101
|
Eicosapentaenoic Acid (EPA) Modulates Glucose Metabolism by Targeting AMP-Activated Protein Kinase (AMPK) Pathway. Int J Mol Sci 2019; 20:ijms20194751. [PMID: 31557807 PMCID: PMC6801536 DOI: 10.3390/ijms20194751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 11/17/2022] Open
Abstract
EPA, an omega-3 polyunsaturated fatty acid, exerts beneficial effects on human health. However, the molecular mechanisms underlying EPA function are poorly understood. The object was to illuminate molecular mechanism underlying EPA's role. Here, 1H-NMR-based metabolic analysis showed enhanced branched-chain amino acids (BCAAs) and lactate following EPA treatment in skeletal muscle cells. EPA regulated mitochondrial oxygen consumption rate. Furthermore, EPA induced calcium/calmodulin-dependent protein kinase kinase (CaMKK) through the generation of intracellular calcium. This induced the phosphorylation of AMP-activated protein kinase (AMPK) and p38 mitogen-activated protein kinase (p38 MAPK) that led to glucose uptake, and the translocation of glucose transporter type 4 (GLUT4) in muscles. In conclusion, EPA exerts benign effects on glucose through the activation of AMPK-p38 MAPK signaling pathways in skeletal muscles.
Collapse
|
102
|
Waller JD, McNeill EH, Zhong F, Vervaecke LS, Goldfarb AH. Plasma Apelin Unchanged With Acute Exercise Insulin Sensitization. J Sports Sci Med 2019; 18:537-543. [PMID: 31427876 PMCID: PMC6683609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
Blood glucose and insulin responses to aerobic exercise are well defined yet the mechanisms effecting post-exercise insulin sensitization remain incomplete. Apelin has been reported to enhance glucose uptake and insulin sensitivity in vivo, but its role as a regulator of insulin sensitivity following acute aerobic exercise has not been investigated. Therefore, the purpose of this study was to investigate apelin's response to acute bouts of maximal and submaximal aerobic exercise and to elucidate apelin's influence on insulin sensitivity. Twelve (22.8 ± 2.9 yrs) healthy male (n = 7) and female (n = 5) subjects completed a graded to maximal (VO2max) and submaximal (70-75% VO2max) treadmill running bouts, as well as a 50g glucose challenge (GC). Blood was obtained at four time points (pre, post, 1hr post and 24hrs post) and assessed for glucose, insulin and apelin. Hepatic insulin sensitivity was assessed at rest and at 1hr and 24hrs via HOMA-IR and QUICKI indices. Results demonstrated that plasma apelin did not significantly change by condition (p = 0.324) or time (p = 0.633). Blood glucose and plasma insulin were significantly elevated immediately after VO2max and GC, but remained stable after submaximal exercise. Insulin sensitivity was significantly improved 1hr post-submaximal exercise, per HOMA-IR (p = 0.034) and QUICKI (p = 0.018) indices. Plasma apelin was significantly correlated with plasma insulin (r = 0.699, p = 0.011), HOMA-IR (r = 0.626, p = 0.029) and QUICKI (r = 0.660, p = 0.019) at rest. We conclude that, although hepatic insulin sensitivity was improved 1hr post-submaximal exercise, this exercise-induced insulin sensitization occurred independent of plasma apelin changes.
Collapse
Affiliation(s)
- Justin D Waller
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Emily H McNeill
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Frank Zhong
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Lauren S Vervaecke
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Allan H Goldfarb
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, USA
| |
Collapse
|
103
|
Varshney R, Mishra R, Das N, Sircar D, Roy P. A comparative analysis of various flavonoids in the regulation of obesity and diabetes: An in vitro and in vivo study. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
104
|
Alam MB, Bajpai VK, Ra JS, Lim JY, An H, Shukla S, Quan KT, Khan I, Huh YS, Han YK, Na M, Lee SH. Anthraquinone-type inhibitor of α-glucosidase enhances glucose uptake by activating an insulin-like signaling pathway in C2C12 myotubes. Food Chem Toxicol 2019; 129:337-343. [PMID: 31071387 DOI: 10.1016/j.fct.2019.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/03/2019] [Accepted: 05/04/2019] [Indexed: 12/17/2022]
Abstract
This study assesses the ability of anthraquinone derivative, 2-methyl-1,3,6-trihydroxy-9,10-anthraquinone (MTAQ) to decrease postprandial hyperglycemia or enhance glucose uptake and to elucidate the underlying molecular mechanism. We investigated α-glucosidase inhibition, glucose uptake, and translocation of glucose transporter 4 (GLUT4) in C2C12 myotubes. The data indicate that MTAQ strongly inhibited α-glucosidase activity in a concentration-dependent manner, with an IC50 value of 6.49 ± 1.31 μM, and functioned as a reversible competitive inhibitor, with a dissociation constant of 41.88 μM. Moreover, MTAQ significantly augmented basal and insulin-stimulated glucose uptake as well as translocation of GLUT4 to the plasma membrane. It also stimulated the phosphorylation of insulin receptor β isoform, insulin receptor substrate-1,3-phosphoinositide-dependent protein kinase 1, and protein kinase B (AKT). A pretreatment with an AKT inhibitor, LY294002, attenuated the ability of MTAQ to activate an insulin-like signaling pathway and to enhance basal and insulin-stimulated glucose uptake and stimulate GLUT4 translocation to the plasma membrane. These findings reveal the fact that MTAQ may have potential for the development of new antidiabetic drugs to manage blood glucose levels.
Collapse
Affiliation(s)
- Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu, 41566, South Korea
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Jeong-Sic Ra
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu, 41566, South Korea
| | - Ji-Young Lim
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu, 41566, South Korea
| | - Hongyan An
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu, 41566, South Korea
| | - Shruti Shukla
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Khong Trong Quan
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Imran Khan
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| | - MinKyun Na
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
105
|
Aerobic Exercise Training Decreases Hepatic Asprosin in Diabetic Rats. J Clin Med 2019; 8:jcm8050666. [PMID: 31083617 PMCID: PMC6572469 DOI: 10.3390/jcm8050666] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/29/2019] [Accepted: 05/10/2019] [Indexed: 12/31/2022] Open
Abstract
Asprosin, a novel hormone released from white adipose tissue, regulates hepatic glucose metabolism and is pathologically elevated in the presence of insulin resistance. It is unknown whether aerobic exercise training affects asprosin levels in type 1 diabetes mellitus (T1DM). The aim of this study was to determine whether (1) aerobic exercise training could decrease asprosin levels in the liver of streptozotocin (STZ)-induced diabetic rats and (2) the reduction in asprosin levels could induce asprosin-dependent downstream pathways. Five-week-old male Sprague–Dawley rats were randomly divided into control, STZ-induced diabetes (STZ), and STZ with aerobic exercise training groups (n = 6/group). T1DM was induced by a single dose of STZ (65 mg/kg intraperitoneally (i.p.)). The exercise group was made to run on a treadmill for 60 min at a speed of 20 m/min, 4 days per week for 8 weeks. Aerobic exercise training reduced the protein levels of asprosin, PKA, and TGF-β but increased those of AMPK, Akt, PGC-1β, and MnSOD. These results suggest that aerobic exercise training affects hepatic asprosin-dependent PKA/TGF-β and AMPK downstream pathways in T1DM.
Collapse
|
106
|
Lotri-Koffi A, Pauly M, Lemarié E, Godin-Ribuot D, Tamisier R, Pépin JL, Vivodtzev I. Chronic neuromuscular electrical stimulation improves muscle mass and insulin sensitivity in a mouse model. Sci Rep 2019; 9:7252. [PMID: 31076597 PMCID: PMC6510751 DOI: 10.1038/s41598-019-43696-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 04/10/2019] [Indexed: 12/03/2022] Open
Abstract
Muscle wasting reduces functional capacity and increases cardiometabolic risk in chronic disease. Neuromuscular electrical stimulation (NMES) of the lower limb has been shown to reverse muscle wasting in these patients but its effect on cardiometabolic health is unclear. We investigated a mouse model of in-vivo non-invasive chronic NMES on muscle mass, insulin sensitivity and arterial blood pressure (BP). Twenty-three C57BL6 mice underwent unilateral NMES or sham training over 2.5 weeks while anesthetized by isoflurane. Lower limb muscle mass and the stimulated limb to non-stimulated limb muscle mass ratio were compared between groups (NMES vs. sham). Insulin sensitivity was assessed 48 h after training using an intraperitoneal insulin tolerance test (ITT) and BP was assessed before and after training using the tail-cuff technique. After training, muscle mass increased in NMES vs. sham (416 ± 6 vs. 397 ± 6 mg, p = 0.04) along with the ratio of muscle mass (+3 ± 1% vs. −1 ± 1% p = 0.04). Moreover, insulin sensitivity improved in NMES vs. sham (average blood glucose during ITT: 139.6 ± 8.5 vs. 161.9 ± 9.0 mg/dl blood, p = 0.01). BP was decreased in both groups, although it is likely that the effect of NMES on BP was dampened by repetitive anesthesia. The metabolic benefit of NMES training could be of great utility in patients with chronic disease. Moreover, the clinical-like mouse model of NMES is an effective tool to investigate the systemic effects of local muscle strengthening.
Collapse
Affiliation(s)
- Adiel Lotri-Koffi
- Univ. Grenoble Alpes, Inserm 1042, CHU Grenoble Alpes, HP2 Laboratory, Grenoble, France
| | - Marion Pauly
- Univ. Grenoble Alpes, Inserm 1042, CHU Grenoble Alpes, HP2 Laboratory, Grenoble, France
| | - Emeline Lemarié
- Univ. Grenoble Alpes, Inserm 1042, CHU Grenoble Alpes, HP2 Laboratory, Grenoble, France
| | - Diane Godin-Ribuot
- Univ. Grenoble Alpes, Inserm 1042, CHU Grenoble Alpes, HP2 Laboratory, Grenoble, France
| | - Renaud Tamisier
- Univ. Grenoble Alpes, Inserm 1042, CHU Grenoble Alpes, HP2 Laboratory, Grenoble, France
| | - Jean-Louis Pépin
- Univ. Grenoble Alpes, Inserm 1042, CHU Grenoble Alpes, HP2 Laboratory, Grenoble, France
| | - Isabelle Vivodtzev
- Univ. Grenoble Alpes, Inserm 1042, CHU Grenoble Alpes, HP2 Laboratory, Grenoble, France. .,Cardiovascular Research Laboratory, Spaulding Rehabilitation Hospital, Cambridge, Massachusetts, USA. .,Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
107
|
Kim DY, Lim SG, Suk K, Lee WH. Mitochondrial dysfunction regulates the JAK-STAT pathway via LKB1-mediated AMPK activation ER-stress-independent manner. Biochem Cell Biol 2019; 98:137-144. [PMID: 31071273 DOI: 10.1139/bcb-2019-0088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mitochondria affect cellular functions alone or in cooperation with other cellular organelles. Recent research has demonstrated the close relationship of mitochondria with the endoplasmic reticulum (ER), both at the physical and the functional level. In an effort to define the combined effect of mitochondrial dysfunction (MD) and ER stress in the proinflammatory activities of macrophages, the human macrophage-like monocytic leukemia cell line THP-1 was treated with mitochondrial electron transport chain (ETC) blockers, and changes in the cellular responses upon stimulation by interferon (IFN)-γ were analyzed. Inducing mitochondrial dysfunction (MD) with ETC blockers resulted in suppression of IFN-induced activation of JAK1 and STAT1/3, as well as the expression of STAT1-regulated genes. In addition, experiments utilizing pharmacological modulators of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and liver kinase B1 (LKB1)-deficient HeLa cells demonstrated that these suppressive effects are mediated by the LKB1-AMPK pathway. Treatment with pharmacological inhibitors of ER stress sensors failed to affect these processes, thus indicating that involvement of ER stress is not required. These results indicate that MD, induced by blocking the ETC, affects IFN-induced activation of JAK-STAT and associated inflammatory changes in THP-1 cells through the LKB1-AMPK pathway independently of ER stress.
Collapse
Affiliation(s)
- Dong-Yeon Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Su-Geun Lim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
108
|
Andrade EF, de Oliveira Silva V, Orlando DR, Pereira LJ. Mechanisms Involved in Glycemic Control Promoted by Exercise in Diabetics. Curr Diabetes Rev 2019; 15:105-110. [PMID: 29446746 DOI: 10.2174/1573399814666180214144717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/22/2018] [Accepted: 01/31/2018] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Diabetes mellitus is a metabolic disease characterized by high glycemic levels for long periods. This disease has a high prevalence in the world population, being currently observed an increase in its incidence. This fact is mainly due to the sedentary lifestyle and hypercaloric diets. Non-pharmacological interventions for glycemic control include exercise, which promotes changes in skeletal muscle and adipocytes. Thus, increased glucose uptake by skeletal muscle and decreased insulin resistance through modulating adipocytes are the main factors that improve glycemic control against diabetes. CONCLUSION It was sought to elucidate mechanisms involved in the improvement of glycemic control in diabetics in front of the exercise.
