101
|
Góralczyk-Bińkowska A, Szmajda-Krygier D, Kozłowska E. The Microbiota-Gut-Brain Axis in Psychiatric Disorders. Int J Mol Sci 2022; 23:11245. [PMID: 36232548 PMCID: PMC9570195 DOI: 10.3390/ijms231911245] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/10/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Modulating the gut microbiome and its influence on human health is the subject of intense research. The gut microbiota could be associated not only with gastroenterological diseases but also with psychiatric disorders. The importance of factors such as stress, mode of delivery, the role of probiotics, circadian clock system, diet, and occupational and environmental exposure in the relationship between the gut microbiota and brain function through bidirectional communication, described as "the microbiome-gut-brain axis", is especially underlined. In this review, we discuss the link between the intestinal microbiome and the brain and host response involving different pathways between the intestinal microbiota and the nervous system (e.g., neurotransmitters, endocrine system, immunological mechanisms, or bacterial metabolites). We review the microbiota alterations and their results in the development of psychiatric disorders, including major depressive disorder (MDD), schizophrenia (SCZ), bipolar disorder (BD), autism spectrum disorder (ASD), and attention-deficit hyperactivity disorder (ADHD).
Collapse
Affiliation(s)
- Aleksandra Góralczyk-Bińkowska
- Department of Microbiology and Experimental Immunology, MOLecoLAB: Lodz Centre of Molecular Studies on Civilisation Diseases, Medical University of Lodz, Mazowiecka 5 Street, 92-215 Lodz, Poland
| | - Dagmara Szmajda-Krygier
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1 Street, 90-151 Lodz, Poland
| | - Elżbieta Kozłowska
- Department of Microbiology and Experimental Immunology, MOLecoLAB: Lodz Centre of Molecular Studies on Civilisation Diseases, Medical University of Lodz, Mazowiecka 5 Street, 92-215 Lodz, Poland
| |
Collapse
|
102
|
Zhang Q, Xing W, Wang Q, Tang Z, Wang Y, Gao W. Gut microbiota-mitochondrial inter-talk in non-alcoholic fatty liver disease. Front Nutr 2022; 9:934113. [PMID: 36204383 PMCID: PMC9530335 DOI: 10.3389/fnut.2022.934113] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022] Open
Abstract
The increasing prevalence of non-alcoholic fatty liver disease (NAFLD), which is a progressive disease, has exerted huge a healthcare burden worldwide. New investigations have suggested that the gut microbiota closely participates in the progression of NAFLD through the gut-liver axis or gut-brain-liver axis. The composition of the microbiota can be altered by multiple factors, primarily dietary style, nutritional supplements, or exercise. Recent evidence has revealed that gut microbiota is involved in mitochondrial biogenesis and energy metabolism in the liver by regulating crucial transcription factors, enzymes, or genes. Moreover, microbiota metabolites can also affect mitochondrial oxidative stress function and swallow formation, subsequently controlling the inflammatory response and regulating the levels of inflammatory cytokines, which are the predominant regulators of NAFLD. This review focuses on the changes in the composition of the gut microbiota and metabolites as well as the cross-talk between gut microbiota and mitochondrial function. We thus aim to comprehensively explore the potential mechanisms of gut microbiota in NAFLD and potential therapeutic strategies targeting NAFLD management.
Collapse
Affiliation(s)
- Qi Zhang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Wenmin Xing
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Qiao Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Zhan Tang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Yazhen Wang
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Wenyan Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
103
|
Gimenes GM, Santana GO, Scervino MVM, Curi R, Pereira JNB. A short review on the features of the non-obese diabetic Goto-Kakizaki rat intestine. Braz J Med Biol Res 2022; 55:e11910. [PMID: 36000611 PMCID: PMC9394691 DOI: 10.1590/1414-431x2022e11910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/30/2022] [Indexed: 11/23/2022] Open
Abstract
The Goto-Kakizaki (GK) rat is a non-obese experimental model of type 2 diabetes
mellitus (T2DM) that allows researchers to monitor diabetes-induced changes
without jeopardizing the effects of obesity. This rat strain exhibits notable
gastrointestinal features associated with T2DM, such as marked alterations in
intestinal morphology, reduced intestinal motility, slow transit, and modified
microbiota compared to Wistar rats. The primary treatments for diabetic patients
include administration of hypoglycemic agents and insulin, and lifestyle
changes. Emerging procedures, including alternative therapies, metabolic
surgeries, and modulation of the intestinal microbiota composition, have been
shown to improve the diabetic state of GK rats. This review describes the
morpho-physiological diabetic-associated features of the gastrointestinal tract
(GIT) of GK rats. We also describe promising strategies, e.g., metabolic surgery
and modulation of gut microbiota composition, used to target the GIT of this
animal model to improve the diabetic state.
Collapse
Affiliation(s)
- G M Gimenes
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil
| | - G O Santana
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil
| | - M V M Scervino
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil
| | - R Curi
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil.,Centro Bioindustrial, Instituto Butantan, São Paulo, SP, Brasil
| | - J N B Pereira
- Laboratório Estratégico de Diagnóstico Molecular, Instituto Butantan, São Paulo, SP, Brasil
| |
Collapse
|
104
|
Wu S, Yuan C, Yang Z, Liu S, Zhang Q, Zhang S, Zhu S. Non-alcoholic fatty liver is associated with increased risk of irritable bowel syndrome: a prospective cohort study. BMC Med 2022; 20:262. [PMID: 35989356 PMCID: PMC9394037 DOI: 10.1186/s12916-022-02460-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The relationship between non-alcoholic fatty liver degree as well as non-alcoholic fatty liver disease (NAFLD) and irritable bowel syndrome (IBS) remains poorly understood. We aimed to investigate the prospective association of non-alcoholic fatty liver degree as well as NAFLD with incident IBS in a large-scale population-based cohort. METHODS Participants free of IBS, coeliac disease, inflammatory bowel disease, alcoholic liver disease, and any cancer at baseline from the UK Biobank were included. Non-alcoholic fatty liver degree was measured by a well-validated fatty liver index (FLI), with FLI ≥ 60 as an indicator of NAFLD. Primary outcome was incident IBS. Cox proportional hazard model was used to investigate the associated risk of incident IBS. RESULTS Among 396,838 participants (mean FLI was 48.29 ± 30.07), 153,203(38.6%) were with NAFLD diagnosis at baseline. During a median of 12.4-year follow-up, 7129 cases of incident IBS were identified. Compared with non-NAFLD, NAFLD patients showed a 13% higher risk of developing IBS (HR = 1.13, 95%CI: 1.05-1.17) after multivariable adjustment. Compared with the lowest, the highest FLI quartile was associated with a significantly increased risk of IBS (HRQ4 VS Q1 = 1.21, 1.13-1.30, Ptrend < 0.001). Specifically, the positive association between non-alcoholic fatty liver degree and IBS was also observed by per SD change of FLI (adjusted HR = 1.08, 1.05-1.10). Further sensitivity analysis and subgroup analysis indicated similar results, with the positive association particularly observed in females, but not in males. CONCLUSIONS High degree of non-alcoholic fatty liver as well as non-alcoholic fatty liver disease is associated with increased risk of incident IBS. Further studies are warranted to confirm the findings and elucidate the underlying biological mechanisms.
