1451
|
Battistoni E, Stein T, Peelen MV. Preparatory attention in visual cortex. Ann N Y Acad Sci 2017; 1396:92-107. [PMID: 28253445 DOI: 10.1111/nyas.13320] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/16/2017] [Accepted: 01/19/2017] [Indexed: 12/01/2022]
Abstract
Top-down attention is the mechanism that allows us to selectively process goal-relevant aspects of a scene while ignoring irrelevant aspects. A large body of research has characterized the effects of attention on neural activity evoked by a visual stimulus. However, attention also includes a preparatory phase before stimulus onset in which the attended dimension is internally represented. Here, we review neurophysiological, functional magnetic resonance imaging, magnetoencephalography, electroencephalography, and transcranial magnetic stimulation (TMS) studies investigating the neural basis of preparatory attention, both when attention is directed to a location in space and when it is directed to nonspatial stimulus attributes (content-based attention) ranging from low-level features to object categories. Results show that both spatial and content-based attention lead to increased baseline activity in neural populations that selectively code for the attended attribute. TMS studies provide evidence that this preparatory activity is causally related to subsequent attentional selection and behavioral performance. Attention thus acts by preactivating selective neurons in the visual cortex before stimulus onset. This appears to be a general mechanism that can operate on multiple levels of representation. We discuss the functional relevance of this mechanism, its limitations, and its relation to working memory, imagery, and expectation. We conclude by outlining open questions and future directions.
Collapse
Affiliation(s)
- Elisa Battistoni
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Timo Stein
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy.,Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - Marius V Peelen
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| |
Collapse
|
1452
|
Wang M, Hao N, Ku Y, Grabner RH, Fink A. Neural correlates of serial order effect in verbal divergent thinking. Neuropsychologia 2017; 99:92-100. [PMID: 28259772 DOI: 10.1016/j.neuropsychologia.2017.03.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 02/22/2017] [Accepted: 03/01/2017] [Indexed: 01/17/2023]
Abstract
During the course of divergent thinking (DT), the number of generated ideas decreases while the originality of ideas increases. This phenomenon is labeled as serial order effect in DT. The present study investigated whether different executive processes (i.e., updating, shifting, and inhibition) specifically contribute to the serial order effect in DT. Participants' executive functions were measured by corresponding experimental tasks outside of the EEG lab. They were required to generate original uses of conventional objects (alternative uses task) during EEG recording. The behavioral results revealed that the originality of ideas was higher in later stage of DT (i.e., Epoch 2) than in its earlier stage (i.e., Epoch 1) for higher-shifting individuals, but showed no difference between two epochs for lower-shifting individuals. The EEG results revealed that lower-inhibition individuals showed stronger upper alpha (10-13Hz) synchronization in left frontal areas during Epoch 1 compared to during Epoch 2. For higher-inhibition individuals, no changes in upper alpha activity from Epoch 1 to Epoch 2 were found. These findings indicated that shifting and inhibition contributed to create a serial order effect in DT, perhaps because individuals suppress interference from obvious ideas and switch to new idea categories during DT, thus more original ideas appear as time passes by.
Collapse
Affiliation(s)
- Meijuan Wang
- School of Psychology and Cognitive Science, East China Normal University, No. 3663, North Zhong Shan Road, Shanghai 200062, China
| | - Ning Hao
- School of Psychology and Cognitive Science, East China Normal University, No. 3663, North Zhong Shan Road, Shanghai 200062, China.
| | - Yixuan Ku
- School of Psychology and Cognitive Science, East China Normal University, No. 3663, North Zhong Shan Road, Shanghai 200062, China.
| | | | - Andreas Fink
- Institute of Psychology, University of Graz, Graz, Austria
| |
Collapse
|
1453
|
Naros G, Gharabaghi A. Physiological and behavioral effects of β-tACS on brain self-regulation in chronic stroke. Brain Stimul 2017; 10:251-259. [DOI: 10.1016/j.brs.2016.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/04/2016] [Accepted: 11/07/2016] [Indexed: 12/21/2022] Open
|
1454
|
Dimitrijevic A, Smith ML, Kadis DS, Moore DR. Cortical Alpha Oscillations Predict Speech Intelligibility. Front Hum Neurosci 2017; 11:88. [PMID: 28286478 PMCID: PMC5323373 DOI: 10.3389/fnhum.2017.00088] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/13/2017] [Indexed: 12/21/2022] Open
Abstract
Understanding speech in noise (SiN) is a complex task involving sensory encoding and cognitive resources including working memory and attention. Previous work has shown that brain oscillations, particularly alpha rhythms (8–12 Hz) play important roles in sensory processes involving working memory and attention. However, no previous study has examined brain oscillations during performance of a continuous speech perception test. The aim of this study was to measure cortical alpha during attentive listening in a commonly used SiN task (digits-in-noise, DiN) to better understand the neural processes associated with “top-down” cognitive processing in adverse listening environments. We recruited 14 normal hearing (NH) young adults. DiN speech reception threshold (SRT) was measured in an initial behavioral experiment. EEG activity was then collected: (i) while performing the DiN near SRT; and (ii) while attending to a silent, close-caption video during presentation of identical digit stimuli that the participant was instructed to ignore. Three main results were obtained: (1) during attentive (“active”) listening to the DiN, a number of distinct neural oscillations were observed (mainly alpha with some beta; 15–30 Hz). No oscillations were observed during attention to the video (“passive” listening); (2) overall, alpha event-related synchronization (ERS) of central/parietal sources were observed during active listening when data were grand averaged across all participants. In some participants, a smaller magnitude alpha event-related desynchronization (ERD), originating in temporal regions, was observed; and (3) when individual EEG trials were sorted according to correct and incorrect digit identification, the temporal alpha ERD was consistently greater on correctly identified trials. No such consistency was observed with the central/parietal alpha ERS. These data demonstrate that changes in alpha activity are specific to listening conditions. To our knowledge, this is the first report that shows almost no brain oscillatory changes during a passive task compared to an active task in any sensory modality. Temporal alpha ERD was related to correct digit identification.
