101
|
Shen D, Zhang Y, Zheng Q, Yu S, Xia L, Cheng S, Li G. A Competing Endogenous RNA Network and an 8-lncRNA Prognostic Signature Identify MYO16-AS1 as an Oncogenic lncRNA in Bladder Cancer. DNA Cell Biol 2020; 40:26-35. [PMID: 33270518 DOI: 10.1089/dna.2020.6014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recently, growing evidence has shed light on the competitive endogenous RNAs (ceRNAs) activity of long noncoding RNAs (lncRNAs) in carcinogenesis and tumor progression. To better elucidate the regulatory mechanisms of lncRNA in muscle-invasive bladder cancer (MIBC), we identified aberrantly expressed mRNAs, lncRNAs, and miRNAs in tumor tissues by using RNA sequence profiles from The Cancer Genome Atlas. The MIBC-specific ceRNA network, including 58 lncRNAs, 22 miRNAs, and 52 mRNAs, was constructed and visualized in Cytoscape. Further, using the univariate and multivariate Cox regression model, we screened 8 lncRNAs (AC078778.1, LINC00525, AC008676.1, AP000553.1, SACS-AS1, AC009065.1, AC127496.3, and MYO16-AS1) to construct an lncRNA signature for predicting the overall survival of MIBC patients. Kaplan-Meier analysis and a receiver operating characteristic curve were applied to evaluate the performance of the signature. Real-time quantitative PCR analysis was carried out to test expression levels of the 8 lncRNAs in MIBC patient tissues. Transwell assays demonstrated that overexpressing MYO16-AS1 can enhance UMUC2 migration and invasion. Our study offers a novel lncRNA-correlated ceRNA model to better understand the molecular mechanisms involved in MIBC. In addition, we developed an independent 8-lncRNAs biomarker for prognostic prediction and identified MYO16-AS1 as an oncogenic lncRNA in bladder cancer.
Collapse
Affiliation(s)
- Danyang Shen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Youyun Zhang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiming Zheng
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shicheng Yu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng Cheng
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
102
|
Wang W, Guan X, Khan MT, Xiong Y, Wei DQ. LMI-DForest: A deep forest model towards the prediction of lncRNA-miRNA interactions. Comput Biol Chem 2020; 89:107406. [PMID: 33120126 DOI: 10.1016/j.compbiolchem.2020.107406] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023]
Abstract
The interactions between miRNAs and long non-coding RNAs (lncRNAs) are subject to intensive recent studies due to its critical role in gene regulations. Computational prediction of lncRNA-miRNA interactions has become a popular alternative strategy to the experimental methods for identification of underlying interactions. It is desirable to develop the machine learning-based models for prediction of lncRNA-miRNA based on the experimentally validated interactions between lncRNAs and miRNAs. The accuracy and robustness of existing models based on machine learning techniques are subject to further improvement. Considering that the attributes of lncRNA and miRNA contribute key importance in the interaction between these two RNAs, a deep learning model, named LMI-DForest, is proposed here by combining the deep forest and autoencoder strategies. Systematic comparison on the experiment validated datasets for lncRNA-miRNA interaction datasets demonstrates that the proposed method consistently shows superior performance over the other machine learning models in the lncRNA-miRNA interaction prediction.
Collapse
Affiliation(s)
- Wei Wang
- School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoqing Guan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Muhammad Tahir Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore Pakistan, Pakistan
| | - Yi Xiong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Peng Cheng Laboratory, Shenzhen, Guangdong, China.
| |
Collapse
|
103
|
Ooki A, Onodera S, Saito A, Oguchi A, Murakawa Y, Sakamoto T, Sueishi K, Nishii Y, Azuma T. CAGE-seq analysis of osteoblast derived from cleidocranial dysplasia human induced pluripotent stem cells. Bone 2020; 141:115582. [PMID: 32795676 DOI: 10.1016/j.bone.2020.115582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 10/23/2022]
Abstract
Non-coding RNAs (ncRNAs) comprise a major portion of transcripts and serve an essential role in biological processes. Although the importance of major transcriptomes in osteogenesis has been extensively studied, the function of ncRNAs in human osteogenesis remains unclear. Previously, we developed hiPSCs from patients with cleidocranial dysplasia (CCD) caused by runt-related transcription factor 2 (RUNX2) haploinsufficiency. To gain insight into ncRNAs in osteogenesis, we surveyed differential ncRNA expression profiling and promoter differences of RUNX2 using patient-specific iPSCs and cap analysis gene expression (CAGE) technology to define the promoter landscape. Revertant iPSCs (Rev1 iPSCs) edited by CRISPR/Cas9 system to harbor mutation-corrected RUNX2 exhibited increased proximal promoter expression of RUNX2, while CCD iPSCs did not. We identified 2271 ncRNA genes with altered expression levels before and after differentiation, 31 of which showed at least 20-fold higher expression in Rev1 iPSCs. Bioinformatic analysis also categorized AC007392.3, LINC00379, RP11-122D10.1, and RP11-90J7.2 as enhancer regulatory regions, and HOXA-AS2, MIR219-2, and RP11-834C11.3 as dyadic regulatory regions of these ncRNAs. In addition, two miRNAs, termed MIR199A2 and MIR152, were found to have high enrichment of osteogenic-related terms. Upon further examination of the role of MIR152 on osteoblast differentiation, we found that MIR152 knockdown induced upregulation of ALP and COL1A1 in Saos-2 cells. Thus, ncRNAs were found to regulate the osteogenic differentiation potentials of hiPSCs that are used for bone regeneration and repair owing to their differentiation potentials. These data allow understanding ncRNA profiles of hiPSCs during osteogenesis.
Collapse
Affiliation(s)
- Akio Ooki
- Department of Orthodontics, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Shoko Onodera
- Department of Biochemistry, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Akiko Saito
- Department of Biochemistry, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Akiko Oguchi
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan; RIKEN Preventive Medicine and Diagnosis Innovation Program, Yokohama, Kanagawa 230-0045, Japan
| | - Yasuhiro Murakawa
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan; RIKEN Preventive Medicine and Diagnosis Innovation Program, Yokohama, Kanagawa 230-0045, Japan
| | - Teruo Sakamoto
- Department of Orthodontics, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Kenji Sueishi
- Department of Orthodontics, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Yasushi Nishii
- Department of Orthodontics, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Toshifumi Azuma
- Department of Biochemistry, Tokyo Dental College, Tokyo 101-0061, Japan; Oral Health Science Center, Tokyo Dental College, Tokyo 101-0061, Japan.
| |
Collapse
|
104
|
Yin Q, Jin Z, Zhou Y, Song D, Fu C, Huang F, Wang S. lncRNA:mRNA expression profile in CD4+ T cells from patients with Graves' disease. Endocr Connect 2020; 9:1202-1211. [PMID: 33112836 PMCID: PMC7774754 DOI: 10.1530/ec-20-0373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022]
Abstract
Graves' disease (GD) is a common autoimmune disease that affects the thyroid gland. As a new class of modulators of gene expression, long noncoding RNAs (lncRNAs) have been reported to play a vital role in immune functions and in the development of autoimmunity and autoimmune disease. The aim of this study is to identify lncRNAs in CD4+ T cells as potential biomarkers of GD. lncRNA and mRNA microarrays were performed to identify differentially expressed lncRNAs and mRNAs in GD CD4+ T cells compared with healthy control CD4+ T cells. Quantitative PCR (qPCR) was used to validate the results, and correlation analysis was used to analyze the relationship between these aberrantly expressed lncRNAs and clinical parameters. The microarray identified 164 lncRNAs and 93 mRNAs in GD CD4+ T cells differentially expressed compared to healthy control CD4+ T cells (fold change >2.0 and a P < 0.05). Further analysis consistently showed that the expression of HMlincRNA1474 (P < 0.01) and TCONS_00012608 (P < 0.01) was suppressed, while the expression of AK021954 (P < 0.01) and AB075506 (P < 0.01) was upregulated from initial GD patients. In addition, their expression levels were recovered in euthyroid GD patients and GD patients in remission. Moreover, these four aberrantly expressed lncRNAs were correlated with GD clinical parameters. Moreover, the areas under the ROC curve were 0.8046, 0.7579, 0.8115 for AK021954, AB075506, HMlincRNA1474, respectively. The present work revealed that differentially expressed lncRNAs were associated with GD, which might serve as novel biomarkers of GD and potential targets for GD treatment.
Collapse
Affiliation(s)
- Qinglei Yin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Guangdong Geriatric Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhou Jin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yulin Zhou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dalong Song
- Guangdong Geriatric Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Reproductive Medicine Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chenyang Fu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - FengJiao Huang
- Reproductive Medicine Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Correspondence should be addressed to F Huang or S Wang: or
| | - Shu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Correspondence should be addressed to F Huang or S Wang: or
| |
Collapse
|
105
|
Chen H, Shan G. The physiological function of long-noncoding RNAs. Noncoding RNA Res 2020; 5:178-184. [PMID: 32959025 PMCID: PMC7494506 DOI: 10.1016/j.ncrna.2020.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
The physiological processes of cells and organisms are regulated by various biological macromolecules, including long-noncoding RNAs (lncRNAs), which cannot be translated into protein and are different from small-noncoding RNAs on their length. In animals, lncRNAs are involved in development, metabolism, reproduction, aging and other life events by cis or trans effects. For many functional lncRNAs, there is growing evidence that they play different roles on cellular level and organismal level. On the other hand, many annotated lncRNAs are not essential and could be transcription noises. In this minireview, we investigate the physiological function of lncRNAs in cells and focus on their functions and functional mechanisms on the organismal level. The studies on lncRNAs using different classic animal models such as worms and flies are summarized and discussed in this article.
Collapse
Affiliation(s)
- He Chen
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, 230027, China
| | - Ge Shan
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, 230027, China
| |
Collapse
|
106
|
Comprehensive analysis of prognostic biomarkers in lung adenocarcinoma based on aberrant lncRNA-miRNA-mRNA networks and Cox regression models. Biosci Rep 2020; 40:221898. [PMID: 31950990 PMCID: PMC6997105 DOI: 10.1042/bsr20191554] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 12/04/2019] [Accepted: 01/07/2020] [Indexed: 12/14/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the leading cause of cancer-related death worldwide, and its underlying mechanism remains unclear. Accumulating evidence has highlighted that long non-coding RNA (lncRNA) acts as competitive endogenous RNA (ceRNA) and plays an important role in the occurrence and development of LUAD. Here, we comprehensively analyzed and provided an overview of the lncRNAs, miRNAs, and mRNAs associated with LUAD from The Cancer Genome Atlas (TCGA) database. Then, differentially expressed lncRNAs (DElncRNA), miRNAs (DEmiRNA), and mRNAs (DEmRNA) were used to construct a lncRNA–miRNA–mRNA regulatory network according to interaction information from miRcode, TargetScan, miRTarBase, and miRDB. Finally, the RNAs of the network were analyzed for survival and submitted for Cox regression analysis to construct prognostic indicators. A total of 1123 DElncRNAs, 95 DEmiRNAs, and 2296 DEmRNAs were identified (|log2FoldChange| (FC) > 2 and false discovery rate (FDR) or adjusted P value < 0.01). The ceRNA network was established based on this and included 102 lncRNAs, 19 miRNAs, and 33 mRNAs. The DEmRNAs in the ceRNA network were found to be enriched in various cancer-related biological processes and pathways. We detected 22 lncRNAs, 12 mRNAs, and 1 miRNA in the ceRNA network that were significantly associated with the overall survival of patients with LUAD (P < 0.05). We established three prognostic prediction models and calculated the area under the 1,3,5-year curve (AUC) values of lncRNA, mRNA, and miRNA, respectively. Among them, the prognostic index (PI) of lncRNA showed good predictive ability which was 0.737, 0.702 and 0.671 respectively, and eight lncRNAs can be used as candidate prognostic biomarkers for LUAD. In conclusion, our study provides a new perspective on the prognosis and diagnosis of LUAD on a genome-wide basis, and develops independent prognostic biomarkers for LUAD.