Collapse
Affiliation(s)
- Shanshan Wu
- Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Changzheng Yuan
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Zhirong Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Primary Care Unit, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, CB18RN, UK
| | - Si Liu
- Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Qian Zhang
- Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Shutian Zhang
- Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Shengtao Zhu
- Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
105
|
Wielgosz-Grochowska JP, Domanski N, Drywień ME. Efficacy of an Irritable Bowel Syndrome Diet in the Treatment of Small Intestinal Bacterial Overgrowth: A Narrative Review. Nutrients 2022; 14:nu14163382. [PMID: 36014888 PMCID: PMC9412469 DOI: 10.3390/nu14163382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Small intestinal bacterial overgrowth (SIBO) is highly prevalent in irritable bowel syndrome (IBS). The eradication of bacterial overgrowth with antibiotics is the first-line treatment. However, focusing only on the antimicrobial effects without taking care to improve lifestyle factors, especially dietary patterns, may predispose patients to intestinal microbiota dysfunction. The objective of this study is to determine whether the current recommendations regarding nutrition in IBS are suitable for patients with SIBO. A narrative literature review was carried out using databases, including PubMed, ScienceDirect and Google Scholar. Recent studies indicate that dietary manipulation may have a role in alleviating SIBO gastrointestinal symptoms. A low FODMAP diet proposed for IBS may promote a negative shift in the gut microbiota and deepen the existing state of dysbiosis in SIBO patients. Supplementation with soluble fiber can lessen the symptoms in IBS and SIBO. Targeted probiotic therapy may also increase the effectiveness of antibiotic treatment and regulate bowel movements. Therefore, optimal dietary patterns play a key role in the treatment of SIBO. Based on currently available literature, the potential efficacy of the IBS diet in SIBO is largely hypothetical. Future research is needed to characterize a specific diet for the treatment of SIBO.
Collapse
Affiliation(s)
- Justyna Paulina Wielgosz-Grochowska
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
- Correspondence:
| | - Nicole Domanski
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Małgorzata Ewa Drywień
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| |
Collapse
|
106
|
Efficacy of multi-strain probiotic along with dietary and lifestyle modifications on polycystic ovary syndrome: a randomised, double-blind placebo-controlled study. Eur J Nutr 2022; 61:4145-4154. [PMID: 35857132 DOI: 10.1007/s00394-022-02959-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/08/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE Effect of multi-strain probiotic along with dietary and lifestyle modifications in the management of polycystic ovary syndrome (PCOS) has rarely been reported. We thus aimed to investigate the effect of multi-strain probiotic (Lactobacillus acidophilus UBLA-34, L. rhamnosus UBLR-58, L. reuteri UBLRu-87 (each of 2 billion colony forming units (CFU)); L. plantarum UBLP-40, L. casei UBLC-42, L. fermentum UBLF-31, Bifidobacterium bifidum UBBB-55 (each of 1 billion CFU) and fructo-oligosaccharides (100 mg)) and dietary and lifestyle modifications on restoration of menstrual regularity, weight reduction, metabolic and hormonal profile in women with PCOS. METHODS A 104 participants (age 18-40 years) were randomly allocated to receive probiotic or placebo capsules for 6 months. Baseline and end line assessment were performed for menstrual cycle regularity, ultrasonography scan for ovaries, total testosterone, dehydroepiandrosterone (DHEAS), insulin, luteinizing hormone/follicle stimulating hormone (LH/FSH) ratio, fasting blood sugar (FBS), homeostatic model assessment-insulin resistance (HOMA-IR), weight reduction, waist-/hip circumference (WC, HC), waist to hip ratio (WHR), and body mass index (BMI). Plasma lipopolysaccharide and effect of intervention on quality of life was investigated. Diet and exercise were controlled during the trial. RESULTS Probiotic supplement along with dietary and lifestyle modifications significantly regularised menstrual cycle (p 0.023), improved levels of total testosterone (p 0.043), WC (p 0.030), WHR (p 0.027) and menstrual domain of quality of life (p 0.034) as compared to placebo. No adverse events related to study were reported. CONCLUSION Multi-strain probiotic along with dietary and lifestyle modifications were effective in the management of PCOS. TRIAL REGISTRATION CTRI: CTRI/2016/07/007086, dated 13 July 2016.
Collapse
|
107
|
Gradisteanu Pircalabioru G, Liaw J, Gundogdu O, Corcionivoschi N, Ilie I, Oprea L, Musat M, Chifiriuc MC. Effects of the Lipid Profile, Type 2 Diabetes and Medication on the Metabolic Syndrome—Associated Gut Microbiome. Int J Mol Sci 2022; 23:ijms23147509. [PMID: 35886861 PMCID: PMC9318871 DOI: 10.3390/ijms23147509] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 02/08/2023] Open
Abstract
Metabolic syndrome (MetSyn) is a major health problem affecting approximately 25% of the worldwide population. Since the gut microbiota is highly connected to the host metabolism, several recent studies have emerged to characterize the role of the microbiome in MetSyn development and progression. To this end, our study aimed to identify the microbiome patterns which distinguish MetSyn from type 2 diabetes mellitus (T2DM). We performed 16S rRNA amplicon sequencing on a cohort of 70 individuals among which 40 were MetSyn patients. The microbiome of MetSyn patients was characterised by reduced diversity, loss of butyrate producers (Subdoligranulum, Butyricicoccus, Faecalibacterium prausnitzii) and enrichment in the relative abundance of fungal populations. We also show a link between the gut microbiome and lipid metabolism in MetSyn. Specifically, low-density lipoproteins (LDL) and high-density lipoproteins (HDL) display a positive effect on gut microbial diversity. When interrogating the signature of gut microbiota in a subgroup of patients harbouring both MetSyn and T2DM conditions, we observed a significant increase in taxa such as Bacteroides, Clostridiales, and Erysipelotrichaceae. This preliminary study shows for the first time that T2DM brings unique signatures of gut microbiota in MetSyn patients. We also highlight the impact of metformin treatment on the gut microbiota. Metformin administration was linked to changes in Prevotellaceae, Rickenellaceae, and Clostridiales. Further research focusing on the microbiome-metabolome patterns is needed to clarify the exact association of various gut microbial communities with the progression of T2DM and the occurrence of various complications in MetSyn patients.
Collapse
Affiliation(s)
| | - Janie Liaw
- Faculty of Infectious & Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK;
| | - Ozan Gundogdu
- Faculty of Infectious & Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK;
- Correspondence: (G.G.P.); (O.G.)
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT9 5PX, UK;
- Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine—King Michael I of Romania, 300645 Timisoara, Romania
| | | | - Luciana Oprea
- National Institute of Endocrinology C.I. Parhon, 011863 Bucharest, Romania; (L.O.); (M.M.)
| | - Madalina Musat
- National Institute of Endocrinology C.I. Parhon, 011863 Bucharest, Romania; (L.O.); (M.M.)
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Mariana-Carmen Chifiriuc
- Research Institute of University of Bucharest (ICUB), 300645 Bucharest, Romania;
- Romanian Academy, 010071 Bucharest, Romania
| |
Collapse
|
108
|
Zheng L, Ji YY, Wen XL, Duan SL. Fecal microbiota transplantation in the metabolic diseases: Current status and perspectives. World J Gastroenterol 2022; 28:2546-2560. [PMID: 35949351 PMCID: PMC9254144 DOI: 10.3748/wjg.v28.i23.2546] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/14/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
With the development of microbiology and metabolomics, the relationship between the intestinal microbiome and intestinal diseases has been revealed. Fecal microbiota transplantation (FMT), as a new treatment method, can affect the course of many chronic diseases such as metabolic syndrome, malignant tumor, autoimmune disease and nervous system disease. Although the mechanism of action of FMT is now well understood, there is some controversy in metabolic diseases, so its clinical application may be limited. Microflora transplantation is recommended by clinical medical guidelines and consensus for the treatment of recurrent or refractory Clostridium difficile infection, and has been gradually promoted for the treatment of other intestinal and extraintestinal diseases. However, the initial results are varied, suggesting that the heterogeneity of the donor stools may affect the efficacy of FMT. The success of FMT depends on the microbial diversity and composition of donor feces. Therefore, clinical trials may fail due to the selection of ineffective donors, and not to faulty indication selection for FMT. A new understanding is that FMT not only improves insulin sensitivity, but may also alter the natural course of type 1 diabetes by modulating autoimmunity. In this review, we focus on the main mechanisms and deficiencies of FMT, and explore the optimal design of FMT research, especially in the field of cardiometabolic diseases.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 710003, Shaanxi Province, China
| | - Yong-Yi Ji
- Department of Neurology, Xi’an Hospital of Traditional Chinese Medicine, Xi’an 710021, Shaanxi Province, China
| | - Xin-Li Wen
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 710003, Shaanxi Province, China
| | - Sheng-Lei Duan
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 710003, Shaanxi Province, China
| |
Collapse
|
109
|
Wei L, Singh R, Ghoshal UC. Enterochromaffin Cells-Gut Microbiota Crosstalk: Underpinning the Symptoms, Pathogenesis, and Pharmacotherapy in Disorders of Gut-Brain Interaction. J Neurogastroenterol Motil 2022; 28:357-375. [PMID: 35719046 PMCID: PMC9274469 DOI: 10.5056/jnm22008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/16/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
Disorders of gut-brain interaction (DGBIs) are common conditions in community and clinical practice. As specialized enteroendocrine cells, enterochromaffin (EC) cells produce up to 95% of total body serotonin and coordinate luminal and basolateral communication in the gastrointestinal (GI) tract. EC cells affect a broad range of gut physiological processes, such as motility, absorption, secretion, chemo/mechanosensation, and pathologies, including visceral hypersensitivity, immune dysfunction, and impaired gastrointestinal barrier function. We aim to review EC cell and serotonin-mediated physiology and pathophysiology with particular emphasis on DGBIs. We explored the knowledge gap and attempted to suggest new perspectives of physiological and pathophysiological insights of DGBIs, such as (1) functional heterogeneity of regionally distributed EC cells throughout the entire GI tract; (2) potential pathophysiological mechanisms mediated by EC cell defect in DGBIs; (3) cellular and molecular mechanisms characterizing EC cells and gut microbiota bidirectional communication; (4) differential modulation of EC cells through GI segment-specific gut microbiota; (5) uncover whether crosstalk between EC cells and (i) luminal contents; (ii) enteric nervous system; and (iii) central nervous system are core mechanisms modulating gut-brain homeostasis; and (6) explore the therapeutic modalities for physiological and pathophysiological mechanisms mediated through EC cells. Insights discussed in this review will fuel the conception and realization of pathophysiological mechanisms and therapeutic clues to improve the management and clinical care of DGBIs.