Collapse
Affiliation(s)
- Andrew Dimitrijevic
- Otolaryngology-Head and Neck Surgery, Sunnybrook Health Sciences CentreToronto, ON, Canada; Hurvitz Brain Sciences, Evaluative Clinical Sciences, Sunnybrook Research InstituteToronto, ON, Canada; Faculty of Medicine, Otolaryngology-Head and Neck SurgeryUniversity of Toronto, Toronto, ON, Canada
| | - Michael L Smith
- Communication Sciences Research Center, Cincinnati Children's Hospital Medical CenterCincinnati, OH, USA; Speech and Hearing Sciences, University of WashingtonSeattle, WA, USA
| | - Darren S Kadis
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical CenterCincinnati, OH, USA; Division of Neurology, Cincinnati Children's Hospital Medical CenterCincinnati, OH, USA; Department of Pediatrics, University of Cincinnati, College of MedicineCincinnati, OH, USA
| | - David R Moore
- Communication Sciences Research Center, Cincinnati Children's Hospital Medical CenterCincinnati, OH, USA; Department of Otolaryngology, University of CincinnatiCincinnati, OH, USA
| |
Collapse
|
1455
|
Samaha J, Iemi L, Postle BR. Prestimulus alpha-band power biases visual discrimination confidence, but not accuracy. Conscious Cogn 2017; 54:47-55. [PMID: 28222937 DOI: 10.1016/j.concog.2017.02.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/30/2017] [Accepted: 02/06/2017] [Indexed: 10/20/2022]
Abstract
The magnitude of power in the alpha-band (8-13Hz) of the electroencephalogram (EEG) prior to the onset of a near threshold visual stimulus predicts performance. Together with other findings, this has been interpreted as evidence that alpha-band dynamics reflect cortical excitability. We reasoned, however, that non-specific changes in excitability would be expected to influence signal and noise in the same way, leaving actual discriminability unchanged. Indeed, using a two-choice orientation discrimination task, we found that discrimination accuracy was unaffected by fluctuations in prestimulus alpha power. Decision confidence, on the other hand, was strongly negatively correlated with prestimulus alpha power. This finding constitutes a clear dissociation between objective and subjective measures of visual perception as a function of prestimulus cortical excitability. This dissociation is predicted by a model where the balance of evidence supporting each choice drives objective performance but only the magnitude of evidence supporting the selected choice drives subjective reports, suggesting that human perceptual confidence can be suboptimal with respect to tracking objective accuracy.
Collapse
Affiliation(s)
- Jason Samaha
- Department of Psychology, The University of Wisconsin-Madison, Madison, WI, USA.
| | - Luca Iemi
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Germany
| | - Bradley R Postle
- Department of Psychology, The University of Wisconsin-Madison, Madison, WI, USA; Department of Psychiatry, The University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
1456
|
Cao L, Thut G, Gross J. The role of brain oscillations in predicting self-generated sounds. Neuroimage 2017; 147:895-903. [PMID: 27818209 PMCID: PMC5315057 DOI: 10.1016/j.neuroimage.2016.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/24/2016] [Accepted: 11/01/2016] [Indexed: 12/30/2022] Open
Abstract
Being able to predict self-generated sensory consequences is an important feature of normal brain functioning. In the auditory domain, self-generated sounds lead to smaller brain responses (e.g., auditory evoked responses) compared to externally generated sounds, which is usually referred to as the sensory attenuation effect. Here we investigated the role of brain oscillations underlying this effect. With magnetoencephalography, we show that self-generated sounds are associated with increased pre-stimulus alpha power and decreased post-stimulus gamma power and alpha/beta phase locking in auditory cortex. All these oscillatory changes are correlated with changes in evoked responses, suggesting a tight link between these oscillatory events and sensory attenuation. Furthermore, the pre- and post- oscillatory changes correlate with each other across participants, supporting the idea that they constitute a neural information processing sequence for self-generated sounds. In line with findings of alpha oscillations reflecting feedback and gamma oscillations feedforward processes and models of predictive coding, we suggest that pre-stimulus alpha power represent prediction and post-stimulus gamma power represent prediction error, which is further processed with post-stimulus alpha/beta phase resetting. The correlation between these oscillatory events is further validated with cross-trial analysis, which provides additional support for the proposed information processing sequence that might reflect a general mechanism for the prediction of self-generated sensory input.
Collapse
Affiliation(s)
- Liyu Cao
- Correspondence to: School of Psychology, University of Glasgow, 58 Hillhead Street, G12 8QB Glasgow, UK.
| | | | | |
Collapse
|
1457
|
Pavlov YG, Kotchoubey B. EEG correlates of working memory performance in females. BMC Neurosci 2017; 18:26. [PMID: 28193169 PMCID: PMC5307759 DOI: 10.1186/s12868-017-0344-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/04/2017] [Indexed: 01/06/2023] Open
Abstract
Background The study investigates oscillatory brain activity during working memory (WM) tasks. The tasks employed varied in two dimensions. First, they differed in complexity from average to highly demanding. Second, we used two types of tasks, which required either only retention of stimulus set or retention and manipulation of the content. We expected to reveal EEG correlates of temporary storage and central executive components of WM and to assess their contribution to individual differences. Results Generally, as compared with the retention condition, manipulation of stimuli in WM was associated with distributed suppression of alpha1 activity and with the increase of the midline theta activity. Load and task dependent decrement of beta1 power was found during task performance. Beta2 power increased with the increasing WM load and did not significantly depend on the type of the task. At the level of individual differences, we found that the high performance (HP) group was characterized by higher alpha rhythm power. The HP group demonstrated task-related increment of theta power in the left anterior area and a gradual increase of theta power at midline area. In contrast, the low performance (LP) group exhibited a drop of theta power in the most challenging condition. HP group was also characterized by stronger desynchronization of beta1 rhythm over the left posterior area in the manipulation condition. In this condition, beta2 power increased in the HP group over anterior areas, but in the LP group over posterior areas. Conclusions WM performance is accompanied by changes in EEG in a broad frequency range from theta to higher beta bands. The most pronounced differences in oscillatory activity between individuals with high and low WM performance can be observed in the most challenging WM task.