Collapse
|
107
|
Qian Y, Shi L, Luo Z. Long Non-coding RNAs in Cancer: Implications for Diagnosis, Prognosis, and Therapy. Front Med (Lausanne) 2020; 7:612393. [PMID: 33330574 PMCID: PMC7734181 DOI: 10.3389/fmed.2020.612393] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are major components of cellular transcripts that are arising as important players in various biological pathways. They have received extensive attention in recent years, regarded to be involved in both developmental processes and various diseases. Due to their specific expression and functional diversity in a variety of cancers, lncRNAs have promising applications in cancer diagnosis, prognosis and therapy. Studies have shown that lncRNAs with high specificity and accuracy have the potential to become biomarkers in cancers. LncRNAs can be noninvasively extracted from body fluids, tissues and cells, and can be used as independent or auxiliary biomarkers to improve the accuracy of diagnosis or prognosis. Currently, the most well-recognized lncRNA is PCA3, which has been approved for use in the diagnosis of prostate cancer. Moreover, the underlying mechanisms of lncRNAs were explored as therapeutic targets, which have been investigated in clinical trials of several cancers. In this review, we presented a compilation of recent publications, clinical trials and patents, addressing the potential of lncRNAs that could be considered as biomarkers or therapeutic targets, with the hopes of providing promised implications for future cancer therapy.
Collapse
Affiliation(s)
| | - Lei Shi
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Zhong Luo
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
108
|
Zhang Z, Wan J, Liu X, Zhang W. Strategies and technologies for exploring long noncoding RNAs in heart failure. Biomed Pharmacother 2020; 131:110572. [PMID: 32836073 DOI: 10.1016/j.biopha.2020.110572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNA (lncRNA) was once considered to be the "noise" of genome transcription without biological function. However, increasing evidence shows that lncRNA is dynamically expressed in developmental stage or disease status, playing a regulatory role in the process of gene expression and translation. In recent years, lncRNA is considered to be a core node of functional regulatory networks that controls cardiac and also involves in multiple process of heart failure such as myocardial hypertrophy, fibrosis, angiogenesis, etc., which would be a therapeutic target for diseases. In fact, it is the development of technology that has improved our understanding of lncRNAs and broadened our perspective on heart failure. From transcriptional "noise" to star molecule, progress of lncRNAs can't be achieved without the combination of multidisciplinary technologies, especially the emergence of high-throughput approach. Thus, here, we review the strategies and technologies available for the exploration lncRNAs and try to yield insights into the prospect of lncRNAs in clinical diagnosis and treatment in heart failure.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jingjing Wan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Liu
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Weidong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China; School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
109
|
Zhou L, Liu R, Liang X, Zhang S, Bi W, Yang M, He Y, Jin J, Li S, Yang X, Fu J, Zhang P. lncRNA RP11-624L4.1 Is Associated with Unfavorable Prognosis and Promotes Proliferation via the CDK4/6-Cyclin D1-Rb-E2F1 Pathway in NPC. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:1025-1039. [PMID: 33078086 PMCID: PMC7558227 DOI: 10.1016/j.omtn.2020.10.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common malignant tumors in southern China and southeast Asia. Emerging evidence revealed that long noncoding RNAs (lncRNAs) might play important roles in the development and progression of many cancers, including NPC. The functions and mechanisms of the vast majority of lncRNAs involved in NPC remain unknown. In this study, a novel lncRNA RP11-624L4.1 was identified in NPC tissues using next-generation sequencing. In situ hybridization (ISH) was used to analyze the correlation between RP11-624L4.1 expression and the clinicopathological features or prognosis in NPC patients. RNA-Protein Interaction Prediction (RPISeq) predictions and RNA-binding protein immunoprecipitation (RIP) assays were used to identify RP11-624L4.1's interactions with cyclin-dependent kinase 4 (CDK4). As a result, we found that RP11-624L4.1 is hyper-expressed in NPC tissues, which was associated with unfavorable prognosis and clinicopathological features in NPC. By knocking down and overexpressing RP11-624L4.1, we also found that it promotes the proliferation ability of NPC in vitro and in vivo through the CDK4/6-Cyclin D1-Rb-E2F1 pathway. Overexpression of CDK4 in knocking down RP11-624L4.1 cells can partially rescue NPC promotion, indicating its role in the RP11-624L4.1-CDK4/6-Cyclin D1-Rb-E2F1 pathway. Taken together, RP11-624L4.1 is required for NPC unfavorable prognosis and proliferation through the CDK4/6-Cyclin D1-Rb-E2F1 pathway, which may be a novel therapeutic target and prognostic in patients with NPC.
Collapse
Affiliation(s)
- Liuying Zhou
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ruijie Liu
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xujun Liang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Sai Zhang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wu Bi
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Mei Yang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yi He
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jin Jin
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Shisheng Li
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Xinming Yang
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Corresponding author: Junjiang Fu, Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.
| | - Pengfei Zhang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Corresponding author: Pengfei Zhang, NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China.
| |
Collapse
|
110
|
Yin H, Shang Q, Zhang S, Shen M, Huang H, Zhao W, Xijie G, Wu P. Comprehensive analysis of lncRNA-mRNA regulatory network in BmNPV infected cells treated with Hsp90 inhibitor. Mol Immunol 2020; 127:230-237. [PMID: 33022580 DOI: 10.1016/j.molimm.2020.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the main pathogens that seriously affect the sustainable development of sericulture industry. Inhibition of Hsp90 by Hsp90 inhibitor, geldanamycin (GA) significantly suppresses BmNPV proliferation in Bombyx mori, while the functional mechanism is not clear. LncRNA has been widely reported to play an important role in immune responses and host-virus interactions in mammalian. However, related research has been rarely reported on silkworm. In this study, firstly, we confirmed the decrease of BmNPV ORF75 protein in the BmNPV-infected BmN cells treated with GA. Next, by using a genome-wide transcriptome analysis, we compared the lncRNA and mRNA expression profiles in BmNPV infected BmN cells treated with or without GA and identified a total of 282 differentially expressed lncRNAs (DElncRNAs) and 523 DEmRNAs. KEGG pathway analysis revealed DEmRNA were mainly involved in ubiquitin mediated proteolysis, spliceosome, RNA transport and oxidative phosphorylation. Further, we selected 27 immune-related DEmRNAs, which displayed the similar changes of expression patterns on both protein level and transcript level to construct DElncRNA-DEmRNA network. In addition, based on the DElncRNA-bmo-miR-278-3p-BmHSC70 regulatory network, we explored the potential function of several lncRNAs as sponges to inhibit the regulatory effect of bmo-278-3p on Bombyx mori heat shock protein cognate 70 (BmHSC70). Our finding suggests that lncRNAs play a role in the regulation of BmNPV proliferation by Hsp90.
Collapse
Affiliation(s)
- Haotong Yin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Qi Shang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Shaolun Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Manman Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Haoling Huang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Weiguo Zhao
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Guo Xijie
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Ping Wu
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China.
| |
Collapse
|
111
|
Li Z, Wang W, Meng L, Zhang Y, Zhang J, Li C, Wu Y, Feng F, Zhang Q. Identification and analysis of key lncRNAs in malignant-transformed BEAS-2B cells induced with coal tar pitch by microarray analysis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 79:103376. [PMID: 32470693 DOI: 10.1016/j.etap.2020.103376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
This study aims to explore the key and differentially expressed long non-coding RNAs (lncRNAs) and elucidates their possible mechanisms in malignant-transformed Human bronchial epithelial (BEAS-2B) cells induced by coal tar pitch extracts (CTPE). BEAS-2B cells were stimulated with 2.4 μg/ml CTPE, then passaged for three times which were named CTPE1 and then passaged until passage 30 (CTPE30). The results showed that cells of CTPE30 appeared abnormal morphology. Furthermore, migration, clonality and proliferation of cells in CTPE group were significantly increased compared with those in control groups. However, the apoptosis of cells in CTPE group was inhibited. A total of 569 differentially expressed mRNAs and 707 differentially expressed lncRNAs were screened out, among which four lncRNAs were validated and were consistent with the microarray results. 32 target genes were screened out by Co-expression network. The study suggests that differentially expressed lncRNAs may play a potential role in lung carcinogenesis.
Collapse
Affiliation(s)
- Zhongqiu Li
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Weiguang Wang
- Rizhao Center for Disease Control and Prevention, Rizhao, Shandong province, 276800, China
| | - Liya Meng
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Yaping Zhang
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Jiatong Zhang
- Hospital of Zhengzhou University, Zhengzhou, Henan province, China
| | - Chunyang Li
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Yongjun Wu
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Feifei Feng
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China.
| | - Qiao Zhang
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China.
| |
Collapse
|
112
|
Duan HY, Ding X, Luo HS. Clinicopathological association and prognostic value of long non-coding RNA CASC9 in patients with cancer: A meta-analysis. Exp Ther Med 2020; 20:3823-3831. [PMID: 32855732 PMCID: PMC7444322 DOI: 10.3892/etm.2020.9096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/01/2020] [Indexed: 01/10/2023] Open
Abstract
Several studies have reported a prognostic role of the long non-coding RNA (lncRNA) cancer susceptibility candidate 9 (CASC9) in various cancer types, but its clinical significance has remained inconclusive. The aim of the present meta-analysis was to evaluate the impact of CASC9 expression on the prognosis and clinicopathological features of patients with cancer patients. The PubMed, Embase, Cochrane Library and Web of Science databases were searched for relevant literature and eight studies, including 565 patients with cancer, were selected. The quality of these studies was appraised with the Newcastle-Ottawa Scale (NOS) and the association between CASC9 expression and prognosis or clinicopathological features was analyzed. Patients with high expression levels of CASC9 in their tumor tissues had a lower overall survival rate compared with those in the low CASC9 expression group (hazard ratio=2.25, 95% CI: 1.60-3.17, P<0.001). Furthermore, elevated CASC9 expression was significantly associated with deeper tumor invasion [odds ratio (OR)=2.66, 95% CI: 1.72-4.14, P<0.001], poor tumor differentiation (OR=2.44, 95% CI: 1.24-4.78, P=0.009), lymph node metastasis (OR=3.42, 95% CI: 1.98-5.92, P<0.001) and advanced clinical stage (OR=3.21, 95% CI: 2.21-4.66, P<0.001). In conclusion, CASC9 is a promising biomarker for predicting the prognosis of cancer patients and should be validated in the clinic.
Collapse
Affiliation(s)
- Hou-Yu Duan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiang Ding
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - He-Sheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
113
|
Qiu J, Zhou S, Cheng W, Luo C. LINC00294 induced by GRP78 promotes cervical cancer development by promoting cell cycle transition. Oncol Lett 2020; 20:262. [PMID: 32989396 PMCID: PMC7517597 DOI: 10.3892/ol.2020.12125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Abstract
Cervical cancer is one of the most common gynecological malignancies, and it has become a crucial public health problem. In the present study, the expression profiles of cervical cancer and normal cervical tissues were downloaded from the Gene Expression Omnibus and The Cancer Genome Atlas databases. Subsequently, the dysregulated long non-coding RNAs (lncRNAs) in cervical cancer were identified using R software Differentially expressed lncRNAs in cervical cancer that were associated with glucose-regulated protein 78 (GRP78) were screened out and the results demonstrated that eight lncRNAs were strongly positively correlated with GRP78. In order to confirm the relationship between GRP78 and candidate lncRNAs, GRP78 small interfering RNA (siRNA) was transfected into HeLa cells. The target lncRNAs that were regulated by GRP78 were then identified by reverse transcription-quantitative PCR and it was revealed that LINC00294 was significantly downregulated following GRP78-knockdown. Subsequently, Gene Set Enrichment Analysis demonstrated that LINC00294 was mainly enriched in regulating the cell cycle and the Hedgehog pathway. Following transfection of HeLa and SiHa cells with LINC00294 siRNA, the cell cycle was arrested at the G0/G1 phase. Western blotting suggested that LINC00294-knockdown downregulated the expression of cell cycle-associated factors (cyclin D, cyclin E and cyclin Dependent kinase 4) and upregulated cell cycle inhibitory factors (p16 and p21). The Hedgehog pathway was inhibited following knockdown of LINC00294 in HeLa and SiHa cells. In summary, LINC00294 induced by GRP78 promoted the progression of cervical cancer by regulating the cell cycle via Hedgehog pathway.