Collapse
Affiliation(s)
- Lai Wei
- Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | - Rajan Singh
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, NV, USA
| | - Uday C Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
110
|
Nutritional Treatment of Patients with Colorectal Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116881. [PMID: 35682464 PMCID: PMC9180662 DOI: 10.3390/ijerph19116881] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 12/12/2022]
Abstract
Colorectal cancer is one of the most common cancers in Europe and the world. Cancer treatments have side effects and cause significant deterioration of the patient’s nutritional status. Patient malnutrition may worsen the health condition and prevent the deliberate effects of the therapy. The aim of this review was to describe the available data about clinical nutrition in colorectal cancer patients. A large proportion of colorectal cancer patients suffer from malnutrition, which negatively affects the survival prognosis, quality of life, and oncological therapy. Therefore, monitoring nutritional status during the treatment is essential and can be used to arrange proper nutritional therapy to enhance patient responses, prevent side effects, and shorten recovery time. The principles of nutrition during anticancer therapy should mainly consider light and low-fat foods, the exclusion of lactose and gluten-containing foods in certain cases, or the introduction of special dietary products such as oral nutrition supplements and it should be tailored to patients’ individual needs.
Collapse
|
111
|
Effect of Oral Intake of Lactiplantibacillus plantarum APsulloc 331261 (GTB1 TM) on Diarrhea-Predominant Irritable Bowel Syndrome: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2022; 14:nu14102015. [PMID: 35631156 PMCID: PMC9144213 DOI: 10.3390/nu14102015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/26/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) causes intestinal discomfort, gut dysfunction, and poor quality of life. This randomized, double-blind placebo-controlled trial evaluated the efficacy of Lactiplantibacillus (Lp., formerly Lactobacillus) plantarum APsulloc 331261 (GTB1TM) from green tea leaves in participants with diarrhea-predominant irritable bowel syndrome (IBS-D). Twenty-seven participants meeting the Rome IV diagnostic criteria were randomized for GTB1 or placebo ingestion for four weeks and follow-up for two weeks. The efficacy endpoints included adequate global relief of symptoms, assessment of intestinal discomfort symptom severity and frequency, stool frequency, satisfaction, and fecal microbiome abundance. Of all participants, 94.4% and 62.5% reported global relief of symptoms in the GTB1 and placebo groups, respectively, with significant differences (p = 0.037). GTB1 significantly reduced the severity and frequency of abdominal pain, bloating, and feeling of incomplete evacuation. The frequencies of diarrhea were decreased −45.89% and −26.76% in the GTB1 and placebo groups, respectively (p = 0.045). Hence, GTB1 ingestion improved IBS-D patient quality of life. After four weeks treatment, the relative abundance of Lactobacillus was higher in the GTB1 than in the placebo group (p = 0.010). Our results showed that GTB1 enhanced intestinal discomfort symptoms, defecation consistency, quality of life, beneficial microbiota, and overall intestinal health.
Collapse
|
112
|
Wang J, He P, Deng T, Xu X, Zou D, Wang Y, Zeng W, Zhao M, Wang W, Lin H, Deng M, Kuang L, Chen D, Yang M. The difference of disrupted rhythms of life, work and entertainment between patients with FGIDs and healthy people and their associations with psychological disorders under COVID-19 pandemic. Int J Soc Psychiatry 2022; 68:628-638. [PMID: 33557677 DOI: 10.1177/0020764021992835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AIMS To investigate the differences in disrupted rhythms between healthy people and patients with functional gastrointestinal disorders (FGIDs) and their associations with mood disorders during the coronavirus disease 2019 (COVID-19) pandemic. METHODS The rhythm scales were composed of subscales 1 and 2 for the assessment of life-work and entertainment rhythms, respectively; Zung's Self-Rating Anxiety Scale (SAS) and Self-Rating Depression Scale (SDS) were used to assess mood disorders. RESULTS A total of 671 patients with FGIDs and 4373 healthy people successfully participated. The scores of subscales 1 and 2 for patients with FGIDs were significantly higher than those for healthy people (p < .005). The SAS and SDS scores, their prevalence rates were significantly higher than those for the healthy group (all p < .001). Health status, current occupation, life-work rhythm, SDS, and SAS were independent related factors of FGIDs. The score of life-work-entertainment rhythm was significantly positively correlated with SDS and SAS (both p < .001). CONCLUSION Disrupted rhythms in patients with FGIDs under the COVID-19 pandemic were more frequently and significantly positively associated with mood disorders.
Collapse
Affiliation(s)
- Jing Wang
- Army Medical Center of PLA, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Ping He
- Department of Gastroenterology, Yongchuan Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Tianwei Deng
- Department of Gastroenterology, Three Gorges Hospital of Chongqing University, Chongqing, P.R. China
| | - Xiaoming Xu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Yanjun Wang
- Army Medical Center of PLA, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Weiwei Zeng
- Army Medical Center of PLA, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Mei Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, P.R. China
| | - Wo Wang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Hui Lin
- Department of Statistics, Army Medical University, Chongqing, P.R. China
| | - Mingming Deng
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Li Kuang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Dongfeng Chen
- Army Medical Center of PLA, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Min Yang
- Army Medical Center of PLA, Daping Hospital, Army Medical University, Chongqing, P.R. China
| |
Collapse
|
113
|
Ruan Z, Sun F, Xia X, Zhang G. Editorial: Interactions Between Bioactive Food Ingredients and Intestinal Microbiota. Front Microbiol 2022; 13:902962. [PMID: 35531291 PMCID: PMC9075695 DOI: 10.3389/fmicb.2022.902962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 12/04/2022] Open
Affiliation(s)
- Zheng Ruan
- School of Food Science and Technology, Nanchang University, Nanchang, China
- *Correspondence: Zheng Ruan
| | - Fengjie Sun
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA, United States
| | - Xiaodong Xia
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
114
|
Di Domenico M, Ballini A, Boccellino M, Scacco S, Lovero R, Charitos IA, Santacroce L. The Intestinal Microbiota May Be a Potential Theranostic Tool for Personalized Medicine. J Pers Med 2022; 12:523. [PMID: 35455639 PMCID: PMC9024566 DOI: 10.3390/jpm12040523] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/09/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
The human intestine is colonized by a huge number of microorganisms from the moment of birth. This set of microorganisms found throughout the human body, is called the microbiota; the microbiome indicates the totality of genes that the microbiota can express, i.e., its genetic heritage. Thus, microbiota participates in and influences the proper functioning of the organism. The microbiota is unique for each person; it differs in the types of microorganisms it contains, the number of each microorganism, and the ratio between them, but mainly it changes over time and under the influence of many factors. Therefore, the correct functioning of the human body depends not only on the expression of its genes but also on the expression of the genes of the microorganisms it coexists with. This fact makes clear the enormous interest of community science in studying the relationship of the human microbiota with human health and the incidence of disease. The microbiota is like a unique personalized "mold" for each person; it differs quantitatively and qualitatively for the microorganisms it contains together with the relationship between them, and it changes over time and under the influence of many factors. We are attempting to modulate the microbial components in the human intestinal microbiota over time to provide positive feedback on the health of the host, from intestinal diseases to cancer. These interventions to modulate the intestinal microbiota as well as to identify the relative microbiome (genetic analysis) can range from dietary (with adjuvant prebiotics or probiotics) to fecal transplantation. This article researches the recent advances in these strategies by exploring their advantages and limitations. Furthermore, we aim to understand the relationship between intestinal dysbiosis and pathologies, through the research of resident microbiota, that would allow the personalization of the therapeutic antibiotic strategy.