Collapse
Affiliation(s)
- Yuri G Pavlov
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany. .,Department of Psychology, Ural Federal University, Yekaterinburg, Russia.
| | - Boris Kotchoubey
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
1458
|
Differential effects of ongoing EEG beta and theta power on memory formation. PLoS One 2017; 12:e0171913. [PMID: 28192459 PMCID: PMC5305097 DOI: 10.1371/journal.pone.0171913] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/27/2017] [Indexed: 12/20/2022] Open
Abstract
Recently, elevated ongoing pre-stimulus beta power (13–17 Hz) at encoding has been associated with subsequent memory formation for visual stimulus material. It is unclear whether this activity is merely specific to visual processing or whether it reflects a state facilitating general memory formation, independent of stimulus modality. To answer that question, the present study investigated the relationship between neural pre-stimulus oscillations and verbal memory formation in different sensory modalities. For that purpose, a within-subject design was employed to explore differences between successful and failed memory formation in the visual and auditory modality. Furthermore, associative memory was addressed by presenting the stimuli in combination with background images. Results revealed that similar EEG activity in the low beta frequency range (13–17 Hz) is associated with subsequent memory success, independent of stimulus modality. Elevated power prior to stimulus onset differentiated successful from failed memory formation. In contrast, differential effects between modalities were found in the theta band (3–7 Hz), with an increased oscillatory activity before the onset of later remembered visually presented words. In addition, pre-stimulus theta power dissociated between successful and failed encoding of associated context, independent of the stimulus modality of the item itself. We therefore suggest that increased ongoing low beta activity reflects a memory promoting state, which is likely to be moderated by modality-independent attentional or inhibitory processes, whereas high ongoing theta power is suggested as an indicator of the enhanced binding of incoming interlinked information.
Collapse
|
1459
|
Ter Wal M, Tiesinga PH. Phase Difference between Model Cortical Areas Determines Level of Information Transfer. Front Comput Neurosci 2017; 11:6. [PMID: 28232796 PMCID: PMC5298997 DOI: 10.3389/fncom.2017.00006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/24/2017] [Indexed: 11/23/2022] Open
Abstract
Communication between cortical sites is mediated by long-range synaptic connections. However, these connections are relatively static, while everyday cognitive tasks demand a fast and flexible routing of information in the brain. Synchronization of activity between distant cortical sites has been proposed as the mechanism underlying such a dynamic communication structure. Here, we study how oscillatory activity affects the excitability and input-output relation of local cortical circuits and how it alters the transmission of information between cortical circuits. To this end, we develop model circuits showing fast oscillations by the PING mechanism, of which the oscillatory characteristics can be altered. We identify conditions for synchronization between two brain circuits and show that the level of intercircuit coherence and the phase difference is set by the frequency difference between the intrinsic oscillations. We show that the susceptibility of the circuits to inputs, i.e., the degree of change in circuit output following input pulses, is not uniform throughout the oscillation period and that both firing rate, frequency and power are differentially modulated by inputs arriving at different phases. As a result, an appropriate phase difference between the circuits is critical for the susceptibility windows of the circuits in the network to align and for information to be efficiently transferred. We demonstrate that changes in synchrony and phase difference can be used to set up or abolish information transfer in a network of cortical circuits.
Collapse
Affiliation(s)
- Marije Ter Wal
- Department of Neuroinformatics, Donders Institute, Radboud University Nijmegen, Netherlands
| | - Paul H Tiesinga
- Department of Neuroinformatics, Donders Institute, Radboud University Nijmegen, Netherlands
| |
Collapse
|
1460
|
Distinct Oscillatory Frequencies Underlie Excitability of Human Occipital and Parietal Cortex. J Neurosci 2017; 37:2824-2833. [PMID: 28179556 DOI: 10.1523/jneurosci.3413-16.2017] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 01/01/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) of human occipital and posterior parietal cortex can give rise to visual sensations called phosphenes. We used near-threshold TMS with concurrent EEG recordings to measure how oscillatory brain dynamics covary, on single trials, with the perception of phosphenes after occipital and parietal TMS. Prestimulus power and phase, predominantly in the alpha band (8-13 Hz), predicted occipital TMS phosphenes, whereas higher-frequency beta-band (13-20 Hz) power (but not phase) predicted parietal TMS phosphenes. TMS-evoked responses related to phosphene perception were similar across stimulation sites and were characterized by an early (200 ms) posterior negativity and a later (>300 ms) parietal positivity in the time domain and an increase in low-frequency (∼5-7 Hz) power followed by a broadband decrease in alpha/beta power in the time-frequency domain. These correlates of phosphene perception closely resemble known electrophysiological correlates of conscious perception of near-threshold visual stimuli. The regionally differential pattern of prestimulus predictors of phosphene perception suggests that distinct frequencies may reflect cortical excitability in occipital versus posterior parietal cortex, calling into question the broader assumption that the alpha rhythm may serve as a general index of cortical excitability.SIGNIFICANCE STATEMENT Alpha-band oscillations are thought to reflect cortical excitability and are therefore ascribed an important role in gating information transmission across cortex. We probed cortical excitability directly in human occipital and parietal cortex and observed that, whereas alpha-band dynamics indeed reflect excitability of occipital areas, beta-band activity was most predictive of parietal cortex excitability. Differences in the state of cortical excitability predicted perceptual outcomes (phosphenes), which were manifest in both early and late patterns of evoked activity, revealing the time course of phosphene perception. Our findings prompt revision of the notion that alpha activity reflects excitability across all of cortex and suggest instead that excitability in different regions is reflected in distinct frequency bands.