Collapse
Affiliation(s)
| | | | - Débora Ribeiro Orlando
- Department of Agricultural Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Unai, Brazil
| | | |
Collapse
|
109
|
Hunter KS, Davies SJ. Host Adaptive Immune Status Regulates Expression of the Schistosome AMP-Activated Protein Kinase. Front Immunol 2018; 9:2699. [PMID: 30519243 PMCID: PMC6260181 DOI: 10.3389/fimmu.2018.02699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/01/2018] [Indexed: 12/25/2022] Open
Abstract
Schistosomes exhibit profound developmental adaptations in response to the immune status of their mammalian host, including significant attenuation of parasite growth, development and reproduction in response to deficits in host adaptive immunity. These observations led us to hypothesize that schistosomes regulate the utilization of energy resources in response to immunological conditions within the host. To test this hypothesis, we identified and characterized the Schistosoma mansoni AMP-activated protein kinase (AMPK), a heterotrimeric enzyme complex that is central to regulating energy metabolism at the cellular and organismal level in eukaryotes. We show that expression of the catalytic α subunit is developmentally regulated during the parasite life cycle, with peak expression occurring in adult worms. However, the protein is present and phosphorylated in all life cycle stages examined, suggesting a need for active regulation of energy resources throughout the life cycle. In contrast, transcription of the AMPK α gene is down-regulated in cercariae and schistosomula, suggesting that the protein in these life cycle stages is pre-synthesized in the sporocyst and that expression must be re-initiated once inside the mammalian host. We also show that schistosome AMPK α activity in adult worms is sensitive to changes in the parasite's environment, suggesting a mechanism by which schistosome metabolism may be responsive to host immune factors. Finally, we show that AMPK α expression is significantly down-regulated in parasites isolated from immunodeficient mice, suggesting that modulation of parasite energy metabolism may contribute to the attenuation of schistosome growth and reproduction in immunodeficient hosts. These findings provide insights into the molecular interactions between schistosomes and their vertebrate hosts and suggest that parasite energy metabolism may represent a novel target for anti-schistosome interventions.
Collapse
Affiliation(s)
- Kasandra S Hunter
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Stephen J Davies
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
110
|
Park S, Turner KD, Zheng D, Brault JJ, Zou K, Chaves AB, Nielsen TS, Tanner CJ, Treebak JT, Houmard JA. Electrical pulse stimulation induces differential responses in insulin action in myotubes from severely obese individuals. J Physiol 2018; 597:449-466. [PMID: 30414190 DOI: 10.1113/jp276990] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/07/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Exercise/exercise training can enhance insulin sensitivity through adaptations in skeletal muscle, the primary site of insulin-mediated glucose disposal; however, in humans the range of improvement can vary substantially. The purpose of this study was to determine if obesity influences the magnitude of the exercise response in relation to improving insulin sensitivity in human skeletal muscle. Electrical pulse stimulation (EPS; 24 h) of primary human skeletal muscle myotubes improved insulin action in tissue from both lean and severely obese individuals, but responses to EPS were blunted with obesity. EPS improved insulin signal transduction in myotubes from lean but not severely obese subjects and increased AMP accumulation and AMPK Thr172 phosphorylation, but to a lesser degree in myotubes from the severely obese. These data reveal that myotubes of severely obese individuals enhance insulin action and stimulate exercise-responsive molecules with contraction, but in a manner and magnitude that differs from lean subjects. ABSTRACT Exercise/muscle contraction can enhance whole-body insulin sensitivity; however, in humans the range of improvements can vary substantially. In order, to determine if obesity influences the magnitude of the exercise response, this study compared the effects of electrical pulse stimulation (EPS)-induced contractile activity upon primary myotubes derived from lean and severely obese (BMI ≥ 40 kg/m2 ) women. Prior to muscle contraction, insulin action was compromised in myotubes from the severely obese as was evident from reduced insulin-stimulated glycogen synthesis, glucose oxidation, glucose uptake, insulin signal transduction (IRS1, Akt, TBC1D4), and insulin-stimulated GLUT4 translocation. EPS (24 h) increased AMP, IMP, AMPK Thr172 phosphorylation, PGC1α content, and insulin action in myotubes of both the lean and severely obese subjects. However, despite normalizing indices of insulin action to levels seen in the lean control (non-EPS) condition, responses to EPS were blunted with obesity. EPS improved insulin signal transduction in myotubes from lean but not severely obese subjects and EPS increased AMP accumulation and AMPK Thr172 phosphorylation, but to a lesser degree in myotubes from the severely obese. These data reveal that myotubes of severely obese individuals enhance insulin action and stimulate exercise-responsive molecules with contraction, but in a manner and magnitude that differs from lean subjects.
Collapse
Affiliation(s)
- Sanghee Park
- Human Performance Laboratory, Ward Sports Medicine Building, East Carolina University, Greenville, NC, USA.,Department of Kinesiology, East Carolina University, Greenville, NC, USA.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - Kristen D Turner
- Human Performance Laboratory, Ward Sports Medicine Building, East Carolina University, Greenville, NC, USA.,Department of Kinesiology, East Carolina University, Greenville, NC, USA.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - Donghai Zheng
- Human Performance Laboratory, Ward Sports Medicine Building, East Carolina University, Greenville, NC, USA.,Department of Kinesiology, East Carolina University, Greenville, NC, USA.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - Jeffrey J Brault
- Human Performance Laboratory, Ward Sports Medicine Building, East Carolina University, Greenville, NC, USA.,Department of Kinesiology, East Carolina University, Greenville, NC, USA.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - Kai Zou
- Human Performance Laboratory, Ward Sports Medicine Building, East Carolina University, Greenville, NC, USA.,Department of Kinesiology, East Carolina University, Greenville, NC, USA.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA.,Department of Exercise and Health Sciences, University of Massachusetts Boston, Boston, MA, USA
| | - Alec B Chaves
- Human Performance Laboratory, Ward Sports Medicine Building, East Carolina University, Greenville, NC, USA.,Department of Kinesiology, East Carolina University, Greenville, NC, USA.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - Thomas S Nielsen
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charles J Tanner
- Human Performance Laboratory, Ward Sports Medicine Building, East Carolina University, Greenville, NC, USA.,Department of Kinesiology, East Carolina University, Greenville, NC, USA.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - Jonas T Treebak
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joseph A Houmard
- Human Performance Laboratory, Ward Sports Medicine Building, East Carolina University, Greenville, NC, USA.,Department of Kinesiology, East Carolina University, Greenville, NC, USA.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| |
Collapse
|
111
|
Pham HTT, Ha TKQ, Cho HM, Lee BW, An JP, Tran VO, Oh WK. Insulin Mimetic Activity of 3,4- Seco and Hexanordammarane Triterpenoids Isolated from Gynostemma longipes. JOURNAL OF NATURAL PRODUCTS 2018; 81:2470-2482. [PMID: 30387350 DOI: 10.1021/acs.jnatprod.8b00524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
As part of ongoing research to find new antidiabetic agents from medicinal plants, the chemical composition of Gynostemma longipes, an ethnomedicinal plant used to treat type 2 diabetes mellitus by local communities in Vietnam, was investigated. Ten new dammarane triterpenes, including two 3,4- seco-dammarane analogues, secolongipegenins S1 and S2 (1 and 2), a 3,4- seco-hexanordammarane, secolongipegenin S3 (3), two hexanordammarane glycosides, longipenosides ND1 and ND2 (4 and 5), and five other dammarane glycosides, longipenosides GL1-GL5 (6-10), were isolated from a 70% EtOH extract of the whole G. longipes plant. The structures of the new compounds were elucidated using diverse spectroscopic methods. All of the isolates were evaluated for their stimulatory activities on glucose uptake in differentiated 3T3-L1 adipocyte cells using 2-[ N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose as a fluorescent-tagged glucose probe. The stimulant activities on glucose uptake by the test compounds were mediated via the activation of the AMPK pathway using differentiated mouse C2C12 skeletal myoblasts. Consequently, compounds 1, 2, and 4 enhanced glucose uptake and GLUT4 translocation significantly by regulating the AMPK signaling pathway.
Collapse
Affiliation(s)
- Ha Thanh Tung Pham
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Thi Kim Quy Ha
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Hyo Moon Cho
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Ba Wool Lee
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Jin Pyo An
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Van On Tran
- Department of Botany , Hanoi University of Pharmacy , Hanoi , Vietnam
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| |
Collapse
|
112
|
Metformin; an old antidiabetic drug with new potentials in bone disorders. Biomed Pharmacother 2018; 109:1593-1601. [PMID: 30551413 DOI: 10.1016/j.biopha.2018.11.032] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 01/15/2023] Open
Abstract
The prevalence of diabetes mellitus especially type 2 diabetes mellitus is increasing all over the world. In addition to cardiomyopathy and nephropathy, diabetics are at higher risk of mortality and morbidity due to greater risk of bone fractures and skeletal abnormalities. Patients with diabetes mellitus have lower bone quality in comparison to their non-diabetic counterparts mainly because of hyperglycemia, toxic effects of advanced glycosylation end-products (AGEs) on bone tissue, and impaired bone microvascular system. AGEs may also contribute to the development of osteoarthritis further to osteoporosis. Therefore, glycemic control in diabetic patients is vital for bone health. Metformin, a widely used antidiabetic drug, has been shown to improve bone quality and decrease the risk of fractures in patients with diabetes in addition to glycemic control and improving insulin sensitivity. AMP activated protein kinase (AMPK), the key molecule in metformin antidiabetic mechanism of action, is also effective in signaling pathways involved in bone physiology. This review, discusses the molecules linking diabetes and bone turnover, role of AMPK in bone metabolism, and the effect of metformin as an activator of AMPK on bone disorders and malignancies.
Collapse
|
113
|
Abstract
BACKGROUND Cocoa flavanols (CFs) have antioxidant and anti-inflammatory capacities and can improve vascular function. It has recently been suggested that CF intake may improve exercise performance and recovery. This systematic review aimed to evaluate the literature on the effects of CF intake on exercise performance and recovery and exercise-induced changes in vascular function, cognitive function, oxidative stress, inflammation, and metabolic parameters. METHODS Two electronic databases (Pubmed and Web of Science) were searched for studies examining the combination of CF intake and exercise in humans (up to 28 March 2017). Articles were included if the exact amount of CFs was mentioned. The methodological quality and level of bias of the 13 included studies was assessed according to the checklist for randomized controlled trials from the Dutch Cochrane center. RESULTS Acute, sub-chronic (2 weeks) and chronic (3 months) CF intake reduced exercise-induced oxidative stress. Evidence on the effect of CF on exercise-induced inflammation and platelet activation was scarce. Acute CF intake reduced and tempered the exercise-induced increase in blood pressure in obese participants. Acute and sub-chronic CF intake altered fat and carbohydrate metabolism during exercise. Acute and sub-chronic CF intake did not have ergogenic effects in athletes, while chronic CF intake improved mitochondrial efficiency in untrained participants. While combining sub-chronic CF intake and exercise training improved cardiovascular risk factors and vascular function, evidence on the synergistic effects of CF and exercise training on oxidative stress, inflammation, and fat and glucose metabolism was lacking. CONCLUSION CF intake may improve vascular function, reduce exercise-induced oxidative stress, and alter fat and carbohydrate utilization during exercise, but without affecting exercise performance. There is a strong need for future studies examining the synergetic effect of chronic CF intake and exercise training.
