101
|
Transient HIV-1 Gag-protease interactions revealed by paramagnetic NMR suggest origins of compensatory drug resistance mutations. Proc Natl Acad Sci U S A 2016; 113:12456-12461. [PMID: 27791180 DOI: 10.1073/pnas.1615342113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cleavage of the group-specific antigen (Gag) polyprotein by HIV-1 protease represents the critical first step in the conversion of immature noninfectious viral particles to mature infectious virions. Selective pressure exerted by HIV-1 protease inhibitors, a mainstay of current anti-HIV-1 therapies, results in the accumulation of drug resistance mutations in both protease and Gag. Surprisingly, a large number of these mutations (known as secondary or compensatory mutations) occur outside the active site of protease or the cleavage sites of Gag (located within intrinsically disordered linkers connecting the globular domains of Gag to one another), suggesting that transient encounter complexes involving the globular domains of Gag may play a role in guiding and facilitating access of the protease to the Gag cleavage sites. Here, using large fragments of Gag, as well as catalytically inactive and active variants of protease, we probe the nature of such rare encounter complexes using intermolecular paramagnetic relaxation enhancement, a highly sensitive technique for detecting sparsely populated states. We show that Gag-protease encounter complexes are primarily mediated by interactions between protease and the globular domains of Gag and that the sites of transient interactions are correlated with surface exposed regions that exhibit a high propensity to mutate in the presence of HIV-1 protease inhibitors.
Collapse
|
102
|
Rye-McCurdy T, Olson ED, Liu S, Binkley C, Reyes JP, Thompson BR, Flanagan JM, Parent LJ, Musier-Forsyth K. Functional Equivalence of Retroviral MA Domains in Facilitating Psi RNA Binding Specificity by Gag. Viruses 2016; 8:v8090256. [PMID: 27657107 PMCID: PMC5035970 DOI: 10.3390/v8090256] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 12/18/2022] Open
Abstract
Retroviruses specifically package full-length, dimeric genomic RNA (gRNA) even in the presence of a vast excess of cellular RNA. The “psi” (Ψ) element within the 5′-untranslated region (5′UTR) of gRNA is critical for packaging through interaction with the nucleocapsid (NC) domain of Gag. However, in vitro Gag binding affinity for Ψ versus non-Ψ RNAs is not significantly different. Previous salt-titration binding assays revealed that human immunodeficiency virus type 1 (HIV-1) Gag bound to Ψ RNA with high specificity and relatively few charge interactions, whereas binding to non-Ψ RNA was less specific and involved more electrostatic interactions. The NC domain was critical for specific Ψ binding, but surprisingly, a Gag mutant lacking the matrix (MA) domain was less effective at discriminating Ψ from non-Ψ RNA. We now find that Rous sarcoma virus (RSV) Gag also effectively discriminates RSV Ψ from non-Ψ RNA in a MA-dependent manner. Interestingly, Gag chimeras, wherein the HIV-1 and RSV MA domains were swapped, maintained high binding specificity to cognate Ψ RNAs. Using Ψ RNA mutant constructs, determinants responsible for promoting high Gag binding specificity were identified in both systems. Taken together, these studies reveal the functional equivalence of HIV-1 and RSV MA domains in facilitating Ψ RNA selectivity by Gag, as well as Ψ elements that promote this selectivity.
Collapse
Affiliation(s)
- Tiffiny Rye-McCurdy
- Department of Chemistry and Biochemistry, The Ohio State University, Center for Retroviral Research, and Center for RNA Biology, Columbus, OH 43210, USA.
| | - Erik D Olson
- Department of Chemistry and Biochemistry, The Ohio State University, Center for Retroviral Research, and Center for RNA Biology, Columbus, OH 43210, USA.
| | - Shuohui Liu
- Department of Chemistry and Biochemistry, The Ohio State University, Center for Retroviral Research, and Center for RNA Biology, Columbus, OH 43210, USA.
| | - Christiana Binkley
- Department of Chemistry and Biochemistry, The Ohio State University, Center for Retroviral Research, and Center for RNA Biology, Columbus, OH 43210, USA.
| | - Joshua-Paolo Reyes
- Department of Chemistry and Biochemistry, The Ohio State University, Center for Retroviral Research, and Center for RNA Biology, Columbus, OH 43210, USA.
| | - Brian R Thompson
- Department of Chemistry and Biochemistry, The Ohio State University, Center for Retroviral Research, and Center for RNA Biology, Columbus, OH 43210, USA.
| | - John M Flanagan
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA.
| | - Leslie J Parent
- Departments of Medicine and Microbiology and Immunology, Division of Infectious Diseases and Epidemiology, Penn State College of Medicine, Hershey, PA 17033, USA.