Collapse
Affiliation(s)
- Jiangnan Qiu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Shulin Zhou
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Wenjun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Chengyan Luo
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
114
|
Wang L, Jiang J, Sun G, Zhang P, Li Y. Effects of lncRNA TUSC7 on the malignant biological behavior of osteosarcoma cells via regulation of miR-375. Oncol Lett 2020; 20:133. [PMID: 32934702 PMCID: PMC7471645 DOI: 10.3892/ol.2020.11994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/06/2020] [Indexed: 12/23/2022] Open
Abstract
The present study aimed at investigating how long-chain non-coding RNA (lncRNA) tumor suppressor candidate 7 (TUSC7) regulates the malignant biological behavior of osteosarcoma cells. Tumor tissues and adjacent tissues of 30 patients with osteosarcoma were collected, and the expression levels of lncRNA TUSC7 and miR-375 were detected by RT-qPCR. lncRNA TUSC7 mimic and miR-375 mimic transfection models were established in MG63 osteosarcoma cells, and Transwell assays were used to detect the migration ability of MG63 cells. An MTT assay was used to assess the proliferation ability of MG63 cells. lncRNA TUSC7 in osteosarcoma tissue was significantly lower than that of adjacent tissues, while miR-375 levels were significantly higher than that of adjacent tissues; the two levels have a negative correlation. lncRNA TUSC7 mimic inhibited MG63 proliferation and migration abilities. miR-375 mimic promoted MG63 proliferation and migration abilities. The lncRNA TUSC7 mimic and miR-375 mimic co-transfection system could partially rescue the inhibition of lncRNA TUSC7 mimic on MG63 cells. In conclusion, lncRNA TUSC7 inhibited the proliferation and migration of MG63 osteosarcoma cells by regulating miR-375.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Spinal Surgery, ShengLi Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China
| | - Jiankui Jiang
- Department of Hand and Foot Surgery, ShengLi Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China
| | - Guisen Sun
- Department of Spinal Surgery, ShengLi Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China
| | - Panpan Zhang
- Department of Spinal Surgery, ShengLi Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China
| | - Ya Li
- Department of Spinal Surgery, ShengLi Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China
| |
Collapse
|
115
|
Zhu X, Wei Y, Dong J. Long Noncoding RNAs in the Regulation of Asthma: Current Research and Clinical Implications. Front Pharmacol 2020; 11:532849. [PMID: 33013382 PMCID: PMC7516195 DOI: 10.3389/fphar.2020.532849] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/25/2020] [Indexed: 01/21/2023] Open
Abstract
Asthma is a chronic airway inflammatory disorder related to variable expiratory airflow limitation, leading to wheeze, shortness of breath, chest tightness, and cough. Its characteristic features include airway inflammation, airway remodeling and airway hyperresponsiveness. The pathogenesis of asthma remains extremely complicated and the detailed mechanisms are not clarified. Long noncoding RNAs (lncRNAs) have been reported to play a prominent role in asthma and function as modulators of various aspects in pathological progress of asthma. Here, we summarize recent advances of lncRNAs in asthma pathogenesis to guide future researches, clinical treatment and drug development, including their regulatory functions in the T helper (Th) 1/Th2 imbalance, Th17/T regulatory (Treg) imbalance, eosinophils dysfunction, macrophage polarization, airway smooth muscle cells proliferation, and glucocorticoid insensitivity.
Collapse
Affiliation(s)
- Xueyi Zhu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
116
|
Zhao L, Zheng W, Li C. Association of long-chain non-coding RNA GAS5 gene polymorphisms with prostate cancer risk and prognosis in Chinese Han population. Medicine (Baltimore) 2020; 99:e21790. [PMID: 32899006 PMCID: PMC7478801 DOI: 10.1097/md.0000000000021790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND To investigate the correlation between growth arrest-specific transcript 5 (GAS5) gene polymorphism and the risk and prognosis of prostate cancer in Chinese Han population. METHODS Sanger sequencing was used to analyze genotypes at the rs17359906 and rs1951625 loci of the GAS5 gene in 218 prostate cancer patients and 220 healthy controls. The follow-up period was from August 2016 to August 2019, and the relationships between GAS5 gene polymorphisms at the rs17359906 and rs1951625 loci and the recurrence-free survival rate of prostate cancer patients were analyzed. RESULTS GAS5 A-allele carriers at the rs17359906 locus were 3.44 times more likely to develop prostate cancer than G-allele carriers (95% confidence interval (CI): 2.38-4.96, P < .001). Carriers of the GAS5 A allele at the rs1951625 locus had a 1.40-fold higher risk of prostate cancer than carriers of the G allele (95% CI: 1.05-1.86, P = .027). Plasma prostate-specific antigen (PSA), body mass index (BMI), and rs17359906 and rs1951625 loci were independent risk factors for prostate cancer. GAS5 AA genotype and A-allele carriers (GA + AA) at the rs1951625 locus were significantly correlated with Gleason scores ≤7 (P < .05). GAS5 genes rs17359906 G > A and rs1951625 G > A were associated with high plasma PSA levels. The recurrence-free survival rate of patients with prostate cancer with AA genotype at the rs17359906 locus of GAS5 (66.67%) was significantly lower than that of the GA genotype (76.47%), whereas the GG genotype was the highest (91.96%), and the difference was statistically significant (P = .002). The recurrence-free survival rate of patients with prostate cancer with the AA genotype at the rs1951625 locus of GAS5 (75.00%) was significantly lower than that of the GA genotype (81.82%), whereas the GG genotype was the highest (87.76%) with a statistically significant difference (P = .025). CONCLUSION GAS5 rs17359906 G > A and rs1951625 G > A are significantly associated with an increased risk of prostate cancer and a reduction in three-year relapse-free survival.
Collapse
Affiliation(s)
- Lisha Zhao
- Department of Medical Oncology, Zhuji People's Hospital of Zhejiang Province, No. 9 Jianmin Road, Tao Zhu Street, Zhuji
| | - Weihong Zheng
- School of Life Science, Huzhou University, Huzhou Central Hospital, 759 Erhuan East Road, Huzhou
| | - Chen Li
- Department of Urology, Zhejiang Hospital, 12 Lingyin Road, Hangzhou, Zhejiang, China
| |
Collapse
|
117
|
Zhou S, Fang J, Sun Y, Li H. Integrated Analysis of a Risk Score System Predicting Prognosis and a ceRNA Network for Differentially Expressed lncRNAs in Multiple Myeloma. Front Genet 2020; 11:934. [PMID: 33193574 PMCID: PMC7481452 DOI: 10.3389/fgene.2020.00934] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are non-protein-coding RNAs longer than 200 nucleotides. Accumulating evidence demonstrates that lncRNA is a potential biomarker for cancer diagnosis and prognosis. However, there are no prognostic biomarkers and lncRNA models for multiple myeloma (MM). Hence, it is necessary to screen novel lncRNA that can potentially participate in the initiation and progression of MM and consequently construct a risk score system for the disease. Raw microarray datasets were obtained from the Gene Expression Omnibus website. Weighted gene co-expression network analysis and principal component analysis identified 12 lncRNAs of interest. Then, univariate, least absolute shrinkage and selection operator Cox regression and multivariate Cox hazard regression analysis identified two lncRNAs (LINC00996 and LINC00525) that were formulated to construct a risk score system to predict survival. Receiver operating characteristic analysis certificated the superior performance in predicting 3-year overall survival (area under the curve = 0.829). The similar prognostic values of the two-lncRNA signature were also observed in the tested The Cancer Genome Atlas dataset. Furthermore, two other lncRNAs (LINC00324 and LINC01128) were differentially expressed between CD138+ plasma cells from normal donors and MM patients and were verified to be associated with cancer stage in the Gene Expression Omnibus dataset. A lncRNA-mediated competing endogenous RNA network, including 2 lncRNAs, 12 mitochondrial RNAs, and 103 target messenger RNAs, was constructed. In conclusion, we developed a two-lncRNA expression signature to predict the prognosis of MM and constructed a key lncRNA-based competing endogenous RNA network in MM. These lncRNAs were associated with survival and are probably involved in the occurrence and progression of MM.
Collapse
Affiliation(s)
- Sijie Zhou
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiuyuan Fang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yan Sun
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huixiang Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
118
|
Cao J, Lv X, Zhang Y, Xu A, Jiang T. LncRNA GAS5 activates the AMPK pathway in peripheral blood mononuclear cells derived from rheumatoid arthritis patients. Int J Rheum Dis 2020; 23:1318-1327. [PMID: 32749060 DOI: 10.1111/1756-185x.13930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an inflammatory disease, which seriously affects human joints. This study aimed to detect the changes in the expression of long non-coding RNA growth arrest-specific transcript 5 (GAS5) in peripheral blood mononuclear cells (PBMCs) derived from patients with RA and healthy controls (HC), as well as analyze the correlation between GAS5 and clinical indicators of RA. Also, the role and mechanism of GAS5 in regulating the AMP-activated protein kinase (AMPK) pathway in RA was further assessed. METHODS The PBMCs were isolated from the RA patients. Next, GAS5 expression was detected in RA PBMCs by quantitative real-time polymerase chain reaction, and its diagnostic value on RA was determined by receiver operating characteristic curves (ROC). The levels of interleukin (IL)-6 and IL-17 were detected via enzyme-linked immunosorbent assay. The expressions of total and phosphorylated AMPK as well as p38MAPK were determined with Western blot. RESULTS GAS5 was down-regulated in RA PBMCs, and consequently serves as a potential diagnostic marker for RA (sensitivity, 90%; specificity, 80%; area under the curve, 0.89). Further, GAS5 negatively regulated erythrocyte sedimentation rate, C-reactive protein, Disease Activity Score of 28 joints and antibodies against cyclic citrullinated peptide, as well as the IL-6 and IL-17 levels of RA PBMCs. Similarly, GAS5 was observed to activate the AMPK pathway. CONCLUSION GAS5 activated the AMPK pathway, while it negatively regulated the expression of cytokines IL-6 and IL-17.
Collapse
Affiliation(s)
- Jijun Cao
- The First People's Hospital of Taicang, Jiangsu, China
| | - Xinlu Lv
- The First People's Hospital of Taicang, Jiangsu, China
| | - Yuemei Zhang
- The First People's Hospital of Taicang, Jiangsu, China
| | - Aiping Xu
- The First People's Hospital of Taicang, Jiangsu, China
| | - Tingwang Jiang
- Department of Key Laboratory, The Second People's Hospital of Changshu, The Affiliated Changshu Hospital of Xuzhou Medical University, Jiangsu, China
| |
Collapse
|
119
|
Xu Z, Gao G, Liu F, Han Y, Dai C, Wang S, Wei G, Kuang Y, Wan D, Zhi Q, Xu Y. Molecular Screening for Nigericin Treatment in Pancreatic Cancer by High-Throughput RNA Sequencing. Front Oncol 2020; 10:1282. [PMID: 32850392 PMCID: PMC7411259 DOI: 10.3389/fonc.2020.01282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/19/2020] [Indexed: 12/18/2022] Open
Abstract
Objectives: Nigericin, an antibiotic derived from Streptomyces hygroscopicus, has been proved to exhibit promising anti-cancer effects on a variety of cancers. Our previous study investigated the potential anti-cancer properties in pancreatic cancer (PC), and demonstrated that nigericin could inhibit the cell viabilities in concentration- and time-dependent manners via differentially expressed circular RNAs (circRNAs). However, the knowledge of nigericin associated with long non-coding RNA (lncRNA) and mRNA in pancreatic cancer (PC) has not been studied. This study is to elucidate the underlying mechanism from the perspective of lncRNA and mRNA. Methods: The continuously varying molecules (lncRNAs and mRNAs) were comprehensively screened by high-throughput RNA sequencing. Results: Our data showed that 76 lncRNAs and 172 mRNAs were common differentially expressed in the nigericin anti-cancer process. Subsequently, the bioinformatics analyses, including Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, coding and non-coding co-expression network, cis- and trans-regulation predictions and protein-protein interaction (PPI) network, were applied to annotate the potential regulatory mechanisms among these coding and non-coding RNAs during the nigericin anti-cancer process. Conclusions: These findings provided new insight into the molecular mechanism of nigericin toward cancer cells, and suggested a possible clinical application in PC.