Collapse
|
114
|
Hansson E, Björklund U, Skiöldebrand E, Rönnbäck L. Anti-inflammatory effects induced by pharmaceutical substances on inflammatory active brain astrocytes-promising treatment of neuroinflammation. J Neuroinflammation 2018; 15:321. [PMID: 30447700 PMCID: PMC6240424 DOI: 10.1186/s12974-018-1361-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023] Open
Abstract
Background Pharmaceutical treatment with probable anti-inflammatory substances that attack cells in various ways including receptors, ion channels, or transporter systems may slow down the progression of inflammatory conditions. Astrocytes and microglia are the most prominent target cells for inflammation in the central nervous system. Their responses upon inflammatory stimuli work through the NO/cyclic GMP/protein kinase G systems that can downregulate the ATP-induced Ca2+ signaling, as well as G protein activities which alter Na+ transporters including Na+/K+-ATPase pump activity, Toll-like receptor 4 (TLR4), glutamate-induced Ca2+ signaling, and release of pro-inflammatory cytokines. The rationale for this project was to investigate a combination of pharmaceutical substances influencing the NO and the Gi/Gs activations of inflammatory reactive cells in order to make the cells return into a more physiological state. The ATP-evoked Ca2+ signaling is important maybe due to increased ATP release and subsequent activation of purinergic receptors. A balance between intercellular Ca2+ signaling through gap junctions and extracellular signaling mediated by extracellular ATP may be important for physiological function. Methods Astrocytes in primary cultures were incubated with lipopolysaccharide in a physiological glucose concentration for 24 h to induce inflammatory reactivity. The probable anti-inflammatory substances sildenafil and 1α,25-Dihydroxyvitamin D3 together with endomorphin-1, naloxone, and levetiracetam, were used in the presence of high glucose concentration in the medium to restore the cells. Glutamate-, 5-HT-, and ATP-evoked intracellular Ca2+ release, Na+/K+-ATPase expression, expression of inflammatory receptors, and release of tumor necrosis factor alpha were measured. Results Sildenafil in ultralow concentration together with 1α,25-Dihydroxyvitamin D3 showed most prominent effects on the ATP-evoked intracellular Ca2+ release. The μ-opioid agonist endomorphin-1, the μ-opioid antagonist naloxone in ultralow concentration, and the antiepileptic agent levetiracetam downregulated the glutamate-evoked intracellular Ca2+ release and TLR4. The combination of the pharmaceutical substances in high glucose concentration downregulated the glutamate- and ATP-evoked Ca2+ signaling and the TLR4 expression and upregulated the Na+/K+-ATPase pump. Conclusion Pharmaceutical treatment with the combination of substances that have potential anti-inflammatory effects, which attack different biochemical mechanisms in the cells may exert decisive effects to downregulate neuroinflammation in the nervous system.
Collapse
Affiliation(s)
- Elisabeth Hansson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 3rd floor, SE 413 45, Gothenburg, Sweden.
| | - Ulrika Björklund
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 3rd floor, SE 413 45, Gothenburg, Sweden
| | - Eva Skiöldebrand
- Section of Pathology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| | - Lars Rönnbäck
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 3rd floor, SE 413 45, Gothenburg, Sweden
| |
Collapse
|
115
|
Wang B, Cheng KKY. Hypothalamic AMPK as a Mediator of Hormonal Regulation of Energy Balance. Int J Mol Sci 2018; 19:ijms19113552. [PMID: 30423881 PMCID: PMC6274700 DOI: 10.3390/ijms19113552] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022] Open
Abstract
As a cellular energy sensor and regulator, adenosine monophosphate (AMP)-activated protein kinase (AMPK) plays a pivotal role in the regulation of energy homeostasis in both the central nervous system (CNS) and peripheral organs. Activation of hypothalamic AMPK maintains energy balance by inducing appetite to increase food intake and diminishing adaptive thermogenesis in adipose tissues to reduce energy expenditure in response to food deprivation. Numerous metabolic hormones, such as leptin, adiponectin, ghrelin and insulin, exert their energy regulatory effects through hypothalamic AMPK via integration with the neural circuits. Although activation of AMPK in peripheral tissues is able to promote fatty acid oxidation and insulin sensitivity, its chronic activation in the hypothalamus causes obesity by inducing hyperphagia in both humans and rodents. In this review, we discuss the role of hypothalamic AMPK in mediating hormonal regulation of feeding and adaptive thermogenesis, and summarize the diverse underlying mechanisms by which central AMPK maintains energy homeostasis.
Collapse
Affiliation(s)
- Baile Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.
- Department of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Kenneth King-Yip Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
116
|
Alam MB, An H, Ra JS, Lim JY, Lee SH, Yoo CY, Lee SH. Gossypol from Cottonseeds Ameliorates Glucose Uptake by Mimicking Insulin Signaling and Improves Glucose Homeostasis in Mice with Streptozotocin-Induced Diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5796102. [PMID: 30510623 PMCID: PMC6230386 DOI: 10.1155/2018/5796102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/04/2018] [Accepted: 09/10/2018] [Indexed: 12/22/2022]
Abstract
Glucose absorption from the gut and glucose uptake into muscles are vital for the regulation of glucose homeostasis. In the current study, we determined if gossypol (GSP) reduces postprandial hyperglycemia or enhances glucose uptake; we also investigated the molecular mechanisms underlying those processes in vitro and in vivo. GSP strongly and concentration dependently inhibited α-glucosidase by functioning as a competitive inhibitor with IC50 value of 0.67 ± 0.44. GSP activated the insulin receptor substrate 1 (IRS-1)/protein kinase B (Akt) signaling pathways and enhanced glucose uptake through the translocation of glucose transporter 4 (GLUT4) into plasma membrane in C2C12 myotubes. Pretreatment with a specific inhibitor attenuated the in vitro effects of GSP. We used a streptozotocin-induced diabetic mouse model to assess the antidiabetic potential of GSP. Consistent with the in vitro study, a higher dose of GSP (2.5 mg/kg-1) dramatically decreased the postprandial blood glucose levels associated with the upregulated expressions of GLUT4 and the IRS-1/Akt-mediated signaling cascade in skeletal muscle. GSP treatment also significantly boosted antioxidant enzyme expression and mitigated gluconeogenesis in the liver. Collectively, these data imply that GSP has the potential in managing and preventing diabetes by ameliorating glucose uptake and improving glucose homeostasis.
Collapse
Affiliation(s)
- Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hongyan An
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jeong-Sic Ra
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji-young Lim
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seung-Hyun Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Chi-Yeol Yoo
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
117
|
Interactive Roles for AMPK and Glycogen from Cellular Energy Sensing to Exercise Metabolism. Int J Mol Sci 2018; 19:ijms19113344. [PMID: 30373152 PMCID: PMC6274970 DOI: 10.3390/ijms19113344] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/15/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022] Open
Abstract
The AMP-activated protein kinase (AMPK) is a heterotrimeric complex with central roles in cellular energy sensing and the regulation of metabolism and exercise adaptations. AMPK regulatory β subunits contain a conserved carbohydrate-binding module (CBM) that binds glycogen, the major tissue storage form of glucose. Research over the past two decades has revealed that the regulation of AMPK is impacted by glycogen availability, and glycogen storage dynamics are concurrently regulated by AMPK activity. This growing body of research has uncovered new evidence of physical and functional interactive roles for AMPK and glycogen ranging from cellular energy sensing to the regulation of whole-body metabolism and exercise-induced adaptations. In this review, we discuss recent advancements in the understanding of molecular, cellular, and physiological processes impacted by AMPK-glycogen interactions. In addition, we appraise how novel research technologies and experimental models will continue to expand the repertoire of biological processes known to be regulated by AMPK and glycogen. These multidisciplinary research advances will aid the discovery of novel pathways and regulatory mechanisms that are central to the AMPK signaling network, beneficial effects of exercise and maintenance of metabolic homeostasis in health and disease.
Collapse
|
118
|
Chauhan P, Tamrakar AK, Mahajan S, Prasad GBKS. Chitosan encapsulated nanocurcumin induces GLUT-4 translocation and exhibits enhanced anti-hyperglycemic function. Life Sci 2018; 213:226-235. [PMID: 30343126 DOI: 10.1016/j.lfs.2018.10.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/07/2018] [Accepted: 10/13/2018] [Indexed: 11/19/2022]
Abstract
AIM The present study was undertaken to develop a Curcumin nanoparticle system with chitosan as a hydrophilic carrier. In addition, the anti-diabetic potential of curcumin loaded chitosan nanoparticles were assessed in comparison to those of free curcumin by examining the anti-hyperglycemic efficacy using in vitro assays. METHODS Curcumin loaded chitosan nanoparticles were prepared and characterized for particle size by transmission electron microscopy, FT-IR, differential scanning calorimetry and therapeutic effects of curcumin loaded chitosan nanoparticles were evaluated by measuring the level of GLUT-4 present at the plasma membrane in L6myc myotubes followed by western blotting. Additionally, anti-inflammatory potential of curcumin loaded chitosan nanoparticles were assessed by enzyme immunoassay using appropriate ELISA kits. KEY FINDINGS Transmission electron microscopy revealed an average nanocurcumin particle size of 74 nm. Under in vitro conditions, treatment with chitosan-nanocurcumin (CS-NC) caused a substantial increase in the GLUT-4 translocation to the cell surface in L6 skeletal muscle cells and the effect was associated with increased phosphorylation of AKT (Ser-473) and its downstream target GSK-3β (Ser-9). SIGNIFICANCE The therapeutic potential of nanocurcumin is prominent than that of curcumin alone. Nanocurcumin could improve the solubility of curcumin and may prolong its retention in the systemic circulation.
Collapse
Affiliation(s)
- Pratibha Chauhan
- School of Studies in Biochemistry, Jiwaji University, Gwalior 474011, India
| | | | - Sunil Mahajan
- School of Studies in Biochemistry, Jiwaji University, Gwalior 474011, India
| | - G B K S Prasad
- School of Studies in Biochemistry, Jiwaji University, Gwalior 474011, India.
| |
Collapse
|
119
|
Xu C, Li XF, Shi HJ, Liu J, Zhang L, Liu WB. AMP-activated protein kinase α1 in Megalobrama amblycephala: Molecular characterization and the transcriptional modulation by nutrient restriction and glucose and insulin loadings. Gen Comp Endocrinol 2018; 267:66-75. [PMID: 29852163 DOI: 10.1016/j.ygcen.2018.05.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 05/27/2018] [Accepted: 05/27/2018] [Indexed: 11/22/2022]
Abstract
This study aimed to characterize the full-length cDNA of AMP-activated protein kinase α1 (AMPKα1) from Megalobrama amblycephala and investigate the transcriptional response of this kinase to nutrient restriction and glucose and insulin loadings. The cDNA obtained was 3545-bp long with an open reading frame of 1710 bp encoding 570 amino acids. Multiple alignments and phylogenetic analyses revealed a high degree of conservation (80-100%) among most fish, retaining one kinase domain (KD), one auto-inhibitory domain (AID), one C-terminal domain (α-CTD), one regulatory-subunit-interacting motif (α-RIM), one serine/threonine-rich loop (ST loop), one α-hook, and several phosphorylation sites. AMPKα1 mRNA was predominantly expressed in white muscle, gill, and brain tissues, whereas little was expressed in the intestines. After a fasting-refeeding trial, phosphorylation and mRNA levels of AMPKα1 were significantly greater in fish fasted for 10 days, while in re-fed fish at 1 h after re-feeding, the levels of this kinase were intermediate between those of the fish in the fed and fasted groups. Further, AMPKα1 mRNA levels were quantified in the liver and muscle tissues of fish injected intraperitoneally with 1.67 g glucose per kg body weight and 0.052 mg insulin per kg body weight, respectively. Glucose and insulin administration resulted in a significant decrease in AMPKα1 expression in both tissues with minimum values attained at 2 h and 4 h after injection, respectively. Thereafter, the expression increased significantly to the basal value at 24 h after injection, except in the liver in which the maximum value was obtained at 12 h post-glucose injection. Overall, AMPKα1 of M. amblycephala was similar to that of other vertebrates, and nutrient restriction modified its phosphorylation and mRNA levels in liver and muscle tissues. Furthermore, substantial expression of this kinase was induced in both liver and muscle tissues by glucose and insulin administration.
Collapse
Affiliation(s)
- Chao Xu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Hua-Juan Shi
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Jie Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Li Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, People's Republic of China.
| |
Collapse
|
120
|
Asrafuzzaman M, Rahman MM, Mandal M, Marjuque M, Bhowmik A, Rokeya B, Hassan Z, Faruque MO. Oyster mushroom functions as an anti-hyperglycaemic through phosphorylation of AMPK and increased expression of GLUT4 in type 2 diabetic model rats. J Taibah Univ Med Sci 2018; 13:465-471. [PMID: 31435363 PMCID: PMC6694896 DOI: 10.1016/j.jtumed.2018.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Traditionally, mushrooms have been used to reduce hyperglycaemia. However, the mechanism underlying this effect has not yet been explored. AMP-activated protein kinase (AMPK) is known to reduce hyperglycaemia through an insulin-independent pathway. This study aimed to observe the effect of oyster mushroom powder (OMP) on phosphorylation of AMPK (p-AMPK) and expression of GLUT4 mRNA in diabetic model rats. METHODS Long-Evans rats were used to develop type 2 diabetic model rats through intraperitoneal induction of streptozotocin (STZ). OMP was supplemented at 5% with the usual feed of rats for 8 consecutive weeks. Then, the rats were sacrificed. RNA was extracted by the TRIzol reagent, and proteins were extracted from different tissues with RIPA lysis buffer. Expression of GLUT4 mRNA was measured through cDNA-PCR techniques, and p-AMPK was detected using western blotting. The band intensities of the PCR products and proteins were measured using Image J software. RESULTS Supplementation of OMP for 8 weeks resulted in a reduction of the serum glucose level in STZ-induced, type 2 diabetic model rats. The levels of p-AMPK, as a ratio relative to β-actin, increased in the muscle and adipose tissues of mushroom-treated type 2 diabetic model rats, compared to those in control diabetic model rats. Expression of GLUT4, as a ratio relative to GAPDH, increased significantly in both the muscle and adipose tissues of mushroom-treated diabetic rats. CONCLUSION Oyster mushroom may decrease hyperglycaemia through increased p-AMPK and also expression of GLUT4 in the muscle and adipose tissues.