Collapse
|
1461
|
de Vries IEJ, van Driel J, Olivers CNL. Posterior α EEG Dynamics Dissociate Current from Future Goals in Working Memory-Guided Visual Search. J Neurosci 2017; 37:1591-1603. [PMID: 28069918 PMCID: PMC5299573 DOI: 10.1523/jneurosci.2945-16.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/05/2016] [Accepted: 12/30/2016] [Indexed: 01/28/2023] Open
Abstract
Current models of visual search assume that search is guided by an active visual working memory representation of what we are currently looking for. This attentional template for currently relevant stimuli can be dissociated from accessory memory representations that are only needed prospectively, for a future task, and that should be prevented from guiding current attention. However, it remains unclear what electrophysiological mechanisms dissociate currently relevant (serving upcoming selection) from prospectively relevant memories (serving future selection). We measured EEG of 20 human subjects while they performed two consecutive visual search tasks. Before the search tasks, a cue instructed observers which item to look for first (current template) and which second (prospective template). During the delay leading up to the first search display, we found clear suppression of α band (8-14 Hz) activity in regions contralateral to remembered items, comprising both local power and interregional phase synchronization within a posterior parietal network. Importantly, these lateralization effects were stronger when the memory item was currently relevant (i.e., for the first search) compared with when it was prospectively relevant (i.e., for the second search), consistent with current templates being prioritized over future templates. In contrast, event-related potential analysis revealed that the contralateral delay activity was similar for all conditions, suggesting no difference in storage. Together, these findings support the idea that posterior α oscillations represent a state of increased processing or excitability in task-relevant cortical regions, and reflect enhanced cortical prioritization of memory representations that serve as a current selection filter.SIGNIFICANCE STATEMENT Our days are filled with looking for relevant objects while ignoring irrelevant visual information. Such visual search activity is thought to be driven by current goals activated in working memory. However, working memory not only serves current goals, but also future goals, with differential impact upon visual selection. Little is known about how the brain differentiates between current and future goals. Here we show, for the first time, that modulations of brain oscillations in the EEG α frequency band in posterior cortex can dissociate current from future search goals in working memory. Moreover, the dynamics of these oscillations uncover how we flexibly switch focus between memory representations. Together, we reveal how the brain assigns priority for selection.
Collapse
Affiliation(s)
- Ingmar E J de Vries
- Institute of Brain and Behavior Amsterdam and Department of Experimental and Applied Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, 1081BT Amsterdam, The Netherlands
| | - Joram van Driel
- Institute of Brain and Behavior Amsterdam and Department of Experimental and Applied Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, 1081BT Amsterdam, The Netherlands
| | - Christian N L Olivers
- Institute of Brain and Behavior Amsterdam and Department of Experimental and Applied Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, 1081BT Amsterdam, The Netherlands
| |
Collapse
|
1462
|
Lecrux C, Sandoe CH, Neupane S, Kropf P, Toussay X, Tong XK, Lacalle-Aurioles M, Shmuel A, Hamel E. Impact of Altered Cholinergic Tones on the Neurovascular Coupling Response to Whisker Stimulation. J Neurosci 2017; 37:1518-1531. [PMID: 28069927 PMCID: PMC6705676 DOI: 10.1523/jneurosci.1784-16.2016] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 12/22/2016] [Accepted: 12/30/2016] [Indexed: 11/21/2022] Open
Abstract
Brain imaging techniques that use vascular signals to map changes in neuronal activity rely on the coupling between electrophysiology and hemodynamics, a phenomenon referred to as "neurovascular coupling" (NVC). It is unknown whether this relationship remains reliable under altered brain states associated with acetylcholine (ACh) levels, such as attention and arousal and in pathological conditions such as Alzheimer's disease. We therefore assessed the effects of varying ACh tone on whisker-evoked NVC responses in rat barrel cortex, measured by cerebral blood flow (CBF) and neurophysiological recordings (local field potentials, LFPs). We found that acutely enhanced ACh tone significantly potentiated whisker-evoked CBF responses through muscarinic ACh receptors and concurrently facilitated neuronal responses, as illustrated by increases in the amplitude and power in high frequencies of the evoked LFPs. However, the cellular identity of the activated neuronal network within the responsive barrel was unchanged, as characterized by c-Fos upregulation in pyramidal cells and GABA interneurons coexpressing vasoactive intestinal polypeptide. In contrast, chronic ACh deprivation hindered whisker-evoked CBF responses and the amplitude and power in most frequency bands of the evoked LFPs and reduced the rostrocaudal extent and area of the activated barrel without altering its identity. Correlations between LFP power and CBF, used to estimate NVC, were enhanced under high ACh tone and disturbed significantly by ACh depletion. We conclude that ACh is not only a facilitator but also a prerequisite for the full expression of sensory-evoked NVC responses, indicating that ACh may alter the fidelity of hemodynamic signals in assessing changes in evoked neuronal activity.SIGNIFICANCE STATEMENT Neurovascular coupling, defined as the tight relationship between activated neurons and hemodynamic responses, is a fundamental brain function that underlies hemodynamic-based functional brain imaging techniques. However, the impact of altered brain states on this relationship is largely unknown. We therefore investigated how acetylcholine (ACh), known to drive brain states of attention and arousal and to be deficient in pathologies such as Alzheimer's disease, would alter neurovascular coupling responses to sensory stimulation. Whereas acutely increased ACh enhanced neuronal responses and the resulting hemodynamic signals, chronic loss of cholinergic input resulted in dramatic impairments in both types of sensory-evoked signals. We conclude that ACh is not only a potent modulator but also a requirement for the full expression of sensory-evoked neurovascular coupling responses.