Collapse
Affiliation(s)
- Marina Di Domenico
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.D.D.); (M.B.)
| | - Andrea Ballini
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.D.D.); (M.B.)
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Mariarosaria Boccellino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.D.D.); (M.B.)
| | - Salvatore Scacco
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Roberto Lovero
- AOU Policlinico Consorziale di Bari-Ospedale Giovanni XXIII, Clinical Pathology Unit, Policlinico University Hospital of Bari, 70124 Bari, Italy;
| | - Ioannis Alexandros Charitos
- Department of Emergency and Urgency, National Poisoning Centre, Riuniti University Hospital of Foggia, 71122 Foggia, Italy;
| | - Luigi Santacroce
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| |
Collapse
|
115
|
Wang T, Ishikawa T, Sasaki M, Chiba T. Oral and Gut Microbial Dysbiosis and Non-alcoholic Fatty Liver Disease: The Central Role of Porphyromonas gingivalis. Front Med (Lausanne) 2022; 9:822190. [PMID: 35308549 PMCID: PMC8924514 DOI: 10.3389/fmed.2022.822190] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
Gut microbiota play many important roles, such as the regulation of immunity and barrier function in the intestine, and are crucial for maintaining homeostasis in living organisms. The disruption in microbiota is called dysbiosis, which has been associated with various chronic inflammatory conditions, food allergies, colorectal cancer, etc. The gut microbiota is also affected by several other factors such as diet, antibiotics and other medications, or bacterial and viral infections. Moreover, there are some reports on the oral-gut-liver axis indicating that the disruption of oral microbiota affects the intestinal biota. Non-alcoholic fatty liver disease (NAFLD) is one of the systemic diseases caused due to the dysregulation of the oral-gut-liver axis. NAFLD is the most common liver disease reported in the developed countries. It includes liver damage ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), cirrhosis, and cancer. Recently, accumulating evidence supports an association between NAFLD and dysbiosis of oral and gut microbiota. Periodontopathic bacteria, especially Porphyromonas gingivalis, have been correlated with the pathogenesis and development of NAFLD based on the clinical and basic research, and immunology. P. gingivalis was detected in the liver, and lipopolysaccharide from this bacteria has been shown to be involved in the progression of NAFLD, thereby indicating a direct role of P. gingivalis in NAFLD. Moreover, P. gingivalis induces dysbiosis of gut microbiota, which promotes the progression of NAFLD, through disrupting both metabolic and immunologic pathways. Here, we review the roles of microbial dysbiosis in NAFLD. Focusing on P. gingivalis, we evaluate and summarize the most recent advances in our understanding of the relationship between oral-gut microbiome symbiosis and the pathogenesis and progression of non-alcoholic fatty liver disease, as well as discuss novel strategies targeting both P. gingivalis and microbial dysbiosis.
Collapse
Affiliation(s)
- Ting Wang
- Division of Internal Medicine, Department of Oral Medicine, Iwate Medical University, Morioka, Japan
| | - Taichi Ishikawa
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Morioka, Japan
| | - Minoru Sasaki
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Morioka, Japan
| | - Toshimi Chiba
- Division of Internal Medicine, Department of Oral Medicine, Iwate Medical University, Morioka, Japan
| |
Collapse
|
116
|
Thrastardottir TO, Copeland VJ, Constantinou C. The Association Between the Gut Microbiome, Nutritional Habits, Antibiotics, and Gastric Cancer: a Scoping Review. Curr Nutr Rep 2022; 11:19-38. [PMID: 35020173 DOI: 10.1007/s13668-021-00391-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW: Gastric cancer (GC) represents one of the leading causes of cancer-related deaths worldwide. The prevalence of GC among the younger population has been increasing in recent years, and the latter is associated with late detection and advanced disease status. The factors involved in the development of GC have been the focus of investigation in the past few years; yet no consistent conclusions or preventative solutions have been suggested. This scoping review aims to explore and report on research studies conducted to investigate the association between GC, the gut microbiome, and nutritional habits. RECENT FINDINGS : Using a predefined protocol in compliance with the PRISMA guidelines, a search was conducted on four separate databases including Google Scholar, Cochrane Library, ProQuest, and PubMed to investigate the association between GC, microbiome, and nutrition. A total of 1219 articles were identified through this process. Forty-three articles met the initial screening criteria and following full-article analysis, and 10 articles met the full inclusion criteria and were included in the current review. The results of the study support that there are differences in the gut microbiota between GC patients and healthy controls and that GC patients may have increased microbiota richness and lower diversity compared to healthy controls. In addition, the detection of pre/early GC may be possible through the analysis of the microbiota using fecal sampling. Nutritional habits, probiotics, and antibiotics may also play an important role in affecting GC development. Preliminary studies support a role for the gut microbiota in developing GC. Yet, the lack of sufficient randomized controlled studies investigating the association between GC, the gut microbiota, and nutritional habits demonstrates the need for further clinical research to develop preventative strategies that will aim to reduce the increased incidence of GC among all age groups including younger populations.
Collapse
Affiliation(s)
- Tinna Osk Thrastardottir
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 21 Ilia Papakyriakou, 2414 Engomi, P.O. Box 24005, 1700, Nicosia, Cyprus
| | - Viana Jacquline Copeland
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 21 Ilia Papakyriakou, 2414 Engomi, P.O. Box 24005, 1700, Nicosia, Cyprus
| | - Constantina Constantinou
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 21 Ilia Papakyriakou, 2414 Engomi, P.O. Box 24005, 1700, Nicosia, Cyprus.
| |
Collapse
|
117
|
Singh R, Zogg H, Ghoshal UC, Ro S. Current Treatment Options and Therapeutic Insights for Gastrointestinal Dysmotility and Functional Gastrointestinal Disorders. Front Pharmacol 2022; 13:808195. [PMID: 35145413 PMCID: PMC8822166 DOI: 10.3389/fphar.2022.808195] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Functional gastrointestinal disorders (FGIDs) have been re-named as disorders of gut-brain interactions. These conditions are not only common in clinical practice, but also in the community. In reference to the Rome IV criteria, the most common FGIDs, include functional dyspepsia (FD) and irritable bowel syndrome (IBS). Additionally, there is substantial overlap of these disorders and other specific gastrointestinal motility disorders, such as gastroparesis. These disorders are heterogeneous and are intertwined with several proposed pathophysiological mechanisms, such as altered gut motility, intestinal barrier dysfunction, gut immune dysfunction, visceral hypersensitivity, altered GI secretion, presence and degree of bile acid malabsorption, microbial dysbiosis, and alterations to the gut-brain axis. The treatment options currently available include lifestyle modifications, dietary and gut microbiota manipulation interventions including fecal microbiota transplantation, prokinetics, antispasmodics, laxatives, and centrally and peripherally acting neuromodulators. However, treatment that targets the pathophysiological mechanisms underlying the symptoms are scanty. Pharmacological agents that are developed based on the cellular and molecular mechanisms underlying pathologies of these disorders might provide the best avenue for future pharmaceutical development. The currently available therapies lack long-term effectiveness and safety for their use to treat motility disorders and FGIDs. Furthermore, the fundamental challenges in treating these disorders should be defined; for instance, 1. Cause and effect cannot be disentangled between symptoms and pathophysiological mechanisms due to current therapies that entail the off-label use of medications to treat symptoms. 2. Despite the knowledge that the microbiota in our gut plays an essential part in maintaining gut health, their exact functions in gut homeostasis are still unclear. What constitutes a healthy microbiome and further, the precise definition of gut microbial dysbiosis is lacking. More comprehensive, large-scale, and longitudinal studies utilizing multi-omics data are needed to dissect the exact contribution of gut microbial alterations in disease pathogenesis. Accordingly, we review the current treatment options, clinical insight on pathophysiology, therapeutic modalities, current challenges, and therapeutic clues for the clinical care and management of functional dyspepsia, gastroparesis, irritable bowel syndrome, functional constipation, and functional diarrhea.