Collapse
Affiliation(s)
- Mohammad Asrafuzzaman
- Department of Physiology and Molecular Biology, Bangladesh University of Health Sciences, Dhaka, Bangladesh
| | - Mohammad M. Rahman
- Department of Applied Laboratory Science, Bangladesh University of Health Sciences, Dhaka, Bangladesh
| | - Manoj Mandal
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Mohammad Marjuque
- Department of Applied Laboratory Science, Bangladesh University of Health Sciences, Dhaka, Bangladesh
| | - Amrita Bhowmik
- Department of Applied Laboratory Science, Bangladesh University of Health Sciences, Dhaka, Bangladesh
| | - Begum Rokeya
- Department of Pharmacology, Bangladesh University of Health Sciences, Dhaka, Bangladesh
| | - Zahid Hassan
- Department of Physiology and Molecular Biology, Bangladesh University of Health Sciences, Dhaka, Bangladesh
| | - Mohammad Omar Faruque
- Department of Nutrition and Food Technology, Jessore University of Science and Technology, Jessore, Bangladesh
| |
Collapse
|
121
|
Booth A, Magnuson A, Fouts J, Wei Y, Wang D, Pagliassotti M, Foster M. Subcutaneous adipose tissue accumulation protects systemic glucose tolerance and muscle metabolism. Adipocyte 2018; 7:261-272. [PMID: 30230416 PMCID: PMC6768251 DOI: 10.1080/21623945.2018.1525252] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The protective effects of lower body subcutaneous adiposity are linked to the depot functioning as a "metabolic sink" receiving and sequestering excess lipid. This postulate, however, is based on indirect evidence. Mechanisms that mediate this protection are unknown. Here we directly examined this with progressive subcutaneous adipose tissue removal. Ad libitum chow fed mice underwent sham surgery, unilateral or bilateral removal of inguinal adipose tissue or bilateral removal of both inguinal and dorsal adipose tissue. Subsequently mice were separated into 5 week chow or 5 or 13 week HFD groups (N = 10 per group). Primary outcome measures included adipocyte distribution, muscle and liver triglycerides, glucose tolerance, circulating adipocytokines and muscle insulin sensitivity. Subcutaneous adipose tissue removal caused lipid accumulation in femoral muscle proximal to excision, however, lipid accumulation was not proportionally inverse to adipose tissue quantity excised. Accumulative adipose removal was associated with an incremental reduction in systemic glucose tolerance in 13 week HFD mice. Although insulin-stimulated pAkt/Akt did not progressively decrease among surgery groups following 13 weeks of HFD, there was a suppressed pAkt/Akt response in the non-insulin stimulated (saline-injected) 13 week HFD mice. Hence, increases in lower body subcutaneous adipose removal resulted in incremental decreases in the effectiveness of basal insulin sensitivity of femoral muscle. The current data supports that the subcutaneous depot protects systemic glucose homeostasis while also protecting proximal muscle from metabolic dysregulation and lipid accumulation. Removal of the "metabolic sink" likely leads to glucose intolerance because of decreased storage space for glucose and/or lipids.
Collapse
Affiliation(s)
- A.D. Booth
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - A.M. Magnuson
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - J. Fouts
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Y. Wei
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - D. Wang
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - M.J. Pagliassotti
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - M.T. Foster
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
122
|
Lee H, Song W. Exercise and Mitochondrial Remodeling in Skeletal Muscle in Type 2 Diabetes. J Obes Metab Syndr 2018; 27:150-157. [PMID: 31089557 PMCID: PMC6504199 DOI: 10.7570/jomes.2018.27.3.150] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/20/2018] [Accepted: 09/03/2018] [Indexed: 01/27/2023] Open
Abstract
Exercise is regarded as a potent stimulus in modulation of glucose utility and mitochondrial adaptations in skeletal muscle, leading to enhanced metabolic health. As mitochondria play a crucial role in sustaining metabolic homeostasis, and disturbances in mitochondrial function are highly linked with development of metabolic diseases, a comprehensive understanding of exercise-mediated mitochondrial remodeling under the pathophysiological condition of type 2 diabetes is warranted to develop an efficient therapeutic strategy. Although it is evident that the primary etiology of type 2 diabetes is insulin resistance, there is accumulating evidence linking abnormal mitochondrial functional and morphological properties to development of type 2 diabetes. Despite this, the precise molecular and cellular events that underline these phenomena remain uncertain. Mitochondria are highly dynamic subcellular organelles that can change mass and shape as necessary via coordinated processes such as mitochondrial fusion, fission, and biogenesis. Mitochondrial fusion is controlled by proteins, including mitofusin-1, mitofusin-2, and optic atrophy protein 1, while the fission process is mainly modulated by control of fission protein 1 and dynamin-related protein 1. Peroxisome proliferator-activated receptor gamma coactivator-1α acts as a master controller of mitochondrial biogenesis. The present review’s primary aims were to briefly discuss the cellular mechanisms of muscle fiber type-dependent glucose uptake and to highlight emerging evidence linking disturbances in mitochondrial dynamics to development of insulin resistance and type 2 diabetes. The potential for exercise to normalize type 2 diabetes-induced aberrant mitochondrial integrity is also addressed.
Collapse
Affiliation(s)
- Hojun Lee
- Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Sports and Health Science, Kyungsung University, Busan, Korea
| | - Wook Song
- Health and Exercise Science Laboratory, Institute of Sport Science, Seoul National University, Seoul, Korea.,Institute on Aging, Seoul National University, Seoul, Korea
| |
Collapse
|
123
|
Hsieh CT, Chang FR, Tsai YH, Wu YC, Hsieh TJ. 2-Bromo-4'-methoxychalcone and 2-Iodo-4'-methoxychalcone Prevent Progression of Hyperglycemia and Obesity via 5'-Adenosine-Monophosphate-Activated Protein Kinase in Diet-Induced Obese Mice. Int J Mol Sci 2018; 19:ijms19092763. [PMID: 30223438 PMCID: PMC6163633 DOI: 10.3390/ijms19092763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 12/26/2022] Open
Abstract
Obesity and diabetes are global health-threatening issues. Interestingly, the mechanism of these pathologies is quite different among individuals. The discovery and development of new categories of medicines from diverse sources are urgently needed for preventing and treating diabetes and other metabolic disorders. Previously, we reported that chalcones are important for preventing biological disorders, such as diabetes. In this study, we demonstrate that the synthetic halogen-containing chalcone derivatives 2-bromo-4′-methoxychalcone (compound 5) and 2-iodo-4′-methoxychalcone (compound 6) can promote glucose consumption and inhibit cellular lipid accumulation via 5′-adenosine-monophosphate-activated protein kinase (AMPK) activation and acetyl-CoA carboxylase 1 (ACC) phosphorylation in 3T3-L1 adipocytes and C2C12 skeletal myotubes. In addition, the two compounds significantly prevented body weight gain and impaired glucose tolerance, hyperinsulinemia, and insulin resistance, which collectively help to delay the progression of hyperglycemia in high-fat-diet-induced obese C57BL/6 mice. These findings indicate that 2-bromo-4′-methoxychalcone and 2-iodo-4′-methoxychalcone could act as AMPK activators, and may serve as lead compounds for a new class of medicines that target obesity and diabetes.
Collapse
Affiliation(s)
- Chi-Ting Hsieh
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| | - Yi-Hong Tsai
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yang-Chang Wu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Tusty-Jiuan Hsieh
- Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
124
|
Archer E, Pavela G, McDonald S, Lavie CJ, Hill JO. Cell-Specific "Competition for Calories" Drives Asymmetric Nutrient-Energy Partitioning, Obesity, and Metabolic Diseases in Human and Non-human Animals. Front Physiol 2018; 9:1053. [PMID: 30147656 PMCID: PMC6097573 DOI: 10.3389/fphys.2018.01053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/16/2018] [Indexed: 12/20/2022] Open
Abstract
The mammalian body is a complex physiologic “ecosystem” in which cells compete for calories (i.e., nutrient-energy). Axiomatically, cell-types with competitive advantages acquire a greater number of consumed calories, and when possible, increase in size and/or number. Thus, it is logical and parsimonious to posit that obesity is the competitive advantages of fat-cells (adipocytes) driving a disproportionate acquisition and storage of nutrient-energy. Accordingly, we introduce two conceptual frameworks. Asymmetric Nutrient-Energy Partitioning describes the context-dependent, cell-specific competition for calories that determines the partitioning of nutrient-energy to oxidation, anabolism, and/or storage; and Effective Caloric Intake which describes the number of calories available to constrain energy-intake via the inhibition of the sensorimotor appetitive cells in the liver and brain that govern ingestive behaviors. Inherent in these frameworks is the independence and dissociation of the energetic demands of metabolism and the neuro-muscular pathways that initiate ingestive behaviors and energy intake. As we demonstrate, if the sensorimotor cells suffer relative caloric deprivation via asymmetric competition from other cell-types (e.g., skeletal muscle- or fat-cells), energy-intake is increased to compensate for both real and merely apparent deficits in energy-homeostasis (i.e., true and false signals, respectively). Thus, we posit that the chronic positive energy balance (i.e., over-nutrition) that leads to obesity and metabolic diseases is engendered by apparent deficits (i.e., false signals) driven by the asymmetric inter-cellular competition for calories and concomitant differential partitioning of nutrient-energy to storage. These frameworks, in concert with our previous theoretic work, the Maternal Resources Hypothesis, provide a parsimonious and rigorous explanation for the rapid rise in the global prevalence of increased body and fat mass, and associated metabolic dysfunctions in humans and other mammals inclusive of companion, domesticated, laboratory, and feral animals.
Collapse
Affiliation(s)
| | - Gregory Pavela
- The University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Carl J Lavie
- School of Medicine, John Ochsner Heart and Vascular Institute, The University of Queensland, New Orleans, LA, United States
| | - James O Hill
- Center for Human Nutrition, University of Colorado Health Sciences Center, Denver, CO, United States
| |
Collapse
|
125
|
Wang T, Niu Y, Liu S, Yuan H, Liu X, Fu L. Exercise improves glucose uptake in murine myotubes through the AMPKα2-mediated induction of Sestrins. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3368-3377. [PMID: 30048751 DOI: 10.1016/j.bbadis.2018.07.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/12/2018] [Accepted: 07/18/2018] [Indexed: 11/17/2022]
Abstract
Exercise training increases insulin sensitivity. Over the past decades, considerable progress has been made in understanding the molecular basis for this important effect of physical exercise. However, the underlying mechanism is still not fully described. Recent studies have revealed that the stress responsive protein family Sestrins (SESNs) may play an important role in improving insulin sensitivity of skeletal muscle under exercise training. In this study, we aim to better understand the relationship between SESNs and AMPK in response to exercise training and the possible mechanism by which SESNs mediate glucose metabolism. We used wild type, AMPKα2+/- and AMPKα2-/- C57BL/6 mice to reveal the pathway by which 6 weeks of exercise training induced SESNs. We explored the mechanism through which SESNs regulated glucose metabolism in vitro by overexpressing or inhibiting SESNs, and inhibiting AMPK or autophagy in myotubes. We found that a 6-week exercise training regime improved oxidative metabolism, activated the insulin signaling pathway and increased the level of SESN2 and SESN3 in an AMPKα2-dependent manner. Overexpression of SESN3 or SESN2 and SESN3 together increased glucose uptake, activated the insulin signaling pathway, and promoted GLUT4 translocation in myotubes. Although inhibition of SESNs had no effect on glucose uptake, SESNs could reverse reduced glucose uptake following autophagy inhibition, and may be downstream effectors of AMPK responses in myotubes. Taken together our data show that SESNs are induced by AMPKα2 after exercise training, and SESNs, specifically SESN3, play a key role in exercise training-mediated glucose metabolism in skeletal muscle.