Collapse
Affiliation(s)
- Zhihua Xu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guanzhuang Gao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fei Liu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ye Han
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chen Dai
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Sentai Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guobang Wei
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuting Kuang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Daiwei Wan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiaoming Zhi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| |
Collapse
|
120
|
Duan H, Ding X, Luo H. The prognostic value of long noncoding RNA activated by TGF-β in digestive system cancers: A meta-analysis. Medicine (Baltimore) 2020; 99:e21324. [PMID: 32791727 PMCID: PMC7387048 DOI: 10.1097/md.0000000000021324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND To systematically evaluate whether the expression level of long non-coding RNA activated by transforming growth factor-β (lncRNA-ATB) is correlated with the prognosis of digestive system cancer (DSC) patients. METHODS PubMed, Embase, Cochrane Library, Web of Science, Springerlink, Nature, and Karger databases were searched up to April 20, 2019 by 2 experienced researchers independently. The quality of studies was assessed with the Newcastle-Ottawa scale. The Review Manager 5.2 and STATA 12.0 software were used for this meta-analysis. RESULT Eleven studies with 1227 DSC patients were included in the meta-analysis. Except for pancreatic cancer, high expression of lncRNA-ATB was associated with lymph node metastasis (risk ratio (RR) = 1.26, 95% confidence interval (CI): 1.12-1.42, P < .001), advanced clinical staging (RR = 1.44, 95%CI: 1.23-1.69, P < .001), reduced overall survival rate (OS) (hazard ratio (HR) = 2.33, 95%CI: 1.22-4.50, P = .01), and recurrence-free survival (RFS) (HR = 2.61, 95%CI: 1.46-4.65, P = .001) compared with low lncRNA-ATB expression in DSCs. CONCLUSIONS High expression of lncRNA-ATB was significantly correlated with poor prognosis for most DSCs. The expression level of lncRNA-ATB could be a promising prognostic biomarker for DSC patients.
Collapse
|
121
|
Gupta A, Bansal M. RNA-mediated translation regulation in viral genomes: computational advances in the recognition of sequences and structures. Brief Bioinform 2020; 21:1151-1163. [PMID: 31204430 PMCID: PMC7109810 DOI: 10.1093/bib/bbz054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/24/2019] [Accepted: 04/15/2019] [Indexed: 12/30/2022] Open
Abstract
RNA structures are widely distributed across all life forms. The global conformation of these structures is defined by a variety of constituent structural units such as helices, hairpin loops, kissing-loop motifs and pseudoknots, which often behave in a modular way. Their ubiquitous distribution is associated with a variety of functions in biological processes. The location of these structures in the genomes of RNA viruses is often coordinated with specific processes in the viral life cycle, where the presence of the structure acts as a checkpoint for deciding the eventual fate of the process. These structures have been found to adopt complex conformations and exert their effects by interacting with ribosomes, multiple host translation factors and small RNA molecules like miRNA. A number of such RNA structures have also been shown to regulate translation in viruses at the level of initiation, elongation or termination. The role of various computational studies in the preliminary identification of such sequences and/or structures and subsequent functional analysis has not been fully appreciated. This review aims to summarize the processes in which viral RNA structures have been found to play an active role in translational regulation, their global conformational features and the bioinformatics/computational tools available for the identification and prediction of these structures.
Collapse
Affiliation(s)
- Asmita Gupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Manju Bansal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
122
|
Nakashima K, Sato S, Tamura I, Hayashi‐Okada M, Tamehisa T, Kajimura T, Sueoka K, Sugino N. Identification of aberrantly expressed long non-coding RNAs in ovarian high-grade serous carcinoma cells. Reprod Med Biol 2020; 19:277-285. [PMID: 32684827 PMCID: PMC7360959 DOI: 10.1002/rmb2.12330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To identify the aberrantly expressed long non-coding RNAs (lncRNAs) in ovarian high-grade serous carcinoma (HGSC). METHODS Total RNA was isolated in HGSC cell lines, ovarian surface epithelial cells, and normal ovaries. Aberrantly expressed lncRNAs in HGSC were identified by PCR array, which analyzes 84 kinds of lncRNAs. To infer their functions, HGSC cell lines with different levels of expression of the identified lncRNAs were established, and then, activities of proliferation, migration, and apoptosis were examined. Expression levels of the identified lncRNAs were also examined in multiple ovarian HGSC tissues. RESULTS Ten aberrantly expressed lncRNAs, six upregulated and four downregulated, were identified in the HGSC cell lines. The authors established four HGSC cell lines: in two of the cell lines, one of the upregulated lncRNAs was knocked down, and in two other cell lines, one of the downregulated lncRNAs (MEG3 and POU5F1P5) was overexpressed. Migration activities were inhibited in the HGSC cell lines overexpressing MEG3 or POU5F1P5 while there were no differences in proliferation and apoptosis between the established and control cell lines. The four lncRNAs downregulated in the HGSC cell lines were also observed to be downregulated in ovarian HGSC tissues. CONCLUSION The authors identified four downregulated lncRNAs in ovarian HGSC.
Collapse
Affiliation(s)
- Kengo Nakashima
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Shun Sato
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Isao Tamura
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Maki Hayashi‐Okada
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Tetsuro Tamehisa
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Takuya Kajimura
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Kotaro Sueoka
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Norihiro Sugino
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| |
Collapse
|
123
|
Chen L, Bao Y, Jiang S, Zhong XB. The Roles of Long Noncoding RNAs HNF1α-AS1 and HNF4α-AS1 in Drug Metabolism and Human Diseases. Noncoding RNA 2020; 6:E24. [PMID: 32599764 PMCID: PMC7345002 DOI: 10.3390/ncrna6020024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are RNAs with a length of over 200 nucleotides that do not have protein-coding abilities. Recent studies suggest that lncRNAs are highly involved in physiological functions and diseases. lncRNAs HNF1α-AS1 and HNF4α-AS1 are transcripts of lncRNA genes HNF1α-AS1 and HNF4α-AS1, which are antisense lncRNA genes located in the neighborhood regions of the transcription factor (TF) genes HNF1α and HNF4α, respectively. HNF1α-AS1 and HNF4α-AS1 have been reported to be involved in several important functions in human physiological activities and diseases. In the liver, HNF1α-AS1 and HNF4α-AS1 regulate the expression and function of several drug-metabolizing cytochrome P450 (P450) enzymes, which also further impact P450-mediated drug metabolism and drug toxicity. In addition, HNF1α-AS1 and HNF4α-AS1 also play important roles in the tumorigenesis, progression, invasion, and treatment outcome of several cancers. Through interacting with different molecules, including miRNAs and proteins, HNF1α-AS1 and HNF4α-AS1 can regulate their target genes in several different mechanisms including miRNA sponge, decoy, or scaffold. The purpose of the current review is to summarize the identified functions and mechanisms of HNF1α-AS1 and HNF4α-AS1 and to discuss the future directions of research of these two lncRNAs.
Collapse
Affiliation(s)
- Liming Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA; (L.C.); (Y.B.); (S.J.)
| | - Yifan Bao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA; (L.C.); (Y.B.); (S.J.)
| | - Suzhen Jiang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA; (L.C.); (Y.B.); (S.J.)
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 51006, China
| | - Xiao-bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA; (L.C.); (Y.B.); (S.J.)
| |
Collapse
|
124
|
Bai J, Zhai Y, Wang S, Li M, Zhang S, Li C, Gui S, Li Q, Zhang Y. LncRNA and mRNA expression profiles reveal the potential roles of lncRNA contributing to regulating dural penetration in clival chordoma. Aging (Albany NY) 2020; 12:10809-10826. [PMID: 32533822 PMCID: PMC7346080 DOI: 10.18632/aging.103294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/28/2020] [Indexed: 01/13/2023]
Abstract
Chordoma is a rare bone cancer originating from embryologic notochordal remnants. Clival chordomas show different dural penetration ability, with serious dural penetration exhibiting poorer prognosis. The molecular mechanism of dural penetration is not clear. We analyzed lncRNA and mRNA profiles in 12 chordoma patients with different degrees of dural penetration using expression microarrays. The differentially expressed lncRNAs and mRNAs were used to construct a lncRNA-mRNA co-expression network. LncRNAs were classified into lincRNA, enhancer-like lncRNA, or antisense lncRNA. Biological functions for lncRNAs were predicted according to the lncRNA-mRNA network and adjacent coding genes by pathway analysis. The 2760 lncRNAs and 3988 mRNAs were differentially expressed in chordomas between two groups of patients with and without dural penetration. Possible pathway involvement of the significance among the 55 lncRNAs located in the lncRNA-mRNA network, 24 lincRNAs, 7 enhancer-like lncRNAs, and 14 antisense lncRNAs include cell adhesion, metastasis, invasion, proliferation, and apoptosis. Expression of 10 lncRNAs and mRNAs, and epidermal growth factor mRNA with two identified lncRNAs were subsequently verified by qRT-PCR in chordoma tissues. Our report predicts the biological functions of many lncRNAs which may be used as diagnostic and prognostic biomarkers as well as therapeutic targets during the process of dural penetration in chordoma.
Collapse
Affiliation(s)
- Jiwei Bai
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yixuan Zhai
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China.,Department of Neurosurgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Shuai Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Mingxuan Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Shuheng Zhang
- Department of Neurosurgery, Anshan Central Hospital, Anshan 114001, China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Songbai Gui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Qi Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| |
Collapse
|
125
|
Xu J, Ge T, Zhou H, Zhang L, Zhao L. Absence of Long Noncoding RNA H19 Promotes Childhood Nephrotic Syndrome through Inhibiting ADCK4 Signal. Med Sci Monit 2020; 26:e922090. [PMID: 32489187 PMCID: PMC7294843 DOI: 10.12659/msm.922090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Nephrotic syndrome (NS) is a common chronic kidney disease in children characterized by a group of clinical symptoms such as massive proteinuria, hypoproteinemia, high edema, and hyperlipidemia. Despite the tremendous efforts already made, the diagnosis for nephrotic syndrome still remains poor in children. Material/Methods The blood samples from 30 healthy children and 30 children with nephrotic syndrome were collected. The expression of H19 and ADCK4 (which are genes recently identified to play key roles in the development of nephrotic syndrome) in peripheral blood mononuclear cells (PBMCs), were detected by real-time quantitative polymerase chain reaction (RT-qPCR). The expression of ADCK4 was also detected by RT-qPCR or western blot when H19 was overexpressed or knocked down in human primary renal podocytes. Luciferase activity analysis was performed to measure whether H19 could regulate the promoter activity of ADCK4. RNA pull-down. In addition, mass spectrometry assay was used to find the transcription factor which could bind with H19, and RNA immunoprecipitation assay (RIPA) analysis was done to further confirm the interaction between H19 and candidate transcription factor. Results Long noncoding RNA H19 (lncRNA H19) expression was downregulated in PBMCs of children with nephrotic syndrome. ADCK4 was also downregulated. In human primary renal podocytes, overexpression of H19 promoted the expression of ADCK4, while H19 knockdown inhibited it. Furthermore, our study demonstrated that H19 could regulate the promoter activity of ADCK4. Using RNA pull-down and mass spectrometry technology, we found the transcription factor-THAP1 could bind with H19, and the interaction between them was further confirmed by RIPA analysis. Conclusions H19 expression in blood samples may be a novel marker of the diagnosis of nephrotic syndrome in children.
Collapse
Affiliation(s)
- Jinwen Xu
- Department of Pediatrics and Nephrology, Wuxi Children's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China (mainland)
| | - Tingting Ge
- Department of Pediatrics and Nephrology, Wuxi Children's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China (mainland)
| | - Hongxia Zhou
- Department of Pediatrics and Nephrology, Wuxi Children's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China (mainland)
| | - Lin Zhang
- Department of Pediatrics and Nephrology, Wuxi Children's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China (mainland)
| | - Liping Zhao
- Department of Pediatrics and Nephrology, Wuxi Children's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China (mainland)
| |
Collapse
|
126
|
Yuan C, Ning Y, Pan Y. Emerging roles of HOTAIR in human cancer. J Cell Biochem 2020; 121:3235-3247. [PMID: 31943306 DOI: 10.1002/jcb.29591] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 12/11/2019] [Indexed: 12/19/2022]
Abstract
Long noncoding RNA HOX antisense intergenic RNA (HOTAIR) is overexpressed in many types of cancers, and substantial evidence has suggested a link between cancers and HOTAIR. In the present study, we reviewed the structure and the corresponding biologic function of HOTAIR to clarify its molecular mechanism in cancer progression. HOTAIR promotes proliferation, invasion, and migration, and inhibits apoptosis in cancer cells. HOTAIR also participates in the pathogenesis and progression of cancer by regulating inflammation and immune signaling. These findings suggested that HOTAIR is a novel biomarker in human cancers.