Collapse
Affiliation(s)
- Rajan Singh
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, United States
| | - Hannah Zogg
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, United States
| | - Uday C Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Seungil Ro
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, United States
| |
Collapse
|
118
|
Nizigiyimana P, Xu B, Liu L, Luo L, Liu T, Jiang M, Liu Z, Li C, Luo X, Lei M. Gut microbiota is associated with differential metabolic characteristics: A study on a defined cohort of Africans and Chinese. Front Endocrinol (Lausanne) 2022; 13:942383. [PMID: 36246928 PMCID: PMC9554505 DOI: 10.3389/fendo.2022.942383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE This study intended to determine the associations between gut microbiota and glucose response in healthy individuals and analyze the connection between the gut microbiome and glucose-metabolism-related parameters. METHODS Fecal bacterial composition and anthropometric, body composition, body fat distribution, and biochemical measures were analyzed. A 75-g oral glucose tolerance test (OGTT) was given to each participant to investigate changes in glucagon-like peptide 1 (GLP-1), insulin, and glucose. The whole body fat and the regions of interest of local body composition were analyzed using dual-energy X-ray absorptiometry (DEXA), and gut microbiota composition was assessed through variable regions (V3-V4) of the bacterial 16s ribosomal RNA gene using high-throughput sequencing techniques. Spearman correlation analysis was used to evaluate the association between gut microbiota and clinical and metabolic changes. RESULTS The number of operational taxonomic units (OTUs) demonstrated a reduction in the diversity and composition of gut microbiota associated with enhanced adiposity, dyslipidemia, insulin resistance, and hyperglycemia. The alpha diversity revealed that microbiota diversity, richness, and composition were higher in the African group and lower in the Chinese group. Principal coordinates analysis (PCoA) plots of beta diversity showed significant variability in gut microbial community structure between the two groups (p = 0.0009). LEfSe analysis showed that phylum Bacteroidetes was significantly more abundant in the Chinese group, and this group also harbored members of the order Bacteroidales, family Bacteroidaceae, and genus Bacteroides. In contrast, the phylum Verrucomicrobia was significantly more prevalent in the African group (all p < 0.05). Concerning species, metastats analysis revealed 8 species in the Chinese group and 18 species in the African group that were significantly abundant. Spearman's correlation analysis demonstrated that gut microbiota correlated with the factors that related to glucose metabolism. CONCLUSION Our data suggest that there is an interaction between gut microbiota, host physiology, and glucometabolic pathways, and this could contribute to adiposity and pathophysiology of hyperlipidemia, insulin resistance, and hyperglycemia. These findings provide an important basis for determining the relation between the gut microbiota and the pathogenesis of various metabolic disorders.
Collapse
Affiliation(s)
- Paul Nizigiyimana
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Boya Xu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Lerong Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Liping Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Tingting Liu
- Department of Endocrinology, Haikou Hospital Affiliated to Xiangya School of Medicine, Central South University, Haikou, China
| | - Meng Jiang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Zehao Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Minxiang Lei
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Minxiang Lei,
| |
Collapse
|
119
|
Gu Y, Qin X, Zhou G, Wang C, Mu C, Liu X, Zhong W, Xu X, Wang B, Jiang K, Liu J, Cao H. Lactobacillus rhamnosus GG supernatant promotes intestinal mucin production through regulating 5-HT4R and gut microbiota. Food Funct 2022; 13:12144-12155. [DOI: 10.1039/d2fo01900k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
LGGs promoted intestinal MUC2 production through regulating S100A10/5-HT4R and the gut microbiota.
Collapse
Affiliation(s)
- Yu Gu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Xiali Qin
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Guoqiong Zhou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Chen Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Chenlu Mu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Xiang Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Xin Xu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Kui Jiang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Jinghua Liu
- Department of Gastroenterology and Hepatology, Tianjin TEDA Hospital, Tianjin 300457, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| |
Collapse
|
120
|
Sędzikowska A, Szablewski L. Human Gut Microbiota in Health and Selected Cancers. Int J Mol Sci 2021; 22:13440. [PMID: 34948234 PMCID: PMC8708499 DOI: 10.3390/ijms222413440] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
The majority of the epithelial surfaces of our body, and the digestive tract, respiratory and urogenital systems, are colonized by a vast number of bacteria, archaea, fungi, protozoans, and viruses. These microbiota, particularly those of the intestines, play an important, beneficial role in digestion, metabolism, and the synthesis of vitamins. Their metabolites stimulate cytokine production by the human host, which are used against potential pathogens. The composition of the microbiota is influenced by several internal and external factors, including diet, age, disease, and lifestyle. Such changes, called dysbiosis, may be involved in the development of various conditions, such as metabolic diseases, including metabolic syndrome, type 2 diabetes mellitus, Hashimoto's thyroidis and Graves' disease; they can also play a role in nervous system disturbances, such as multiple sclerosis, Alzheimer's disease, Parkinson's disease, and depression. An association has also been found between gut microbiota dysbiosis and cancer. Our health is closely associated with the state of our microbiota, and their homeostasis. The aim of this review is to describe the associations between human gut microbiota and cancer, and examine the potential role of gut microbiota in anticancer therapy.
Collapse
Affiliation(s)
| | - Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, ul. Chalubinskiego 5, 02-004 Warsaw, Poland;
| |
Collapse
|
121
|
Kountouras J, Papaefthymiou A, Polyzos SA, Vardaka E, Boziki M, Kyriakopoulos A, Sampsonas F, Agrotis G, Karafyllidou K, Doulberis M. Impact of Helicobacter pylori-related Microbial Dysbiosis in the Pathogenesis of Metabolic Syndrome and Gastrointestinal Dysmotility Disorders. J Neurogastroenterol Motil 2021; 27:653-654. [PMID: 34642287 PMCID: PMC8521481 DOI: 10.5056/jnm21059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- Jannis Kountouras
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Macedonia, Greece
| | - Apostolis Papaefthymiou
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Macedonia, Greece.,Department of Gastroenterology, University Hospital of Larisa, Mezourlo, Larisa, Greece.,First Laboratory of Pharmacology, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Stergios A Polyzos
- First Laboratory of Pharmacology, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Elisabeth Vardaka
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Macedonia, Greece.,Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, Alexander Campus, Thessaloniki, Macedonia, Greece
| | - Marina Boziki
- Second Neurological Department, Aristotle University of Thessaloniki, AHEPA University General Hospital of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Anthony Kyriakopoulos
- Department of Research and Development, Nasco AD Biotechnology Laboratory, Piraeus, Greece
| | - Fotios Sampsonas
- Department of Respiratory Medicine, University Hospital of Patra, Rion, Patra, Greece
| | - George Agrotis
- Department of Radiology, University Hospital of Larisa, Mezourlo, Larisa, Greece
| | - Kyriaki Karafyllidou
- Department of Pediatrics, University Children's Hospital of Zurich, Zurich, Switzerland
| | - Michael Doulberis
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Macedonia, Greece.,First Laboratory of Pharmacology, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece.,Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, Aarau, Switzerland
| |
Collapse
|
122
|
Kittana M, Ahmadani A, Al Marzooq F, Attlee A. Dietary Fat Effect on the Gut Microbiome, and Its Role in the Modulation of Gastrointestinal Disorders in Children with Autism Spectrum Disorder. Nutrients 2021; 13:3818. [PMID: 34836074 PMCID: PMC8618510 DOI: 10.3390/nu13113818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 12/19/2022] Open
Abstract
Children with autism spectrum disorder (ASD) report a higher frequency and severity of gastrointestinal disorders (GID) than typically developing (TD) children. GID-associated discomfort increases feelings of anxiety and frustration, contributing to the severity of ASD. Emerging evidence supports the biological intersection of neurodevelopment and microbiome, indicating the integral contribution of GM in the development and function of the nervous system, and mental health, and disease balance. Dysbiotic GM could be a contributing factor in the pathogenesis of GID in children with ASD. High-fat diets may modulate GM through accelerated growth of bile-tolerant bacteria, altered bacterial ratios, and reduced bacterial diversity, which may increase the risk of GID. Notably, saturated fatty acids are considered to have a pronounced effect on the increase of bile-tolerant bacteria and reduction in microbial diversity. Additionally, omega-3 exerts a favorable impact on GM and gut health due to its anti-inflammatory properties. Despite inconsistencies in the data elaborated in the review, the dietary fat composition, as part of an overall dietary intervention, plays a role in modulating GID, specifically in ASD, due to the altered microbiome profile. This review emphasizes the need to conduct future experimental studies investigating the effect of diets with varying fatty acid compositions on GID-specific microbiome profiles in children with ASD.