Collapse
Affiliation(s)
- Tianyi Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
| | - Yanmei Niu
- Department of Rehabilitation, Tianjin Medical University, Tianjin 300070, China
| | - Sujuan Liu
- Department of Anatomy and Embryology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
| | - Hairui Yuan
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Xiaolei Liu
- Department of Medicine (Hematology-Oncology), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Li Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
126
|
Abstract
CONTENT Spinal Cord Injury (SCI) results in physiological changes that markedly reduces whole-body metabolism, resulting in neurogenic obesity via adipose tissue accumulation. Adipose tissue has been implicated in the release of proinflammatory adipokines that lead to chronic, systemic inflammation, and evidence suggests these adipokines contribute to the pathogeneses of metabolic diseases that often accompany obesity. In this review, we propose the concept of neurogenic obesity through paralysis-induced adiposity as the primary source of systemic inflammation and metabolic dysfunction reported in chronic SCI. We also briefly discuss how exercise in SCI can attenuate the negative consequences of obesity-induced inflammation and its comorbidities. METHODS A MEDLINE, PubMed, Google Scholar, and ClinicalKey search was performed using the following search terms: obesity, adiposity, adipose tissue, proinflammatory adipokines, proinflammatory cytokines, metabolic dysfunction, exercise, physical activity, and spinal cord injury. All papers identified were full-text, English language papers. The reference list of identified papers was also searched for additional papers. RESULTS Research suggests that obesity in SCI results in a state of chronic, systemic inflammation primarily through proinflammatory adipokines secreted from excess adipose tissue. The reduction of adipose tissue through the use of diet and exercise demonstrates promise to combat neurogenic obesity, inflammation, and cardiometabolic dysfunction in SCI. CONCLUSION Proinflammatory adipokines may serve as biomarkers for the development of obesity-related complication in SCI. Mechanistic and interventional studies on neurogenic obesity-induced inflammation in chronic SCI are warranted.
Collapse
Affiliation(s)
- Gary J. Farkas
- Correspondence to: Gary J. Farkas Department of Physical Medicine and Rehabilitation, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, 500 University Drive, P.O. Box 850, Mail Code R120, Hershey, Pennsylvania 17033-0850, USA; Phone: 717-531-0003, x284930, 717-531-0354.
| | | |
Collapse
|
127
|
Steneberg P, Lindahl E, Dahl U, Lidh E, Straseviciene J, Backlund F, Kjellkvist E, Berggren E, Lundberg I, Bergqvist I, Ericsson M, Eriksson B, Linde K, Westman J, Edlund T, Edlund H. PAN-AMPK activator O304 improves glucose homeostasis and microvascular perfusion in mice and type 2 diabetes patients. JCI Insight 2018; 3:99114. [PMID: 29925691 DOI: 10.1172/jci.insight.99114] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/17/2018] [Indexed: 12/20/2022] Open
Abstract
AMPK activated protein kinase (AMPK), a master regulator of energy homeostasis, is activated in response to an energy shortage imposed by physical activity and caloric restriction. We here report on the identification of PAN-AMPK activator O304, which - in diet-induced obese mice - increased glucose uptake in skeletal muscle, reduced β cell stress, and promoted β cell rest. Accordingly, O304 reduced fasting plasma glucose levels and homeostasis model assessment of insulin resistance (HOMA-IR) in a proof-of-concept phase IIa clinical trial in type 2 diabetes (T2D) patients on Metformin. T2D is associated with devastating micro- and macrovascular complications, and O304 improved peripheral microvascular perfusion and reduced blood pressure both in animals and T2D patients. Moreover, like exercise, O304 activated AMPK in the heart, increased cardiac glucose uptake, reduced cardiac glycogen levels, and improved left ventricular stroke volume in mice, but it did not increase heart weight in mice or rats. Thus, O304 exhibits a great potential as a novel drug to treat T2D and associated cardiovascular complications.
Collapse
Affiliation(s)
- Pär Steneberg
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| | - Emma Lindahl
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| | - Ulf Dahl
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| | - Emmelie Lidh
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| | | | - Fredrik Backlund
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| | | | - Eva Berggren
- Betagenon AB, Tvistevägen 48, SE-907 36 Umeå, Sweden
| | | | | | - Madelene Ericsson
- Department of Medical Biosciences, Umeå University, SE-901 87 Umeå, Sweden
| | | | - Kajsa Linde
- Betagenon AB, Tvistevägen 48, SE-907 36 Umeå, Sweden
| | - Jacob Westman
- Medchemcon AB, Jonsund Blomsberg 109, SE-744 97 Järlåsa, Sweden
| | - Thomas Edlund
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden.,Betagenon AB, Tvistevägen 48, SE-907 36 Umeå, Sweden
| | - Helena Edlund
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
128
|
Ko JR, Seo DY, Park SH, Kwak HB, Kim M, Ko KS, Rhee BD, Han J. Aerobic exercise training decreases cereblon and increases AMPK signaling in the skeletal muscle of STZ-induced diabetic rats. Biochem Biophys Res Commun 2018; 501:448-453. [PMID: 29730289 DOI: 10.1016/j.bbrc.2018.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 12/17/2022]
Abstract
Cereblon (CRBN) has been reported as a negative regulator of adenosine monophosphate-activated protein kinase (AMPK). Aerobic exercise training has been shown to increase AMPK, which resulted in glucose regulation in skeletal muscle. However, the expression level of CRBN and its association with the physiological modulation of glucose are still unclear. Male Sprague-Dawley rats (5-week-old, n = 18) were assigned to control, streptozotocin (STZ, 65 mg/kg)-induced diabetic group, and STZ + exercise (STZ + EXE) group with six rats in each group. Rats in the STZ + EXE group exercised by treadmill running (20 m/min, 60 min, 4 times/week) for 8 weeks. Compared with the STZ group, blood glucose was significantly decreased in the STZ + EXE group. The skeletal muscle of rats in the STZ + EXE group showed a significant decrease in CRBN levels and an increase in AMPK, protein kinase B, peroxisome proliferator-activated receptor gamma coactivator 1-alpha, fibronectin type III domain-containing protein 5, glucose transporter type 4, superoxide dismutase 1, and uncoupling protein 3 levels. These results suggest that CRBN is a potential regulator of glucose homeostasis in the skeletal muscle. Moreover, our results suggest that aerobic exercise training may provide an important physiological treatment for type 1 diabetes by decreasing CRBN and increasing AMPK signaling in skeletal muscle.
Collapse
Affiliation(s)
- Jeong Rim Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Dae Yun Seo
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Se Hwan Park
- Department of Physical Education, Korea National University of Education, Cheongju, Republic of Korea
| | - Hyo Bum Kwak
- Department of Kinesiology, Inha University, Incheon, Republic of Korea
| | - Min Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Kyung Soo Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Byoung Doo Rhee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea.
| |
Collapse
|
129
|
Naowaboot J, Wannasiri S, Pannangpetch P. Vernonia cinerea water extract improves insulin resistance in high-fat diet-induced obese mice. Nutr Res 2018; 56:51-60. [PMID: 30055774 DOI: 10.1016/j.nutres.2018.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/17/2018] [Accepted: 04/27/2018] [Indexed: 12/17/2022]
Abstract
Vernonia cinerea (V cinerea) is a plant distributed in grassy areas in Southeast Asia and has several pharmacological effects, including antidiabetic activity. However, the information available regarding the effect of V cinerea on insulin resistance in high-fat diet (HFD)-induced obese mice is not yet determined. We hypothesized that V cinerea water extract (VC) improves insulin sensitivity in HFD-induced obese mice by modulating both phosphatidylinositol-3-kinase (PI3K) and adenosine monophosphate-activated protein kinase (AMPK) pathways in liver, skeletal muscle, and adipose tissue. Obesity was induced in mice from the Institute for Cancer Research by feeding an HFD 188.28 kJ (45 kcal % lard fat) for 12 weeks. During the last 6 weeks of the HFD, obese mice were treated with VC (250 and 500 mg/kg). We found that VC at both doses significantly reduced the hyperglycemia, hyperinsulinemia, hyperleptinemia, and hyperlipidemia. Obese mice treated with VC could increase serum adiponectin but reduce the proinflammatory cytokines, tumor necrosis factor-α, and monocyte chemoattractant protein-1. The extracts decreased triglyceride storage in liver and skeletal muscle of obese mice. The average size of fat cells was smaller in VC-treated groups than that of the HFD group. The protein expressions of PI3K and AMPK pathways in liver, skeletal muscle, and adipose tissue were upregulated (increased phosphorylation of PI3K, protein kinase B, AMPK, and acetyl-CoA carboxylase) by VC treatment. Furthermore, the glucose transporter 4 was increased in muscle and adipose tissue in obese mice treated with VC. These data indicate that VC treatment stimulates phosphorylation of PI3K and AMPK pathways in liver, muscle, and adipose tissue. Stimulating these pathways may improve impaired glucose and lipid homeostasis in an HFD-induced obesity mouse model. Based on these findings, it appears that VC has potential as a functional food or therapeutic agent in management of insulin resistance related diseases, such as type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Jarinyaporn Naowaboot
- Division of Pharmacology, Department of Preclinical Science, Faculty of Medicine, Thammasat University (Rangsit Campus), Pathum Thani 12120, Thailand.
| | - Supaporn Wannasiri
- Division of Physiology, Department of Preclinical Science, Faculty of Medicine, Thammasat University (Rangsit Campus), Pathum Thani 12120, Thailand
| | | |
Collapse
|
130
|
Archer E. In Defense of Sugar: A Critique of Diet-Centrism. Prog Cardiovasc Dis 2018; 61:10-19. [PMID: 29727610 DOI: 10.1016/j.pcad.2018.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 04/28/2018] [Indexed: 12/17/2022]
Abstract
Sugars are foundational to biological life and played essential roles in human evolution and dietary patterns for most of recorded history. The simple sugar glucose is so central to human health that it is one of the World Health Organization's Essential Medicines. Given these facts, it defies both logic and a large body of scientific evidence to claim that sugars and other nutrients that played fundamental roles in the substantial improvements in life- and health-spans over the past century are now suddenly responsible for increments in the prevalence of obesity and chronic non-communicable diseases. Thus, the purpose of this review is to provide a rigorous, evidence-based challenge to 'diet-centrism' and the disease-mongering of dietary sugar. The term 'diet-centrism' describes the naïve tendency of both researchers and the public to attribute a wide-range of negative health outcomes exclusively to dietary factors while neglecting the essential and well-established role of individual differences in nutrient-metabolism. The explicit conflation of dietary intake with both nutritional status and health inherent in 'diet-centrism' contravenes the fact that the human body is a complex biologic system in which the effects of dietary factors are dependent on the current state of that system. Thus, macronutrients cannot have health or metabolic effects independent of the physiologic context of the consuming individual (e.g., physical activity level). Therefore, given the unscientific hyperbole surrounding dietary sugars, I take an adversarial position and present highly-replicated evidence from multiple domains to show that 'diet' is a necessary but trivial factor in metabolic health, and that anti-sugar rhetoric is simply diet-centric disease-mongering engendered by physiologic illiteracy. My position is that dietary sugars are not responsible for obesity or metabolic diseases and that the consumption of simple sugars and sugar-polymers (e.g., starches) up to 75% of total daily caloric intake is innocuous in healthy individuals.
Collapse
|
131
|
Structural Determinants for Small-Molecule Activation of Skeletal Muscle AMPK α2β2γ1 by the Glucose Importagog SC4. Cell Chem Biol 2018; 25:728-737.e9. [PMID: 29657085 DOI: 10.1016/j.chembiol.2018.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/31/2018] [Accepted: 03/19/2018] [Indexed: 12/20/2022]
Abstract
The AMP-activated protein kinase (AMPK) αβγ heterotrimer regulates cellular energy homeostasis with tissue-specific isoform distribution. Small-molecule activation of skeletal muscle α2β2 AMPK complexes may prove a valuable treatment strategy for type 2 diabetes and insulin resistance. Herein, we report the small-molecule SC4 is a potent, direct AMPK activator that preferentially activates α2 complexes and stimulates skeletal muscle glucose uptake. In parallel with the term secretagog, we propose "importagog" to define a substance that induces or augments cellular uptake of another substance. Three-dimensional structures of the glucose importagog SC4 bound to activated α2β2γ1 and α2β1γ1 complexes reveal binding determinants, in particular a key interaction between the SC4 imidazopyridine 4'-nitrogen and β2-Asp111, which provide a design paradigm for β2-AMPK therapeutics. The α2β2γ1/SC4 structure reveals an interaction between a β2 N-terminal α helix and the α2 autoinhibitory domain. Our results provide a structure-function guide to accelerate development of potent, but importantly tissue-specific, β2-AMPK therapeutics.
