factor involved in the adaptive response to hypoxia. The aim of this study was to assess HIF-1alpha in 22 patients with transitional meningioma (TM) and 26 patients with glioblastoma multiforme (GBM). HIF-1alpha was assessed using a commercially available enzyme-linked immunosorbent assay-based HIF-1 transcription factor assay. Levels of HIF-1alpha in TM and GBM were measured using optical density at 450nm, and median values were found to be 0.35 for TM and 0.37 OD for GBM, respectively. There was no statistically significant difference between the two types of tumor (p=0.264). These findings indicate that HIF-1alpha is elevated in both TM and GBM, suggesting that although hypoxia is one of the most important and powerful stimuli for HIF-1alpha elevation and consequently angiogenesis, other mechanisms may play roles in HIF-1alpha stimulation in benign brain tumors such as TM.
Collapse
|
138
|
HIF-1-dependent repression of adenosine kinase attenuates hypoxia-induced vascular leak. Blood 2008; 111:5571-80. [PMID: 18309031 DOI: 10.1182/blood-2007-11-126763] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Extracellular adenosine has been implicated in vascular adaptation to hypoxia. Based on the observation that increases in intracellular adenosine can effectively elevate extracellular adenosine, we studied the contribution of adenosine kinase (AK, intracellular conversion of adenosine to adenosine monophosphate [AMP]) to vascular adenosine responses. Initial in vitro studies of ambient hypoxia revealed prominent repression of endothelial AK transcript (85% +/- 2% reduction), protein, and function. Transcription factor binding assays and hypoxia inducible factor 1-alpha (HIF-1alpha) loss- and gain-of-function studies suggested a role for HIF-1alpha in transcriptional repression of AK. Moreover, repression of AK by ambient hypoxia was abolished in conditional HIF-1alpha mutant mice in vivo. Studies of endothelial barrier function revealed that inhibition or siRNA repression of AK is associated with enhanced adenosine-dependent barrier responses in vitro. Moreover, in vivo studies of vascular barrier function demonstrated that AK inhibition with 5'-iodotubericidin (1 mg/kg prior to hypoxia) significantly attenuated hypoxia-induced vascular leakage in multiple organs and reduced hypoxia-associated increases in lung water. Taken together, our data reveal a critical role of AK in modulating vascular adenosine responses and suggest pharmacologic inhibitors of AK in the treatment of conditions associated with hypoxia-induced vascular leakage (eg, sepsis or acute lung injury).
Collapse
|
139
|
Chronic metabolic acidosis may be the cause of cachexia: Body fluid pH correction may be an effective therapy. Med Hypotheses 2008; 70:1167-73. [DOI: 10.1016/j.mehy.2007.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 11/14/2007] [Indexed: 01/08/2023]
|
140
|
Bajwa PJ, Alioua A, Lee JW, Straus DS, Toro L, Lytle C. Fenofibrate inhibits intestinal Cl- secretion by blocking basolateral KCNQ1 K+ channels. Am J Physiol Gastrointest Liver Physiol 2007; 293:G1288-99. [PMID: 17916649 DOI: 10.1152/ajpgi.00234.2007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fibrates are peroxisome proliferator-activated receptor-alpha (PPARalpha) ligands in widespread clinical use to lower plasma triglyceride levels. We investigated the effect of fenofibrate and clofibrate on ion transport in mouse intestine and in human T84 colonic adenocarcinoma cells through the use of short-circuit current (I(sc)) and ion flux analysis. In mice, oral administration of fenofibrate produced a persistent inhibition of cAMP-stimulated electrogenic Cl(-) secretion by isolated jejunum and colon without affecting electroneutral fluxes of (22)Na(+) or (86)Rb(+) (K(+)) across unstimulated colonic mucosa. When applied acutely to isolated mouse intestinal mucosa, 100 microM fenofibrate inhibited cAMP-stimulated I(sc) within 5 min. In T84 cells, fenofibrate rapidly inhibited approximately 80% the Cl(-) secretory responses to forskolin (cAMP) and to heat stable enterotoxin STa (cGMP) without affecting the response to carbachol (Ca(2+)). Both fenofibrate and clofibrate inhibited cAMP-stimulated I(sc) with an IC(50) approximately 1 muM, whereas other PPARalpha activators (gemfibrozil and Wy-14,643) were without effect. Membrane permeabilization experiments on T84 cells indicated that fenofibrate inhibits basolateral cAMP-stimulated K(+) channels (putatively KCNQ1/KCNE3) without affecting Ca(2+)-stimulated K(+) channel activity, whereas clofibrate inhibits both K(+) pathways. Fenofibrate had no effect on apical cAMP-stimulated Cl(-) channel activity. Patch-clamp analysis of HEK-293T cells confirmed that 100 microM fenofibrate rapidly inhibits K(+) currents associated with ectopic expression of human KCNQ1 with or without the KCNE3 beta-subunit. We conclude that fenofibrate inhibits intestinal cAMP-stimulated Cl(-) secretion through a nongenomic mechanism that involves a selective inhibition of basolateral KCNQ1/KCNE3 channel complexes. Our findings raise the prospect of fenofibrate as a safe and effective antidiarrheal agent.