Collapse
Affiliation(s)
- Clotilde Lecrux
- Laboratory of Cerebrovascular Research and
- Laboratory of Brain Imaging Signals, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada H3A 2B4
| | | | - Sujaya Neupane
- Laboratory of Brain Imaging Signals, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada H3A 2B4
| | - Pascal Kropf
- Laboratory of Brain Imaging Signals, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada H3A 2B4
| | | | | | | | - Amir Shmuel
- Laboratory of Brain Imaging Signals, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada H3A 2B4
| | | |
Collapse
|
1463
|
Zhao K, Tang Z, Wang H, Guo Y, Peng W, Hu L. Analgesia induced by self-initiated electrotactile sensation is mediated by top-down modulations. Psychophysiology 2017; 54:848-856. [PMID: 28169425 DOI: 10.1111/psyp.12839] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/30/2016] [Indexed: 11/26/2022]
Abstract
It is well known that sensory perception can be attenuated when sensory stimuli are controlled by self-initiated actions. This phenomenon is explained by the consistency between forward models of anticipated action effects and actual sensory feedback. Specifically, the brain state related to the binding between motor processing and sensory perception would have inhibitory function by gating sensory information via top-down control. Since the brain state could casually influence the perception of subsequent stimuli of different sensory modalities, we hypothesize that pain evoked by nociceptive stimuli following the self-initiated tactile stimulation would be attenuated as compared to that following externally determined tactile stimulation. Here, we compared psychophysical and neurophysiological responses to identical nociceptive-specific laser stimuli in two different conditions: self-initiated tactile sensation condition (STS) and nonself-initiated tactile sensation condition (N-STS). We observed that pain intensity and unpleasantness, as well as laser-evoked brain responses, were significantly reduced in the STS condition compared to the N-STS condition. In addition, magnitudes of alpha and beta oscillations prior to laser onset were significantly larger in the STS condition than in the N-STS condition. These results confirmed that pain perception and pain-related brain responses were attenuated when the tactile stimulation was initiated by subjects' voluntary actions, and exploited neural oscillations reflecting the binding between motor processing and sensory feedback. Thus, our study elaborated the understanding of underlying neural mechanisms related to top-down modulations of the analgesic effect induced by self-initiated tactile sensation, which provided theoretical basis to improve the analgesic effect in various clinical applications.
Collapse
Affiliation(s)
- Ke Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Zhengyu Tang
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Huiquan Wang
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Yifei Guo
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Weiwei Peng
- Brain Function and Psychological Science Research Center, Shenzhen University, Shenzhen, China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
1464
|
Aberrant Neuronal Dynamics during Working Memory Operations in the Aging HIV-Infected Brain. Sci Rep 2017; 7:41568. [PMID: 28155864 PMCID: PMC5290733 DOI: 10.1038/srep41568] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/20/2016] [Indexed: 11/08/2022] Open
Abstract
Impairments in working memory are among the most prevalent features of HIV-associated neurocognitive disorders (HAND), yet their origins are unknown, with some studies arguing that encoding operations are disturbed and others supporting deficits in memory maintenance. The current investigation directly addresses this issue by using a dynamic mapping approach to identify when and where processing in working memory circuits degrades. HIV-infected older adults and a demographically-matched group of uninfected controls performed a verbal working memory task during magnetoencephalography (MEG). Significant oscillatory neural responses were imaged using a beamforming approach to illuminate the spatiotemporal dynamics of neuronal activity. HIV-infected patients were significantly less accurate on the working memory task and their neuronal dynamics indicated that encoding operations were preserved, while memory maintenance processes were abnormal. Specifically, no group differences were detected during the encoding period, yet dysfunction in occipital, fronto-temporal, hippocampal, and cerebellar cortices emerged during memory maintenance. In addition, task performance in the controls covaried with occipital alpha synchronization and activity in right prefrontal cortices. In conclusion, working memory impairments are common and significantly impact the daily functioning and independence of HIV-infected patients. These impairments likely reflect deficits in the maintenance of memory representations, not failures to adequately encode stimuli.
Collapse
|
1465
|
Whitmarsh S, Oostenveld R, Almeida R, Lundqvist D. Metacognition of attention during tactile discrimination. Neuroimage 2017; 147:121-129. [DOI: 10.1016/j.neuroimage.2016.11.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 11/23/2016] [Accepted: 11/28/2016] [Indexed: 11/29/2022] Open
|
1466
|
Maróti E, Knakker B, Vidnyánszky Z, Weiss B. The effect of beat frequency on eye movements during free viewing. Vision Res 2017; 131:57-66. [DOI: 10.1016/j.visres.2016.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 10/20/2022]
|
1467
|
Richter CG, Babo-Rebelo M, Schwartz D, Tallon-Baudry C. Phase-amplitude coupling at the organism level: The amplitude of spontaneous alpha rhythm fluctuations varies with the phase of the infra-slow gastric basal rhythm. Neuroimage 2017; 146:951-958. [PMID: 27557620 PMCID: PMC5312779 DOI: 10.1016/j.neuroimage.2016.08.043] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/16/2016] [Accepted: 08/20/2016] [Indexed: 12/31/2022] Open
Abstract
A fundamental feature of the temporal organization of neural activity is phase-amplitude coupling between brain rhythms at different frequencies, where the amplitude of a higher frequency varies according to the phase of a lower frequency. Here, we show that this rule extends to brain-organ interactions. We measured both the infra-slow (~0.05Hz) rhythm intrinsically generated by the stomach - the gastric basal rhythm - using electrogastrography, and spontaneous brain dynamics with magnetoencephalography during resting-state with eyes open. We found significant phase-amplitude coupling between the infra-slow gastric phase and the amplitude of the cortical alpha rhythm (10-11Hz), with gastric phase accounting for 8% of the variance of alpha rhythm amplitude fluctuations. Gastric-alpha coupling was localized to the right anterior insula, and bilaterally to occipito-parietal regions. Transfer entropy, a measure of directionality of information transfer, indicates that gastric-alpha coupling is due to an ascending influence from the stomach to both the right anterior insula and occipito-parietal regions. Our results show that phase-amplitude coupling so far only observed within the brain extends to brain-viscera interactions. They further reveal that the temporal structure of spontaneous brain activity depends not only on neuron and network properties endogenous to the brain, but also on the slow electrical rhythm generated by the stomach.