Collapse
|
132
|
Tobias IS, Lazauskas KK, Arevalo JA, Bagley JR, Brown LE, Galpin AJ. Fiber type-specific analysis of AMPK isoforms in human skeletal muscle: advancement in methods via capillary nanoimmunoassay. J Appl Physiol (1985) 2018; 124:840-849. [DOI: 10.1152/japplphysiol.00894.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human skeletal muscle is a heterogeneous mixture of multiple fiber types (FT). Unfortunately, present methods for FT-specific study are constrained by limits of protein detection in single-fiber samples. These limitations beget compensatory resource-intensive procedures, ultimately dissuading investigators from pursuing FT-specific research. Additionally, previous studies neglected hybrid FT, confining their analyses to only pure FT. Here we present novel methods of protein detection across a wider spectrum of human skeletal muscle FT using fully automated capillary nanoimmunoassay (CNIA) technology. CNIA allowed a ~20-fold-lower limit of 5′-AMP-activated protein kinase (AMPK) detection compared with Western blotting. We then performed FT-specific assessment of AMPK expression as a proof of concept. Individual human muscle fibers were mechanically isolated, dissolved, and myosin heavy chain (MHC) fiber typed via SDS-PAGE. Single-fiber samples were combined in pairs and grouped into MHC I, MHC I/IIa, MHC IIa, and MHC IIa/IIx for expression analysis of AMPK isoforms α1, α2, β1, β2, γ2, and γ3 with a tubulin loading control. Significant FT-specific differences were found for α2 (1.7-fold higher in MHC IIa and MHC IIa/IIx vs. others), γ2 (2.5-fold higher in MHC IIa vs. others), and γ3 (2-fold higher in MHC IIa and 4-fold higher in MHC IIa/IIx vs. others). Development of a protocol that combines the efficient and sensitive CNIA technology with comprehensive SDS-PAGE fiber typing marks an important advancement in FT-specific research because it allows more precise study of the molecular mechanisms governing metabolism, adaptation, and regulation in human muscle. NEW & NOTEWORTHY We demonstrate the viability of applying capillary nanoimmunoassay technology to the study of fiber type-specific protein analysis in human muscle fibers. This novel technique enables a ~20-fold-lower limit of protein detection compared with traditional Western blotting methods. Combined with SDS-PAGE methods of fiber typing, we apply this technique to compare 5′-AMP-activated protein kinase isoform expression in myosin heavy chain (MHC) I, MHC I/IIa, MHC IIa, and MHC IIa/IIx fiber types.
Collapse
Affiliation(s)
- Irene S. Tobias
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| | - Kara K. Lazauskas
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| | - Jose A. Arevalo
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| | - James R. Bagley
- Muscle Physiology Laboratory, Department of Kinesiology, San Francisco State University, San Francisco, California
| | - Lee E. Brown
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| | - Andrew J. Galpin
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| |
Collapse
|
133
|
|
134
|
Castro V, Skowronska M, Lombardi J, He J, Seth N, Velichkovska M, Toborek M. Occludin regulates glucose uptake and ATP production in pericytes by influencing AMP-activated protein kinase activity. J Cereb Blood Flow Metab 2018; 38:317-332. [PMID: 28718701 PMCID: PMC5951017 DOI: 10.1177/0271678x17720816] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Energetic regulation at the blood-brain barrier is critical for maintaining its integrity, transport capabilities, and brain demands for glucose. However, the underlying mechanisms that regulate these processes are still poorly explored. We recently characterized the protein occludin as a NADH oxidase and demonstrated its influence on the expression and activation of the histone deacetylase SIRT-1. Because SIRT-1 works in concert with AMP-activated protein kinase (AMPK) (AMPK), we investigated the impact of occludin on this metabolic switch. Here we show that in blood-brain barrier pericytes, occludin promotes AMPK expression and activation, influencing the expression of glucose transporters GLUT-1 and GLUT-4, glucose uptake, and ATP content. Furthermore, occludin expression, AMP-dependent protein kinase activity, and glucose uptake were altered under inflammatory (TNFα) and infectious (HIV) conditions. We also show that pericytes share glucose and mitochondria with astrocytes, and that occludin levels modify the ability of pericytes to share those energetic resources. In addition, we demonstrate that murine mitochondria can be transferred from live brain microvessels to energetically impaired human astrocytes, promoting their survival. Our findings demonstrate that occludin plays an important role in blood-brain barrier pericyte metabolism by influencing AMPK protein kinase activity, glucose uptake, ATP production, and by regulating the ability of pericytes to interact metabolically with astrocytes.
Collapse
Affiliation(s)
- Victor Castro
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Marta Skowronska
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jorge Lombardi
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jane He
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Neil Seth
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Martina Velichkovska
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
135
|
Feng D, Biftu T, Romero FA, Kekec A, Dropinski J, Kassick A, Xu S, Kurtz MM, Gollapudi A, Shao Q, Yang X, Lu K, Zhou G, Kemp D, Myers RW, Guan HP, Trujillo ME, Li C, Weber A, Sebhat IK. Discovery of MK-8722: A Systemic, Direct Pan-Activator of AMP-Activated Protein Kinase. ACS Med Chem Lett 2018; 9:39-44. [PMID: 29348809 DOI: 10.1021/acsmedchemlett.7b00417] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023] Open
Abstract
5'-Adenosine monophosphate-activated protein kinase (AMPK) is a key regulator of mammalian energy homeostasis and has been implicated in mediating many of the beneficial effects of exercise and weight loss including lipid and glucose trafficking. As such, the enzyme has long been of interest as a target for the treatment of Type 2 Diabetes Mellitus. We describe the optimization of β1-selective, liver-targeted AMPK activators and their evolution into systemic pan-activators capable of acutely lowering glucose in mouse models. Identifying surrogates for the key acid moiety in early generation compounds proved essential in improving β2-activation and in balancing improvements in plasma unbound fraction while avoiding liver sequestration.
Collapse
Affiliation(s)
- Danqing Feng
- Medicinal
Chemistry, ‡PPDM Preclinical ADME, §In Vitro Pharmacology, ∥In Vivo Pharmacology, and ⊥Biology-Discovery
Departments, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Tesfaye Biftu
- Medicinal
Chemistry, ‡PPDM Preclinical ADME, §In Vitro Pharmacology, ∥In Vivo Pharmacology, and ⊥Biology-Discovery
Departments, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - F. Anthony Romero
- Medicinal
Chemistry, ‡PPDM Preclinical ADME, §In Vitro Pharmacology, ∥In Vivo Pharmacology, and ⊥Biology-Discovery
Departments, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Ahmet Kekec
- Medicinal
Chemistry, ‡PPDM Preclinical ADME, §In Vitro Pharmacology, ∥In Vivo Pharmacology, and ⊥Biology-Discovery
Departments, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - James Dropinski
- Medicinal
Chemistry, ‡PPDM Preclinical ADME, §In Vitro Pharmacology, ∥In Vivo Pharmacology, and ⊥Biology-Discovery
Departments, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Andrew Kassick
- Medicinal
Chemistry, ‡PPDM Preclinical ADME, §In Vitro Pharmacology, ∥In Vivo Pharmacology, and ⊥Biology-Discovery
Departments, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Shiyao Xu
- Medicinal
Chemistry, ‡PPDM Preclinical ADME, §In Vitro Pharmacology, ∥In Vivo Pharmacology, and ⊥Biology-Discovery
Departments, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Marc M. Kurtz
- Medicinal
Chemistry, ‡PPDM Preclinical ADME, §In Vitro Pharmacology, ∥In Vivo Pharmacology, and ⊥Biology-Discovery
Departments, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Anantha Gollapudi
- Medicinal
Chemistry, ‡PPDM Preclinical ADME, §In Vitro Pharmacology, ∥In Vivo Pharmacology, and ⊥Biology-Discovery
Departments, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Qing Shao
- Medicinal
Chemistry, ‡PPDM Preclinical ADME, §In Vitro Pharmacology, ∥In Vivo Pharmacology, and ⊥Biology-Discovery
Departments, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Xiaodong Yang
- Medicinal
Chemistry, ‡PPDM Preclinical ADME, §In Vitro Pharmacology, ∥In Vivo Pharmacology, and ⊥Biology-Discovery
Departments, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Ku Lu
- Medicinal
Chemistry, ‡PPDM Preclinical ADME, §In Vitro Pharmacology, ∥In Vivo Pharmacology, and ⊥Biology-Discovery
Departments, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Gaochao Zhou
- Medicinal
Chemistry, ‡PPDM Preclinical ADME, §In Vitro Pharmacology, ∥In Vivo Pharmacology, and ⊥Biology-Discovery
Departments, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Daniel Kemp
- Medicinal
Chemistry, ‡PPDM Preclinical ADME, §In Vitro Pharmacology, ∥In Vivo Pharmacology, and ⊥Biology-Discovery
Departments, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Robert W. Myers
- Medicinal
Chemistry, ‡PPDM Preclinical ADME, §In Vitro Pharmacology, ∥In Vivo Pharmacology, and ⊥Biology-Discovery
Departments, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Hong-Ping Guan
- Medicinal
Chemistry, ‡PPDM Preclinical ADME, §In Vitro Pharmacology, ∥In Vivo Pharmacology, and ⊥Biology-Discovery
Departments, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Maria E. Trujillo
- Medicinal
Chemistry, ‡PPDM Preclinical ADME, §In Vitro Pharmacology, ∥In Vivo Pharmacology, and ⊥Biology-Discovery
Departments, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Cai Li
- Medicinal
Chemistry, ‡PPDM Preclinical ADME, §In Vitro Pharmacology, ∥In Vivo Pharmacology, and ⊥Biology-Discovery
Departments, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Ann Weber
- Medicinal
Chemistry, ‡PPDM Preclinical ADME, §In Vitro Pharmacology, ∥In Vivo Pharmacology, and ⊥Biology-Discovery
Departments, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Iyassu K. Sebhat
- Medicinal
Chemistry, ‡PPDM Preclinical ADME, §In Vitro Pharmacology, ∥In Vivo Pharmacology, and ⊥Biology-Discovery
Departments, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| |
Collapse
|
136
|
Kjøbsted R, Hingst JR, Fentz J, Foretz M, Sanz MN, Pehmøller C, Shum M, Marette A, Mounier R, Treebak JT, Wojtaszewski JFP, Viollet B, Lantier L. AMPK in skeletal muscle function and metabolism. FASEB J 2018; 32:1741-1777. [PMID: 29242278 PMCID: PMC5945561 DOI: 10.1096/fj.201700442r] [Citation(s) in RCA: 320] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skeletal muscle possesses a remarkable ability to adapt to various physiologic conditions. AMPK is a sensor of intracellular energy status that maintains energy stores by fine-tuning anabolic and catabolic pathways. AMPK’s role as an energy sensor is particularly critical in tissues displaying highly changeable energy turnover. Due to the drastic changes in energy demand that occur between the resting and exercising state, skeletal muscle is one such tissue. Here, we review the complex regulation of AMPK in skeletal muscle and its consequences on metabolism (e.g., substrate uptake, oxidation, and storage as well as mitochondrial function of skeletal muscle fibers). We focus on the role of AMPK in skeletal muscle during exercise and in exercise recovery. We also address adaptations to exercise training, including skeletal muscle plasticity, highlighting novel concepts and future perspectives that need to be investigated. Furthermore, we discuss the possible role of AMPK as a therapeutic target as well as different AMPK activators and their potential for future drug development.—Kjøbsted, R., Hingst, J. R., Fentz, J., Foretz, M., Sanz, M.-N., Pehmøller, C., Shum, M., Marette, A., Mounier, R., Treebak, J. T., Wojtaszewski, J. F. P., Viollet, B., Lantier, L. AMPK in skeletal muscle function and metabolism.
Collapse
Affiliation(s)
- Rasmus Kjøbsted
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Janne R Hingst
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Fentz
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Marc Foretz
- INSERM, Unité 1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maria-Nieves Sanz
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland, and.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Christian Pehmøller
- Internal Medicine Research Unit, Pfizer Global Research and Development, Cambridge, Massachusetts, USA
| | - Michael Shum
- Axe Cardiologie, Quebec Heart and Lung Research Institute, Laval University, Québec, Canada.,Institute for Nutrition and Functional Foods, Laval University, Québec, Canada
| | - André Marette
- Axe Cardiologie, Quebec Heart and Lung Research Institute, Laval University, Québec, Canada.,Institute for Nutrition and Functional Foods, Laval University, Québec, Canada
| | - Remi Mounier
- Institute NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM Unité 1217, CNRS UMR, Villeurbanne, France
| | - Jonas T Treebak
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Benoit Viollet
- INSERM, Unité 1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA.,Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
137
|
Wang P, Jiang L, Zhou N, Zhou H, Liu H, Zhao W, Zhang H, Zhang X, Hu Z. Resveratrol ameliorates autophagic flux to promote functional recovery in rats after spinal cord injury. Oncotarget 2018; 9:8427-8440. [PMID: 29492205 PMCID: PMC5823559 DOI: 10.18632/oncotarget.23877] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/08/2017] [Indexed: 12/15/2022] Open
Abstract
Resveratrol is known to improve functional recovery after spinal cord injury, but the exact mechanism involved is yet unclear. The aim of this study was to clarify whether resveratrol can exert neuroprotective effects via activating neuronal autophagic flux, in view of the underlying role of the autophagic flux mediated by resveratrol on neuronal apoptosis after spinal cord injury, and identify the role of the liver kinase B1(LKB1)/adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)/ p70 ribosomal protein S6 kinase (p70s6k) signal pathway in the autophagic flux mediated by resveratrol. The results obtained strongly indicate that resveratrol improved functional recovery in Sprague–Dawley rats after acute spinal cord injury, preserved their motor neurons, alleviated the neuronal apoptosis, and ameliorated neuronal autophagic flux. After blocking the autophagic flux, the neuroprotective effects of resveratrol were eliminated. Furthermore, it was proved that resveratrol can activate the LKB1/AMPK/mTOR/p70s6k pathway in vivo and in vitro, and the LKB1/AMPK/mTOR/p70s6k pathway plays a vital role in activating the autophagic flux mediated by resveratrol in PC12 cells. Thus, resveratrol enables to ameliorate neuronal autophagic flux via the LKB1/AMPK/mTOR/p70s6k pathway to alleviate apoptosis, and finally ameliorating functional recovery after acute SCI in SD rats.
