101
|
The enhancer HS2 critically regulates GATA-3-mediated Il4 transcription in T(H)2 cells. Nat Immunol 2010; 12:77-85. [PMID: 21131966 DOI: 10.1038/ni.1966] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 11/08/2010] [Indexed: 12/24/2022]
Abstract
GATA-3 is a master regulator of T helper type 2 (T(H)2) differentiation. However, the molecular basis of GATA-3-mediated T(H)2 lineage commitment is poorly understood. Here we identify the DNase I-hypersensitive site 2 (HS2) element located in the second intron of the interleukin 4 locus (Il4) as a critical enhancer strictly controlled by GATA-3 binding. Mice lacking HS2 showed substantial impairment in their asthmatic responses and their production of IL-4 but not of other T(H)2 cytokines. Overexpression of Gata3 in HS2-deficient T cells failed to restore Il4 expression. HS2 deletion impaired the trimethylation of histone H3 at Lys4 and acetylation of histone H3 at Lys9 and Lys14 in the Il4 locus. Our results indicate that HS2 is the target of GATA-3 in regulating chromosomal modification of the Il4 locus and is independent of the Il5 and Il13 loci.
Collapse
|
102
|
Dela Cruz CS, Kang MJ, Cho WK, Lee CG. Transgenic modelling of cytokine polarization in the lung. Immunology 2010; 132:9-17. [PMID: 21091906 DOI: 10.1111/j.1365-2567.2010.03376.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The lung is one of the commonest sites of exposure to environmental allergen or pathogen, so the expression of a variety of cytokines in the lung is dynamically regulated by inflammatory or structural cells in the lung. In the last decades, characterization of the local lung cytokine milieu in allergic or injury models has identified a collective role of certain cytokines, such as type 1 or type 2 cytokines, driving polarized inflammatory and tissue phenotypes. With the development of transgenic mouse modelling systems, the effector function of individual cytokine and the pathophysiological consequences of cytokine polarization in the lung have been effectively evaluated. Here, we present an overview of the transgenic systems currently used to assess the biological function of cytokine or other mediators in the lung. We discuss the inflammatory and tissue phenotypes detected in the lungs of transgenic mice over-expressing representative T helper type 1 (interferon-γ, interleukin-12), T helper type 2 (interleukins -4, -5, -9, -10 and -13), and T helper type 17 cytokines. The effects of genetic modification of cytokine receptors or transcriptional factors such as GATA-3 and T-bet in pulmonary inflammation and remodelling tissue responses are also discussed because these transcription factors are regarded as essential regulators of cytokine polarization. Finally, we discuss the limitations and future application of transgenic approaches in the studies of human lung diseases characterized by cytokine polarization.
Collapse
Affiliation(s)
- Charles S Dela Cruz
- Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine, Department of Internal Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
103
|
Abstract
The immune system faces the arduous task of defending the mucosal surfaces from invading pathogens, but must simultaneously repress responses against commensal organisms and other inert antigens that are abundant in the external environment, as inappropriate immune activation might expose the host to increased risk of autoimmunity. The behavior of individual immune cells is governed by the expression of transcription factors that are responsible for switching immune response genes on and off. T-bet (T-box expressed in T cells) has emerged as one of the key transcription factors responsible for controlling the fate of both innate and adaptive immune cells, and its expression in different immune cells found at mucosal surfaces is capable of dictating the critical balance between permitting robust host immunity and limiting susceptibility to autoimmunity and allergy.
Collapse
|
104
|
Hedrich CM, Ramakrishnan A, Dabitao D, Wang F, Ranatunga D, Bream JH. Dynamic DNA methylation patterns across the mouse and human IL10 genes during CD4+ T cell activation; influence of IL-27. Mol Immunol 2010; 48:73-81. [PMID: 20952070 DOI: 10.1016/j.molimm.2010.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/07/2010] [Accepted: 09/14/2010] [Indexed: 01/13/2023]
Abstract
IL-10 plays a critical role in controlling inflammation and the anti-inflammatory functions of IL-10 are regulated based on its coordinated expression from various cellular sources, most notably T cells. Although nearly all CD4+ subpopulations can express IL-10, surprisingly little is known about the molecular mechanisms which control IL-10 induction, particularly in humans. To examine the regulation of human IL-10 expression, we created the hIL10BAC transgenic mouse. As previously reported, we observed conservation of myeloid-derived IL-10 expression but found that human IL-10 was only weakly expressed in splenic CD4+ T cells from hIL10BAC mice. Since DNA methylation is an important determinant of gene expression profiles, we assessed the patterns of DNA methylation in the human and mouse IL10 genes in naïve and activated CD4+ T cells. Across mouse and human IL10 there were no obvious patterns of CpG methylation in naïve CD4+ T cells following polyclonal activation. Overall however, the human IL10 gene had significantly higher levels of DNA methylation. Interestingly, coculture with the IL-10-inducing cytokine IL-27 lead to a site-specific reduction in methylation of the mouse but not human IL10 gene. Demethylation was specifically localized to an intronic site adjacent to a known regulatory region. Our findings indicate that while the mouse and human IL10 genes undergo variable changes in DNA methylation during CD4+ T cell activation, IL-27 appears to influence DNA methylation in a particular intronic region thus associating with IL-10 expression.
Collapse
Affiliation(s)
- Christian M Hedrich
- Johns Hopkins Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology, N. Wolfe Street, E5410, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
105
|
Environmental epigenetics of asthma: an update. J Allergy Clin Immunol 2010; 126:453-65. [PMID: 20816181 DOI: 10.1016/j.jaci.2010.07.030] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 07/27/2010] [Accepted: 07/29/2010] [Indexed: 12/29/2022]
Abstract
Asthma, a chronic inflammatory disorder of the airway, is influenced by interplay between genetic and environmental factors now known to be mediated by epigenetics. Aberrant DNA methylation, altered histone modifications, specific microRNA expression, and other chromatin alterations orchestrate a complex early-life reprogramming of immune T-cell response, dendritic cell function, macrophage activation, and a breach of airway epithelial barrier that dictates asthma risk and severity in later life. Adult-onset asthma is under analogous regulation. The sharp increase in asthma prevalence over the past 2 or 3 decades and the large variations among populations of similar racial/ethnic background but different environmental exposures favors a strong contribution of environmental factors. This review addresses the fundamental question of whether environmental influences on asthma risk, severity, and steroid resistance are partly due to differential epigenetic modulations. Current knowledge on the epigenetic effects of tobacco smoke, microbial allergens, oxidants, airborne particulate matter, diesel exhaust particles, polycyclic aromatic hydrocarbons, dietary methyl donors and other nutritional factors, and dust mites is discussed. Exciting findings have been generated by rapid technological advances and well-designed experimental and population studies. The discovery and validation of epigenetic biomarkers linked to exposure, asthma, or both might lead to better epigenotyping of risk, prognosis, treatment prediction, and development of novel therapies.
Collapse
|
106
|
Grausenburger R, Bilic I, Boucheron N, Zupkovitz G, El-Housseiny L, Tschismarov R, Zhang Y, Rembold M, Gaisberger M, Hartl A, Epstein MM, Matthias P, Seiser C, Ellmeier W. Conditional deletion of histone deacetylase 1 in T cells leads to enhanced airway inflammation and increased Th2 cytokine production. THE JOURNAL OF IMMUNOLOGY 2010; 185:3489-97. [PMID: 20702731 DOI: 10.4049/jimmunol.0903610] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chromatin modifications, such as reversible histone acetylation, play a key role in the regulation of T cell development and function. However, the role of individual histone deacetylases (HDACs) in T cells is less well understood. In this article, we show by conditional gene targeting that T cell-specific loss of HDAC1 led to an increased inflammatory response in an in vivo allergic airway inflammation model. Mice with HDAC1-deficient T cells displayed an increase in all critical parameters in this Th2-type asthma model, such as eosinophil recruitment into the lung, mucus hypersecretion, parenchymal lung inflammation, and enhanced airway resistance. This correlated with enhanced Th2 cytokine production in HDAC1-deficient T cells isolated from diseased mice. In vitro-polarized HDAC1-deficient Th2 cells showed a similar enhancement of IL-4 expression, which was evident already at day 3 of Th2 differentiation cultures and restricted to T cell subsets that underwent several rounds of cell divisions. HDAC1 was recruited to the Il4 gene locus in ex vivo isolated nonstimulated CD4(+) T cells, indicating a direct control of the Il4 gene locus. Our data provide genetic evidence that HDAC1 is an essential HDAC that controls the magnitude of an inflammatory response by modulating cytokine expression in effector T cells.