Collapse
Affiliation(s)
- Poonam J Bajwa
- Division of Biomedical Sciences, University of California, Riverside, CA 92521-0121, USA
| | | | | | | | | | | |
Collapse
|
141
|
Van Linden A, Eltzschig HK. Role of pulmonary adenosine during hypoxia: extracellular generation, signaling and metabolism by surface adenosine deaminase/CD26. Expert Opin Biol Ther 2007; 7:1437-47. [PMID: 17727332 DOI: 10.1517/14712598.7.9.1437] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Numerous parallels exist between limited oxygen availability (hypoxia) and acute inflammation. The lungs in particular are prone to acute inflammation during hypoxia, resulting in pulmonary edema, vascular leakage and neutrophil infiltration. The innate response elicited by hypoxia is associated with increased extracellular adenosine effects. Although studies on acute pulmonary hypoxia show a protective role of extracellular adenosine by attenuating pulmonary edema and excessive inflammation, chronic elevation of pulmonary adenosine may be detrimental. Adenosine deaminase (ADA)-deficient mice, for example, develop signs of chronic pulmonary injury in association with highly elevated levels of adenosine. Thus, the authors hypothesized the existence of hypoxia-elicited clearance mechanisms to offset deleterious influences of chronically elevated adenosine. Such studies indicated a second response to hypoxia characterized by pulmonary induction of ADA and CD26. In fact, hypoxia-inducible ADA is enzymatically active and tethered on the outside of the membrane via CD26 to form a complex capable of degrading extracellular adenosine to inosine. This paper reviews metabolic and transcriptional changes of extracellular adenosine generation, signaling and degradation during acute and prolonged pulmonary hypoxia.
Collapse
Affiliation(s)
- Annemie Van Linden
- University of Colorado Health Science Center, Mucosal Inflammation Program, Department of Anesthesiology, Perioperative Care and Pain Medicine, Biochemistry Research Building (BRB), Room 852, 4200 E. 9th Avenue, Campus Box B113, Denver, CO 80262, USA
| | | |
Collapse
|
142
|
Metabolic Derangements in an Adult Patient With Tetralogy of Fallot: Possible Role of Chronic Systemic Hypoxia. Am J Med Sci 2007; 334:301-4. [DOI: 10.1097/maj.0b013e3180a6ecd2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
143
|
Remels AH, Gosker HR, van der Velden J, Langen RC, Schols AM. Systemic Inflammation and Skeletal Muscle Dysfunction in Chronic Obstructive Pulmonary Disease: State of the Art and Novel Insights in Regulation of Muscle Plasticity. Clin Chest Med 2007; 28:537-52, vi. [PMID: 17720042 DOI: 10.1016/j.ccm.2007.06.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Systemic inflammation is a recognized hallmark of chronic obstructive pulmonary disease pathogenesis. Although the origin and mechanisms responsible for the persistent chronic inflammatory process remain to be elucidated, it is recognized that it plays an important role in skeletal muscle pathology as observed in chronic obstructive pulmonary disease and several other chronic inflammatory disorders. This article describes state-of-the-art knowledge and novel insights in the role of inflammatory processes on several aspects of inflammation-related skeletal muscle pathology and offers new insights in therapeutic perspectives.