Collapse
Affiliation(s)
- Chunjue Yuan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yong Ning
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
127
|
Luo Y, Ye J, Wei J, Zhang J, Li Y. Long non‑coding RNA‑based risk scoring system predicts prognosis of alcohol‑related hepatocellular carcinoma. Mol Med Rep 2020; 22:997-1007. [PMID: 32468063 PMCID: PMC7339747 DOI: 10.3892/mmr.2020.11179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/22/2020] [Indexed: 12/16/2022] Open
Abstract
Increasing evidence suggests that long non-coding RNAs (lncRNAs) serve a crucial role in predicting prognosis for hepatocellular carcinoma (HCC). However, prognostic performance may not be the same for alcohol‑related HCC. The aim of the present study was to screen prognosis‑associated lncRNAs and construct a risk scoring system for alcohol‑related HCC. The expression profiles of lncRNAs in 113 patients with alcohol‑related HCC and 224 with non‑alcohol‑related HCC were obtained from The Cancer Genome Atlas (TCGA) database and screened for differentially expressed lncRNAs. Cox regression analysis was performed to identify prognosis‑associated lncRNAs and select the optimal lncRNA model. A risk scoring system was established to calculate the risk score for each patient. The prognostic ability of this system was tested. Functional enrichment analysis was performed for genes that were highly associated with lncRNA expression. A total of 102 differentially expressed lncRNAs were identified between alcohol‑related and non‑alcohol‑related HCC. Four lncRNAs (AC012640.1, AC013451.2, AC062004.1 and LINC02334) were used to construct the risk assessment model to predict overall survival (OS), and five lncRNAs (ERVH48‑1, LINC02043, LINC01605, AC062004.1 and AL139385) were used to predict recurrence‑free survival (RFS). Patients were assigned to high‑ or low‑risk groups according to the risk score. OS in the high‑risk group was significantly shorter than that of the low‑risk group. The area under the receiver operating characteristic (ROC) curve of risk scoring systems was >0.7. The risk score was an independent prognostic factor for alcohol‑related HCC. Functional enrichment analysis demonstrated that lncRNA‑related genes found in this system were mainly involved in chemical carcinogenesis, drug metabolism, and the cell cycle. In conclusion, this study developed and validated a prognostic scoring system for alcohol‑related HCC based on lncRNAs.
Collapse
Affiliation(s)
- Yue Luo
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jiaxiang Ye
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jiazhang Wei
- Department of Otolaryngology and Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Jinyan Zhang
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yongqiang Li
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
128
|
He J, Huang B, Zhang K, Liu M, Xu T. Long non-coding RNA in cervical cancer: From biology to therapeutic opportunity. Biomed Pharmacother 2020; 127:110209. [PMID: 32559848 DOI: 10.1016/j.biopha.2020.110209] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 01/06/2023] Open
Abstract
Genome regions that do not for code for proteins are generally transcribed into long non-coding RNAs. Growing evidence reveals that lncRNAs, defined as transcripts longer than 200 nucleotides, are commonly deregulated in cervical malignancies. New sequencing technologies have revealed a complete picture of the composition of the human transcriptome. LncRNAs perform diverse functions at transcriptional, translation, and post-translational levels through interactions with proteins, RNA and DNA. In the past decade, studies have shown that lncRNAs participate in the pathogenesis of many diseases, including cervical cancer. Hence, illuminating the roles of lncRNA will improve our understanding of cervical cancer. In this work, we summarize the current knowledge on lncRNAs in cervical cancer. We describe the emerging roles of lncRNAs in cervical cancer, particularly in cancer progression, metastasis, treatment resistance, HPV regulation, and metabolic reprogramming. The great promises of lncRNAs as potential biomarkers for cervical cancer diagnosis and prognosis are also discussed. We discuss current technologies used to target lncRNAs and thus control cancers, such as antisense oligonucleotides, CRISPR-Cas9, and exosomes. Overall, we show that lncRNAs hold great potentials as therapeutic agents and innovative biomarkers. Finally, further clinical research is necessary to advance our understanding of the therapeutic value of lncRNAs in cervical cancer.
Collapse
Affiliation(s)
- Jiaxing He
- Department of Obstetrics and Gynecology, The Second Clinical Hospital of Jilin University, Changchun, China
| | - Bingyu Huang
- Department of Obstetrics and Gynecology, The Second Clinical Hospital of Jilin University, Changchun, China
| | - Kun Zhang
- Department of Obstetrics and Gynecology, The Second Clinical Hospital of Jilin University, Changchun, China
| | - Mubiao Liu
- Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Tianmin Xu
- Department of Obstetrics and Gynecology, The Second Clinical Hospital of Jilin University, Changchun, China.
| |
Collapse
|
129
|
Liu Z, Ning Z, Lu H, Cao T, Zhou F, Ye X, Chen C. Long non-coding RNA RFPL3S is a novel prognostic biomarker in lung cancer. Oncol Lett 2020; 20:1270-1280. [PMID: 32724368 PMCID: PMC7377115 DOI: 10.3892/ol.2020.11642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 11/07/2019] [Indexed: 01/10/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are functional components of the human genome. Recent studies have demonstrated that lncRNAs play essential roles in tumorigenesis, and are involved in cell proliferation, apoptosis, migration and invasion in several types of tumor, including lung cancer. However, the clinical relevance of lncRNA expression in lung cancer remains unknown. The aim of the present study was to investigate the expression pattern of RFPL3 antisense (RFPL3S) and its associations with clinicopathological characteristics in patients with lung cancer. Whether RFPL3S can act as a potential prognostic biomarker for lung cancer was also investigated. RFPL3S expression in tumor samples and cells was assessed using the Oncomine database and the Cancer Cell Line Encyclopedia, respectively. Based on Kaplan-Meier Plotter analyses, the prognostic values of RFPL3S were further evaluated. It was revealed that RFPL3S was highly expressed in lung cancer tissues when compared with normal tissues and was significantly associated with pN factor, pTNM stage and Ki-67 labeling index. In the survival analyses, increased RFPL3S expression was associated with poor survival and was inversely associated with first progression in all patients. These results indicate that RFPL3S may be of clinical significance and may act as a prognostic biomarker in lung cancer.
Collapse
Affiliation(s)
- Zhonghua Liu
- Department of Oncology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu 215200, P.R. China.,Department of Oncology, The First People's Hospital of Wujiang District, Suzhou, Jiangsu 215200, P.R. China
| | - Zhiqiang Ning
- Department of Oncology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu 215200, P.R. China.,Department of Oncology, The First People's Hospital of Wujiang District, Suzhou, Jiangsu 215200, P.R. China
| | - Hailin Lu
- Department of Oncology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu 215200, P.R. China.,Department of Oncology, The First People's Hospital of Wujiang District, Suzhou, Jiangsu 215200, P.R. China
| | - Tinghua Cao
- Department of Oncology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu 215200, P.R. China.,Department of Oncology, The First People's Hospital of Wujiang District, Suzhou, Jiangsu 215200, P.R. China
| | - Feng Zhou
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xia Ye
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Chao Chen
- Department of Oncology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu 215200, P.R. China.,Department of Oncology, The First People's Hospital of Wujiang District, Suzhou, Jiangsu 215200, P.R. China
| |
Collapse
|
130
|
Zhou L, Zhu Y, Sun D, Zhang Q. Emerging Roles of Long non-coding RNAs in The Tumor Microenvironment. Int J Biol Sci 2020; 16:2094-2103. [PMID: 32549757 PMCID: PMC7294937 DOI: 10.7150/ijbs.44420] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/13/2020] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a diverse class of longer than 200 nucleotides RNA transcripts that have limited protein coding capacity. LncRNAs display diverse cellular functions and widely participate in both physiological and pathophysiological processes. Aberrant expressions of lncRNAs are correlated with tumor progression, providing sound rationale for their targeting as attractive anti-tumor therapeutic strategies. Emerging evidences support that lncRNAs participate in tumor-stroma crosstalk and stimulate a distinctive and suitable tumor microenvironment (TME). The TME comprises several stromal cells such as cancer stem cells (CSCs), cancer-associated endothelial cells (CAEs), cancer-associated fibroblasts (CAFs) and infiltrated immune cells, all of which are involved in the complicated crosstalk with tumor cells to affect tumor progression. In this review, we summarize the essential properties and functional roles of known lncRNAs in related to the TME to validate lncRNAs as potential biomarkers and promising anti-cancer targets.
Collapse
Affiliation(s)
- Lisha Zhou
- Taizhou University hospital, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Yingying Zhu
- Taizhou University hospital, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Dongsheng Sun
- Taizhou University hospital, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Qiang Zhang
- Taizhou Municipal Hospital, Taizhou University, Taizhou, Zhejiang, 318000, China
| |
Collapse
|
131
|
Kuo TC, Kung HJ, Shih JW. Signaling in and out: long-noncoding RNAs in tumor hypoxia. J Biomed Sci 2020; 27:59. [PMID: 32370770 PMCID: PMC7201962 DOI: 10.1186/s12929-020-00654-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023] Open
Abstract
Over the past few years, long non-coding RNAs (lncRNAs) are recognized as key regulators of gene expression at chromatin, transcriptional and posttranscriptional level with pivotal roles in various biological and pathological processes, including cancer. Hypoxia, a common feature of the tumor microenvironment, profoundly affects gene expression and is tightly associated with cancer progression. Upon tumor hypoxia, the central regulator HIF (hypoxia-inducible factor) is upregulated and orchestrates transcription reprogramming, contributing to aggressive phenotypes in numerous cancers. Not surprisingly, lncRNAs are also transcriptional targets of HIF and serve as effectors of hypoxia response. Indeed, the number of hypoxia-associated lncRNAs (HALs) identified has risen sharply, illustrating the expanding roles of lncRNAs in hypoxia signaling cascade and responses. Moreover, through extra-cellular vesicles, lncRNAs could transmit hypoxia responses between cancer cells and the associated microenvironment. Notably, the aberrantly expressed cellular or exosomal HALs can serve as potential prognostic markers and therapeutic targets. In this review, we provide an update of the current knowledge about the expression, involvement and potential clinical impact of lncRNAs in tumor hypoxia, with special focus on their unique molecular regulation of HIF cascade and hypoxia-induced malignant progression.
Collapse
Affiliation(s)
- Tse-Chun Kuo
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, 35053, Taiwan, ROC
| | - Hsing-Jien Kung
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, 35053, Taiwan, ROC.,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan, ROC.,Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan, ROC.,Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, University of California at Davis, Sacramento, CA, 95817, USA.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 110, Taiwan, ROC
| | - Jing-Wen Shih
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan, ROC. .,Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan, ROC. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 110, Taiwan, ROC. .,Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan, ROC.
| |
Collapse
|
132
|
Spokoini-Stern R, Stamov D, Jessel H, Aharoni L, Haschke H, Giron J, Unger R, Segal E, Abu-Horowitz A, Bachelet I. Visualizing the structure and motion of the long noncoding RNA HOTAIR. RNA (NEW YORK, N.Y.) 2020; 26:629-636. [PMID: 32115425 PMCID: PMC7161352 DOI: 10.1261/rna.074633.120] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Long noncoding RNA molecules (lncRNAs) are estimated to account for the majority of eukaryotic genomic transcripts, and have been associated with multiple diseases in humans. However, our understanding of their structure-function relationships is scarce, with structural evidence coming mostly from indirect biochemical approaches or computational predictions. Here we describe direct visualization of the lncRNA HOTAIR (HOx Transcript AntIsense RNA) using atomic force microscopy (AFM) in nucleus-like conditions at 37°. Our observations reveal that HOTAIR has a discernible, although flexible, shape. Fast AFM scanning enabled the quantification of the motion of HOTAIR, and provided visual evidence of physical interactions with genomic DNA segments. Our report provides a biologically plausible description of the anatomy and intrinsic properties of HOTAIR, and presents a framework for studying the structural biology of lncRNAs.