Collapse
Affiliation(s)
- Reinhard Grausenburger
- Department of Medical Biochecmistry, Max F. Perutz Laboratories, Vienna Biocenter, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Abstract
Events and exposures in pregnancy can have critical effects on fetal development with lasting implications for subsequent health and disease susceptibility. There is growing interest in how modern environmental changes influence fetal immune development and contribute to the recent epidemic of allergy and other immune disorders. Rising rates of allergic disease in early infancy, together with pre-symptomatic differences in immune function at birth, suggest that antenatal events play a predisposing role in the development of disease. A number of environmental exposures in pregnancy can modify neonatal immune function including diet, microbial exposure and maternal smoking, and there is emerging evidence from animal models that these factors may have epigenetic effects on immune gene expression and disease susceptibility. Furthermore, functional genetic polymorphisms also alter individual vulnerability to the effects of these environmental exposures, highlighting the complexity of gene-environmental interactions in this period. All these observations underscore the need for ongoing research to understand the pathogenesis and rising incidence of disease in the hope of better strategies to reverse this.
Collapse
|
108
|
Williams M, Georas S. Gene expression patterns and susceptibility to allergic responses. Expert Rev Clin Immunol 2010; 2:59-73. [PMID: 20477088 DOI: 10.1586/14787210.2.1.59] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Allergic diseases are due to hypersensitive immune responses against otherwise innocuous allergens, and involve the dysregulated expression of numerous genes in cells from both the innate and adaptive immune systems. Allergic diseases are characterized by the enhanced production of type 2 T helper (Th2) cytokines, including interleukin-4, -5 and -13. These cytokines induce many of the pathophysiologic hallmarks of allergy, and their expression is tightly regulated at the level of gene transcription by both positively and negatively-acting transcription factors. In this review, the authors summarize data indicating that some of these factors represent checkpoints in the development of allergic diseases. Th2 gene expression is also controlled at the level of chromatin remodeling, and the implications of chromatin-based Th2 gene regulation in allergic disorders is also discussed. The differentiation of Th2 cells from naive precursors is critically dependent upon instruction received from dendritic cells, although the precise signals involved in this process are not well understood. Current thinking regarding some of the environmental cues interpreted by dendritic cells during allergen encounter, and how they promote Th2 responses will be reviewed. Understanding the cross-talk between dendritic cells and T cells holds great promise for deciphering the dysregulated immune response in allergy.
Collapse
Affiliation(s)
- Marc Williams
- Johns Hopkins Asthma & Allergy Center, 5501 Hopkins Bayview CircleBaltimore, MD 21224, USA.
| | | |
Collapse
|
109
|
Th2 LCR is essential for regulation of Th2 cytokine genes and for pathogenesis of allergic asthma. Proc Natl Acad Sci U S A 2010; 107:10614-9. [PMID: 20483988 DOI: 10.1073/pnas.1005383107] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Previous studies have shown that Th2 cytokine genes on mouse chromosome 11 are coordinately regulated by the Th2 locus control region (LCR). To examine the in vivo function of Th2 LCR, we generated CD4-specific Th2 LCR-deficient (cLCR KO) mice using Cre-LoxP recombination. The number of CD4 T cells in the cLCR KO mouse was comparable to that in wild-type mice. The expression of Th2 cytokines was dramatically reduced in in vitro-stimulated naïve CD4 T cells. Deletion of the LCR led to a loss of general histone H3 acetylation and histone H3-K4 methylation, and demethylation of DNA in the Th2 cytokine locus. Upon ovalbumin challenge in the mouse model of allergic asthma, cLCR KO mice exhibited marked reduction in the recruitment of eosinophils and lymphocytes in the bronchoalveolar lavage fluid, serum IgE level, lung airway inflammation, mucus production in the airway walls, and airway hyperresponsiveness. These results directly demonstrate that the Th2 LCR is critically important in the regulation of Th2 cytokine genes, in chromatin remodeling of the Th2 cytokine locus, and in the pathogenesis of allergic asthma.
Collapse
|
110
|
Moulder R, Lönnberg T, Elo LL, Filén JJ, Rainio E, Corthals G, Oresic M, Nyman TA, Aittokallio T, Lahesmaa R. Quantitative proteomics analysis of the nuclear fraction of human CD4+ cells in the early phases of IL-4-induced Th2 differentiation. Mol Cell Proteomics 2010; 9:1937-53. [PMID: 20467038 PMCID: PMC2938108 DOI: 10.1074/mcp.m900483-mcp200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We used stable isotope labeling with 4-plex iTRAQ (isobaric tags for relative and absolute quantification) reagents and LC-MS/MS to investigate proteomic changes in the nucleus of activated human CD4+ cells during the early stages of Th2 cell differentiation. The effects of IL-4 stimulation upon activated naïve CD4+ cells were measured in the nuclear fractions from 6 and 24 h in three biological replicates, each using pooled cord blood samples derived from seven or more individuals. In these analyses, in the order of 800 proteins were detected with two or more peptides and quantified in three biological replicates. In addition to consistent differences observed with the nuclear localization/expression of established human Th2 and Th1 markers, there were changes that suggested the involvement of several proteins either only recently reported or otherwise not known in this context. These included SATB1 and among the novel changes detected and validated an IL-4-induced increase in the level of YB1. This unique data set from human cord blood CD4+ T cells details an extensive list of protein determinations that compares with and complements previous data determined from the Jurkat cell nucleus.
Collapse
|
111
|
Blink SE, Fu YX. IgE regulates T helper cell differentiation through FcgammaRIII mediated dendritic cell cytokine modulation. Cell Immunol 2010; 264:54-60. [PMID: 20494341 DOI: 10.1016/j.cellimm.2010.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 04/22/2010] [Accepted: 04/28/2010] [Indexed: 01/22/2023]
Abstract
Asthma and allergy are characterized by dysregulation of inflammatory responses toward Th2 responses and high serum levels of IgE. IgE plays a role in the effector phase by triggering the degranulation of mast cells after antigen-crosslinking but its role in the induction of helper T cell differentiation is unknown. We have previously shown lymphotoxin is required for maintaining physiological levels of serum IgE which minimize spontaneous Th1-mediated airway inflammation, suggesting a physiological role for IgE in the regulation of T helper cell differentiation. We describe the mechanism in which IgE modulates inflammation by regulating dendritic cell cytokine production. Physiological levels of IgE suppress IL-12 production in the spleen and lung, suggesting IgE limits Th1 responses in vivo. IgE directly stimulates dendritic cells through FcgammaRIII to suppress IL-12 in vitro and influences APC to skew CD4+ T cells toward Th2 differentiation. We demonstrate a novel role for IgE in regulating differentiation of adaptive inflammatory responses through direct interaction with FcgammaRIII on dendritic cells.
Collapse
Affiliation(s)
- Sarah E Blink
- Committee on Immunology, University of Chicago, 5841 S. Maryland, Chicago, IL 60637, USA.
| | | |
Collapse
|
112
|
Kemp KL, Levin SD, Bryce PJ, Stein PL. Lck mediates Th2 differentiation through effects on T-bet and GATA-3. THE JOURNAL OF IMMUNOLOGY 2010; 184:4178-84. [PMID: 20237292 DOI: 10.4049/jimmunol.0901282] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Src family kinase Lck has been shown to be crucial in T cell signaling and development. However, its role in Th effector functions is not well understood. Lck has previously been shown to play a role in the cytokine expression of Th2 cells, but the mechanism by which Lck influences Th2 effector functions is unknown. Using a mouse model, we report that Lck is important in regulating the expression of IL-4 in Th2 skewed cells but is not as necessary for the expression of Th2 cytokines IL-5, IL-10, and IL-13. Furthermore, in the absence of Lck, T-bet and GATA-3 expression is aberrant. Moreover, this atypical expression pattern of T-bet and GATA-3 correlates with increased histone 3 acetylation at the Ifng locus and production of the Th1 cytokine IFN-gamma. We find overexpression of GATA-3 restores IL-4 expression in lck(-/-) Th2 cells; this indicates that the decreased IL-4 expression is due in part to reduced amounts of GATA-3. Taken together, these data imply that Lck mediates Th2 differentiation through effects on T-bet and GATA-3.
Collapse
Affiliation(s)
- Kyeorda L Kemp
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
113
|
Cruickshank MN, Besant P, Ulgiati D. The impact of histone post-translational modifications on developmental gene regulation. Amino Acids 2010; 39:1087-105. [PMID: 20204433 DOI: 10.1007/s00726-010-0530-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 02/12/2010] [Indexed: 02/06/2023]
Abstract
Eukaryotic genomic DNA is orderly compacted to fit into the nucleus and to inhibit accessibility of specific sequences. DNA is manipulated in many different ways by bound RNA and proteins within the composite material known as chromatin. All of the biological processes that require access to genomic DNA (such as replication, recombination and transcription) therefore are dependent on the precise characteristics of chromatin in eukaryotes. This distinction underlies a fundamental property of eukaryotic versus prokaryotic gene regulation such that chromatin structure must be regulated to precisely repress or relieve repression of particular regions of the genome in an appropriate spatio-temporal manner. As well as playing a key role in structuring genomic DNA, histones are subject to site-specific modifications that can influence the organization of chromatin structure. This review examines the molecular processes regulating site-specific histone acetylation, methylation and phosphorylation with an emphasis on how these processes underpin differentiation-regulated transcription.