Collapse
Affiliation(s)
- Peng Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lizhu Jiang
- Department of Otorhinolaryngology Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Nian Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hao Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Huzhe Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wenrui Zhao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hanxiang Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiang Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhenming Hu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
138
|
Nielsen TL, Pinós T, Brull A, Vissing J, Krag TO. Exercising with blocked muscle glycogenolysis: Adaptation in the McArdle mouse. Mol Genet Metab 2018; 123:21-27. [PMID: 29174367 DOI: 10.1016/j.ymgme.2017.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND McArdle disease (glycogen storage disease type V) is an inborn error of skeletal muscle metabolism, which affects glycogen phosphorylase (myophosphorylase) activity leading to an inability to break down glycogen. Patients with McArdle disease are exercise intolerant, as muscle glycogen-derived glucose is unavailable during exercise. Metabolic adaptation to blocked muscle glycogenolysis occurs at rest in the McArdle mouse model, but only in highly glycolytic muscle. However, it is unknown what compensatory metabolic adaptations occur during exercise in McArdle disease. METHODS In this study, 8-week old McArdle and wild-type mice were exercised on a treadmill until exhausted. Dissected muscles were compared with non-exercised, age-matched McArdle and wild-type mice for histology and activation and expression of proteins involved in glucose uptake and glycogenolysis. RESULTS Investigation of expression and activation of proteins involved in glycolytic flux revealed that in glycolytic, but not oxidative muscle from exercised McArdle mice, the glycolytic flux had changed compared to that in wild-type mice. Specifically, exercise triggered in glycolytic muscle a differentiated activation of insulin receptor, 5' adenosine monophosphate-activated protein kinase, Akt and hexokinase II expression, while inhibiting glycogen synthase, suggesting that the need and adapted ability to take up blood glucose and use it for metabolism or glycogen storage is different among the investigated muscles. CONCLUSION The main finding of the study is that McArdle mouse muscles appear to adapt to the energy crisis by increasing expression and activation of proteins involved in blood glucose metabolism in response to exercise in the same directional way across the investigated muscles.
Collapse
Affiliation(s)
- Tue L Nielsen
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Tomàs Pinós
- Mitochondrial Pathology and Neuromuscular Disorders Laboratory, Vall d'Hebron Research Institute, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| | - Astrid Brull
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS_974, CNRS FRE 3617, Center of Research in Myology, F-75013 Paris, France
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Thomas O Krag
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
139
|
Kido K, Ato S, Yokokawa T, Makanae Y, Sato K, Fujita S. Acute resistance exercise-induced IGF1 expression and subsequent GLUT4 translocation. Physiol Rep 2017; 4:4/16/e12907. [PMID: 27550988 PMCID: PMC5002915 DOI: 10.14814/phy2.12907] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 11/29/2022] Open
Abstract
Acute aerobic exercise (AE) is a major physiological stimulus for skeletal muscle glucose uptake through activation of 5′ AMP‐activated protein kinase (AMPK). However, the regulation of glucose uptake by acute resistance exercise (RE) remains unclear. To investigate the intracellular regulation of glucose uptake after acute RE versus acute AE, male Sprague–Dawley rats were divided into three groups: RE, AE, or nonexercise control. After fasting for 12 h overnight, the right gastrocnemius muscle in the RE group was exercised at maximum isometric contraction via percutaneous electrical stimulation (3 × 10 sec, 5 sets). The AE group ran on a treadmill (25 m/min, 60 min). Muscle samples were taken 0, 1, and 3 h after completion of the exercises. AMPK, Ca2+/calmodulin‐dependent protein kinase II, and TBC1D1 phosphorylation were increased immediately after both forms of exercise and returned to baseline levels by 3 h. Muscle IGF1 expression was increased by RE but not AE, and maintained until 3 h after RE. Additionally, Akt and AS160 phosphorylation were sustained for 3 h after RE, whereas they returned to baseline levels by 3 h after AE. Similarly, GLUT4 translocation remained elevated 3 h after RE, although it returned to the baseline level by 3 h after AE. Overall, this study showed that AMPK/TBC1D1 and IGF1/Akt/AS160 signaling were enhanced by acute RE, and that GLUT4 translocation after acute RE was more prolonged than after acute AE. These results suggest that acute RE‐induced increases in intramuscular IGF1 expression might be a distinct regulator of GLUT4 translocation.
Collapse
Affiliation(s)
- Kohei Kido
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Satoru Ato
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Takumi Yokokawa
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Yuhei Makanae
- Department of Physical Education, National Defense Academy, Yokosuka, Japan
| | - Koji Sato
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Satoshi Fujita
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| |
Collapse
|
140
|
Dynamic transcriptomic analysis in hircine longissimus dorsi muscle from fetal to neonatal development stages. Funct Integr Genomics 2017; 18:43-54. [PMID: 28993898 DOI: 10.1007/s10142-017-0573-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/11/2017] [Indexed: 12/25/2022]
Abstract
Muscle growth and development from fetal to neonatal stages consist of a series of delicately regulated and orchestrated changes in expression of genes. In this study, we performed whole transcriptome profiling based on RNA-Seq of caprine longissimus dorsi muscle tissue obtained from prenatal stages (days 45, 60, and 105 of gestation) and neonatal stage (the 3-day-old newborn) to identify genes that are differentially expressed and investigate their temporal expression profiles. A total of 3276 differentially expressed genes (DEGs) were identified (Q value < 0.01). Time-series expression profile clustering analysis indicated that DEGs were significantly clustered into eight clusters which can be divided into two classes (Q value < 0.05), class I profiles with downregulated patterns and class II profiles with upregulated patterns. Based on cluster analysis, GO enrichment analysis found that 75, 25, and 8 terms to be significantly enriched in biological process (BP), cellular component (CC), and molecular function (MF) categories in class I profiles, while 35, 21, and 8 terms to be significantly enriched in BP, CC, and MF in class II profiles. KEGG pathway analysis revealed that DEGs from class I profiles were significantly enriched in 22 pathways and the most enriched pathway was Rap1 signaling pathway. DEGs from class II profiles were significantly enriched in 17 pathways and the mainly enriched pathway was AMPK signaling pathway. Finally, six selected DEGs from our sequencing results were confirmed by qPCR. Our study provides a comprehensive understanding of the molecular mechanisms during goat skeletal muscle development from fetal to neonatal stages and valuable information for future studies of muscle development in goats.
Collapse
|
141
|
Adil M, Mansoori MN, Singh D, Kandhare AD, Sharma M. Pioglitazone-induced bone loss in diabetic rats and its amelioration by berberine: A portrait of molecular crosstalk. Biomed Pharmacother 2017; 94:1010-1019. [DOI: 10.1016/j.biopha.2017.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/30/2017] [Accepted: 08/01/2017] [Indexed: 12/24/2022] Open
|
142
|
Myers RW, Guan HP, Ehrhart J, Petrov A, Prahalada S, Tozzo E, Yang X, Kurtz MM, Trujillo M, Gonzalez Trotter D, Feng D, Xu S, Eiermann G, Holahan MA, Rubins D, Conarello S, Niu X, Souza SC, Miller C, Liu J, Lu K, Feng W, Li Y, Painter RE, Milligan JA, He H, Liu F, Ogawa A, Wisniewski D, Rohm RJ, Wang L, Bunzel M, Qian Y, Zhu W, Wang H, Bennet B, LaFranco Scheuch L, Fernandez GE, Li C, Klimas M, Zhou G, van Heek M, Biftu T, Weber A, Kelley DE, Thornberry N, Erion MD, Kemp DM, Sebhat IK. Systemic pan-AMPK activator MK-8722 improves glucose homeostasis but induces cardiac hypertrophy. Science 2017; 357:507-511. [PMID: 28705990 DOI: 10.1126/science.aah5582] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 05/04/2017] [Accepted: 06/21/2017] [Indexed: 12/26/2022]
Abstract
5'-Adenosine monophosphate-activated protein kinase (AMPK) is a master regulator of energy homeostasis in eukaryotes. Despite three decades of investigation, the biological roles of AMPK and its potential as a drug target remain incompletely understood, largely because of a lack of optimized pharmacological tools. We developed MK-8722, a potent, direct, allosteric activator of all 12 mammalian AMPK complexes. In rodents and rhesus monkeys, MK-8722-mediated AMPK activation in skeletal muscle induced robust, durable, insulin-independent glucose uptake and glycogen synthesis, with resultant improvements in glycemia and no evidence of hypoglycemia. These effects translated across species, including diabetic rhesus monkeys, but manifested with concomitant cardiac hypertrophy and increased cardiac glycogen without apparent functional sequelae.
Collapse
Affiliation(s)
- Robert W Myers
- In Vitro Pharmacology, Merck Research Laboratories, Kenilworth, NJ 07033, USA.
| | - Hong-Ping Guan
- Biology-Discovery, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Juliann Ehrhart
- Safety Assessment and Laboratory Animal Resources, Merck Research Laboratories, West Point, PA 19486, USA
| | - Aleksandr Petrov
- Biology-Discovery, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Srinivasa Prahalada
- Safety Assessment and Laboratory Animal Resources, Merck Research Laboratories, West Point, PA 19486, USA
| | - Effie Tozzo
- Biology-Discovery, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Xiaodong Yang
- Biology-Discovery, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Marc M Kurtz
- In Vitro Pharmacology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Maria Trujillo
- In Vivo Pharmacology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Dinko Gonzalez Trotter
- Translational Imaging and Biomarkers Departments, Merck Research Laboratories, West Point, PA 19486, USA
| | - Danqing Feng
- Medicinal Chemistry, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Shiyao Xu
- PPDM Preclinical ADME Departments, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - George Eiermann
- In Vivo Pharmacology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Marie A Holahan
- Translational Imaging and Biomarkers Departments, Merck Research Laboratories, West Point, PA 19486, USA
| | - Daniel Rubins
- Translational Imaging and Biomarkers Departments, Merck Research Laboratories, West Point, PA 19486, USA
| | - Stacey Conarello
- In Vivo Pharmacology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Xiaoda Niu
- In Vitro Pharmacology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Sandra C Souza
- Biology-Discovery, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Corin Miller
- Translational Imaging and Biomarkers Departments, Merck Research Laboratories, West Point, PA 19486, USA
| | - Jinqi Liu
- Biology-Discovery, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Ku Lu
- Biology-Discovery, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Wen Feng
- In Vitro Pharmacology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Ying Li
- Biology-Discovery, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Ronald E Painter
- In Vitro Pharmacology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - James A Milligan
- In Vitro Pharmacology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Huaibing He
- PPDM Preclinical ADME Departments, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Franklin Liu
- Biology-Discovery, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Aimie Ogawa
- In Vitro Pharmacology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Douglas Wisniewski
- In Vitro Pharmacology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Rory J Rohm
- Biology-Discovery, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Liyang Wang
- In Vitro Pharmacology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Michelle Bunzel
- Translational Imaging and Biomarkers Departments, Merck Research Laboratories, West Point, PA 19486, USA
| | - Ying Qian
- Biology-Discovery, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Wei Zhu
- Biology-Discovery, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Hongwu Wang
- Medicinal Chemistry, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Bindu Bennet
- Safety Assessment and Laboratory Animal Resources, Merck Research Laboratories, West Point, PA 19486, USA
| | - Lisa LaFranco Scheuch
- Safety Assessment and Laboratory Animal Resources, Merck Research Laboratories, West Point, PA 19486, USA
| | - Guillermo E Fernandez
- Safety Assessment and Laboratory Animal Resources, Merck Research Laboratories, West Point, PA 19486, USA
| | - Cai Li
- In Vivo Pharmacology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Michael Klimas
- Translational Imaging and Biomarkers Departments, Merck Research Laboratories, West Point, PA 19486, USA
| | - Gaochao Zhou
- In Vitro Pharmacology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Margaret van Heek
- In Vivo Pharmacology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Tesfaye Biftu
- Medicinal Chemistry, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Ann Weber
- Medicinal Chemistry, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - David E Kelley
- Biology-Discovery, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Nancy Thornberry
- Biology-Discovery, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Mark D Erion
- Biology-Discovery, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Daniel M Kemp
- Biology-Discovery, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Iyassu K Sebhat
- Medicinal Chemistry, Merck Research Laboratories, Kenilworth, NJ 07033, USA.