Collapse
Affiliation(s)
- Rachel Spokoini-Stern
- Augmanity, Rehovot 7670308, Israel
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | | | | | | | | | | | - Ron Unger
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Eran Segal
- Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | | |
Collapse
|
133
|
Maroñas O, García-Quintanilla L, Luaces-Rodríguez A, Fernández-Ferreiro A, Latorre-Pellicer A, Abraldes MJ, Lamas MJ, Carracedo A. Anti-VEGF Treatment and Response in Age-related Macular Degeneration: Disease's Susceptibility, Pharmacogenetics and Pharmacokinetics. Curr Med Chem 2020; 27:549-569. [PMID: 31296152 DOI: 10.2174/0929867326666190711105325] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/03/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
The current review is focussing different factors that contribute and directly correlate to the onset and progression of Age-related Macular Degeneration (AMD). In particular, the susceptibility to AMD due to genetic and non-genetic factors and the establishment of risk scores, based on the analysis of different genes to measure the risk of developing the disease. A correlation with the actual therapeutic landscape to treat AMD patients from the point of view of pharmacokinetics and pharmacogenetics is also exposed. Treatments commonly used, as well as different regimes of administration, will be especially important in trying to classify individuals as "responders" and "non-responders". Analysis of different genes correlated with drug response and also the emerging field of microRNAs (miRNAs) as possible biomarkers for early AMD detection and response will be also reviewed. This article aims to provide the reader a review of different publications correlated with AMD from the molecular and kinetic point of view as well as its commonly used treatments, major pitfalls and future directions that, to our knowledge, could be interesting to assess and follow in order to develop a personalized medicine model for AMD.
Collapse
Affiliation(s)
- Olalla Maroñas
- Grupo de Medicina Xenomica, Centro Nacional de Genotipado (CEGEN-PRB3), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Laura García-Quintanilla
- Servicio de Farmacia, Xerencia de Xestión Integrada de Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Andrea Luaces-Rodríguez
- Departamento de Farmacia e Tecnoloxia Farmaceutica e Instituto de Farmacia Industrial, Facultade de Farmacia, Universidade de Santiago de Compostela, Spain.,Grupo de Farmacoloxia Clínica, Instituto de Investigacion en Salud de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Anxo Fernández-Ferreiro
- Departamento de Farmacia e Tecnoloxia Farmaceutica e Instituto de Farmacia Industrial, Facultade de Farmacia, Universidade de Santiago de Compostela, Spain.,Grupo de Farmacoloxia Clínica, Instituto de Investigacion en Salud de Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Departamento de Farmacia, Hospital Clínico Universitario de Santiago de Compostela (SERGAS) (CHUS), Santiago de Compostela, Spain
| | - Ana Latorre-Pellicer
- Unidad de Genetica Clínica y Genomica Funcional, Departamento de Farmacologia-Fisiología, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Maximino J Abraldes
- Servicio de Oftalmoloxía, Xerencia de Xestion Integrada de Santiago de Compostela, Santiago de Compostela, Spain.,Departamento de Ciruxía e Especialidades Médico- Quirúrxicas, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María J Lamas
- Grupo de Farmacoloxia Clínica, Instituto de Investigacion en Salud de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Angel Carracedo
- Grupo de Medicina Xenomica, Centro Nacional de Genotipado (CEGEN-PRB3), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, CIBER de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain.,Fundación Pública Galega de Medicina Xenómica, SERGAS, Santiago de Compostela, Spain
| |
Collapse
|
134
|
Chen C, Lu X, Wu N. RNA sequencing of CD4 T-cells reveals the relationships between lncRNA-mRNA co-expression in elite controller vs. HIV-positive infected patients. PeerJ 2020; 8:e8911. [PMID: 32341894 PMCID: PMC7182024 DOI: 10.7717/peerj.8911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/15/2020] [Indexed: 12/27/2022] Open
Abstract
Background Elite controller refers to a patient with human immunodeficiency virus infection with an undetected viral load in the absence of highly active antiretroviral therapy. Studies on gene expression and regulation in these individuals are limited but significant, and have helped researchers and clinicians to understand the interrelationships between HIV and its host. Methods We collected CD4 T-cell samples from two elite controllers (ECs), two HIV-positive infected patients (HPs), and two healthy controls (HCs) to perform second-generation transcriptome sequencing. Using the Cufflinks software, we calculated the Fragments Per Kilobase of transcript per Million fragments mapped (FPKM) and identified differentially expressed (DE) mRNAs and long non-coding RNAs (lncRNAs), with corrected P value < 0.05 (based on a false discovery rate (FDR) < 0.05). We then constructed a protein-protein interaction network using cytoHubba and a long non-coding RNA-mRNA co-expression network based on the Pearson correlation coefficient. Results In total, 1109 linear correlations of DE lncRNAs targeting DE mRNAs were found and several interesting interactions were identified as being associated with viral infections and immune responses within the networks based on these correlations. Among these lncRNA-mRNA relationships, hub mRNAs including HDAC6, MAPK8, MAPK9, ATM and their corresponding annotated co-expressed lncRNAs presented strong correlations with the MAPK-NF-kappa B pathway, which plays a role in the reactivation and replication of the virus. Conclusions Using RNA-sequencing, we systematically analyzed the expression profiles of lncRNAs and mRNAs from CD4+ T cells from ECs, HPs, and HCs, and constructed a co-expression network based on the relationships among DE transcripts and database annotations. This was the first study to examine gene transcription in elite controllers and to study their functional relationships. Our results provide a reference for subsequent functional verification at the molecular or cellular level.
Collapse
Affiliation(s)
- Chaoyu Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiangyun Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
135
|
Chen M, Ren YX, Xie Y, Lu WL. Gene regulations and delivery vectors for
treatment of cancer. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2020. [DOI: 10.1007/s40005-020-00484-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
136
|
Shang R, Wang M, Dai B, Du J, Wang J, Liu Z, Qu S, Yang X, Liu J, Xia C, Wang L, Wang D, Li Y. Long noncoding RNA SLC2A1-AS1 regulates aerobic glycolysis and progression in hepatocellular carcinoma via inhibiting the STAT3/FOXM1/GLUT1 pathway. Mol Oncol 2020; 14:1381-1396. [PMID: 32174012 PMCID: PMC7266282 DOI: 10.1002/1878-0261.12666] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/02/2020] [Accepted: 03/12/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignant diseases worldwide. Despite advances in the diagnosis and treatment of HCC, its overall prognosis remains poor. Recent studies have shown that long noncoding RNAs (lncRNAs) play crucial roles in various pathophysiological processes, including liver cancer. In the current study, we report that lncRNA SLC2A1-AS1 is frequently downregulated in HCC samples, as shown by quantitative real-time polymerase chain reaction analysis. SLC2A1-AS1 deletion is significantly associated with recurrence-free survival in HCC. By performing glucose uptake, lactate production and ATP detection assays, we found that SLC2A1-AS1-mediated glucose transporter 1 (GLUT1) downregulation significantly suppressed glycolysis of HCC. In vitro Cell Counting Kit-8, colony formation, transwell assays as well as in vivo tumorigenesis and metastasis assays showed that SLC2A1-AS1 overexpression significantly suppressed proliferation and metastasis in HCC through the transcriptional inhibition of GLUT1. Results from fluorescence in situ hybridization, ChIP and luciferase reporter assays demonstrated that SLC2A1-AS1 exerts its regulatory role on GLUT1 by competitively binding to transketolase and signal transducer and activator of transcription 3 (STAT3) and inhibits the transactivation of Forkhead box M1 (FOXM1) via STAT3, thus resulting in inactivation of the FOXM1/GLUT1 axis in HCC cells. Our findings will be helpful for understanding the function and mechanism of lncRNA in HCC. These data also highlight the crucial role of SLC2A1-AS1 in HCC aerobic glycolysis and progression and pave the way for further research regarding the potential of SLC2A1-AS1 as a valuable predictive biomarker for HCC recurrence.
Collapse
Affiliation(s)
- Runze Shang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Miao Wang
- State Key Laboratory of Cancer Biology, Cell Engineering Research Center & Department of Cell Biology, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Bin Dai
- Department of General Surgery, General Hospital of the Central Theater Command of the People's Liberation Army, Wuhan, China
| | - Jianbing Du
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Jianlin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Zekun Liu
- State Key Laboratory of Cancer Biology, Cell Engineering Research Center & Department of Cell Biology, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Shibin Qu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Xisheng Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Jingjing Liu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Congcong Xia
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Desheng Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Yu Li
- School of Life Science, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
137
|
Wu Y, Niu Y, Leng J, Xu J, Chen H, Li H, Wang L, Hu J, Xia D, Wu Y. Benzo(a)pyrene regulated A549 cell migration, invasion and epithelial-mesenchymal transition by up-regulating long non-coding RNA linc00673. Toxicol Lett 2020; 320:37-45. [DOI: 10.1016/j.toxlet.2019.11.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/26/2019] [Accepted: 11/23/2019] [Indexed: 12/19/2022]
|
138
|
A regulatory circuit between lncRNA and TOR directs amino acid uptake in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118680. [PMID: 32081726 DOI: 10.1016/j.bbamcr.2020.118680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 01/09/2023]
Abstract
Long non coding RNAs (lncRNAs) have emerged as crucial players of several central cellular processes across eukaryotes. Target of Rapamycin (TOR) is a central regulator of myriad of fundamental cellular processes including amino acid transport under diverse environmental conditions. Here we investigated the role of lncRNA in TOR regulated amino acid uptake in S. cerevisiae. Transcription of lncRNA regulates local gene expression in eukaryotes. In silico analysis of many genome wide studies in S. cerevisiae revealed that transcriptome includes conditional expression of numerous lncRNAs in proximity to amino acid transporters (AATs). Considering regulatory role of these lncRNAs, we selected highly conserved TOR regulated locus of a pair of AATs present in tandem BAP2 and TAT1. We observed that the expression of antisense lncRNA XUT_2F-154 (TBRT) and AATs BAP2 and TAT1 depends on activities of TOR signaling pathway. The expression of TBRT is induced, while that of BAP2 TAT1 is repressed upon TOR inhibition by Torin2. Notably, upon TOR inhibition loss of TBRT contributed to enhanced activities of Bap2 and Tat1 leading to improved growth. Interestingly, nucleosome scanning assay reveal that TOR signaling pathway governs chromatin remodeling at BAP2 biphasic promoter to control the antagonism of TBRT and BAP2 expression. Further TBRT also reprograms local chromatin landscapes to decrease the transcription of TAT1. The current work demonstrates a functional correlation between lncRNA production and TOR governed amino acid uptake in yeast. Thus this work brings forth a novel avenue for identification of potential regulators for therapeutic interventions against TOR mediated diseases.
Collapse
|
139
|
MEG3 Promotes Differentiation of Porcine Satellite Cells by Sponging miR-423-5p to Relieve Inhibiting Effect on SRF. Cells 2020; 9:cells9020449. [PMID: 32075310 PMCID: PMC7072828 DOI: 10.3390/cells9020449] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Although thousands of long noncoding RNAs (lncRNAs) have been identified in porcine growth and development, the regulation mechanisms of functional lncRNAs have not been well explored. In this study, using 5′- and 3′-rapid amplification of cDNA ends (RACE) assays, we obtained two different variants of lncRNA maternally expressed gene 3 (MEG3), namely, MEG3 v1 and MEG3 v2, that were both highly expressed in porcine skeletal muscle and in the early stage of the differentiation of porcine satellite cells. Moreover, we identified the core transcript MEG3 v2. Functional analyses showed that MEG3 overexpression could effectively arrest myoblasts in the G1 phase, inhibit DNA replication, and promote myoblast differentiation, whereas MEG3 knockdown resulted in the opposite effects. Interestingly, the expression of serum response factor (SRF), a crucial transcription factor for myogenesis process, remarkably increased and decreased in mRNA and protein levels with the respective overexpression and knockdown of MEG3. Dual luciferase reporter assay showed that MEG3 could attenuate the decrease of luciferase activity of SRF induced by miR-423-5p in a dose-dependent manner. MEG3 overexpression could relieve the inhibitory effect on SRF and myoblast differentiation induced by miR-423-5p. In addition, results of RNA immunoprecipitation analysis suggested that MEG3 could act as a ceRNA for miR-423-5p. Our findings initially established a novel connection among MEG3, miR-423-5p, and SRF in porcine satellite cell differentiation. This novel role of MEG3 may shed new light on understanding of molecular regulation of lncRNA in porcine myogenesis.
