101
|
Bicarbonate transport inhibitor SITS modulates pH homeostasis triggering apoptosis of Dalton's lymphoma: implication of novel molecular mechanisms. Mol Cell Biochem 2014; 397:167-78. [PMID: 25123669 DOI: 10.1007/s11010-014-2184-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 08/08/2014] [Indexed: 12/30/2022]
Abstract
Bicarbonate transporter (BCT) plays a crucial role in maintaining pH homeostasis of tumor cells by import of HCO3(-). This helps the tumor cells in manifesting extracellular tumor acidosis, accompanied by a relative intracellular alkalinization, which in turn promotes tumor progression. Therefore, blocking BCT-mediated HCO3(-) transport is envisaged as a promising anticancer therapeutic approach. Thus, using a murine model of a T cell lymphoma, designated as Dalton's lymphoma (DL), in the present in vitro investigation the antitumor consequences of blocking BCT function by its inhibitor 4-acetamido-4-isothiocyanostilbene-2,2-disulfonate (SITS) were explored. Treatment of DL cells with SITS resulted in an increase in the extracellular pH, associated with a decline in DL cell survival and augmented induction of apoptosis. BCT inhibition also elevated the expression of cytochrome c, caspase-9, caspase-3, Bax, reactive oxygen species, and nitric oxide along with inhibition of HSP-70 and Bcl2, which regulate tumor cell survival and apoptosis. SITS-treated DL cells displayed upregulated production of IFN-γ and IL-6 along with a decline of IL-10. Treatment of DL cells with SITS also inhibited the expression of fatty acid synthase, which is crucial for membrane biogenesis in neoplastic cells. The expression of lactate transporter MCT-1 and multidrug resistance regulating protein MRP-1 got inhibited along with hampered uptake of glucose and lactate production in SITS-treated DL cells. Thus, the declined tumor cell survival following inhibition of BCT could be the consequence of interplay of several inter-connected regulatory molecular events. The outcome of this study indicates the potential of BCT inhibition as a novel therapeutic approach for treatment of hematological malignancies.
Collapse
|
102
|
Li ZJ, Li XM, Piao YJ, Choi DK, Kim SJ, Kim JW, Sohn KC, Kim CD, Lee JH. Genkwadaphnin induces reactive oxygen species (ROS)-mediated apoptosis of squamous cell carcinoma (SCC) cells. Biochem Biophys Res Commun 2014; 450:1115-9. [DOI: 10.1016/j.bbrc.2014.06.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 11/29/2022]
|
103
|
Chen W, Balakrishnan K, Kuang Y, Han Y, Fu M, Gandhi V, Peng X. Reactive oxygen species (ROS) inducible DNA cross-linking agents and their effect on cancer cells and normal lymphocytes. J Med Chem 2014; 57:4498-510. [PMID: 24801734 PMCID: PMC4133937 DOI: 10.1021/jm401349g] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reducing host toxicity is one of the main challenges of cancer chemotherapy. Many tumor cells contain high levels of ROS that make them distinctively different from normal cells. We report a series of ROS-activated aromatic nitrogen mustards that selectively kill chronic lymphocytic leukemia (CLL) over normal lymphocytes. These agents showed powerful DNA cross-linking abilities when coupled with H2O2, one of the most common ROS in cancer cells, whereas little DNA cross-linking was detected without H2O2. Consistent with chemistry observation, in vitro cytotoxicity assay demonstrated that these agents induced 40-80% apoptosis in primary leukemic lymphocytes isolated from CLL patients but less than 25% cell death to normal lymphocytes from healthy donors. The IC50 for the most potent compound (2) was ~5 μM in CLL cells, while the IC50 was not achieved in normal lymphocytes. Collectively, these data provide utility and selectivity of these agents that will inspire further and effective applications.