| |
Collapse
|
143
|
Manna P, Achari AE, Jain SK. Vitamin D supplementation inhibits oxidative stress and upregulate SIRT1/AMPK/GLUT4 cascade in high glucose-treated 3T3L1 adipocytes and in adipose tissue of high fat diet-fed diabetic mice. Arch Biochem Biophys 2017; 615:22-34. [DOI: 10.1016/j.abb.2017.01.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/14/2016] [Accepted: 01/03/2017] [Indexed: 01/08/2023]
|
144
|
Piperine regulates UCP1 through the AMPK pathway by generating intracellular lactate production in muscle cells. Sci Rep 2017; 7:41066. [PMID: 28117414 PMCID: PMC5259784 DOI: 10.1038/srep41066] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/14/2016] [Indexed: 12/19/2022] Open
Abstract
This study characterizes the human metabolic response to piperine, a curcumin extract, and the details of its underlying molecular mechanism. Using 1H-NMR-based metabolome analysis, we showed the metabolic effect of piperine on skeletal muscle and found that piperine increased the level of intracellular lactate, an important metabolic intermediate that controls expression of several genes involved in mitochondrial activity. Piperine also induced the phosphorylation of AMP-activated protein kinase (AMPK) and its downstream target, acetyl-CoA carboxylase (ACC), while additionally stimulating glucose uptake in an AMPK dependent manner. Piperine also stimulates the p38 mitogen-activated protein kinase (p38 MAPK), an effect that was reversed by pretreatment with compound C, an AMPK inhibitor. Inhibition of p38 MAPK resulted in no piperine-induced glucose uptake. Increased level of lactate resulted in increased expression of mitochondrial uncoupling protein 1 (UCP1), which regulates energy expenditure, thermogenesis, and fat browning. Knock-down of AMPK blocked piperine-induced UCP1 up-regulation, demonstrating the required role of AMPK in this effect. Taken together, these results suggest that piperine leads to benign metabolic effects by activating the AMPK-p38 MAPK signaling pathway and UCP1 expression by activating intracellular lactate production in skeletal muscle.
Collapse
|
145
|
Teng H, Chen L, Fang T, Yuan B, Lin Q. Rb2 inhibits α-glucosidase and regulates glucose metabolism by activating AMPK pathways in HepG2 cells. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.10.033] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
146
|
Wang BF, Yoshioka J. The Emerging Role of Thioredoxin-Interacting Protein in Myocardial Ischemia/Reperfusion Injury. J Cardiovasc Pharmacol Ther 2016; 22:219-229. [PMID: 27807222 DOI: 10.1177/1074248416675731] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Myocardial ischemia/reperfusion injury represents a major threat to human health and contributes to adverse cardiovascular outcomes worldwide. Despite the identification of numerous molecular mechanisms, understanding of the complex pathophysiology of this clinical syndrome remains incomplete. Thioredoxin-interacting protein (Txnip) has been of great interest in the past decade since it has been reported to be a critical regulator in human diseases with several important cellular functions. Thioredoxin-interacting protein binds to and inhibits thioredoxin, a redox protein that neutralizes reactive oxygen species (ROS), and through its interaction with thioredoxin, Txnip sensitizes cardiomyocytes to ROS-induced apoptosis. Interestingly, evidence from recent studies also suggests that some of the effects of Txnip may be unrelated to changes in thioredoxin activity. These pleiotropic effects of Txnip are mediated by interactions with other signaling molecules, such as nod-like receptor pyrin domain-containing 3 inflammasome and glucose transporter 1. Indeed, Txnip has been implicated in the regulation of inflammatory response and glucose homeostasis during myocardial ischemia/reperfusion injury. This review attempts to make the case that in addition to interacting with thioredoxin, Txnip contributes to some of the pathological consequences of myocardial ischemia and infarction through endogenous signals in multiple molecular mechanisms.
Collapse
Affiliation(s)
- Bing F Wang
- 1 Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jun Yoshioka
- 1 Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
147
|
Choi J, Lee JH, Koh I, Shim JK, Park J, Jeon JY, Yun M, Kim SH, Yook JI, Kim EH, Chang JH, Kim SH, Huh YM, Lee SJ, Pollak M, Kim P, Kang SG, Cheong JH. Inhibiting stemness and invasive properties of glioblastoma tumorsphere by combined treatment with temozolomide and a newly designed biguanide (HL156A). Oncotarget 2016; 7:65643-65659. [PMID: 27582539 PMCID: PMC5323181 DOI: 10.18632/oncotarget.11595] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 08/13/2016] [Indexed: 12/20/2022] Open
Abstract
Studies have investigated biguanide-derived agents for the treatment of cancers and have reported their effects against tumorspheres (TSs). The purpose of this study was determining the effects of HL156A, a newly designed biguanide with improved pharmacokinetics, on glioblastoma TSs (GMB TSs) and assess the feasibility of this drug as a new line of therapy against glioblastoma, alone or combined with a conventional therapeutic agent, temozolomide(TMZ). The effects of HL156A, alone and combined with TMZ, on the stemness and invasive properties of GBM TSs and survival of orthotopic xenograft animals were assessed. HL156A, combined with TMZ, inhibited the stemness of GBM TSs, proven by neurosphere formation assay and marker expression. Three-dimensional collagen matrix invasion assays provided evidence that combined treatment inhibited invasive properties, compared with control and TMZ-alone treatment groups. TMZ alone and combined treatment repressed the expression of epithelial-mesenchymal transition-related genes. A gene ontology comparison of TMZ and combination-treatment groups revealed altered expression of genes encoding proteins involved in cellular adhesion and migration. Combined treatment with HL156A and TMZ showed survival benefits in an orthotopic xenograft mouse model. The inhibitory effect of combination treatment on the stemness and invasive properties of GBM TSs suggest the potential usage of this regimen as a novel strategy for the treatment of GBM.
Collapse
Affiliation(s)
- Junjeong Choi
- Department of Pharmacy, College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Ji-Hyun Lee
- Departments of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ilkyoo Koh
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jin-Kyoung Shim
- Departments of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junseong Park
- Departments of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeong Yong Jeon
- Departments of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mijin Yun
- Departments of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Se Hoon Kim
- Departments of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong In Yook
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Eui Hyun Kim
- Departments of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Hee Chang
- Departments of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sun Ho Kim
- Departments of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Min Huh
- Departments of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su Jae Lee
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Michael Pollak
- Department of Oncology and Medicine, McGill University, Gerald Bronfman Centre, Montreal, Quebec, Canada
| | - Pilnam Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Seok-Gu Kang
- Departments of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Ho Cheong
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
148
|
Kim MJ, Koo YD, Kim M, Lim S, Park YJ, Chung SS, Jang HC, Park KS. Rg3 Improves Mitochondrial Function and the Expression of Key Genes Involved in Mitochondrial Biogenesis in C2C12 Myotubes. Diabetes Metab J 2016; 40:406-413. [PMID: 27535645 PMCID: PMC5069397 DOI: 10.4093/dmj.2016.40.5.406] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 01/04/2016] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Panax ginseng has glucose-lowering effects, some of which are associated with the improvement in insulin resistance in skeletal muscle. Because mitochondria play a pivotal role in the insulin resistance of skeletal muscle, we investigated the effects of the ginsenoside Rg3, one of the active components of P. ginseng, on mitochondrial function and biogenesis in C2C12 myotubes. METHODS C2C12 myotubes were treated with Rg3 for 24 hours. Insulin signaling pathway proteins were examined by Western blot. Cellular adenosine triphosphate (ATP) levels and the oxygen consumption rate were measured. The protein or mRNA levels of mitochondrial complexes were evaluated by Western blot and quantitative reverse transcription polymerase chain reaction analysis. RESULTS Rg3 treatment to C2C12 cells activated the insulin signaling pathway proteins, insulin receptor substrate-1 and Akt. Rg3 increased ATP production and the oxygen consumption rate, suggesting improved mitochondrial function. Rg3 increased the expression of peroxisome proliferator-activated receptor γ coactivator 1α, nuclear respiratory factor 1, and mitochondrial transcription factor, which are transcription factors related to mitochondrial biogenesis. Subsequent increased expression of mitochondrial complex IV and V was also observed. CONCLUSION Our results suggest that Rg3 improves mitochondrial function and the expression of key genes involved in mitochondrial biogenesis, leading to an improvement in insulin resistance in skeletal muscle. Rg3 may have the potential to be developed as an anti-hyperglycemic agent.
Collapse
Affiliation(s)
- Min Joo Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Korea Cancer Center Hospital, Seoul, Korea
| | - Young Do Koo
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
| | - Min Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
| | - Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Soo Chung
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Biomedical Research Institute and Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hak C Jang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
149
|
Regulation and function of AMPK in physiology and diseases. Exp Mol Med 2016; 48:e245. [PMID: 27416781 PMCID: PMC4973318 DOI: 10.1038/emm.2016.81] [Citation(s) in RCA: 785] [Impact Index Per Article: 87.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 04/23/2016] [Accepted: 04/26/2016] [Indexed: 12/18/2022] Open
Abstract
5′-adenosine monophosphate (AMP)-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase that was originally identified as the key player in maintaining cellular energy homeostasis. Intensive research over the last decade has identified diverse molecular mechanisms and physiological conditions that regulate the AMPK activity. AMPK regulates diverse metabolic and physiological processes and is dysregulated in major chronic diseases, such as obesity, inflammation, diabetes and cancer. On the basis of its critical roles in physiology and pathology, AMPK is emerging as one of the most promising targets for both the prevention and treatment of these diseases. In this review, we discuss the current understanding of the molecular and physiological regulation of AMPK and its metabolic and physiological functions. In addition, we discuss the mechanisms underlying the versatile roles of AMPK in diabetes and cancer.
Collapse
|
150
|
Rupasinghe HPV, Sekhon-Loodu S, Mantso T, Panayiotidis MI. Phytochemicals in regulating fatty acid β-oxidation: Potential underlying mechanisms and their involvement in obesity and weight loss. Pharmacol Ther 2016; 165:153-63. [PMID: 27288729 DOI: 10.1016/j.pharmthera.2016.06.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/16/2016] [Indexed: 12/12/2022]
Abstract
Excessive accumulation of fat as the result of more energy intake and less energy expenditure is known as obesity. Lipids are essential components in the human body and are vital for maintaining homeostasis and physiological as well as cellular metabolism. Fatty acid synthesis and catabolism (by fatty acid oxidation) are normal part of basic fuel metabolism in animals. Fatty acids are degraded in the mitochondria by a biochemical process called β-oxidation in which two-carbon fragments are produced in each cycle. The increase in fatty acid β-oxidation is negatively correlated with body mass index. Although healthy life style, avoiding Western diet, dieting and strenuous exercise are the commonly used methods to lose weight, they are not considered a permanent solution in addition to risk attenuation of basal metabolic rate (BMR). Pharmacotherapy offers benefits of weight loss by altering the satiety and lowering absorption of fat from the food; however, its side effects may outweigh the benefits of weight loss. Alternatively, dietary phytochemicals and natural health products offer great potential as an efficient weight loss strategy by modulating lipid metabolism and/or increasing BMR and thermogenesis. Specifically, polyphenols such as citrus flavonoids, green tea epigallocatechin gallate, resveratrol, capsaicin and curcumin, have been reported to increase lipolysis and induce fatty acid β-oxidation through modulation of hormone sensitive lipase, acetyl-coA carboxylase, carnitine acyl transferase and peroxisome proliferator-activated receptor gamma coactivator-1. In this review article, we discuss selected phytochemicals in relation to their integrated functionalities and specific mechanisms for weight loss.
Collapse
Affiliation(s)
- H P Vasantha Rupasinghe
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, P.O. Box 550, Truro, Nova Scotia, B2N 5E3, Canada; Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Satvir Sekhon-Loodu
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, P.O. Box 550, Truro, Nova Scotia, B2N 5E3, Canada
| | - Theodora Mantso
- Heriot-Watt University, School of Life Sciences, John Muir Building, Riccarton Campus, Edinburgh EH14 4AS, Scotland, UK
| | - Mihalis I Panayiotidis
- Heriot-Watt University, School of Life Sciences, John Muir Building, Riccarton Campus, Edinburgh EH14 4AS, Scotland, UK
| |
Collapse
|