Collapse
Affiliation(s)
- Craig G Richter
- Laboratoire de Neurosciences Cognitives (ENS - INSERM), Ecole Normale Supérieure - PSL Research University, Paris, France; Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany.
| | - Mariana Babo-Rebelo
- Laboratoire de Neurosciences Cognitives (ENS - INSERM), Ecole Normale Supérieure - PSL Research University, Paris, France
| | - Denis Schwartz
- Sorbonne Universités, Inserm U 1127, CNRS UMR 7225, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Catherine Tallon-Baudry
- Laboratoire de Neurosciences Cognitives (ENS - INSERM), Ecole Normale Supérieure - PSL Research University, Paris, France.
| |
Collapse
|
1468
|
Gallicchio G, Cooke A, Ring C. Practice Makes Efficient: Cortical Alpha Oscillations Are Associated With Improved Golf Putting Performance. SPORT, EXERCISE, AND PERFORMANCE PSYCHOLOGY 2017; 6:89-102. [PMID: 28748124 PMCID: PMC5506342 DOI: 10.1037/spy0000077] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 11/08/2022]
Abstract
Practice of a motor skill results in improved performance and decreased movement awareness. The psychomotor efficiency hypothesis proposes that the development of motor expertise through practice is accompanied by physiological refinements whereby irrelevant processes are suppressed and relevant processes are enhanced. The present study employed a test-retest design to evaluate the presence of greater neurophysiological efficiency with practice and mediation analyses to identify the factors accounting for performance improvements, in a golf putting task. Putting performance, movement-specific conscious processing, electroencephalographic alpha power and alpha connectivity were measured from 12 right-handed recreational golfers (age: M = 21 years; handicap: M = 23) before and after 3 practice sessions. As expected, performance improved and conscious processing decreased with training. Mediation analyses revealed that improvements in performance were partly attributable to increased regional gating of alpha power and reduced cross-regional alpha connectivity. However, changes in conscious processing were not associated with performance improvements. Increased efficiency was manifested at the neurophysiological level as selective inhibition and functional isolation of task-irrelevant cortical regions (temporal regions) and concomitant functional activation of task-relevant regions (central regions). These findings provide preliminary evidence for the development of greater psychomotor efficiency with practice in a precision aiming task.
Collapse
Affiliation(s)
- Germano Gallicchio
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham
| | - Andrew Cooke
- School of Sport, Health, and Exercise Sciences, Bangor University
| | - Christopher Ring
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham
| |
Collapse
|
1469
|
Kuribayashi R, Nittono H. High-Resolution Audio with Inaudible High-Frequency Components Induces a Relaxed Attentional State without Conscious Awareness. Front Psychol 2017; 8:93. [PMID: 28203213 PMCID: PMC5285336 DOI: 10.3389/fpsyg.2017.00093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 01/13/2017] [Indexed: 12/17/2022] Open
Abstract
High-resolution audio has a higher sampling frequency and a greater bit depth than conventional low-resolution audio such as compact disks. The higher sampling frequency enables inaudible sound components (above 20 kHz) that are cut off in low-resolution audio to be reproduced. Previous studies of high-resolution audio have mainly focused on the effect of such high-frequency components. It is known that alpha-band power in a human electroencephalogram (EEG) is larger when the inaudible high-frequency components are present than when they are absent. Traditionally, alpha-band EEG activity has been associated with arousal level. However, no previous studies have explored whether sound sources with high-frequency components affect the arousal level of listeners. The present study examined this possibility by having 22 participants listen to two types of a 400-s musical excerpt of French Suite No. 5 by J. S. Bach (on cembalo, 24-bit quantization, 192 kHz A/D sampling), with or without inaudible high-frequency components, while performing a visual vigilance task. High-alpha (10.5-13 Hz) and low-beta (13-20 Hz) EEG powers were larger for the excerpt with high-frequency components than for the excerpt without them. Reaction times and error rates did not change during the task and were not different between the excerpts. The amplitude of the P3 component elicited by target stimuli in the vigilance task increased in the second half of the listening period for the excerpt with high-frequency components, whereas no such P3 amplitude change was observed for the other excerpt without them. The participants did not distinguish between these excerpts in terms of sound quality. Only a subjective rating of inactive pleasantness after listening was higher for the excerpt with high-frequency components than for the other excerpt. The present study shows that high-resolution audio that retains high-frequency components has an advantage over similar and indistinguishable digital sound sources in which such components are artificially cut off, suggesting that high-resolution audio with inaudible high-frequency components induces a relaxed attentional state without conscious awareness.