Collapse
Affiliation(s)
- Monia Kittana
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (M.K.); (A.A.)
| | - Asma Ahmadani
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (M.K.); (A.A.)
| | - Farah Al Marzooq
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Amita Attlee
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (M.K.); (A.A.)
| |
Collapse
|
123
|
Debnath N, Kumar R, Kumar A, Mehta PK, Yadav AK. Gut-microbiota derived bioactive metabolites and their functions in host physiology. Biotechnol Genet Eng Rev 2021; 37:105-153. [PMID: 34678130 DOI: 10.1080/02648725.2021.1989847] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Every individual harbours a complex, diverse and mutualistic microbial flora in their intestine and over the time it became an integral part of the body, affecting a plethora of activities of the host. Interaction between host and gut-microbiota affects several aspects of host physiology. Gut-microbiota affects host metabolism by fermenting unabsorbed/undigested carbohydrates in the large intestine. Not only the metabolic functions, any disturbances in the composition of the gut-microbiota during first 2-3 years of life may impact on the brain development and later affects cognition and behaviour. Thus, gut-dysbiosis causes certain serious pathological conditions in the host including metabolic disorders, inflammatory bowel disease and mood alterations, etc. Microbial-metabolites in recent times have emerged as key mediators and are responsible for microbiota induced beneficial effects on host. This review provides an overview of the mechanism of microbial-metabolite production, their respective physiological functions and the impact of gut-microbiome in health and diseases. Metabolites from dietary fibres, aromatic amino acids such as tryptophan, primary bile acids and others are the potential substances and link microbiota to host physiology. Many of these metabolites act as signalling molecules to a number of cells types and also help in the secretion of hormones. Moreover, interaction of microbiota derived metabolites with their host, immunity boosting mechanisms, protection against pathogens and modulation of metabolism is also highlighted here. Understanding all these functional attributes of metabolites produced from gut-microbiota may lead to the opening of a new avenue for preventing and developing potent therapies against several diseases.
Collapse
Affiliation(s)
- Nabendu Debnath
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu & Kashmir, India
| | | | - Ashwani Kumar
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Jant-Pali, India
| | - Praveen Kumar Mehta
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu & Kashmir, India
| | - Ashok Kumar Yadav
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu & Kashmir, India
| |
Collapse
|
124
|
Singh R, Zogg H, Ro S. Role of microRNAs in Disorders of Gut-Brain Interactions: Clinical Insights and Therapeutic Alternatives. J Pers Med 2021; 11:1021. [PMID: 34683162 PMCID: PMC8541612 DOI: 10.3390/jpm11101021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Disorders of gut-brain interactions (DGBIs) are heterogeneous in nature and intertwine with diverse pathophysiological mechanisms. Regular functioning of the gut requires complex coordinated interplay between a variety of gastrointestinal (GI) cell types and their functions are regulated by multiple mechanisms at the transcriptional, post-transcriptional, translational, and post-translational levels. MicroRNAs (miRNAs) are small non-coding RNA molecules that post-transcriptionally regulate gene expression by binding to specific mRNA targets to repress their translation and/or promote the target mRNA degradation. Dysregulation of miRNAs might impair gut physiological functions leading to DGBIs and gut motility disorders. Studies have shown miRNAs regulate gut functions such as visceral sensation, gut immune response, GI barrier function, enteric neuronal development, and GI motility. These biological processes are highly relevant to the gut where neuroimmune interactions are key contributors in controlling gut homeostasis and functional defects lead to DGBIs. Although extensive research has explored the pathophysiology of DGBIs, further research is warranted to bolster the molecular mechanisms behind these disorders. The therapeutic targeting of miRNAs represents an attractive approach for the treatment of DGBIs because they offer new insights into disease mechanisms and have great potential to be used in the clinic as diagnostic markers and therapeutic targets. Here, we review recent advances regarding the regulation of miRNAs in GI pacemaking cells, immune cells, and enteric neurons modulating pathophysiological mechanisms of DGBIs. This review aims to assess the impacts of miRNAs on the pathophysiological mechanisms of DGBIs, including GI dysmotility, impaired intestinal barrier function, gut immune dysfunction, and visceral hypersensitivity. We also summarize the therapeutic alternatives for gut microbial dysbiosis in DGBIs, highlighting the clinical insights and areas for further exploration. We further discuss the challenges in miRNA therapeutics and promising emerging approaches.
Collapse
Affiliation(s)
| | | | - Seungil Ro
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, 1664 North Virginia Street, Reno, NV 89557, USA; (R.S.); (H.Z.)
| |
Collapse
|
125
|
Gut microbiome linked to pancreatitis. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2021.100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
126
|
Wang YJ, Jia QL, Li L, Wang XX, Ling JH. Progress in understanding of relationship between gut microbiota and gastrointestinal motility. Shijie Huaren Xiaohua Zazhi 2021; 29:1020-1025. [DOI: 10.11569/wcjd.v29.i17.1020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal motility disorders are a group of common clinical disorders in which abnormal gastrointestinal motility is the major pathogenesis, including irritable bowel syndrome, functional dyspepsia, and diabetic gastroparesis. With the rapid development of microbial sequencing technology in the past 10 years, the understanding of the gut microbiota has greatly improved, and it is generally found that patients with gastrointestinal motility diseases have gut microbiota disorders. Some progress has been made on the correlation between gut microbiota and gastrointestinal motility. This review aims to elucidate the relationship between gut microbiota and gastrointestinal motility and the mechanism of their interaction.