Collapse
|
140
|
Choi JY, Won K, Son S, Shin D, Oh JD. Comparison of characteristics of long noncoding RNA in Hanwoo according to sex. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 33:696-703. [PMID: 32054215 PMCID: PMC7206396 DOI: 10.5713/ajas.18.0533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/14/2019] [Indexed: 11/27/2022]
Abstract
Objective Cattle were some of the first animals domesticated by humans for the production of milk, meat, etc. Long noncoding RNA (lncRNA) is defined as longer than 200 bp in non-protein coding transcripts. lncRNA is known to function in regulating gene expression and is currently being studied in a variety of livestock including cattle. The purpose of this study is to analyze the characteristics of lncRNA according to sex in Hanwoo cattle. Methods This study was conducted using the skeletal muscles of 9 Hanwoo cattle include bulls, steers and cows. RNA was extracted from skeletal muscle of Hanwoo. Sequencing was conducted using Illumina HiSeq2000 and mapped to the Bovine Taurus genome. The expression levels of lncRNAs were measured by DEGseq and quantitative trait loci (QTL) data base was used to identify QTLs associated with lncRNA. The python script was used to match the nearby genes Results In this study, the expression patterns of transcripts of bulls, steers and cows were identified. And we identified significantly differentially expressed lncRNAs in bulls, steers and cows. In addition, characteristics of lncRNA which express differentially in muscles according to the sex of Hanwoo were identified. As a result, we found differentially expressed lncRNAs according to sex were related to shear force and body weight. Conclusion This study was classified and characterized lncRNA which differentially expressed by sex in Hanwoo cattle. We believe that the characterization of lncRNA by sex of Hanwoo will be helpful for future studies of the physiological mechanisms of Hanwoo cattle.
Collapse
Affiliation(s)
- Jae-Young Choi
- Subtropical Livestock Research Institute, National Institute of Animal Science, RDA, Jeju 63242, Korea
| | - KyeongHye Won
- Department of Animal Biotechnology, College of Agricultural and Life Sciences, Chonbuk National University, Jeonju 54896, Korea
| | - Seungwoo Son
- Department of Animal Biotechnology, College of Agricultural and Life Sciences, Chonbuk National University, Jeonju 54896, Korea
| | - Donghyun Shin
- The Animal Molecular Genetics & Breeding Center, Chonbuk National University, Jeonju, 54896, Korea
| | - Jae-Don Oh
- Department of Animal Biotechnology, College of Agricultural and Life Sciences, Chonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
141
|
Long Noncoding RNA FAM83H-AS1 Modulates SpA-Inhibited Osteogenic Differentiation in Human Bone Mesenchymal Stem Cells. Mol Cell Biol 2020; 40:MCB.00362-19. [PMID: 31871129 DOI: 10.1128/mcb.00362-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
Osteomyelitis, an infection of the bone and bone marrow, imposes a heavy burden on public health care systems owing to its progressive bone destruction and sequestration. Human bone mesenchymal stem cells (hBMSCs) play a key role in the process of bone formation, and mounting evidence has confirmed that long noncoding RNAs (lncRNAs) are involved in hBMSC osteogenic differentiation. Nevertheless, the exact function and molecular mechanism of lncRNAs in osteogenic differentiation during osteomyelitis development remain to be explored. In this study, hBMSCs were treated with staphylococcal protein A (SpA) during osteogenic differentiation induction to mimic osteomyelitis in vitro The results of lncRNA microarray analysis revealed that FAM83H-AS1 presented the lowest expression among the significantly downregulated lncRNAs. Functionally, ectopic expression of FAM83H-AS1 contributed to osteogenic differentiation of SpA-induced hBMSCs. Additionally, our findings revealed that FAM83H-AS1 negatively regulated microRNA 541-3p (miR-541-3p), and WNT3A was validated as a target gene of miR-541-3p. Mechanically, FAM83H-AS1 elevated WNT3A expression by competitively binding with miR-541-3p. Lastly, it was demonstrated that FAM83H-AS1/miR-541-3p/WNT3A ameliorated SpA-mediated inhibition of the osteogenic differentiation of hBMSCs, which provided a novel therapeutic strategy for patients with osteomyelitis.
Collapse
|
142
|
Wang J, Tang Q, Lu L, Luo Z, Li W, Lu Y, Pu J. LncRNA OIP5-AS1 interacts with miR-363-3p to contribute to hepatocellular carcinoma progression through up-regulation of SOX4. Gene Ther 2020; 27:495-504. [PMID: 32042127 DOI: 10.1038/s41434-020-0123-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 12/23/2022]
Abstract
Long noncoding RNA OIP5-AS1 has been observed to be increased in several cancers, however, its role and biological mechanism was poorly understood in HCC. Currently, we found OIP5-AS1 expression was upregulated in HCC cells compared with normal human liver cells. Knockdown of OIP5-AS1 suppressed HCC cell proliferation, induced cells cycle arrest and cells apoptosis. In addition, HCC cell migration and invasion capacity in vitro were also inhibited by OIP5-AS1 inhibition. Bioinformatics analysis revealed OIP5-AS1 could interact with miR-363-3p, thereby repressing HCC development. We also observed miR-363-3p was significantly decreased in HCC cells and overexpression of miR-363-3p repressed HCC progression. The correlation between OIP5-AS1 and miR-363-3p was confirmed by performing RIP assay and RNA pull-down assay. Subsequently, SOX4 was predicted as a target of miR-363-3p and miR-363-3p modulated SOX4 levels negatively in vitro. Apart from these, in vivo experiments established that OIP5-AS1 can suppress HCC development through regulating miR-363-3p and SOX4. Collectively, these demonstrated that OIP5-AS1 was involved in HCC progression via targeting miR-363-3p and SOX4. OIP5-AS1 can act as a novel candidate for HCC diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Jianchu Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan Road, Baise, 533000, Guangxi Zhuang Autonomous Region, China
| | - Qianli Tang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan Road, Baise, 533000, Guangxi Zhuang Autonomous Region, China.,Clinic Medicine Research Center of Hepatobiliary Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan Road, Baise, 533000, Guangxi Zhuang Autonomous Region, China
| | - Libai Lu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan Road, Baise, 533000, Guangxi Zhuang Autonomous Region, China
| | - Zongjiang Luo
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan Road, Baise, 533000, Guangxi Zhuang Autonomous Region, China
| | - Wenchuan Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan Road, Baise, 533000, Guangxi Zhuang Autonomous Region, China
| | - Yuan Lu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan Road, Baise, 533000, Guangxi Zhuang Autonomous Region, China
| | - Jian Pu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan Road, Baise, 533000, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
143
|
Ni YQ, Lin X, Zhan JK, Liu YS. Roles and Functions of Exosomal Non-coding RNAs in Vascular Aging. Aging Dis 2020; 11:164-178. [PMID: 32010490 PMCID: PMC6961769 DOI: 10.14336/ad.2019.0402] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022] Open
Abstract
Aging is a progressive loss of physiological integrity and functionality process which increases susceptibility and mortality to diseases. Vascular aging is a specific type of organic aging. The structure and function changes of endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are the main cause of vascular aging, which could influence the threshold, process, and severity of vascular related diseases. Accumulating evidences demonstrate that exosomes serve as novel intercellular information communicator between cell to cell by delivering variety biologically active cargos, especially exosomal non-coding RNAs (ncRNAs), which are associated with most of aging-related biological and functional disorders. In this review, we will summerize the emerging roles and mechanisms of exosomal ncRNAs in vascular aging and vascular aging related diseases, focusing on the role of exosomal miRNAs and lncRNAs in regulating the functions of ECs and VSMCs. Moreover, the relationship between the ECs and VSMCs linked by exosomes, the potential diagnostic and therapeutic application of exosomes in vascular aging and the clinical evaluation and treatment of vascular aging and vascular aging related diseases will also be discussed.
Collapse
Affiliation(s)
| | | | - Jun-Kun Zhan
- Department of Geriatrics, Institute of Aging and Geriatrics, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - You-Shuo Liu
- Department of Geriatrics, Institute of Aging and Geriatrics, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
144
|
Xu W, Yu S, Xiong J, Long J, Zheng Y, Sang X. CeRNA regulatory network-based analysis to study the roles of noncoding RNAs in the pathogenesis of intrahepatic cholangiocellular carcinoma. Aging (Albany NY) 2020; 12:1047-1086. [PMID: 31956102 PMCID: PMC7053603 DOI: 10.18632/aging.102634] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 12/21/2019] [Indexed: 02/06/2023]
Abstract
To explore and understand the competitive mechanism of ceRNAs in intrahepatic cholangiocarcinoma (ICC), we used bioinformatics analysis methods to construct an ICC-related ceRNA regulatory network (ceRNET), which contained 340 lncRNA-miRNA-mRNA regulatory relationships based on the RNA expression datasets in the NCBI GEO database. We identified the core regulatory pathway RP11-328K4.1-hsa-miR-27a-3p-PROS1, which is related to ICC, for further validation by molecular biology assays. GO analysis of 44 differentially expressed mRNAs in ceRNET revealed that they were mainly enriched in biological processes including “negative regulation of epithelial cell proliferation” and "positive regulation of activated T lymphocyte proliferation.” KEGG analysis showed that they were mainly enriched in the “complement and coagulation cascade” pathway. The molecular biology assay showed that lncRNA RP11-328K4.1 expression was significantly lower in the cancerous tissues and peripheral plasma of ICC patients than in normal controls (p<0.05). In addition, hsa-miR-27a-3p was found to be significantly upregulated in the cancer tissues and peripheral plasma of ICC patients (p<0.05). Compared to normal controls, the expression of PROS1 mRNA was significantly downregulated in ICC patient cancer tissues (p<0.05) but not in peripheral plasma (p>0.05). Furthermore, ROC analysis revealed that RP11-328K4.1, hsa-miR-27a-3p, and PROS1 had significant diagnostic value in ICC. We concluded that the upregulation of lncRNA RP11-328K4.1, which might act as a miRNA sponge, exerts an antitumor effect in ICC by eliminating the inhibition of PROS1 mRNA expression by oncogenic miRNA hsa-miR-27a.
Collapse
Affiliation(s)
- Weiyu Xu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Xi-Cheng, Beijing 100050, People's Republic of China
| | - Si Yu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Wangfujing, Beijing 100730, People's Republic of China
| | - Jianping Xiong
- Department of Interventional Radiology, Beijing Friendship Hospital, Capital Medical University, Xi-Cheng, Beijing 100050, People's Republic of China
| | - Junyu Long
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Wangfujing, Beijing 100730, People's Republic of China
| | - Yongchang Zheng
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Wangfujing, Beijing 100730, People's Republic of China
| | - Xinting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Wangfujing, Beijing 100730, People's Republic of China
| |
Collapse
|
145
|
Wei L, Liu Q, Huang Y, Liu Z, Zhao R, Li B, Zhang J, Sun C, Gao B, Ding X, Yu X, He J, Sun A, Qin Y. Knockdown of CTCF reduces the binding of EZH2 and affects the methylation of the SOCS3 promoter in hepatocellular carcinoma. Int J Biochem Cell Biol 2020; 120:105685. [PMID: 31917284 DOI: 10.1016/j.biocel.2020.105685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 02/05/2023]
Abstract
The epigenetic silencing mechanism of suppressor 3 of cytokine signaling (SOCS3) in cancers has not been fully elucidated. Polycomb repressive complexes 2 (PRC2), an important epigenetic regulatory factors, exerts a critical role in repressing the initial phase of gene transcription. Whether PRC2 participates the down- regulation of SOCS3 in Hepatocellular carcinoma (HCC) remains unclear and how does PRC2 be recruited target gene still needs to explore. In this study, Using TCGA HCC dataset, and detecting HCC tissue specimens and cell lines, we found that SOCS3 expression in HCC was inversely related to that of EZH2, and depended on its promoter methylation status. CTCF, vigilin, EZH2 and H3K27me3 were enriched at CTCF and EZH2 binding sites on the methylated SOCS3 gene promoter. The depletion of CTCF did not affect expression of EZH2 and DNMT1, but decrease recruitment of CTCF, vigilin, EZH2 and H3K27me3. Further, knockdown of CTCF led to a loss of methylation of the methylated SOCS3 promoter, which sequentially increased the expression of SOCS3 and decreased the expression of pSTAT3, the downstream effector. These findings suggest that the CTCF dependent recruitment of EZH2 to the SOCS3 gene promoter is likely to participate in the epigenetic silencing of SOCS3 and in regulating its gene expression.