Collapse
Affiliation(s)
- Alexander H Remels
- Department of Respiratory Medicine, Nutrition and Toxicology Research Institute, University of Maastricht, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
144
|
Nunn AVW, Bell J, Barter P. The integration of lipid-sensing and anti-inflammatory effects: how the PPARs play a role in metabolic balance. NUCLEAR RECEPTOR 2007; 5:1. [PMID: 17531095 PMCID: PMC1899481 DOI: 10.1186/1478-1336-5-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Accepted: 05/25/2007] [Indexed: 01/10/2023]
Abstract
The peroxisomal proliferating-activated receptors (PPARs) are lipid-sensing transcription factors that have a role in embryonic development, but are primarily known for modulating energy metabolism, lipid storage, and transport, as well as inflammation and wound healing. Currently, there is no consensus as to the overall combined function of PPARs and why they evolved. We hypothesize that the PPARs had to evolve to integrate lipid storage and burning with the ability to reduce oxidative stress, as energy storage is essential for survival and resistance to injury/infection, but the latter increases oxidative stress and may reduce median survival (functional longevity). In a sense, PPARs may be an evolutionary solution to something we call the 'hypoxia-lipid' conundrum, where the ability to store and burn fat is essential for survival, but is a 'double-edged sword', as fats are potentially highly toxic. Ways in which PPARs may reduce oxidative stress involve modulation of mitochondrial uncoupling protein (UCP) expression (thus reducing reactive oxygen species, ROS), optimising forkhead box class O factor (FOXO) activity (by improving whole body insulin sensitivity) and suppressing NFkB (at the transcriptional level). In light of this, we therefore postulate that inflammation-induced PPAR downregulation engenders many of the signs and symptoms of the metabolic syndrome, which shares many features with the acute phase response (APR) and is the opposite of the phenotype associated with calorie restriction and high FOXO activity. In genetically susceptible individuals (displaying the naturally mildly insulin resistant 'thrifty genotype'), suboptimal PPAR activity may follow an exaggerated but natural adipose tissue-related inflammatory signal induced by excessive calories and reduced physical activity, which normally couples energy storage with the ability to mount an immune response. This is further worsened when pancreatic decompensation occurs, resulting in gluco-oxidative stress and lipotoxicity, increased inflammatory insulin resistance and oxidative stress. Reactivating PPARs may restore a metabolic balance and help to adapt the phenotype to a modern lifestyle.
Collapse
Affiliation(s)
- Alistair VW Nunn
- Molecular Imaging Group, Medical Research Council Clinical Sciences Centre, Imperial College, Hammersmith Campus, London W12 0HS, UK
| | - Jimmy Bell
- Molecular Imaging Group, Medical Research Council Clinical Sciences Centre, Imperial College, Hammersmith Campus, London W12 0HS, UK
| | - Philip Barter
- The Heart Research Institute, Camperdown, Sydney, NSW 2050, Australia
| |
Collapse
|
145
|
Wendler CC, Amatya S, McClaskey C, Ghatpande S, Fredholm BB, Rivkees SA. A1 adenosine receptors play an essential role in protecting the embryo against hypoxia. Proc Natl Acad Sci U S A 2007; 104:9697-702. [PMID: 17522253 PMCID: PMC1887547 DOI: 10.1073/pnas.0703557104] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Embryos can be exposed to environmental factors that induce hypoxia. Currently, our understanding of the effects of hypoxia on early mammalian development is modest. Potential mediators of hypoxia action include the nucleoside adenosine, which acts through A(1) adenosine receptors (A(1)ARs) and mediates adverse effects of hypoxia on the neonatal brain. We hypothesized that A(1)ARs may also play a role in mediating effects of hypoxia on the embryo. When pregnant dams were exposed to hypoxia (10% O(2)) beginning at embryonic day (E) 7.5 or 8.5 and continued for 24-96 h, A(1)AR+/+ embryos manifested growth inhibition and a disproportionate reduction in heart size, including thinner ventricular walls. Yet, when dams were exposed to hypoxia, embryos lacking A(1)ARs (A(1)AR-/-) had much more severe growth retardation than A(1)AR+/+ or +/- embryos. When levels of hypoxia-inducible factor 1alpha (HIF1alpha) were examined, A(1)AR-/- embryos had less stabilized HIF1alpha protein than A(1)AR+/- littermates. Normal patterns of cardiac gene expression were also disturbed in A(1)AR-/- embryos exposed to hypoxia. These results show that short periods of hypoxia during early embryogenesis can result in intrauterine growth retardation. We identify adenosine and A(1)ARs as playing an essential role in protecting the embryo from hypoxia.