Collapse
Affiliation(s)
- Wenbing Chen
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee , 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| | | | | | | | | | | | | |
Collapse
|
104
|
Chang JW, Kang SU, Choi JW, Shin YS, Baek SJ, Lee SH, Kim CH. Tolfenamic acid induces apoptosis and growth inhibition in anaplastic thyroid cancer: Involvement of nonsteroidal anti-inflammatory drug-activated gene-1 expression and intracellular reactive oxygen species generation. Free Radic Biol Med 2014; 67:115-30. [PMID: 24216474 DOI: 10.1016/j.freeradbiomed.2013.10.818] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 10/14/2013] [Accepted: 10/28/2013] [Indexed: 12/27/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are usually used for the treatment of inflammatory diseases. However, certain NSAIDs also have antitumor activities in various cancers, including head and neck cancer, through cyclooxygenase-dependent or independent pathways. Nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1), a TGF-β superfamily protein, is induced by NSAIDs and has been shown to be induced by several antitumorigenic compounds and to exhibit proapoptotic and antitumorigenic activities. In this report, we demonstrate for the first time that tolfenamic acid (TA) transcriptionally induced the expression of NAG-1 during TA-induced apoptosis of anaplastic thyroid cancer (ATC) cells. TA reduced the viability of ATC cells in a dose-dependent manner and induced apoptosis, findings that were coincident with NAG-1 expression. Overexpression of the NAG-1 gene using cDNA enhanced the apoptotic effect of TA, whereas suppression of NAG-1 expression by small interfering RNA attenuated TA-induced apoptosis. Subsequently, we found that intracellular ROS generation plays an important role in activating the proapoptotic protein NAG-1. Then, we confirmed antitumorigenic effects of TA in a nude mouse orthotopic ATC model, and this result accompanied the augmentation of NAG-1 expression and ROS generation in tumor tissue. Taken together, these results demonstrate that TA induces apoptosis via NAG-1 expression and ROS generation in in vitro and in vivo ATC models, providing a novel mechanistic explanation and indicating a potential chemotherapeutic approach for treatment of ATC.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Apoptosis/genetics
- Dose-Response Relationship, Drug
- Gene Expression Regulation, Neoplastic
- Growth Differentiation Factor 15/agonists
- Growth Differentiation Factor 15/antagonists & inhibitors
- Growth Differentiation Factor 15/genetics
- Growth Differentiation Factor 15/metabolism
- Humans
- Male
- Mice
- Mice, Nude
- Neoplasm Transplantation
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Reactive Oxygen Species/agonists
- Reactive Oxygen Species/metabolism
- Signal Transduction
- Thyroid Carcinoma, Anaplastic/drug therapy
- Thyroid Carcinoma, Anaplastic/genetics
- Thyroid Carcinoma, Anaplastic/metabolism
- Thyroid Carcinoma, Anaplastic/pathology
- Thyroid Neoplasms/drug therapy
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
- ortho-Aminobenzoates/pharmacology
Collapse
Affiliation(s)
- Jae Won Chang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 442-749, Korea; Center for Cell Death-Regulating Biodrugs, School of Medicine, Ajou University, Suwon 442-749, Korea
| | - Sung Un Kang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 442-749, Korea; Center for Cell Death-Regulating Biodrugs, School of Medicine, Ajou University, Suwon 442-749, Korea
| | - Jae Won Choi
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 442-749, Korea; Center for Cell Death-Regulating Biodrugs, School of Medicine, Ajou University, Suwon 442-749, Korea
| | - Yoo Seob Shin
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 442-749, Korea; Center for Cell Death-Regulating Biodrugs, School of Medicine, Ajou University, Suwon 442-749, Korea
| | - Seung Joon Baek
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Seong-Ho Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20742, USA
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 442-749, Korea; Center for Cell Death-Regulating Biodrugs, School of Medicine, Ajou University, Suwon 442-749, Korea.
| |
Collapse
|
105
|
Cao S, Wang Y, Peng X. The leaving group strongly affects H₂O₂-induced DNA cross-linking by arylboronates. J Org Chem 2014; 79:501-8. [PMID: 24378073 PMCID: PMC3939700 DOI: 10.1021/jo401901x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We evaluated the effects of the benzylic leaving group and core structure of arylboronates on H2O2-induced formation of bisquinone methides for DNA interstrand cross-linking. The mechanism of DNA cross-linking induced by these arylboronates involves generation of phenol intermediates followed by departure of benzylic leaving groups leading to QMs which directly cross-link DNA via alkylation. The QM formation is the rate-determining step for DNA cross-linking. A better leaving group (Br) and stepwise bisquinone methide formation increased interstrand cross-linking efficiency. These findings provide essential guidelines for designing novel anticancer prodrugs.
Collapse
Affiliation(s)
| | | | - Xiaohua Peng
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 N. Cramer St., Milwaukee, WI 53211, USA
| |
Collapse
|
106
|
Abstract
Advances in the field of boron chemistry have expanded the application of boron from material use to medicine. Boron-based drugs represent a new class of molecules that possess several biomedical applications including use as imaging agents for both optical and nuclear imaging as well as therapeutic agents with anticancer, antiviral, antibacterial, antifungal and other disease-specific activities. For example, bortezomib (Velcade(®)), the only drug in clinical use with boron as an active element, was approved in 2003 as a proteasome inhibitor for the treatment of multiple myeloma and non-Hodgkin's lymphoma. Several other boron-based compounds are in various phases of clinical trials, which illustrates the promise of this approach for medicinal chemists working in the area of boron chemistry. It is expected that in the near future, several boron-containing drugs should become available in the market with better efficacy and potency than existing drugs. This article discusses the current status of the development of boron-based compounds as diagnostic and therapeutic agents in humans.