Collapse
Affiliation(s)
- Mark N Cruickshank
- Biochemistry and Molecular Biology, School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | | | | |
Collapse
|
114
|
Kumar RK, Hitchins MP, Foster PS. Epigenetic changes in childhood asthma. Dis Model Mech 2010; 2:549-53. [PMID: 19892885 DOI: 10.1242/dmm.001719] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Childhood asthma is linked strongly to atopy and is characterised by a T helper 2 (Th2)-polarised immunological response. Epidemiological studies implicate severe lower respiratory tract viral infections, especially in early childhood, and repeated inhalational exposure to allergens as important synergistic factors in the development of asthma. The way in which these and other environmental factors induce stable alterations in phenotype is poorly understood, but may be explained on the basis of epigenetic changes, which are now recognised to underlie the establishment and maintenance of a Th2 response. Furthermore, ongoing asthmatic inflammation of the airways may be driven by alterations in the expression profile of regulatory microRNA genes, to which epigenetic mechanisms may also contribute. Thus, an understanding of epigenetic mechanisms in asthma has the potential to reveal new approaches for primary prevention or therapeutic intervention in childhood asthma.
Collapse
Affiliation(s)
- Rakesh K Kumar
- Department of Pathology, University of New South Wales, Sydney NSW, Australia.
| | | | | |
Collapse
|
115
|
Wessels I, Fleischer D, Rink L, Uciechowski P. Changes in chromatin structure and methylation of the human interleukin-1beta gene during monopoiesis. Immunology 2010; 130:410-7. [PMID: 20141541 DOI: 10.1111/j.1365-2567.2009.03243.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
SUMMARY Interleukin-1beta (IL-1beta) induces the expression of a variety of proteins responsible for acute inflammation and chronic inflammatory diseases. However, the molecular regulation of IL-1beta expression in myeloid differentiation has not been elucidated. In this study the chromatin structure of the IL-1beta promoter and the impact of methylation on IL-1beta expression in monocytic development were examined. The results revealed that the IL-1beta promoter was inaccessible in undifferentiated promyeloid HL-60 cells but highly accessible in differentiated monocytic cells which additionally acquired the ability to produce IL-1beta. Accessibilities of differentiated cells were comparable to those of primary monocytes. Lipopolysaccharide (LPS) stimulation did not affect promoter accessibility in promyeloid and monocytic HL-60 cells, demonstrating that the chromatin remodelling of the IL-1beta promoter depends on differentiation and not on the transcriptional status of the cell. Demethylation via 5-aza-2'-deoxycytodine led to the induction of IL-1beta expression in undifferentiated and differentiated cells, which could be increased after LPS stimulation. Our data indicate that the IL-1beta promoter is reorganized into an open poised conformation during monopoiesis being a privilege of mature monocytes but not of the entire myeloid lineage. As a second mechanism, IL-1beta expression is regulated by methylation acting independently of the developmental stage of myeloid cells.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | | | | | |
Collapse
|
116
|
Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells. Immunity 2010; 32:79-90. [PMID: 20096607 DOI: 10.1016/j.immuni.2009.11.012] [Citation(s) in RCA: 613] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 08/12/2009] [Accepted: 11/03/2009] [Indexed: 12/24/2022]
Abstract
Interleukin(IL)-2 and inflammation regulate effector and memory cytolytic T-lymphocyte (CTL) generation during infection. We demonstrate a complex interplay between IL-2 and inflammatory signals during CTL differentiation. IL-2 stimulation induced the transcription factor eomesodermin (Eomes), upregulated perforin (Prf1) transcription, and repressed re-expression of memory CTL markers Bcl6 and IL-7Ralpha. Binding of Eomes and STAT5 to Prf1 cis-regulatory regions correlated with transcriptional initiation (increased recruitment of RNA polymerase II to the Prf1 promoter). Inflammation (CpG, IL-12) enhanced expression of IL-2Ralpha and the transcription factor T-bet, but countered late Eomes and perforin induction while preventing IL-7Ralpha repression by IL-2. After infection of mice with lymphocytic choriomeningitis virus, IL-2Ralpha-deficient effector CD8(+) T cells expressed more Bcl6 but less perforin and granzyme B, formed fewer KLRG-1(+) and T-bet-expressing CTL, and killed poorly. Thus, inflammation influences both effector and memory CTL differentiation, whereas persistent IL-2 stimulation promotes effector at the expense of memory CTL development.
Collapse
|
117
|
Martino DJ, Prescott SL. Silent mysteries: epigenetic paradigms could hold the key to conquering the epidemic of allergy and immune disease. Allergy 2010; 65:7-15. [PMID: 19796189 DOI: 10.1111/j.1398-9995.2009.02186.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Epigenetic mechanisms provide new insights into how environmental changes may mediate the increasing propensity for complex immune diseases such as allergic disease. There is now strong evidence that early environmental exposures play a key role in activating or silencing genes by altering DNA and histone methylation, histone acetylation and chromatin structure. These modifications determine the degree of DNA compaction and accessibility for gene transcription, altering gene expression, phenotype and disease susceptibility. While there is already evidence that a number of early environmental exposures are associated with an increased risk of allergic disease, several new studies indicate in utero microbial and dietary exposures can modify gene expression and allergic disease propensity through epigenetic modification. This review explores the evidence that immune development is under clear epigenetic regulation, including the pattern of T helper (Th)1 and Th2 cell differentiation, regulatory T cell differentiation, and more recently, Th17 development. It also considers the mechanisms of epigenetic regulation and early immune defects in allergy prone neonates. The inherent plasticity conferred by epigenetic mechanisms clearly also provides opportunities for environmental strategies that can re-programme gene expression for disease prevention. Identifying genes that are differentially silenced or activated in relation to subsequent disease will not only assist in identifying causal pathways, but may also help identify the contributing environmental factors.
Collapse
Affiliation(s)
- D J Martino
- School of Pediatrics and Child Health Research, University of Western Australia, Perth, Western Australia, Australia
| | | |
Collapse
|
118
|
Caretto D, Katzman SD, Villarino AV, Gallo E, Abbas AK. Cutting edge: the Th1 response inhibits the generation of peripheral regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2009; 184:30-4. [PMID: 19949064 DOI: 10.4049/jimmunol.0903412] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The possibility that effector T cells can be converted into forkhead box P3(+) regulatory T cells (Tregs) has potential therapeutic implications. To analyze the relationship between Th1 effectors and Tregs, we have used a model of systemic autoimmunity in which both effector and Tregs arise from a single population specific for a transgene-encoded systemic protein. In vitro, the presence of IFN-gamma inhibits Treg generation during activation. Using IFN-gamma reporter mice, we demonstrate that IFN-gamma-producing cells tend not to develop into Tregs, and Th1 priming of T cells prior to cell transfer limits the number of forkhead box P3(+) T cells generated in vivo. Moreover, transfer of IFN-gamma(-/-) or STAT1(-/-) T cells resulted in an increase in the number of Tregs. These data support a role for Th1 effector molecules and transcription factors in the control of peripheral Treg generation and demonstrates the limited plasticity of Th1 populations.
Collapse
Affiliation(s)
- David Caretto
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143-0511, USA
| | | | | | | | | |
Collapse
|
119
|
Immunomodulatory effect of 5-azacytidine (5-azaC): potential role in the transplantation setting. Blood 2009; 115:107-21. [PMID: 19887673 DOI: 10.1182/blood-2009-03-210393] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cytokine genes are targets of multiple epigenetic mechanisms in T lymphocytes. 5-azacytidine (5-azaC) is a nucleoside-based DNA methyltransferase inhibitor that induces demethylation and gene reactivation. In the current study, we analyzed the effect of 5-azaC in T-cell function and observed that 5-azaC inhibits T-cell proliferation and activation, blocking cell cycle in the G(0) to G(1) phase and decreasing the production of proinflammatory cytokines such as tumor necrosis factor-alpha and interferon-gamma. This effect was not attributable to a proapoptotic effect of the drug but to the down-regulation of genes involved in T-cell cycle progression and activation such as CCNG2, MTCP1, CD58, and ADK and up-regulation of genes that induce cell-growth arrest, such as DCUN1D2, U2AF2, GADD45B, or p53. A longer exposure to the drug leads to demethylation of FOXP3 promoter, overexpression of FOXP3, and expansion of regulatory T cells. Finally, the administration of 5-azaC after transplantation prevented the development of graft-versus-host disease, leading to a significant increase in survival in a fully mismatched bone marrow transplantation mouse model. In conclusion, the current study shows the effect of 5-azaC in T lymphocytes and illustrates its role in the allogeneic transplantation setting as an immunomodulatory drug, describing new pathways that must be explored to prevent graft-versus-host disease.