Collapse
Affiliation(s)
- Yu-Jiao Wang
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Qing-Ling Jia
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Li Li
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Xiang-Xiang Wang
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Jiang-Hong Ling
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| |
Collapse
|
127
|
Wei L, Singh R, Ro S, Ghoshal UC. Gut microbiota dysbiosis in functional gastrointestinal disorders: Underpinning the symptoms and pathophysiology. JGH Open 2021; 5:976-987. [PMID: 34584964 PMCID: PMC8454481 DOI: 10.1002/jgh3.12528] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023]
Abstract
Functional gastrointestinal disorders (FGIDs), currently known as disorders of gut-brain interaction, are emerging microbiota-gut-brain abnormalities that are prevalent worldwide. The pathogenesis of FGIDs is heterogeneous and is intertwined with gut microbiota and its derived molecule-modulated mechanisms, including gut dysmotility, visceral hypersensitivity, gut immune abnormalities, abnormal secretion, and impaired barrier function. There has been phenomenal progress in understanding the role of gut microbiota in FGIDs by underpinning the species alternations between healthy and pathological conditions such as FGIDs. However, the precise gut microbiota-directed cellular and molecular pathogeneses of FGIDs are yet enigmatic. Determining the mechanistic link between the gut microbiota and gastrointestinal (GI) diseases has been difficult due to (i) the lack of robust animal models imitating the various aspects of human FGID pathophysiology; (ii) the absence of longitudinal human and/or animal studies to unveil the interaction of the gut microbiota with FGID-relevant pathogenesis; (iii) uncertainty about connections between human and animal studies; and (iv) insufficient data supporting a holistic view of disease-specific pathophysiological changes in FGID patients. These unidentified gaps open possibilities to explore pathological mechanisms directed through gut microbiota dysbiosis in FGIDs. The current treatment options for dysbiotic gut microbiota are limited; dietary interventions, antibiotics, probiotics, and fecal microbiota transplantation are the front-line clinical options. Here, we review the contribution of gut microbiota and its derived molecules in gut homeostasis and explore the possible pathophysiological mechanisms involved in FGIDs leading to potential therapeutics options.
Collapse
Affiliation(s)
- Lai Wei
- Department of Physiology and Cell BiologyUniversity of Nevada, Reno, School of MedicineRenoNevadaUSA
| | - Rajan Singh
- Department of Physiology and Cell BiologyUniversity of Nevada, Reno, School of MedicineRenoNevadaUSA
| | - Seungil Ro
- Department of Physiology and Cell BiologyUniversity of Nevada, Reno, School of MedicineRenoNevadaUSA
| | - Uday C Ghoshal
- Department of GastroenterologySanjay Gandhi Postgraduate Institute of Medical SciencesLucknowIndia
| |
Collapse
|
128
|
Henen S, Denton C, Teckman J, Borowitz D, Patel D. Review of Gastrointestinal Motility in Cystic Fibrosis. J Cyst Fibros 2021; 20:578-585. [PMID: 34147362 DOI: 10.1016/j.jcf.2021.05.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
Gastrointestinal manifestations in patients with cystic fibrosis (CF) are extremely common and have recently become a research focus. Gastrointestinal (GI) dysfunction is poorly understood in the CF population, despite many speculations including the role of luminal pH, bacterial overgrowth, and abnormal microbiome. Nevertheless, dysmotility is emerging as a possible key player in CF intestinal symptoms. Our review article aims to explore the sequelae of defective cystic fibrosis transmembrane conductance regulator (CFTR) genes on the GI tract as studied in both animals and humans, describe various presentations of intestinal dysmotility in CF, review newer diagnostic motility techniques including intraluminal manometry, and review the current literature regarding the potential role of dysmotility in CF-related intestinal pathologies.
Collapse
Affiliation(s)
- Sara Henen
- Saint Louis University School of Medicine, SSM Health Cardinal Glennon Children's Hospital, 1465 S Grand Blvd, St. Louis, MO 63104.
| | - Christine Denton
- Saint Louis University School of Medicine, SSM Health Cardinal Glennon Children's Hospital, 1465 S Grand Blvd, St. Louis, MO 63104
| | - Jeff Teckman
- Interim Chair, Department of Pediatrics, Professor of Pediatrics and Biochemistry, Saint Louis University School of Medicine, SSM Health Cardinal Glennon Children's Hospital, 1465 S Grand BLVD, St. Louis, MO 63104.
| | - Drucy Borowitz
- Emeritus Professor of Clinical Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, NY, 1001 Main Street, Buffalo, NY, 14203.
| | - Dhiren Patel
- Associate Professor and Medical Director, Neurogastroenterology and Motility Program, Department of Pediatrics, Saint Louis University School of Medicine, SSM Health Cardinal Glennon Children's Hospital, 1465 S Grand Blvd, St. Louis, MO 63104.
| |
Collapse
|
129
|
Wei L, Singh R, Ha SE, Martin AM, Jones LA, Jin B, Jorgensen BG, Zogg H, Chervo T, Gottfried-Blackmore A, Nguyen L, Habtezion A, Spencer NJ, Keating DJ, Sanders KM, Ro S. Serotonin Deficiency Is Associated With Delayed Gastric Emptying. Gastroenterology 2021; 160:2451-2466.e19. [PMID: 33662386 PMCID: PMC8532026 DOI: 10.1053/j.gastro.2021.02.060] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Gastrointestinal (GI) motility is regulated by serotonin (5-hydroxytryptamine [5-HT]), which is primarily produced by enterochromaffin (EC) cells in the GI tract. However, the precise roles of EC cell-derived 5-HT in regulating gastric motility remain a major point of conjecture. Using a novel transgenic mouse line, we investigated the distribution of EC cells and the pathophysiologic roles of 5-HT deficiency in gastric motility in mice and humans. METHODS We developed an inducible, EC cell-specific Tph1CreERT2/+ mouse, which was used to generate a reporter mouse line, Tph1-tdTom, and an EC cell-depleted line, Tph1-DTA. We examined EC cell distribution, morphology, and subpopulations in reporter mice. GI motility was measured in vivo and ex vivo in EC cell-depleted mice. Additionally, we evaluated 5-HT content in biopsy and plasma specimens from patients with idiopathic gastroparesis (IG). RESULTS Tph1-tdTom mice showed EC cells that were heterogeneously distributed throughout the GI tract with the greatest abundance in the antrum and proximal colon. Two subpopulations of EC cells were identified in the gut: self-renewal cells located at the base of the crypt and mature cells observed in the villi. Tph1-DTA mice displayed delayed gastric emptying, total GI transit, and colonic transit. These gut motility alterations were reversed by exogenous provision of 5-HT. Patients with IG had a significant reduction of antral EC cell numbers and 5-HT content, which negatively correlated with gastric emptying rate. CONCLUSIONS The Tph1CreERT2/+ mouse provides a powerful tool to study the functional roles of EC cells in the GI tract. Our findings suggest a new pathophysiologic mechanism of 5-HT deficiency in IG.
Collapse
Affiliation(s)
- Lai Wei
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Rajan Singh
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Se Eun Ha
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Alyce M Martin
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Lauren A Jones
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Byungchang Jin
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Brian G Jorgensen
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Hannah Zogg
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Tyler Chervo
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Andres Gottfried-Blackmore
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California
| | - Linda Nguyen
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California
| | - Nick J Spencer
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Damien J Keating
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Seungil Ro
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada.
| |
Collapse
|
130
|
Malnick SDH, Fisher D, Somin M, Neuman MG. Treating the Metabolic Syndrome by Fecal Transplantation-Current Status. BIOLOGY 2021; 10:447. [PMID: 34065241 PMCID: PMC8161223 DOI: 10.3390/biology10050447] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022]
Abstract
The intestinal microbiome (IM) is important for normal gastrointestinal (GI) and other organ systems' functioning. An alteration in the normal IM, dysbiosis, and changes in intestinal motility result in microorganisms' overgrowth and an alteration in intestinal permeability. The gut-brain axis is also of importance in the irritable bowel syndrome (IBS) and associated bowel overgrowth. Secondary to the epidemic of obesity, the metabolic syndrome has become a major health problem. Disturbances in the fecal microbiome are associated with the metabolic syndrome. Metabolic-associated fatty liver disease (MAFLD) is now the current terminology for non-alcoholic fatty liver disease. IM alteration by fecal transplantation is an approved treatment method for recurrent Clostridioides difficile infection. Initially performed by either duodenal infusion or colonoscopy, it is now easily performed by the administration of capsules containing stools. We discuss the intestinal microbiome-its composition, as well as the qualitative changes of microbiome composition leading to inflammation. In addition, we discuss the evidence of the effect of fecal transplantation on the metabolic syndrome and MAFLD, as well as its clinical indications.