Collapse
Affiliation(s)
| | - Hiroshi Nittono
- Graduate School of Human Sciences, Osaka UniversityOsaka, Japan
| |
Collapse
|
1470
|
Boudewyn MA, Carter CS, Long DL, Traxler MJ, Lesh TA, Mangun GR, Swaab TY. Language context processing deficits in schizophrenia: The role of attentional engagement. Neuropsychologia 2017; 96:262-273. [PMID: 28126626 PMCID: PMC5342842 DOI: 10.1016/j.neuropsychologia.2017.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/17/2016] [Accepted: 01/21/2017] [Indexed: 11/21/2022]
Abstract
Individuals with schizophrenia exhibit problems in language comprehension that are most evident during discourse processing. We hypothesized that deficits in cognitive control contribute to these comprehension deficits during discourse processing, and investigated the underlying cognitive-neural mechanisms using EEG (alpha power) and ERPs (N400). N400 amplitudes to globally supported or unsupported target words near the end of stories were used to index sensitivity to previous context. ERPs showed reduced sensitivity to context in patients versus controls. EEG alpha-band activity was used to index attentional engagement while participants listened to the stories. We found that context effects varied with attentional engagement in both groups, as well as with negative symptom severity in patients. Both groups demonstrated trial-to-trial fluctuations in alpha. Relatively high alpha power was associated with compromised discourse processing in participants with schizophrenia when it occurred during any early portion of the story. In contrast, discourse processing was only compromised in controls when alpha was relatively high for longer segments of the stories. Our results indicate that shifts in attention from the story context may be more detrimental to discourse processing for participants with schizophrenia than for controls, most likely due to an impaired ability to benefit from global context.
Collapse
|
1471
|
van Driel J, Gunseli E, Meeter M, Olivers CNL. Local and interregional alpha EEG dynamics dissociate between memory for search and memory for recognition. Neuroimage 2017; 149:114-128. [PMID: 28132933 DOI: 10.1016/j.neuroimage.2017.01.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/12/2016] [Accepted: 01/13/2017] [Indexed: 10/20/2022] Open
Abstract
Attention during visual search is thought to be guided by an active visual working memory (VWM) representation of the search target. We tested the hypothesis that a VWM representation used for searching a target among competing information (a "search template") is distinct from VWM representations used for simple recognition tasks, without competition. We analyzed EEG from 20 human participants while they performed three different VWM-based visual detection tasks. All tasks started with identical lateralized VWM cues, but differed with respect to the presence and nature of competing distractors during the target display at test, where participants performed a simple recognition task without distractors, or visual search in pop-out (distinct) and serial (non-distinct) search displays. Performance was worst for non-distinct search, and best for simple recognition. During the one second delay period between cue and test, we observed robust suppression of EEG dynamics in the alpha (8-14Hz) band over parieto-occipital sites contralateral to the relevant VWM item, both in terms of local power as well as interregional phase synchrony within a posterior-parietal network. Importantly, these lateralization dynamics were more strongly expressed prior to search compared to simple recognition. Furthermore, before the VWM cue, alpha phase synchrony between prefrontal and mid-posterior-parietal sites was strongest for non-distinct search, reflecting enhanced anticipatory control prior to VWM encoding. Directional connectivity analyses confirmed this effect to be in an anterior-to-posterior direction. Together, these results provide evidence for frontally mediated top-down control of VWM in preparation of visual search.
Collapse
Affiliation(s)
| | - Eren Gunseli
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Martijn Meeter
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
1472
|
Braboszcz C, Cahn BR, Levy J, Fernandez M, Delorme A. Increased Gamma Brainwave Amplitude Compared to Control in Three Different Meditation Traditions. PLoS One 2017; 12:e0170647. [PMID: 28118405 PMCID: PMC5261734 DOI: 10.1371/journal.pone.0170647] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/22/2016] [Indexed: 11/24/2022] Open
Abstract
Despite decades of research, effects of different types of meditation on electroencephalographic (EEG) activity are still being defined. We compared practitioners of three different meditation traditions (Vipassana, Himalayan Yoga and Isha Shoonya) with a control group during a meditative and instructed mind-wandering (IMW) block. All meditators showed higher parieto-occipital 60–110 Hz gamma amplitude than control subjects as a trait effect observed during meditation and when considering meditation and IMW periods together. Moreover, this gamma power was positively correlated with participants meditation experience. Independent component analysis was used to show that gamma activity did not originate in eye or muscle artifacts. In addition, we observed higher 7–11 Hz alpha activity in the Vipassana group compared to all the other groups during both meditation and instructed mind wandering and lower 10–11 Hz activity in the Himalayan yoga group during meditation only. We showed that meditation practice is correlated to changes in the EEG gamma frequency range that are common to a variety of meditation practices.
Collapse
Affiliation(s)
- Claire Braboszcz
- Université de Toulouse, UPS, Centre de Recherche Cerveau et Cognition, Toulouse, France
- CerCo, CNRS UMR5549, Toulouse, France
- * E-mail:
| | - B. Rael Cahn
- University of Southern California Department of Psychiatry, Los Angeles, California, United States of America
- University of Southern California Brain and Creativity Institute, Los Angeles, California, United States of America
| | | | - Manuel Fernandez
- Meditation Research Institute, Swami Rama Sadhaka Grama, Rishikesh, India
| | - Arnaud Delorme
- Université de Toulouse, UPS, Centre de Recherche Cerveau et Cognition, Toulouse, France
- CerCo, CNRS UMR5549, Toulouse, France
- Swartz Center for Computational Neuroscience, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
1473
|
van Schouwenburg MR, Zanto TP, Gazzaley A. Spatial Attention and the Effects of Frontoparietal Alpha Band Stimulation. Front Hum Neurosci 2017; 10:658. [PMID: 28174529 PMCID: PMC5259681 DOI: 10.3389/fnhum.2016.00658] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 12/12/2016] [Indexed: 11/13/2022] Open
Abstract
A frontoparietal network has long been implicated in top-down control of attention. Recent studies have suggested that this network might communicate through coherence in the alpha band. Here we aimed to test the effect of coherent alpha (8-12 Hz) stimulation on the frontoparietal network. To this end, we recorded behavioral performance and electroencephalography (EEG) data while participants were engaged in a spatial attention task. Furthermore, participants received transcranial alternating current stimulation (tACS) over the right frontal and parietal cortex, which oscillated coherently in-phase within the alpha band. Compared to a group of participants that received sham stimulation, we found that coherent frontoparietal alpha band stimulation altered a behavioral spatial attention bias. Neurally, the groups showed hemispheric-specific differences in alpha coherence between the frontal and parietal-occipital cortex. These results provide preliminary evidence that alpha coherence in the frontoparietal network might play a role in top-down control of spatial attention.