Collapse
|
120
|
Jenner RG, Townsend MJ, Jackson I, Sun K, Bouwman RD, Young RA, Glimcher LH, Lord GM. The transcription factors T-bet and GATA-3 control alternative pathways of T-cell differentiation through a shared set of target genes. Proc Natl Acad Sci U S A 2009; 106:17876-81. [PMID: 19805038 PMCID: PMC2764903 DOI: 10.1073/pnas.0909357106] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Indexed: 01/05/2023] Open
Abstract
Upon detection of antigen, CD4(+) T helper (Th) cells can differentiate into a number of effector types that tailor the immune response to different pathogens. Alternative Th1 and Th2 cell fates are specified by the transcription factors T-bet and GATA-3, respectively. Only a handful of target genes are known for these two factors and because of this, the mechanism through which T-bet and GATA-3 induce differentiation toward alternative cell fates is not fully understood. Here, we provide a genomic map of T-bet and GATA-3 binding in primary human T cells and identify their target genes, most of which are previously unknown. In Th1 cells, T-bet associates with genes of diverse function, including those with roles in transcriptional regulation, chemotaxis and adhesion. GATA-3 occupies genes in both Th1 and Th2 cells and, unexpectedly, shares a large proportion of targets with T-bet. Re-complementation of T-bet alters the expression of these genes in a manner that mirrors their differential expression between Th1 and Th2 lineages. These data show that the choice between Th1 and Th2 lineage commitment is the result of the opposing action of T-bet and GATA-3 at a shared set of target genes and may provide a general paradigm for the interaction of lineage-specifying transcription factors.
Collapse
Affiliation(s)
- Richard G. Jenner
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London W1T 4JF, United Kingdom
| | - Michael J. Townsend
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 651 Huntington Avenue, Boston, MA, 02115
| | - Ian Jackson
- Department of Nephrology and Transplantation and Medical Research Council Centre for Transplantation and
| | - Kaiming Sun
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
| | - Russell D. Bouwman
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London W1T 4JF, United Kingdom
| | - Richard A. Young
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02141; and
| | - Laurie H. Glimcher
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 651 Huntington Avenue, Boston, MA, 02115
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Graham M. Lord
- Department of Nephrology and Transplantation and Medical Research Council Centre for Transplantation and
- National Institute for Health Research Comprehensive Biomedical Research Centre at Guy's and St Thomas' National Health Service Foundation Trust and King's College London, London SE1 9RT, United Kingdom
| |
Collapse
|
121
|
O'Malley JT, Sehra S, Thieu VT, Yu Q, Chang HC, Stritesky GL, Nguyen ET, Mathur AN, Levy DE, Kaplan MH. Signal transducer and activator of transcription 4 limits the development of adaptive regulatory T cells. Immunology 2009; 127:587-95. [PMID: 19604309 DOI: 10.1111/j.1365-2567.2008.03037.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
T-cell responses to a cytokine milieu instruct the development of multiple effector phenotypes. While transforming growth factor-beta(1) (TGF-beta(1)) inhibits the development of T helper type 1 (Th1) and Th2 cells, we demonstrate that like interleukin-6 (IL-6) and IL-4, IL-12 can inhibit the development of TGF-beta(1)-induced Foxp3-expressing adaptive T regulatory (aTreg) cells. Signal transducer and activator of transcription 4 (STAT4) is critical for the response to IL-12, although there is a parallel pathway involving T box expressed in T cells (T-bet), and cells from mice double-deficient in STAT4 and T-bet are refractory to the inhibition of aTreg-cell development by IL-12. While the ability of these cytokines to promote Th differentiation may contribute to this effect, we observe that culture with IL-12, or other instructive cytokines, results in an increase in repressive chromatin modifications at the Foxp3 locus that limit STAT5 binding to Foxp3, without observed effects on IL-2 signalling pathways. In a model of allergic lung inflammation there are increased percentages of Treg cells in the lungs of Stat4(-/-) mice, compared with wild-type mice, and increases in Treg cells correlate with decreased allergic inflammation. Overall, these results suggest an important role for STAT4 in regulating Treg-cell development.
Collapse
Affiliation(s)
- John T O'Malley
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
El Mezayen R, El Gazzar M, Myer R, High KP. Aging-dependent upregulation of IL-23p19 gene expression in dendritic cells is associated with differential transcription factor binding and histone modifications. Aging Cell 2009; 8:553-65. [PMID: 19624579 DOI: 10.1111/j.1474-9726.2009.00502.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Age-associated changes in immune response increase the risk of infection and promote inflammation and autoimmunity in older adults. The newly discovered cytokine IL-23 contributes to the maintenance and expansion of Th-17 cells, which promote proinflammatory responses. Our preliminary findings suggested that Th-17 responses are increased in aged mice. IL-23 consists of p40 and p19 subunits. Expression of the p19 subunit is regulated at the transcriptional level by NF-kappaB p65 and c-Rel transcription factors. Using bone-marrow-derived dendritic cells (DCs) from C57BL/6 mice, we show that IL-23 protein production and p19 subunit mRNA levels are significantly increased in DCs from aged mice after activation with TLR ligands (LPS + R848) when compared with DCs of young adult mice. We found that the increase in p19 expression in aged cells is associated with chromatin remodeling characterized by di- and tri-methylation of histone H3K4 and binding of mainly c-Rel at the p19 promoter. In young DCs, the promoter is tri-methylated only at H3K4 and bound by both p65 and c-Rel. C-Rel knockdown restores p65 binding in aged cells but does not activate p19 expression, suggesting that c-Rel is critical for p19 expression. In addition, p65 knockdown significantly increases c-Rel binding and p19 expression in young DCs to levels close to those detected in old cells. Furthermore, the decrease in p65 binding at the p19 promoter in old DCs was specific to the p19 gene since p65 binding to the IL-12p40 promoter was not significantly different between old and young DCs. Our results demonstrate that selective changes in H3K4 methylation, and c-Rel and p65 binding at the p19 promoter occur in DCs and contribute to the upregulation of the p19 subunit expression and IL-23 protein production observed in aged mice. This suggests epigenetic and transcriptional mechanisms contribute to dysregulated inflammatory and autoimmune responses associated with aging.
Collapse
Affiliation(s)
- Rabab El Mezayen
- Section of Infectious Diseases, Department of Internal Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | | | | | | |
Collapse
|
123
|
Placek K, Coffre M, Maiella S, Bianchi E, Rogge L. Genetic and epigenetic networks controlling T helper 1 cell differentiation. Immunology 2009; 127:155-62. [PMID: 19476511 DOI: 10.1111/j.1365-2567.2009.03059.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Significant progress has been made during the past years in our understanding of the mechanisms that control the differentiation of naïve CD4(+) T cells into effector T-cell subsets with distinct functional properties. Previous work allowed the identification of key molecules involved in regulating this highly complex process, such as cytokines and their receptors, signal transducers and transcription factors. More recently, the emphasis of research in this field has been to elucidate how the multiplicity of signals is integrated to shape a T helper subset-specific gene-expression program controlling differentiation and effector functions. In this review we will highlight advances that have been made in unravelling the genetic and epigenetic networks controlling differentiation of naïve CD4(+) T cells into interferon-gamma(IFN-gamma)-secreting T helper type 1 (Th1) cells.
Collapse
|
124
|
Abstract
The developmental program of T helper and regulatory T cell lineage commitment is governed by both genetic and epigenetic mechanisms. The principal events, signaling pathways and the lineage determining factors involved have been extensively studied in the past ten years. Recent studies have elucidated the important role of chromatin remodeling and epigenetic changes for proper regulation of gene expression of lineage-specific cytokines. These include DNA methylation and histone modifications in epigenomic reprogramming during T helper cell development and effector T cell functions. This review discusses the basic epigenetic mechanisms and the role of transcription factors for the differential cytokine gene regulation in the T helper lymphocyte subsets.
Collapse
Affiliation(s)
- Choong-Gu Lee
- Department of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Anupama Sahoo
- Department of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| |
Collapse
|
125
|
Barros SP, Offenbacher S. Epigenetics: connecting environment and genotype to phenotype and disease. J Dent Res 2009; 88:400-8. [PMID: 19493882 DOI: 10.1177/0022034509335868] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genetic information is encoded not only by the linear sequence of DNA, but also by epigenetic modifications of chromatin structure that include DNA methylation and covalent modifications of the proteins that bind DNA. These "epigenetic marks" alter the structure of chromatin to influence gene expression. Methylation occurs naturally on cytosine bases at CpG sequences and is involved in controlling the correct expression of genes. DNA methylation is usually associated with triggering histone deacetylation, chromatin condensation, and gene silencing. Differentially methylated cytosines give rise to distinct patterns specific for each tissue type and disease state. Such methylation-variable positions (MVPs) are not uniformly distributed throughout our genome, but are concentrated among genes that regulate transcription, growth, metabolism, differentiation, and oncogenesis. Alterations in MVP methylation status create epigenetic patterns that appear to regulate gene expression profiles during cell differentiation, growth, and development, as well as in cancer. Environmental stressors including toxins, as well as microbial and viral exposures, can change epigenetic patterns and thereby effect changes in gene activation and cell phenotype. Since DNA methylation is often retained following cell division, altered MVP patterns in tissues can accumulate over time and can lead to persistent alterations in steady-state cellular metabolism, responses to stimuli, or the retention of an abnormal phenotype, reflecting a molecular consequence of gene-environment interaction. Hence, DNA epigenetics constitutes the main and previously missing link among genetics, disease, and the environment. The challenge in oral biology will be to understand the mechanisms that modify MVPs in oral tissues and to identify those epigenetic patterns that modify disease pathogenesis or responses to therapy.