Collapse
Affiliation(s)
- Ling Wei
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Qiuying Liu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Yuan Huang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Zhongjian Liu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Rongce Zhao
- Department of Surgery Division of Liver Transplantation, West China Hospital, Sichuan University, 37 Guo Xue Rd., Chengdu, 610041, Sichuan Province, China
| | - Bo Li
- Department of Surgery Division of Liver Transplantation, West China Hospital, Sichuan University, 37 Guo Xue Rd., Chengdu, 610041, Sichuan Province, China
| | - Jing Zhang
- West China College of Public Health, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Chengjun Sun
- West China College of Public Health, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Bo Gao
- Analytical & Testing Center, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Xueqin Ding
- Analytical & Testing Center, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Xiaoqin Yu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Jingyang He
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Aimin Sun
- Analytical & Testing Center, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| | - Yang Qin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
146
|
Huang Y, Han Y, Guo R, Liu H, Li X, Jia L, Zheng Y, Li W. Long non-coding RNA FER1L4 promotes osteogenic differentiation of human periodontal ligament stromal cells via miR-874-3p and vascular endothelial growth factor A. Stem Cell Res Ther 2020; 11:5. [PMID: 31900200 PMCID: PMC6942378 DOI: 10.1186/s13287-019-1519-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/12/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022] Open
Abstract
Background Periodontal ligament stromal cells (PDLSCs) are ideal cell sources for periodontal tissue repair and regeneration, but little is known about what determines their osteogenic capacity. Long non-coding RNAs (lncRNAs) are important regulatory molecules at both transcriptional and post-transcriptional levels. However, their roles in the osteogenic differentiation of PDLSCs are still largely unknown. Methods The expression of lncRNA Fer-1-like family member 4 (FER1L4) during the osteogenic differentiation of PDLSCs was detected by quantitative reverse transcription polymerase chain reaction. Overexpression or knockdown of FER1L4 was used to confirm its regulation of osteogenesis in PDLSCs. Alkaline phosphatase and Alizarin red S staining were used to detect mineral deposition. Dual luciferase reporter assays were used to analyze the binding of miR-874-3p to FER1L4 and vascular endothelial growth factor A (VEGFA). Bone regeneration in critical-sized calvarial defects was assessed in nude mice. New bone formation was analyzed by micro-CT, hematoxylin and eosin staining, Masson’s trichrome staining, and immunohistochemical analyses. Results FER1L4 levels increased gradually during consecutive osteogenic induction of PDLSCs. Overexpression of FER1L4 promoted the osteogenic differentiation of PDLSCs, as revealed by alkaline phosphatase activity, Alizarin red S staining, and the expression of osteogenic markers, whereas FER1L4 knockdown inhibited these processes. Subsequently, we identified a predicted binding site for miR-874-3p on FER1L4 and confirmed a direct interaction between them. Wild-type FER1L4 reporter activity was significantly inhibited by miR-874-3p, whereas mutant FER1L4 reporter was not affected. MiR-874-3p inhibited osteogenic differentiation and reversed the promotion of osteogenesis in PDLSCs by FER1L4. Moreover, miR-874-3p targeted VEGFA, a crucial gene in osteogenic differentiation, whereas FER1L4 upregulated the expression of VEGFA. In vivo, overexpression of FER1L4 led to more bone formation compared to the control group, as demonstrated by micro-CT and the histologic analyses. Conclusion FER1L4 positively regulates the osteogenic differentiation of PDLSCs via miR-874-3p and VEGFA. Our study provides a promising target for enhancing the osteogenic potential of PDLSCs and periodontal regeneration.
Collapse
Affiliation(s)
- Yiping Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Yineng Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Runzhi Guo
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Hao Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Xiaobei Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Lingfei Jia
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China. .,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China.
| |
Collapse
|
147
|
Hu L, Fang R, Guo M. Knockdown of lncRNA SNHG1 alleviates oxygen-glucose deprivation/reperfusion-induced cell death by serving as a ceRNA for miR-424 in SH-SY5Y cells. Neurol Res 2020; 42:47-54. [PMID: 31900069 DOI: 10.1080/01616412.2019.1672389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lixun Hu
- Department of Pathophysiology, Jining Medical University, Jining City, Shandong Province, China
| | - Ruihuan Fang
- Department of Neurology, Jining No.1 People’s Hospital, Jining City, Shandong Province, China
| | - Miao Guo
- Department of Neurology, Jining No.1 People’s Hospital, Jining City, Shandong Province, China
| |
Collapse
|
148
|
Chen N, Shan Q, Qi Y, Liu W, Tan X, Gu J. Transcriptome analysis in normal human liver cells exposed to 2, 3, 3', 4, 4', 5 - Hexachlorobiphenyl (PCB 156). CHEMOSPHERE 2020; 239:124747. [PMID: 31514003 DOI: 10.1016/j.chemosphere.2019.124747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/31/2019] [Accepted: 09/03/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUNDS Polychlorinated biphenyls are persistent environmental pollutants associated with the onset of non-alcoholic fatty liver disease in humans, but there is limited information on the underlying mechanism. In the present study, we investigated the alterations in gene expression profiles in normal human liver cells L-02 following exposure to 2, 3, 3', 4, 4', 5 - hexachlorobiphenyl (PCB 156), a potent compound that may induce non-alcoholic fatty liver disease. METHODS The L-02 cells were exposed to PCB 156 for 72 h and the contents of intracellular triacylglyceride and total cholesterol were subsequently measured. Microarray analysis of mRNAs and long non-coding RNAs (lncRNAs) in the cells was also performed after 3.4 μM PCB 156 treatment. RESULTS Exposure to PCB 156 (3.4 μM, 72 h) resulted in significant increases of triacylglyceride and total cholesterol concentrations in L-02 cells. Microarray analysis identified 222 differentially expressed mRNAs and 628 differentially expressed lncRNAs. Gene Ontology and pathway analyses associated the differentially expressed mRNAs with metabolic and inflammatory processes. Moreover, lncRNA-mRNA co-expression network revealed 36 network pairs comprising 10 differentially expressed mRNAs and 34 dysregulated lncRNAs. The results of bioinformatics analysis further indicated that dysregulated lncRNA NONHSAT174696, lncRNA NONHSAT179219, and lncRNA NONHSAT161887, as the regulators of EDAR, CYP1B1, and ALDH3A1 respectively, played an important role in the PCB 156-induced lipid metabolism disorder. CONCLUSION Our findings provide an overview of differentially expressed mRNAs and lncRNAs in L-02 cells exposed to PCB 156, and contribute to the field of polychlorinated biphenyl-induced non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Ningning Chen
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Qiuli Shan
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China; State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Yu Qi
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wei Liu
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiaojun Tan
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Jinsong Gu
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| |
Collapse
|
149
|
Zhang W, Tang G, Zhou S, Niu Y. LncRNA-miRNA interaction prediction through sequence-derived linear neighborhood propagation method with information combination. BMC Genomics 2019; 20:946. [PMID: 31856716 PMCID: PMC6923828 DOI: 10.1186/s12864-019-6284-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Researchers discover lncRNAs can act as decoys or sponges to regulate the behavior of miRNAs. Identification of lncRNA-miRNA interactions helps to understand the functions of lncRNAs, especially their roles in complicated diseases. Computational methods can save time and reduce cost in identifying lncRNA-miRNA interactions, but there have been only a few computational methods. RESULTS In this paper, we propose a sequence-derived linear neighborhood propagation method (SLNPM) to predict lncRNA-miRNA interactions. First, we calculate the integrated lncRNA-lncRNA similarity and the integrated miRNA-miRNA similarity by combining known lncRNA-miRNA interactions, lncRNA sequences and miRNA sequences. We consider two similarity calculation strategies respectively, namely similarity-based information combination (SC) and interaction profile-based information combination (PC). Second, the integrated lncRNA similarity-based graph and the integrated miRNA similarity-based graph are respectively constructed, and the label propagation processes are implemented on two graphs to score lncRNA-miRNA pairs. Finally, the weighted averages of their outputs are adopted as final predictions. Therefore, we construct two editions of SLNPM: sequence-derived linear neighborhood propagation method based on similarity information combination (SLNPM-SC) and sequence-derived linear neighborhood propagation method based on interaction profile information combination (SLNPM-PC). The experimental results show that SLNPM-SC and SLNPM-PC predict lncRNA-miRNA interactions with higher accuracy compared with other state-of-the-art methods. The case studies demonstrate that SLNPM-SC and SLNPM-PC help to find novel lncRNA-miRNA interactions for given lncRNAs or miRNAs. CONCLUSION The study reveals that known interactions bring the most important information for lncRNA-miRNA interaction prediction, and sequences of lncRNAs (miRNAs) also provide useful information. In conclusion, SLNPM-SC and SLNPM-PC are promising for lncRNA-miRNA interaction prediction.
Collapse
Affiliation(s)
- Wen Zhang
- College of informatics, Huazhong Agricultural University, Wuhan, 430070 China
| | - Guifeng Tang
- School of Computer Science, Wuhan University, Wuhan, 430072 China
| | - Shuang Zhou
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Yanqing Niu
- School of Mathematics and Statistics, South-Central University for Nationalities, Wuhan, 430074 China
| |
Collapse
|
150
|
Yu W, Guo Z, Liang P, Jiang B, Guo L, Duan M, Huang X, Zhang P, Zhang M, Ren L, Zeng J, Huang X. Expression changes in protein-coding genes and long non-coding RNAs in denatured dermis following thermal injury. Burns 2019; 46:1128-1135. [PMID: 31852616 DOI: 10.1016/j.burns.2019.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/26/2019] [Accepted: 11/23/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Thermal injury repair is a complex process during which maintaining the proliferation of human dermis fibroblasts (HDFs) and synthesis of extracellular matrix (ECM) plays a critical role. In the present study, we analyzed potential molecular markers and the probable association between differentially-expressed lncRNAs and protein-coding genes within denatured dermis following thermal injury, attempting to provide further insights to thermal injury repair pathogenesis. METHODS AND MAIN RESULTS We found that the expression of 3940 lncRNAs was increased, while that of 1438 lncRNAs was reduced in the denatured dermis following thermal injury when compared to normal tissue. Of them, 338 were upregulated and 154 were downregulated by more than 128 times. Via cross-check with another microarray profile analysis on differentially-expressed lncRNAs after thermal injury, LINC00302 was found to be downregulated after thermal injury; more importantly, this skin-specially expressed lncRNA is located near a series of genes related to multiple skin inflammation and skin barrier-associated genomes. LINC00302 overexpression promoted the cell viability and the protein levels of α-SMA and Collagen I in HDFs. CONCLUSIONS In conclusion, mRNAs and lncRNAs could be differentially expressed in the denatured dermis following thermal injury. mRNA and lncRNA regulatory signaling pathways could participate in thermal injury repair pathogenesis. More importantly, LINC00302 may play a critical role in thermal injury repair.
Collapse
Affiliation(s)
- Wenchang Yu
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Zaiwen Guo
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Burn and Plastic Surgery, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu 215002, PR China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.
| | - Bimei Jiang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, PR China
| | - Le Guo
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Mengting Duan
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Xu Huang
- Department of Hyperbaric Oxygen, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Pihong Zhang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Minghua Zhang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Licheng Ren
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Jizhang Zeng
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Xiaoyuan Huang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| |
Collapse
|