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, The Ohio State University, Center for Retroviral Research, and Center for RNA Biology, Columbus, OH 43210, USA.
| |
Collapse
|
103
|
Comas-Garcia M, Davis SR, Rein A. On the Selective Packaging of Genomic RNA by HIV-1. Viruses 2016; 8:v8090246. [PMID: 27626441 PMCID: PMC5035960 DOI: 10.3390/v8090246] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/16/2016] [Accepted: 08/30/2016] [Indexed: 12/12/2022] Open
Abstract
Like other retroviruses, human immunodeficiency virus type 1 (HIV-1) selectively packages genomic RNA (gRNA) during virus assembly. However, in the absence of the gRNA, cellular messenger RNAs (mRNAs) are packaged. While the gRNA is selected because of its cis-acting packaging signal, the mechanism of this selection is not understood. The affinity of Gag (the viral structural protein) for cellular RNAs at physiological ionic strength is not much higher than that for the gRNA. However, binding to the gRNA is more salt-resistant, implying that it has a higher non-electrostatic component. We have previously studied the spacer 1 (SP1) region of Gag and showed that it can undergo a concentration-dependent conformational transition. We proposed that this transition represents the first step in assembly, i.e., the conversion of Gag to an assembly-ready state. To explain selective packaging of gRNA, we suggest here that binding of Gag to gRNA, with its high non-electrostatic component, triggers this conversion more readily than binding to other RNAs; thus we predict that a Gag-gRNA complex will nucleate particle assembly more efficiently than other Gag-RNA complexes. New data shows that among cellular mRNAs, those with long 3'-untranslated regions (UTR) are selectively packaged. It seems plausible that the 3'-UTR, a stretch of RNA not occupied by ribosomes, offers a favorable binding site for Gag.
Collapse
Affiliation(s)
- Mauricio Comas-Garcia
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| | - Sean R Davis
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | - Alan Rein
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
104
|
Bayro MJ, Ganser-Pornillos BK, Zadrozny KK, Yeager M, Tycko R. Helical Conformation in the CA-SP1 Junction of the Immature HIV-1 Lattice Determined from Solid-State NMR of Virus-like Particles. J Am Chem Soc 2016; 138:12029-32. [PMID: 27593947 DOI: 10.1021/jacs.6b07259] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Maturation of HIV-1 requires disassembly of the Gag polyprotein lattice, which lines the viral membrane in the immature state, and subsequent assembly of the mature capsid protein lattice, which encloses viral RNA in the mature state. Metastability of the immature lattice has been proposed to depend on the existence of a structurally ordered, α-helical segment spanning the junction between capsid (CA) and spacer peptide 1 (SP1) subunits of Gag, a segment that is dynamically disordered in the mature capsid lattice. We report solid state nuclear magnetic resonance (ssNMR) measurements on the immature lattice in noncrystalline, spherical virus-like particles (VLPs) derived from Gag. The ssNMR data provide definitive evidence for this critical α-helical segment in the VLPs. Differences in ssNMR chemical shifts and signal intensities between immature and mature lattice assemblies also support a major rearrangement of intermolecular interactions in the maturation process, consistent with recent models from electron cryomicroscopy and X-ray crystallography.
Collapse
Affiliation(s)
- Marvin J Bayro
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0520, United States
| | - Barbie K Ganser-Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine , Seridan G. Snyder Translational Research Building, 480 Ray C. Hunt Drive, Charlottesville, Virginia 22908, United States
| | - Kaneil K Zadrozny
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine , Seridan G. Snyder Translational Research Building, 480 Ray C. Hunt Drive, Charlottesville, Virginia 22908, United States
| | - Mark Yeager
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine , Seridan G. Snyder Translational Research Building, 480 Ray C. Hunt Drive, Charlottesville, Virginia 22908, United States.,Department of Medicine, Division of Cardiovascular Medicine, University of Virginia Health System , Charlottesville, Virginia 22908, United States.,Center for Membrane and Cell Physiology, University of Virginia School of Medicine , Charlottesville, Virginia 22908, United States
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
105
|
Schur FKM, Obr M, Hagen WJH, Wan W, Jakobi AJ, Kirkpatrick JM, Sachse C, Kräusslich HG, Briggs JAG. An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation. Science 2016; 353:506-8. [PMID: 27417497 DOI: 10.1126/science.aaf9620] [Citation(s) in RCA: 323] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/29/2016] [Indexed: 12/28/2022]
Abstract
Immature HIV-1 assembles at and buds from the plasma membrane before proteolytic cleavage of the viral Gag polyprotein induces structural maturation. Maturation can be blocked by maturation inhibitors (MIs), thereby abolishing infectivity. The CA (capsid) and SP1 (spacer peptide 1) region of Gag is the key regulator of assembly and maturation and is the target of MIs. We applied optimized cryo-electron tomography and subtomogram averaging to resolve this region within assembled immature HIV-1 particles at 3.9 angstrom resolution and built an atomic model. The structure reveals a network of intra- and intermolecular interactions mediating immature HIV-1 assembly. The proteolytic cleavage site between CA and SP1 is inaccessible to protease. We suggest that MIs prevent CA-SP1 cleavage by stabilizing the structure, and MI resistance develops by destabilizing CA-SP1.
Collapse
Affiliation(s)
- Florian K M Schur
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany. Molecular Medicine Partnership Unit, European Molecular Biology Laboratory-Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Martin Obr
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory-Universitätsklinikum Heidelberg, Heidelberg, Germany. Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Wim J H Hagen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - William Wan
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Arjen J Jakobi
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany. Hamburg Unit c/o DESY (Deutsches Elektronen-Synchrotron), European Molecular Biology Laboratory, Notkestraße 85, 22607 Hamburg, Germany
| | - Joanna M Kirkpatrick
- Proteomics Core Facility, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Carsten Sachse
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Hans-Georg Kräusslich
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory-Universitätsklinikum Heidelberg, Heidelberg, Germany. Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - John A G Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany. Molecular Medicine Partnership Unit, European Molecular Biology Laboratory-Universitätsklinikum Heidelberg, Heidelberg, Germany.
| |
Collapse
|