Collapse
Affiliation(s)
- Christopher C Wendler
- Section of Developmental Endocrinology and Biology, Yale Child Health Research Center, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | | | | | |
Collapse
|
146
|
Choi YK, Kim JH, Kim WJ, Lee HY, Park JA, Lee SW, Yoon DK, Kim HH, Chung H, Yu YS, Kim KW. AKAP12 regulates human blood-retinal barrier formation by downregulation of hypoxia-inducible factor-1alpha. J Neurosci 2007; 27:4472-81. [PMID: 17442832 PMCID: PMC6672308 DOI: 10.1523/jneurosci.5368-06.2007] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Many diseases of the eye such as retinoblastoma, diabetic retinopathy, and retinopathy of prematurity are associated with blood-retinal barrier (BRB) dysfunction. Identifying the factors that contribute to BRB formation during human eye development and maintenance could provide insights into such diseases. Here we show that A-kinase anchor protein 12 (AKAP12) induces BRB formation by increasing angiopoietin-1 and decreasing vascular endothelial growth factor (VEGF) levels in astrocytes. We reveal that AKAP12 downregulates the level of hypoxia-inducible factor-1alpha (HIF-1alpha) protein by enhancing the interaction of HIF-1alpha with pVHL (von Hippel-Lindau tumor suppressor protein) and PHD2 (prolyl hydroxylase 2). Conditioned media from AKAP12-overexpressing astrocytes induced barriergenesis by upregulating the expression of tight junction proteins in human retina microvascular endothelial cells (HRMECs). Compared with the retina during BRB maturation, AKAP12 expression in retinoblastoma patient tissue was markedly reduced whereas that of VEGF was increased. These findings suggest that AKAP12 may induce BRB formation through antiangiogenesis and barriergenesis in the developing human eye and that defects in this mechanism can lead to a loss of tight junction proteins and contribute to the development of retinal pathologies such as retinoblastoma.
Collapse
Affiliation(s)
- Yoon Kyung Choi
- NeuroVascular Coordination Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Jeong Hun Kim
- Department of Ophthalmology, Seoul National University College of Medicine and Seoul Artificial Eye Center
| | - Woo Jean Kim
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Hae Young Lee
- NeuroVascular Coordination Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Jeong Ae Park
- Department of Marine Biotechnology, College of Liberal Arts and Sciences, Anyang University, Incheon 417-833, Korea
| | - Sae-Won Lee
- Clinical Research Institute, Seoul National University Hospital, Seoul 110-744, Korea
| | - Dae-Kwan Yoon
- NeuroVascular Coordination Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Hyun Ho Kim
- NeuroVascular Coordination Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Hum Chung
- Department of Ophthalmology, Seoul National University College of Medicine and Seoul Artificial Eye Center
| | - Young Suk Yu
- Department of Ophthalmology, Seoul National University College of Medicine and Seoul Artificial Eye Center
| | - Kyu-Won Kim
- NeuroVascular Coordination Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
147
|
Jeong CH, Lee HJ, Cha JH, Kim JH, Kim KR, Kim JH, Yoon DK, Kim KW. Hypoxia-inducible factor-1 alpha inhibits self-renewal of mouse embryonic stem cells in Vitro via negative regulation of the leukemia inhibitory factor-STAT3 pathway. J Biol Chem 2007; 282:13672-9. [PMID: 17360716 DOI: 10.1074/jbc.m700534200] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During mammalian embryogenesis, the early embryo grows in a relatively hypoxic environment due to a restricted supply of oxygen. The molecular mechanisms underlying modulation of self-renewal and differentiation of mouse embryonic stem cells (mESCs) under such hypoxic conditions remain to be established. Here, we show that hypoxia inhibits mESC self-renewal and induces early differentiation in vitro, even in the presence of leukemia inhibitory factor (LIF). These effects are mediated by down-regulation of the LIF-STAT3 signaling pathway. Under conditions of hypoxia, hypoxia-inducible factor-1alpha (HIF-1alpha) suppresses transcription of LIF-specific receptor (LIFR) by directly binding to the reverse hypoxia-responsive element located in the LIFR promoter. Ectopic expression and small interference RNA knockdown of HIF-1alpha verified the inhibitory effect on LIFR transcription. Our findings collectively suggest that hypoxia-induced in vitro differentiation of mESCs is triggered, at least in part, by the HIF-1alpha-mediated suppression of LIF-STAT3 signaling.
Collapse
Affiliation(s)
- Chul-Ho Jeong
- Neurovascular Coordination Research Center, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Mason S, Johnson RS. The role of HIF-1 in hypoxic response in the skeletal muscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 618:229-44. [PMID: 18269201 DOI: 10.1007/978-0-387-75434-5_18] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During endurance training, exercising skeletal muscle experiences severe and repetitive oxygen stress, and the muscle's ability to cope with and improve its function through that stress is central to its role in the body. The primary transcriptional response factor for hypoxic adaptation is hypoxia inducible factor-1alpha (HIF-1alpha), which upregulates glycolysis and angiogenesis in response to low levels of tissue oxygenation. To examine the role of HIF-1alpha in endurance training, we have created mice specifically lacking skeletal muscle HIF-1alpha and subjected them to an endurance training protocol. We found that only wild type mice improve their oxidative capacity, as measured by the respiratory exchange ratio; surprisingly, we found that HIF-1alpha null mice have already upregulated this parameter without training. Furthermore, untrained HIF-1alpha null mice have an increased capillary to fiber ratio, and elevated oxidative enzyme activities. These changes correlate with constitutively activated AMP-activated protein kinase in the HIF-1alpha null muscles. Additionally, HIF-1alpha null muscles have decreased expression of pyruvate dehydrogenase kinase I, a HIF-1alpha target that inhibits oxidative metabolism. This data demonstrates that removal of HIF-1alpha causes an adaptive response in skeletal muscle akin to endurance training, and provides evidence for the suppression of mitochondrial biogenesis by HIF-1alpha in normal tissue.