Collapse
Affiliation(s)
- S P Barros
- Center for Oral and Systemic Diseases, Department of Periodontology, School of Dentistry, University of North Carolina at Chapel Hill, Room 222, CB 7455, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
126
|
Aoki K, Sato N, Yamaguchi A, Kaminuma O, Hosozawa T, Miyatake S. Regulation of DNA demethylation during maturation of CD4+ naive T cells by the conserved noncoding sequence 1. THE JOURNAL OF IMMUNOLOGY 2009; 182:7698-707. [PMID: 19494294 DOI: 10.4049/jimmunol.0801643] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Demethylation of transcriptional regulatory elements and gene coding regions is an important step in the epigenetic regulation of gene expression. Several noncoding conserved regions are required for the efficient transcription of cytokine genes. In this paper, we show that the deletion of one such sequence, conserved noncoding sequence 1 (CNS-1), interferes with the efficient demethylation of Th2 cytokine genes but has little effect on histone modifications in the area. Th2 cells derived from CD4 single-positive (SP) mature thymocytes exhibit more rapid demethylation of CNS-1 and Th2-specific cytokine genes and produce more Th2 cytokines than do Th2 cells derived from CD4-positive peripheral naive T cells. De-repression of the Th1 cytokine IFN-gamma was also detected in Th2-primed CD4 SP thymocytes but not in naive T cells. Our results indicate that susceptibility to demethylation determines the efficiency and kinetics of cytokine gene transcription. The extrathymic maturation step undergone by naive T cells suppresses robust and rapid cytokine expression, whereas mature CD4 SP thymocytes maintain a rapid and less-specific cytokine expression profile. Finally, we detected the methyl cytosine binding protein MBD2 at CNS-1 in mature thymocytes, suggesting that this protein may regulate the demethylation of this region.
Collapse
Affiliation(s)
- Kazuhisa Aoki
- Cytokine Project, The Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
127
|
Araki Y, Wang Z, Zang C, Wood WH, Schones D, Cui K, Roh TY, Lhotsky B, Wersto RP, Peng W, Becker KG, Zhao K, Weng NP. Genome-wide analysis of histone methylation reveals chromatin state-based regulation of gene transcription and function of memory CD8+ T cells. Immunity 2009; 30:912-25. [PMID: 19523850 DOI: 10.1016/j.immuni.2009.05.006] [Citation(s) in RCA: 235] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 01/29/2009] [Accepted: 05/17/2009] [Indexed: 01/28/2023]
Abstract
Memory lymphocytes are characterized by their ability to exhibit a rapid response to the recall antigen, in which differential transcription is important, yet the underlying mechanism is not understood. We report here a genome-wide analysis of histone methylation on two histone H3 lysine residues (H3K4me3 and H3K27me3) and gene expression profiles in naive and memory CD8(+) T cells. We found that specific correlation exists between gene expression and the amounts of H3K4me3 (positive correlation) and H3K27me3 (negative correlation) across the gene body. These correlations displayed four distinct modes (repressive, active, poised, and bivalent), reflecting different functions of these genes in CD8(+) T cells. Furthermore, a permissive chromatin state of each gene was established by a combination of different histone modifications. Our findings reveal a complex regulation by histone methylation in differential gene expression and suggest that histone methylation may be responsible for memory CD8(+) T cell function.
Collapse
Affiliation(s)
- Yasuto Araki
- Laboratory of Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Laird RM, Hayes SM. Profiling of the early transcriptional response of murine gammadelta T cells following TCR stimulation. Mol Immunol 2009; 46:2429-38. [PMID: 19439358 DOI: 10.1016/j.molimm.2009.03.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 03/28/2009] [Indexed: 10/20/2022]
Abstract
Gammadelta T cells represent one of the three lineages of lymphocytes, along with alphabeta T cells and B cells, which express antigen receptors. Since their discovery over two decades ago, considerable effort has been made to understand their antigen specificity and their contribution to the immune response. From these studies, we have learned that gammadelta T cells recognize a different set of antigens than alphabeta T cells, acquire effector functions faster than alphabeta T cells, regulate the response of other immune cells during infection, and play distinct roles in immunity. The molecular basis for how gammadelta T cells manifest their unique functions, however, remains unknown. To address this, we profiled the genes upregulated soon after TCR stimulation in order to identify which gene networks associated with T cell effector function are induced in gammadelta T cells. Interestingly, most of the genes in this transcriptional profile were not unique to activated gammadelta T cells, as they were also expressed in activated alphabeta T cells. However, many of the genes within this profile were upregulated with faster kinetics and/or greater magnitude in activated gammadelta T cells than in activated alphabeta T cells. In addition, we found that the genes in the transcriptional profile of activated wild-type gammadelta T cells can be used as a standard to screen activated gammadelta T cells from mice with potential signaling defects for alterations in gammadelta TCR signal transduction. Thus, by defining the early transcriptional response of activated wild-type gammadelta T cells and by comparing their transcriptional profile to that of activated wild-type alphabeta T cells as well as to that of activated gammadelta T cells from signaling defective mice, we are able to gain important insights into the molecular basis for gammadelta T cell function.
Collapse
Affiliation(s)
- Renee M Laird
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 750 E Adams Street, 2220 Weiskotten Hall, Syracuse, NY 13210, USA
| | | |
Collapse
|
129
|
O'Shea JJ, Steward-Tharp SM, Laurence A, Watford WT, Wei L, Adamson AS, Fan S. Signal transduction and Th17 cell differentiation. Microbes Infect 2009; 11:599-611. [PMID: 19379825 DOI: 10.1016/j.micinf.2009.04.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The paradigm of effector T helper cell differentiation into either Th1 or Th2 lineages has been notably shaken by the discovery of a third lineage of cells that selectively produce interleukin (IL)-17. Characterization of this new subset, referred to as Th17, has provided exciting new insights into immunoregulation, host defense and the pathogenesis of autoimmune diseases. Additionally, the discovery of this T cell subset has offered a fresh look at such concepts as lineage commitment and terminal differentiation. The transcriptional regulatory events and epigenetic modifications that control these processes are diverse and complex, and despite the rapid pace at which data continue to accumulate, many questions remain to be answered. Here we review our current understanding of the signaling pathways, molecular interactions and transcriptional events that lead to Th17 differentiation and effector function, as well as the epigenetic modifications that accompany them.
Collapse
Affiliation(s)
- John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institutes of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
130
|
Abstract
Naive CD4(+) T cells give rise to T-helper-cell subsets with functions that are tailored to their respective roles in host defence. The specification of T-helper-cell subsets is controlled by networks of lineage-specifying transcription factors, which bind to regulatory elements in genes that encode cytokines and other transcription factors. The nuclear context in which these transcription factors act is affected by epigenetic processes, which allow programmes of gene expression to be inherited by progeny cells that at the same time retain the potential for change in response to altered environmental signals. In this Review, we describe these epigenetic processes and discuss how they collaborate to govern the fate and function of T helper cells.
Collapse
|
131
|
Pali-Schöll I, Renz H, Jensen-Jarolim E. Update on allergies in pregnancy, lactation, and early childhood. J Allergy Clin Immunol 2009; 123:1012-21. [PMID: 19249083 DOI: 10.1016/j.jaci.2009.01.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 01/06/2009] [Accepted: 01/14/2009] [Indexed: 11/24/2022]
Abstract
The factors responsible for the induction of allergic disease at an early age have not been completely identified. Therefore a major research focus is their identification to elaborate recommendations for prevention of sensitization in high-risk or atopic children. This review analyzes known or suspected reasons for sensitization in pregnant women and infants from both clinical and experimental animal studies. Recent studies and meta-analyses could not confirm the protective effect of an allergen-poor diet on the part of the mother during pregnancy and lactation. Likewise, the type of bottle feeding or the introduction of solid food into the child's diet might not significantly influence the development of atopy, allergy, or asthma in the child's life. Disappointingly, the few preventive measures remaining to reduce the risk of allergic sensitization and atopic diseases in mother and child are the avoidance of smoking and alcohol consumption during pregnancy and lactation and the avoidance of the impairment of gastric function. Further studies are urgently needed to address the influence of certain foods and nutrients, as well as environmental factors, for prevention of allergic diseases in the low- or high-risk infant.