Collapse
|
107
|
Santini C, Pellei M, Gandin V, Porchia M, Tisato F, Marzano C. Advances in Copper Complexes as Anticancer Agents. Chem Rev 2013; 114:815-62. [DOI: 10.1021/cr400135x] [Citation(s) in RCA: 1128] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Carlo Santini
- Scuola
di Scienze e Tecnologie−Sez. Chimica, Università di Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy
| | - Maura Pellei
- Scuola
di Scienze e Tecnologie−Sez. Chimica, Università di Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy
| | - Valentina Gandin
- Dipartimento
di Scienze del Farmaco, Università di Padova, via Marzolo
5, 35131 Padova, Italy
| | | | | | - Cristina Marzano
- Dipartimento
di Scienze del Farmaco, Università di Padova, via Marzolo
5, 35131 Padova, Italy
| |
Collapse
|
108
|
Kant S, Kumar A, Singh SM. Tumor growth retardation and chemosensitizing action of fatty acid synthase inhibitor orlistat on T cell lymphoma: implication of reconstituted tumor microenvironment and multidrug resistance phenotype. Biochim Biophys Acta Gen Subj 2013; 1840:294-302. [PMID: 24060750 DOI: 10.1016/j.bbagen.2013.09.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/23/2013] [Accepted: 09/13/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND Orlistat, a fatty acid synthase (FASN) inhibitor, has been demonstrated to inhibit tumor cell survival. However, the mechanism(s) of its tumor growth retarding action against malignancies of hematological origin remains unclear. It is also not understood if the antitumor action of orlistat implicates modulated susceptibility of tumor cell to anticancer drugs. Therefore, the present investigation focuses to study the antitumor and chemosensitizing action of orlistat in a murine host bearing a progressively growing T cell lymphoma. METHODS Tumor-bearing mice were administered with vehicle alone or containing orlistat followed by administration of PBS with or without cisplatin. Tumor progression and survival of tumor-bearing host were monitored along with analysis of tumor cell survival and apoptosis. Tumor ascitic fluid was examined for pH, NO and cytokines. Expression of genes and proteins was investigated by RT-PCR and western blot respectively. ROS was analyzed by DCFDA staining and FASN activity by spectrophotometry. RESULTS Orlistat administration to tumor-bearing mice resulted in tumor growth retardation, prolonged life span, declined tumor cell survival and chemosensitization to cisplatin. It was accompanied by increased osmotic fragility, modulated acidosis, expression of ROS, NO, cytokines, MCT-1 and VH(+) ATPase, Bcl2, Caspase-3, P53, inhibited FASN activity and declined expression of MDR and MRP-1 proteins. CONCLUSION Orlistat manifests antitumor and chemosensitizing action implicating modulated regulation of cell survival, reconstituted-tumor microenvironment and altered MDR phenotype. GENERAL SIGNIFICANCE These observations indicate that orlistat could be utilized as an adjunct regimen for improving antitumor efficacy of cisplatin.
Collapse
Affiliation(s)
- Shiva Kant
- School of Biotechnology, Banaras Hindu University, Varanasi 221005, India
| | | | | |
Collapse
|
109
|
Bell-Horwath TR, Vadukoot AK, Thowfeik FS, Li G, Wunderlich M, Mulloy JC, Merino EJ. Novel ROS-activated agents utilize a tethered amine to selectively target acute myeloid leukemia. Bioorg Med Chem Lett 2013; 23:2951-4. [PMID: 23578690 DOI: 10.1016/j.bmcl.2013.03.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/05/2013] [Accepted: 03/12/2013] [Indexed: 11/18/2022]
Abstract
This study explores the possible use of reactive oxygen-activated DNA modifying agents against acute myeloid leukemia (AML). A key amine on the lead agent was investigated via cytotoxicity assays and was found necessary for potency. The two best compounds were screened via the NCI-60 cell panel. These two compounds had potency between 200 and 800nM against many of the leukemia cancer cell types. Subsequent experiments explored activity against a transformed AML model that mimics the molecular signatures identified in primary AML patient samples. A lead compound had an IC50 of 760nM against this AML cell line as well as a therapeutic index of 7.7±3 between the transformed AML model cell line and non-cancerous human CD34+ blood stem/progenitor cells (UCB). The selectivity was much greater than the mainstays of AML treatment: doxorubicin and cytarabine. This manuscript demonstrates that this novel type of agent may be useful against AML.