Collapse
Affiliation(s)
- Steven Mason
- Molecular Biology Section, Division of Biological Sciences, UC San Diego, San Diego, California, USA
| | | |
Collapse
|
149
|
Isaac AO, Kawikova I, Bothwell ALM, Daniels CK, Lai JCK. Manganese treatment modulates the expression of peroxisome proliferator-activated receptors in astrocytoma and neuroblastoma cells. Neurochem Res 2006; 31:1305-16. [PMID: 17053972 DOI: 10.1007/s11064-006-9173-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Accepted: 09/14/2006] [Indexed: 12/31/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) play roles in neural cells by regulating energy balance, cell proliferation and anti-oxidant responses although the molecular mechanisms underlying such roles are unclear. Chronic exposure to excess manganese (Mn) leads to neurotoxicity, although Mn-induced neurotoxic mechanisms have not been fully elucidated. We hypothesized Mn neurotoxicity differentially alters the expression of PPARs. We investigated the effects of manganese chloride treatment (0.01-4 mM) on protein expression of PPAR isoforms (alpha, beta, and gamma) in human astrocytoma (U87) and neuroblastoma (SK-N-SH) cells. The two cell types expressed the 3 PPAR isoforms differentially: their expression of the PPARs was altered by Mn-treatment. Furthermore, nuclear and cytosolic fractions derived from the 2 cell types, with and without Mn-treatment, exhibited marked differences in the protein content of PPARs. Our results constitute the first demonstration that the PPAR signaling pathway may assume pathophysiological importance in Mn neurotoxicity.
Collapse
Affiliation(s)
- Alfred Orina Isaac
- Department of Pharmaceutical Sciences, College of Pharmacy, Biomedical Research Institute, Idaho State University, 921 South 8th Avenue, Stop 8288, Pocatello, ID 83209-8288, USA
| | | | | | | | | |
Collapse
|
150
|
Ng VY, Morisseau C, Falck JR, Hammock BD, Kroetz DL. Inhibition of smooth muscle proliferation by urea-based alkanoic acids via peroxisome proliferator-activated receptor alpha-dependent repression of cyclin D1. Arterioscler Thromb Vasc Biol 2006; 26:2462-8. [PMID: 16917105 PMCID: PMC1904341 DOI: 10.1161/01.atv.0000242013.29441.81] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Proliferation of smooth muscle cells is implicated in cardiovascular complications. Previously, a urea-based soluble epoxide hydrolase inhibitor was shown to attenuate smooth muscle cell proliferation. We examined the possibility that urea-based alkanoic acids activate the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha) and the role of PPARalpha in smooth muscle cell proliferation. METHODS AND RESULTS Alkanoic acids transactivated PPARalpha, induced binding of PPARalpha to its response element, and significantly induced the expression of PPARalpha-responsive genes, showing their function as PPARalpha agonists. Furthermore, the alkanoic acids attenuated platelet-derived growth factor-induced smooth muscle cell proliferation via repression of cyclin D1 expression. Using small interfering RNA to decrease endogenous PPARalpha expression, it was determined that PPARalpha was partially involved in the cyclin D1 repression. The antiproliferative effects of alkanoic acids may also be attributed to their inhibitory effects on soluble epoxide hydrolase, because epoxyeicosatrienoic acids alone inhibited smooth muscle cell proliferation. CONCLUSIONS These results show that attenuation of smooth muscle cell proliferation by urea-based alkanoic acids is mediated, in part, by the activation of PPARalpha. These acids may be useful for designing therapeutics to treat diseases characterized by excessive smooth muscle cell proliferation.
Collapse
Affiliation(s)
- Valerie Y Ng
- Department of Biopharmaceutical Sciences, University of California San Francisco, San Francisco, CA 94143-2911, USA
| | | | | | | | | |
Collapse
|