Collapse
|
132
|
Bandyopadhyay S, Qui HZ, Adler AJ. In vitro and in vivo differentiated effector CD8 T cells display divergent histone acetylation patterns within the Ifng locus. Immunol Lett 2009; 122:214-8. [PMID: 19195486 DOI: 10.1016/j.imlet.2009.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 12/16/2008] [Accepted: 01/14/2009] [Indexed: 11/24/2022]
Abstract
Epigenetic remodeling of genes encoding effector cytokines that permit accessibility to the transcriptional machinery is a central event in the differentiation of naive T cells into effectors that can attack pathogens and tumors. Covalent modifications of histones that cause a loosening of nucleosomal structures occur not only in promoter regions, but also at upstream and downstream enhancer elements that integrate various cellular stimuli to modulate the rate of transcriptional initiation. This knowledge derives mostly from the analysis of in vitro differentiated effector T cells. Here, we compared acetylation of histone H3 (AcH3) at several sites within the Ifng locus in CD8 T cells that underwent effector differentiation in vitro vs. in vivo. While AcH3 was similar at the proximal promoter, it displayed a reciprocal pattern at two well-characterized upstream and downstream sites. These data suggest that certain epigenetic remodeling events may be artifactual consequences of in vitro culturing conditions, and indicate the importance of using in vivo models to study effector cytokine gene remodeling.
Collapse
Affiliation(s)
- Suman Bandyopadhyay
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030-1601, USA
| | | | | |
Collapse
|
133
|
Lee CG, Kang KH, So JS, Kwon HK, Son JS, Song MK, Sahoo A, Yi HJ, Hwang KC, Matsuyama T, Yui K, Im SH. A distal cis-regulatory element, CNS-9, controls NFAT1 and IRF4-mediated IL-10 gene activation in T helper cells. Mol Immunol 2009; 46:613-21. [PMID: 18962896 DOI: 10.1016/j.molimm.2008.07.037] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 07/24/2008] [Accepted: 07/27/2008] [Indexed: 11/30/2022]
|
134
|
Janson PCJ, Winerdal ME, Winqvist O. At the crossroads of T helper lineage commitment-Epigenetics points the way. Biochim Biophys Acta Gen Subj 2008; 1790:906-19. [PMID: 19162128 DOI: 10.1016/j.bbagen.2008.12.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 12/18/2008] [Accepted: 12/19/2008] [Indexed: 12/21/2022]
Abstract
The immune system has the capacity to respond to various types of pathogens including bacteria, viruses, tumors and parasites. This requires a flexible immune system, which in part depends on the development of alternative effector T helper cells, with different cytokine repertoires that direct the overall immune response. The reciprocal effects of the T helper subtypes Th1 and Th2 are well documented, but the mechanisms involved in alternative cytokine expression and silencing are less well defined. Introduction of advances within the field of chromatin folding and epigenetic regulation of transcription has begun to explain some of the fundamental principles of T helper cell development. In addition, epigenetic regulation has proven essential also for the more recently discovered T helper cell subtypes; regulatory T cells and the Th17 lineage. As the importance of proper epigenetic regulation becomes evident, attention is also focused on the potential harmfulness of epigenetic dysregulation. Autoimmunity and allergy are two clinical situations that have been implicated as results of imperfect cytokine silencing. This review will address recent advances in the field of epigenetic regulation of T lymphocytes and their maturation from naive cells into different effector T cell lineages. In particular, epigenetic involvement in regulation of key effector cytokines and specific transcription factors determining the CD4(+) T lymphocyte lineage commitment will be discussed.
Collapse
Affiliation(s)
- Peter C J Janson
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
135
|
Bandyopadhyay S, Long M, Qui HZ, Hagymasi AT, Slaiby AM, Mihalyo MA, Aguila HL, Mittler RS, Vella AT, Adler AJ. Self-antigen prevents CD8 T cell effector differentiation by CD134 and CD137 dual costimulation. THE JOURNAL OF IMMUNOLOGY 2008; 181:7728-37. [PMID: 19017962 DOI: 10.4049/jimmunol.181.11.7728] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We compared how CD4 vs CD8 cells attain the capacity to express the effector cytokine IFN-gamma under both immunogenic and tolerogenic conditions. Although the Ifng gene locus was epigenetically repressed in naive Ag-inexperienced CD4 cells, it had already undergone partial remodeling toward a transcriptionally competent configuration in naive CD8 cells. After TCR stimulation, CD8 cells fully remodeled the Ifng locus and gained the capacity to express high levels of IFN-gamma more rapidly than CD4 cells. Enforced dual costimulation through OX40 and 4-1BB redirected CD8 cells encountering soluble exogenous peptide to expand and differentiate into IFN-gamma and TNF-alpha double-producing effectors rather than becoming tolerant. Despite this and the stronger tendency of CD8 compared with CD4 cells to differentiate into IFN-gamma-expressing effectors, when parenchymal self-Ag was the source of tolerizing Ag, enforced dual costimulation selectively boosted expansion but did not push effector differentiation in CD8 cells while both expansion and effector differentiation were dramatically boosted in CD4 cells. Notably, enforced dual costimulation was able to push effector differentiation in CD8 cells encountering cognate parenchymal self-Ag when CD4 cells were simultaneously engaged. Thus, the ability of enforced OX40 plus 4-1BB dual costimulation to redirect CD8 cells to undergo effector differentiation was unexpectedly influenced by the source of tolerizing Ag and help was selectively required to facilitate CD8 cell effector differentiation when the tolerizing Ag derived from self.
Collapse
Affiliation(s)
- Suman Bandyopadhyay
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030-1601, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Wang Y, Evans JT, Rodriguez F, Fields P, Mueller C, Chitnis T, Khoury SJ, Bynoe MS. A tale of two STAT6 knock out mice in the induction of experimental autoimmune encephalomyelitis. J Neuroimmunol 2008; 206:76-85. [PMID: 19100630 DOI: 10.1016/j.jneuroim.2008.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 11/10/2008] [Accepted: 11/13/2008] [Indexed: 01/13/2023]
Abstract
T helper 2 (Th2) cytokines are known to be important in protection against experimental autoimmune encephalomyelitis (EAE). To investigate the role of the signal transducer and activator of transcription factor 6 (STAT6) in EAE we used mice with two different targeted disruptions of the STAT6 gene. In this report, we show that mice with a targeted deletion of the first coding exon of the SH2 domain of STAT6 induce Th2 cell differentiation and are resistant to EAE induction. By contrast, STAT6(-/-) mice generated by deletion of amino acids 505 to 584 encoding the SH2 domain of STAT6 are defective in Th2 cell differentiation and develop very severe EAE. These results suggest that an altered STAT6 gene can be more efficient than wild type STAT6 in regulating the autoimmune response in EAE.
Collapse
Affiliation(s)
- Yongmei Wang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Abstract
Naïve T helper cells differentiate into two subsets, T helper 1 and 2, which either transcribe the Ifng gene and silence the Il4 gene or transcribe the Il4 gene and silence the Ifng gene, respectively. This process is an essential feature of the adaptive immune response to a pathogen and the development of long-lasting immunity. The 'histone code' hypothesis proposes that formation of stable epigenetic histone marks at a gene locus that activate or repress transcription is essential for cell fate determinations, such as T helper 1/T helper 2 cell fate decisions. Activation and silencing of the Ifng gene are achieved through the creation of stable epigenetic histone marks spanning a region of genomic DNA over 20 times greater than the gene itself. Key transcription factors that drive the T helper 1 lineage decision, signal transducer and activator 4 (STAT4) and T-box expressed in T cells (T-bet), play direct roles in the formation of activating histone marks at the Ifng locus. Conversely, STAT6 and GATA binding protein 3, transcription factors essential for the T helper 2 cell lineage decision, establish repressive histone marks at the Ifng locus. Functional studies demonstrate that multiple genomic elements up to 50 kilobases from Ifng play critical roles in its proper transcriptional regulation. Studies of three-dimensional chromatin conformation indicate that these distal regulatory elements may loop towards Ifng to regulate its transcription. We speculate that these complex mechanisms have evolved to tightly control levels of interferon-gamma production, given that too little or too much production would be very deleterious to the host.
Collapse
Affiliation(s)
- Thomas M Aune
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-2068, USA.
| | | | | |
Collapse
|
138
|
Thieu VT, Yu Q, Chang HC, Yeh N, Nguyen ET, Sehra S, Kaplan MH. Signal transducer and activator of transcription 4 is required for the transcription factor T-bet to promote T helper 1 cell-fate determination. Immunity 2008; 29:679-90. [PMID: 18993086 DOI: 10.1016/j.immuni.2008.08.017] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 06/20/2008] [Accepted: 08/29/2008] [Indexed: 02/07/2023]
Abstract
Transcriptional regulatory networks direct the development of specialized cell types. The transcription factors signal tranducer and activator of transcription 4 (Stat4) and T-bet are required for the interleukin-12 (IL-12)-stimulated development of T helper 1 (Th1) cells, although the hierarchy of activity by these factors has not been clearly defined. In this report, we show that these factors did not function in a linear pathway and that each factor played a unique role in programming chromatin architecture for Th1 gene expression, with subsets of genes depending on Stat4, T-bet, or both for expression in Th1 cells. T-bet was not able to transactivate expression of Stat4-dependent genes in the absence of endogenous Stat4 expression. Thus, T-bet requires Stat4 to achieve complete IL-12-dependent Th1 cell-fate determination. These data provide a basis for understanding how transiently activated and lineage-specific transcription factors cooperate in promoting cellular differentiation.