Collapse
Affiliation(s)
- Stephen D. H. Malnick
- Department of Internal Medicine Cj Kaplan Medical Center, The Hebrew University, Rehovot 76100, Israel; (S.D.H.M.); (D.F.); (M.S.)
| | - David Fisher
- Department of Internal Medicine Cj Kaplan Medical Center, The Hebrew University, Rehovot 76100, Israel; (S.D.H.M.); (D.F.); (M.S.)
| | - Marina Somin
- Department of Internal Medicine Cj Kaplan Medical Center, The Hebrew University, Rehovot 76100, Israel; (S.D.H.M.); (D.F.); (M.S.)
| | - Manuela G. Neuman
- In Vitro Drug Safety and Biotechnology, Banting Institute, University of Toronto, Toronto, ON M5G 0A3, Canada
| |
Collapse
|
131
|
Isibor PO, Akinduti PA, Aworunse OS, Oyewale JO, Oshamika O, Ugboko HU, Taiwo OS, Ahuekwe EF, Obafemi YD, Onibokun EA, Oziegbe O, Oniha MI, Olopade BK, Atolagbe OM, Adekeye BT, Ajiboye IB, Bello OA, Popoola JO, Ayanda OI, Akinnola OO, Olasehinde GI, Eni AO, Nwinyi OC, Omonhinmin CA, Oranusi SU, Obembe OO. Significance of African Diets in Biotherapeutic Modulation of the Gut Microbiome. Bioinform Biol Insights 2021; 15:11779322211012697. [PMID: 33994782 PMCID: PMC8107938 DOI: 10.1177/11779322211012697] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/04/2021] [Indexed: 12/19/2022] Open
Abstract
Diet plays an essential role in human development and growth, contributing to health and well-being. The socio-economic values, cultural perspectives, and dietary formulation in sub-Saharan Africa can influence gut health and disease prevention. The vast microbial ecosystems in the human gut frequently interrelate to maintain a healthy, well-coordinated cellular and humoral immune signalling to prevent metabolic dysfunction, pathogen dominance, and induction of systemic diseases. The diverse indigenous diets could differentially act as biotherapeutics to modulate microbial abundance and population characteristics. Such modulation could prevent stunted growth, malnutrition, induction of bowel diseases, attenuated immune responses, and mortality, particularly among infants. Understanding the associations between specific indigenous African diets and the predictability of the dynamics of gut bacteria genera promises potential biotherapeutics towards improving the prevention, control, and treatment of microbiome-associated diseases such as cancer, inflammatory bowel disease, obesity, type 2 diabetes, and cardiovascular disease. The dietary influence of many African diets (especially grain-base such as millet, maize, brown rice, sorghum, soya, and tapioca) promotes gut lining integrity, immune tolerance towards the microbiota, and its associated immune and inflammatory responses. A fibre-rich diet is a promising biotherapeutic candidate that could effectively modulate inflammatory mediators' expression associated with immune cell migration, lymphoid tissue maturation, and signalling pathways. It could also modulate the stimulation of cytokines and chemokines involved in ensuring balance for long-term microbiome programming. The interplay between host and gut microbial digestion is complex; microbes using and competing for dietary and endogenous proteins are often attributable to variances in the comparative abundances of Enterobacteriaceae taxa. Many auto-inducers could initiate the process of quorum sensing and mammalian epinephrine host cell signalling system. It could also downregulate inflammatory signals with microbiota tumour taxa that could trigger colorectal cancer initiation, metabolic type 2 diabetes, and inflammatory bowel diseases. The exploitation of essential biotherapeutic molecules derived from fibre-rich indigenous diet promises food substances for the downregulation of inflammatory signalling that could be harmful to gut microbiota ecological balance and improved immune response modulation.
Collapse
Affiliation(s)
- PO Isibor
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - PA Akinduti
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - OS Aworunse
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - JO Oyewale
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - O Oshamika
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - HU Ugboko
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - OS Taiwo
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - EF Ahuekwe
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - YD Obafemi
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - EA Onibokun
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - O Oziegbe
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - MI Oniha
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - BK Olopade
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - OM Atolagbe
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - BT Adekeye
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - IB Ajiboye
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - OA Bello
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - JO Popoola
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - OI Ayanda
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - OO Akinnola
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - GI Olasehinde
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - AO Eni
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - OC Nwinyi
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - CA Omonhinmin
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - SU Oranusi
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| | - OO Obembe
- Biotechnology Research Centre, Department of
Biological Sciences, Covenant University, Ota, Nigeria
| |
Collapse
|
132
|
Yenuganti VR, Yadala R, Azad R, Singh S, Chiluka V, Ahire J, Reddanna P. In vitro evaluation of anticancer effects of different probiotic strains on HCT-116 cell line. J Appl Microbiol 2021; 131:1958-1969. [PMID: 33694215 DOI: 10.1111/jam.15060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/11/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022]
Abstract
AIM Since the evolution of man, microbes are associated with humans, playing a vital role in the maintenance of good health. However, an imbalance in the gut microbial ecosystem is associated with several diseases including colorectal cancer (CRC). The supplementation with probiotics has been proven to be beneficial in improving CRC. In this study, we have evaluated the anticancer effects of 11 probiotic strains on human colorectal carcinoma cell line (HCT-116). METHODS AND RESULTS In this study, HCT-116 cells were treated with various concentrations (0·5, 5, 10, 20 and 200 million CFU per ml) of probiotic strains. The viability was analysed using a MTT assay and IC50 values were determined. Besides this, we evaluated the expression of multiple genes involved in the apoptosis and stress tolerance by real-time PCR. Lactobacillus reuteri (UBLRu-87), Saccharomyces boulardii (Unique-28), Bacillus clausii (UBBC-07), Bacillus coagulans (Unique-IS2), Streptococcus salivarius (UBSS-01), Lactobacillus fermentum (UBLF-31), Lactobacillus salivarius (UBLS-22), Bifidobacterium bifidum (UBBB-55) and Lactobacillus plantarum (UBLP-40) exhibited potent cytotoxicity on HCT 116 cells. Furthermore, UBLF-31 and Unique-28 induced the expression of CJUN, CFOS and CASP-9, and downregulated the expression of BCL6. UBLRu-87 and UBBB-55 induced the expression of CJUN, CFOS and CASP-9 but not BCL-6. UBLP-40, UBBC-07, UBLS-22, and Unique-IS2 induced the expression of CJUN and CASP-9 and downregulated the expression of BCL-6. CONCLUSION These studies indicate the anticancer effects of selected probiotic strains by inducing apoptosis. SIGNIFICANCE AND IMPACT OF THE STUDY The probiotic strains with the anticancer effects identified in this study can be proposed as potential candidates in the treatment of CRCs.
Collapse
Affiliation(s)
- V R Yenuganti
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - R Yadala
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - R Azad
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - S Singh
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - V Chiluka
- Department of Biological Sciences, School of Applied Sciences, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - J Ahire
- Centre for Research & Development, Unique Biotech Ltd, Hyderabad, Telangana, India
| | - P Reddanna
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
133
|
Zawada A, Rychter AM, Ratajczak AE, Lisiecka-Masian A, Dobrowolska A, Krela-Kaźmierczak I. Does Gut-Microbiome Interaction Protect against Obesity and Obesity-Associated Metabolic Disorders? Microorganisms 2020; 9:microorganisms9010018. [PMID: 33374597 PMCID: PMC7822472 DOI: 10.3390/microorganisms9010018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
More research has recently focused on the role of the gut microbiota in the development or course of numerous diseases, including non-communicable diseases. As obesity remains prevalent, the question arises as to what microbial changes are associated with increased obesity prevalence and what kind of prevention and treatment approaches it could provide. Moreover, the influence of the gut-brain axis on obesity is also crucial, since it can affect metabolism and food intake. The quantitative and qualitative changes in the microbiota composition are called dysbiosis; however, in view of the current knowledge, it is difficult to conclude which microbial imbalances are adverse or beneficial. Increased numbers of pathological microorganisms were observed among patients with obesity and comorbidities associated with it, such as diabetes, cardiovascular disease, and insulin resistance. Our review provides current knowledge regarding changes in the intestinal microbiota associated with obesity and obesity-associated comorbidities. Nevertheless, given that dietary patterns and nutrients are two of the factors affecting the intestinal microbiota, we also discuss the role of different dietary approaches, vitamins, and minerals in the shaping of the intestinal microbiota.
Collapse
|