Collapse
Affiliation(s)
- Tiffany R Bell-Horwath
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172, United States
| | | | | | | | | | | | | |
Collapse
|
110
|
Xu Y, Kang J, Yuan Z, Li H, Su J, Li Y, Kong X, Zhang H, Wang W, Sun L. Suppression of CLIC4/mtCLIC enhances hydrogen peroxide-induced apoptosis in C6 glioma cells. Oncol Rep 2013; 29:1483-91. [PMID: 23380911 DOI: 10.3892/or.2013.2265] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 11/02/2012] [Indexed: 11/06/2022] Open
Abstract
CLIC4/mtCLIC (referred to here as CLIC4) is one of the seven-member family of chloride intracellular channels (CLIC). CLIC4 localizes to the mitochondria, nucleus, cytoplasm and other organellular compartments and participates in the apoptotic response to stress. However, the role of CLIC4 in oxidative stress and apoptosis is not well understood. In this study, we showed the important role of CLIC4 in apoptosis of C6 glioma cells induced by hydrogen peroxide (H2O2). Our results showed that CLIC4 protein expression was upregulated following H2O2-induced C6 cell apoptosis. The upregulation of CLIC4 protein expression was paralleled with an increased Bax/Bcl-2 ratio, cytochrome c and cleaved caspase-3 protein expression upon H2O2-induced C6 cell apoptosis. Suppression of CLIC4 expression by RNA interference enhanced cell apoptosis, but the ratio of Bax/Bcl-2 was not involved in this process. Dissipation of mitochondrial membrane potential and nuclear translocation of CLIC4 were involved in the activation of apoptosis induced by H2O2. Our data indicate that CLIC4 protein may be a key element in the apoptotic response to oxidative stress.
Collapse
Affiliation(s)
- Ye Xu
- Department of Pathophysiology, Norman Bethune College of Medicine, Jilin University, Changchun 130021, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Jones AR, Bell-Horwath TR, Li G, Rollmann SM, Merino EJ. Novel oxidatively activated agents modify DNA and are enhanced by ercc1 silencing. Chem Res Toxicol 2012; 25:2542-52. [PMID: 23051149 DOI: 10.1021/tx300337j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Agents that chemically modify DNA form a backbone of many cancer treatments. A key problem for DNA-modifying agents is lack of specificity. To address this issue, we designed novel molecular scaffolds, termed An-Hq and An-Hq(2), which are activated by a hallmark of some cancers: elevated concentrations of reactive oxygen species. Elevated reactive oxygen species are linked to oncogenesis and are found to increase in several aggressive cancers. The agents are quinones that, upon oxidation, form highly electrophilic species. In vitro studies identified the mode of addition to DNA. The aniline portion of An-Hq serves to enhance nucleophilic addition to the ethyl phenyl ether instead of forming common Michael additions. Structural characterization showed that the agents add to 2'-deoxyguanosine at the N2,N3-positions. The product formed is a bulky hydroxy-N2,3-benzetheno-2'-deoxyguanosine adduct. In addition, the oxidatively activated agents added to 2'-deoxyadenosine and 2'-deoxycytidine but not thymidine or 2'-deoxyinosine. These findings are confirmed by primer extension analysis of a 392 base pair DNA. The full-length primer extension product was reduced by 69.0 ± 0.6% upon oxidative activation of An-Hq(2) as compared to controls. Little sequence dependence was observed with 76% of guanine, adenine, and cytosine residues showing an increase in extension stops between 2- and 4-fold above controls. Benzetheno-nucleobase addition to double-stranded DNA was confirmed by LC/MS of a self-complementary oligonucletide. Experiments were carried out to confirm in vivo DNA damage. Because of the lesion identified in vitro, we reasoned that nucleotide excision repair should be involved in reversing the effects of these oxidatively activated agents and enhance toxicity in Drosophila melanogaster. Using an RNAi-based approach, Ercc1 was silenced, and survival was monitored after injection of an agent. As expected, bulky cross-linking DNA-modifying agents, cisplatin and chlorambucil, showed statistically significant enhanced toxicity in Drosophila with silenced Ercc1. In addition, 5-fluorouracil, which does not produce bulky lesions, showed no selective toxicity. An-Hq and An-Hq(2) showed statistically significant toxicity in Drosophila with silenced Ercc1. Examination of cytotoxicity shows renal carcinoma cell lines as a target of these agents with a median IC(50) of 1.8 μM. Taken together, these data show that the designed oxidatively activated agents form distinct, bulky DNA modifications that prove difficult for cancer cells possessing an elevated reactive oxygen species phenotype to overcome. The modification produced is relatively unique among anticancer agents.
Collapse
Affiliation(s)
- Amy R Jones
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221-0006, USA
| | | | | | | | | |
Collapse
|