Collapse
Affiliation(s)
- Vivian T Thieu
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|
139
|
Hollingsworth JW, Maruoka S, Boon K, Garantziotis S, Li Z, Tomfohr J, Bailey N, Potts EN, Whitehead G, Brass DM, Schwartz DA. In utero supplementation with methyl donors enhances allergic airway disease in mice. J Clin Invest 2008; 118:3462-9. [PMID: 18802477 PMCID: PMC2542847 DOI: 10.1172/jci34378] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 07/30/2008] [Indexed: 11/17/2022] Open
Abstract
Asthma is a complex heritable disease that is increasing in prevalence and severity, particularly in developed countries such as the United States, where 11% of the population is affected. The contribution of environmental and genetic factors to this growing epidemic is currently not well understood. We developed the hypothesis, based on previous literature, that changes in DNA methylation resulting in aberrant gene transcription may enhance the risk of developing allergic airway disease. Our findings indicate that in mice, a maternal diet supplemented with methyl donors enhanced the severity of allergic airway disease that was inherited transgenerationally. Using a genomic approach, we discovered 82 gene-associated loci that were differentially methylated after in utero supplementation with a methyl-rich diet. These methylation changes were associated with decreased transcriptional activity and increased disease severity. Runt-related transcription factor 3 (Runx3), a gene known to negatively regulate allergic airway disease, was found to be excessively methylated, and Runx3 mRNA and protein levels were suppressed in progeny exposed in utero to a high-methylation diet. Moreover, treatment with a demethylating agent increased Runx3 gene transcription, further supporting our claim that a methyl-rich diet can affect methylation status and consequent transcriptional regulation. Our findings indicate that dietary factors can modify the heritable risk of allergic airway disease through epigenetic mechanisms during a vulnerable period of fetal development in mice.
Collapse
Affiliation(s)
- John W Hollingsworth
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
BRG1-mediated chromatin remodeling regulates differentiation and gene expression of T helper cells. Mol Cell Biol 2008; 28:7274-85. [PMID: 18852284 DOI: 10.1128/mcb.00835-08] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During T helper cell differentiation, distinct programs of gene expression play a key role in defining the immune response to an environmental challenge. How chromatin remodeling events at the associated cytokine loci control differentiation is not known. We found that the ATP-dependent remodeling enzyme subunit BRG1 was required for T helper 2 (Th2) differentiation and Th2 cytokine transcription. BRG1 binding to cytokine genes was regulated by the extent of differentiation, the extent of activation, and cell fate. BRG1 was required for some features of the chromatin structure in target genes (DNase I hypersensitivity and histone acetylation), suggesting that BRG1 remodeling activity was directly responsible for changes in gene expression. NFAT and STAT6 activity were required for BRG1 recruitment to the Th2 locus control region, and STAT6 associated with BRG1 in a differentiation-inducible manner, suggesting direct recruitment of BRG1 to the bound loci. Together, these findings suggest BRG1 interprets differentiation signals and plays a causal role in gene regulation, chromatin structure, and cell fate.
Collapse
|
141
|
El Gazzar M, Yoza BK, Chen X, Hu J, Hawkins GA, McCall CE. G9a and HP1 couple histone and DNA methylation to TNFalpha transcription silencing during endotoxin tolerance. J Biol Chem 2008; 283:32198-208. [PMID: 18809684 DOI: 10.1074/jbc.m803446200] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
TNFalpha gene expression is silenced in the endotoxin tolerant phenotype that develops in blood leukocytes after the initial activation phase of severe systemic inflammation or sepsis. The silencing phase can be mimicked in vitro by LPS stimulation. We reported that the TNFalpha transcription is disrupted in endotoxin tolerant THP-1 human promonocyte due to changes in transcription factor binding and enrichment with histone H3 dimethylated on lysine 9 (H3K9). Here we show that the TNFalpha promoter is hypermethylated during endotoxin tolerance and that H3K9 methylation and DNA methylation interact to silence TNFalpha expression. Chromatin immunoprecipitation and RNA interference analysis demonstrated that, in tolerant cells, TNFalpha promoter is bound by the H3K9 histone methyltransferase G9a which dimethylates H3K9 and creates a platform for HP1 binding, leading to the recruitment of the DNA methyltransferase Dnmt3a/b and an increase in promoter CpG methylation. Knockdown of HP1 resulted in a decreased Dnmt3a/b binding, sustained G9a binding, and a modest increase in TNFalpha transcription, but had no effect on H3K9 dimethylation. In contrast, G9a knockdown-disrupted promoter silencing and restored TNFalpha transcription in tolerant cells. This correlated with a near loss of H3K9 dimethylation, a significant decrease in HP1 and Dnmt3a/b binding and promoter CpG methylation. Our results demonstrate a central role for G9a in this process and suggest that histone methylation and DNA methylation cooperatively interact via HP1 to silence TNFalpha expression during endotoxin tolerance and may have implication for proinflammatory gene silencing associated with severe systemic inflammation.
Collapse
Affiliation(s)
- Mohamed El Gazzar
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, USA.
| | | | | | | | | | | |
Collapse
|
142
|
Yu Q, Chang HC, Ahyi ANN, Kaplan MH. Transcription factor-dependent chromatin remodeling of Il18r1 during Th1 and Th2 differentiation. THE JOURNAL OF IMMUNOLOGY 2008; 181:3346-52. [PMID: 18714006 DOI: 10.4049/jimmunol.181.5.3346] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The IL-18Ralpha-chain is expressed on Th1 but not Th2 cells. We have recently shown that Stat4 is an important component of programming the Il18r1 locus (encoding IL-18Ralpha) for maximal expression in Th1 cells. Il18r1 is reciprocally repressed during Th2 development. In this report, we demonstrate the establishment of DH patterns that are distinct among undifferentiated CD4 T, Th1, and Th2 cells. Stat6 is required for the repression of Il18r1 expression and in Stat6-deficient Th2 cultures, mRNA levels, histone acetylation, and H3K4 methylation levels are intermediate between levels observed in Th1 and Th2 cells. Despite the repressive effects of IL-4 during Th2 differentiation, we observed only modest binding of Stat6 to the Il18r1 locus. In contrast, we observed robust GATA-3 binding to a central region of the locus where DNase hypersensitivity sites overlapped with conserved non-coding sequences in Il18r1 introns. Ectopic expression of GATA-3 in differentiated Th1 cells repressed Il18r1 mRNA and surface expression of IL-18Ralpha. These data provide further mechanistic insight into transcription factor-dependent establishment of Th subset-specific patterns of gene expression.
Collapse
Affiliation(s)
- Qing Yu
- Departments of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
143
|
Araki Y, Fann M, Wersto R, Weng NP. Histone acetylation facilitates rapid and robust memory CD8 T cell response through differential expression of effector molecules (eomesodermin and its targets: perforin and granzyme B). THE JOURNAL OF IMMUNOLOGY 2008; 180:8102-8. [PMID: 18523274 DOI: 10.4049/jimmunol.180.12.8102] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To understand the mechanism regulating the effector function of memory CD8 T cells, we examined expression and chromatin state of a key transcription factor (eomesodermin, EOMES) and two of its targets: perforin (PRF1) and granzyme B (GZMB). Accessible chromatin associated histone 3 lysine 9 acetylation (H3K9Ac) was found significantly higher at the proximal promoter and the first exon region of all three genes in memory CD8 T cells than in naive CD8 T cells. Correspondingly, EOMES and PRF1 were constitutively higher expressed in memory CD8 T cells than in naive CD8 T cells at resting and activated states. In contrast, higher expression of GZMB was induced in memory CD8 T cells than in naive CD8 T cells only after activation. Regardless of their constitutive or inducible expression, decreased H3K9Ac levels after treatment with a histone acetyltransferase inhibitor (Curcumin) led to decreased expression of all three genes in activated memory CD8 T cells. These findings suggest that H3K9Ac associated accessible chromatin state serves as a corner stone for the differentially high expression of these effector genes in memory CD8 T cells. Thus, epigenetic changes mediated via histone acetylation may provide a chromatin "memory" for the rapid and robust transcriptional response of memory CD8 T cells.
Collapse
Affiliation(s)
- Yasuto Araki
- Laboratory of Immunology and Flow Cytometry Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
144
|
Hawiger D, Tran E, Du W, Booth CJ, Wen L, Dong C, Flavell RA. ICOS mediates the development of insulin-dependent diabetes mellitus in nonobese diabetic mice. THE JOURNAL OF IMMUNOLOGY 2008; 180:3140-7. [PMID: 18292537 DOI: 10.4049/jimmunol.180.5.3140] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Initiation of diabetes in NOD mice can be mediated by the costimulatory signals received by T cells. The ICOS is found on Ag-experienced T cells where it acts as a potent regulator of T cell responses. To determine the function of ICOS in diabetes, we followed the course of autoimmune disease and examined T cells in ICOS-deficient NOD mice. The presence of ICOS was indispensable for the development of insulitis and hyperglycemia in NOD mice. In T cells, the deletion of ICOS resulted in a decreased production of the Th1 cytokine IFN-gamma, whereas the numbers of regulatory T cells remained unchanged. We conclude that ICOS is critically important for the induction of the autoimmune process that leads to diabetes.
Collapse
Affiliation(s)
- Daniel Hawiger
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | | | |
Collapse
|
145
|
Northrop JK, Wells AD, Shen H. Cutting edge: chromatin remodeling as a molecular basis for the enhanced functionality of memory CD8 T cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:865-8. [PMID: 18606637 DOI: 10.4049/jimmunol.181.2.865] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Memory CD8 T cells, unlike their naive precursors, are capable of rapidly producing high levels of cytokines, killing target cells, and proliferating into numerous secondary effectors immediately upon Ag encounter. This ready-to-respond state contributes to their superior ability to confer protective immunity, yet the underlying molecular basis remains unknown. In this study, we show that memory CD8 T cells have increased histone acetylation compared with naive CD8 T cells; however, those activated without CD4 T cell help ("unhelped") remain hypoacetylated and fail to develop into functional, protective memory. Treatment with a histone deacetylase inhibitor during activation results in increased histone acetylation in unhelped CD8 T cells and restores their ability to differentiate into functional memory cells capable of immediate cytokine production and providing protective immunity. These results demonstrate that CD4 T help-dependent chromatin remodeling provides a molecular basis for the enhanced responsiveness of memory CD8 T cells.
Collapse
Affiliation(s)
- John K Northrop
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
146
|
Zhang Y, Saccani S, Shin H, Nikolajczyk BS. Dynamic protein associations define two phases of IL-1beta transcriptional activation. THE JOURNAL OF IMMUNOLOGY 2008; 181:503-12. [PMID: 18566416 DOI: 10.4049/jimmunol.181.1.503] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
IL-1beta is a key proinflammatory cytokine with roles in multiple diseases. Monocytes package the IL-1beta promoter into a "poised architecture" characterized by a histone-free transcription start site and constitutive transcription factor associations. Upon LPS stimulation, multiple proteins inducibly associate with the IL-1beta gene. To understand how the complex combination of constitutive and inducible transcription factors activate the IL-1beta gene from a poised structure, we measured temporal changes in NF-kappaB and IFN regulatory factor (IRF) association with IL-1beta regulatory elements. Association of the p65 subunit of NF-kappaB peaks 30-60 min post-monocyte stimulation, and it shortly precedes IRF-4 recruitment to the IL-1beta enhancer and maximal mRNA production. In contrast, IRF-8/enhancer association decreases poststimulation. To test the importance of delayed IRF-4/enhancer association, we introduced a mutated PU.1 protein shown to prevent PU.1-mediated IRF-4 recruitment to the enhancer sequence. Mutated PU.1 initially increased IL-1beta mRNA followed by decreased mRNA levels 2-3 h poststimulation. Taken together, these data support a dynamic model of IL-1beta transcriptional activation in which a combination of IRF-8 and p65 drives the initial phase of IL-1beta transcription, while PU.1-mediated IRF-4 recruitment to the enhancer is important for the second phase. We further demonstrate that activation of both NF-kappaB and IRF-4 depends on CK2 kinase activity. Because IRF-4/enhancer association requires CK2 but not p65 activation, we conclude that CK2 triggers the IRF-4 and p65 pathways independently to serve as a master regulator of IL-1beta transcription.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
147
|
Murphy KM. Permission to proceed: Jak3 and STAT5 signaling molecules give the green light for T helper 1 cell differentiation. Immunity 2008; 28:725-7. [PMID: 18549792 DOI: 10.1016/j.immuni.2008.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this issue of Immunity, Shi et al. (2008) identify a previously unknown requirement in T helper cell differentiation, showing that Jak3 and STAT5 are needed to generate chromatin that is permissive to the activating effects of T-bet.
Collapse
Affiliation(s)
- Kenneth M Murphy
- Howard Hughes Medical Institute and Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
148
|
Shi M, Lin TH, Appell KC, Berg LJ. Janus-kinase-3-dependent signals induce chromatin remodeling at the Ifng locus during T helper 1 cell differentiation. Immunity 2008; 28:763-73. [PMID: 18549798 DOI: 10.1016/j.immuni.2008.04.016] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 04/10/2008] [Accepted: 04/11/2008] [Indexed: 01/06/2023]
Abstract
Differentiation of naive CD4+ T cells into T helper type 1 (Th1) effector cells requires both T cell receptor (TCR) signaling and cytokines such as interleukin-12 and interferon gamma (IFN-gamma). Here, we report that a third cytokine signal, mediated by the Janus family tyrosine kinase 3 (Jak3) and signal transducer and activator of transcription 5 (STAT5) pathway, is also required for Th1 cell differentiation. In the absence of Jak3-dependent signals, naive CD4+ T cells proliferate robustly but produce little IFN-gamma after Th1 cell polarization in vitro. This defect is not due to reduced activation of STAT1 or STAT4 or to impaired upregulation of the transcription factor T-bet. Instead, we find that T-bet binding to the Ifng promoter is greatly diminished in the absence of Jak3-dependent signals, correlating with a decrease in Ifng promoter accessibility and histone acetylation. These data indicate that Jak3 regulates epigenetic modification and chromatin remodeling of the Ifng locus during Th1 cell differentiation.
Collapse
Affiliation(s)
- Min Shi
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | |
Collapse
|
149
|
van Panhuys N, Le Gros G, McConnell MJ. Epigenetic regulation of Th2 cytokine expression in atopic diseases. ACTA ACUST UNITED AC 2008; 72:91-7. [PMID: 18554247 DOI: 10.1111/j.1399-0039.2008.01068.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The immune response to allergens starts with stimulation of a naïve T helper (Th) cell and its differentiation into a Th2 cell, expressing the cytokines interleukin (IL)-4, IL-5 and IL-13 responsible for the allergic response. The initial pattern of cytokine expression is retained during restimulation and division of the Th2 cell to create a population of specific allergen-responsive memory Th2 cells. Both, the coordinate cytokine expression and the inherited cytokine memory are specified by epigenetic mechanisms. Th2-specific changes in chromatin configuration at the Th2 locus act locally to open DNA, allowing recruitment of transcriptional machinery and rapid induction of cytokine expression. Induction of the transcription factor GATA3 is critical to this process. Loss of DNA methylation at the Th2 locus during differentiation from a naïve Th cell correlates to increased histone acetylation, consistent with the expression of IL-4, IL-5 and IL-13. The silencing of the Th2 locus in Th1 cells was associated with repressive histone methylation. These data indicate the formation of a 'poised' chromatin configuration at the Th2 locus that in combination with specific transcription factors specifies the cytokine repertoire in daughter cells and allows the immediate, rapid induction of cytokines by those cells in response to allergen.
Collapse
Affiliation(s)
- N van Panhuys
- Malaghan Institute of Medical Research, Wellington South, Wellington, New Zealand
| | | | | |
Collapse
|
150
|
Lee BC, O'Sullivan I, Kim E, Park SG, Hwang SY, Cho D, Kim TS. A DNA adjuvant encoding a fusion protein between anti-CD3 single-chain Fv and AIMP1 enhances T helper type 1 cell-mediated immune responses in antigen-sensitized mice. Immunology 2008; 126:84-91. [PMID: 18547366 DOI: 10.1111/j.1365-2567.2008.02880.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
T helper type 1 (Th1) cell-mediated immune responses contribute to host defences against intracellular pathogen infections and cancer. Previously, we found that aminoacyl tRNA synthetase-interacting multifunctional protein 1 (AIMP1) activated macrophages and dendritic cells to enhance Th1 responses. Herein, we manipulated this property to improve Th1 immune responses in vivo by constructing a mammalian expression plasmid (pAnti-CD3sFv/AIMP1) encoding AIMP1 fused to the anti-CD3 single-chain Fv (sFv), the smallest unit of the antibody that interacts with the CD3epsilon region of the T-cell receptor. Intramuscular injection of ovalbumin (OVA)-sensitized BALB/c mice with pAnti-CD3sFv/AIMP1 DNA adjuvant increased the OVA-specific, interferon-gamma production by their CD4(+) T cells and the levels of anti-OVA immunoglobulin G2a (IgG2a) isotype in their sera. Furthermore, the pAnti-CD3sFv/AIMP1 DNA adjuvant decreased interleukin-4 production and anti-OVA IgE levels in the OVA-injected mice. Importantly, the pAnti-CD3sFv/AIMP1 was more efficient than a mixture of pAnti-CD3sFv and pAIMP1 in inducing OVA-specific Th1 immune responses and also in inhibiting OVA-specific Th2 responses during antigen priming. These studies indicated that the pAnti-CD3sFv/AIMP1 fusion DNA adjuvant enhanced Th1 immune responses in antigen-sensitized mice.
Collapse
Affiliation(s)
- Byeong Cheol Lee
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|