Collapse
Affiliation(s)
- Martine R van Schouwenburg
- Departments of Neurology, Physiology and Psychiatry, University of California, San FranciscoSan Francisco, CA, USA; Neuroscape, University of California, San FranciscoSan Francisco, CA, USA; Department of Psychology, University of AmsterdamAmsterdam, Netherlands
| | - Theodore P Zanto
- Departments of Neurology, Physiology and Psychiatry, University of California, San FranciscoSan Francisco, CA, USA; Neuroscape, University of California, San FranciscoSan Francisco, CA, USA
| | - Adam Gazzaley
- Departments of Neurology, Physiology and Psychiatry, University of California, San FranciscoSan Francisco, CA, USA; Neuroscape, University of California, San FranciscoSan Francisco, CA, USA
| |
Collapse
|
1474
|
Bailey NW, Rogasch NC, Hoy KE, Maller JJ, Segrave RA, Sullivan CM, Fitzgerald PB. Increased gamma connectivity during working memory retention following traumatic brain injury. Brain Inj 2017; 31:379-389. [PMID: 28095052 DOI: 10.1080/02699052.2016.1239273] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PRIMARY OBJECTIVE Alterations to functional connectivity following a traumatic brain injury (TBI) may lead to impaired cognitive performance and major depressive disorder (MDD). In particular, functional gamma band connectivity is thought to reflect information binding important for working memory. The objective of this study was to determine whether altered functional gamma connectivity may be a factor in MDD following TBI (TBI-MDD). RESEARCH DESIGN This study assessed individuals with TBI-MDD, as well as individuals with TBI alone and MDD alone using electroencephalographic recordings while participants performed a working memory task to assess differences in functional connectivity between these groups. METHODS AND PROCEDURES Functional connectivity was compared using the debiased weighted phase lag index (wPLI). wPLI was measured from a group of healthy controls (n = 31), participants with MDD (n = 17), participants with TBI (n = 20) and participants with TBI-MDD (n = 15). MAIN OUTCOMES AND RESULTS Contrary to the predictions, this study found both the groups with TBI and TBI-MDD showed higher gamma connectivity from posterior regions during WM retention. CONCLUSIONS This may reflect dysfunctional functional connectivity in these groups, as a result of maladaptive neuroplastic reorganization.
Collapse
Affiliation(s)
- Neil W Bailey
- a Monash Alfred Psychiatry Research Centre , Alfred Hospital and Central Clinical School, Monash University , Melbourne , VIC , Australia
| | - Nigel C Rogasch
- b Monash Clinical and Imaging Neuroscience, School of Psychological Science and Monash Biomedical Imaging , Monash University , Melbourne , Australia
| | - Kate E Hoy
- a Monash Alfred Psychiatry Research Centre , Alfred Hospital and Central Clinical School, Monash University , Melbourne , VIC , Australia
| | - Jerome J Maller
- a Monash Alfred Psychiatry Research Centre , Alfred Hospital and Central Clinical School, Monash University , Melbourne , VIC , Australia
| | - Rebecca A Segrave
- a Monash Alfred Psychiatry Research Centre , Alfred Hospital and Central Clinical School, Monash University , Melbourne , VIC , Australia
| | - Caley M Sullivan
- a Monash Alfred Psychiatry Research Centre , Alfred Hospital and Central Clinical School, Monash University , Melbourne , VIC , Australia
| | - Paul B Fitzgerald
- a Monash Alfred Psychiatry Research Centre , Alfred Hospital and Central Clinical School, Monash University , Melbourne , VIC , Australia
| |
Collapse
|
1475
|
Wildegger T, van Ede F, Woolrich M, Gillebert CR, Nobre AC. Preparatory α-band oscillations reflect spatial gating independently of predictions regarding target identity. J Neurophysiol 2017; 117:1385-1394. [PMID: 28077669 DOI: 10.1152/jn.00856.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 11/22/2022] Open
Abstract
Preparatory modulations of cortical α-band oscillations are a reliable index of the voluntary allocation of covert spatial attention. It is currently unclear whether attentional cues containing information about a target's identity (such as its visual orientation), in addition to its location, might additionally shape preparatory α modulations. Here, we explore this question by directly comparing spatial and feature-based attention in the same visual detection task while recording brain activity using magnetoencephalography (MEG). At the behavioral level, preparatory feature-based and spatial attention cues both improved performance and did so independently of each other. Using MEG, we replicated robust α lateralization following spatial cues: in preparation for a visual target, α power decreased contralaterally and increased ipsilaterally to the attended location. Critically, however, preparatory α lateralization was not significantly modulated by predictions regarding target identity, as carried via the behaviorally effective feature-based attention cues. Furthermore, nonlateralized α power during the cue-target interval did not differentiate between uninformative cues and cues carrying feature-based predictions either. Based on these results we propose that preparatory α modulations play a role in the gating of information between spatially segregated cortical regions and are therefore particularly well suited for spatial gating of information.NEW & NOTEWORTHY The present work clarifies if and how human brain oscillations in the α-band support multiple types of anticipatory attention. Using magnetoencephalography, we show that posterior α-band oscillations are modulated by predictions regarding the spatial location of an upcoming visual target, but not by feature-based predictions regarding its identity, despite robust behavioral benefits. This provides novel insights into the functional role of preparatory α mechanisms and suggests a limited specificity with which they may operate.
Collapse
Affiliation(s)
- T Wildegger
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom.,Oxford Centre for Human Brain Activity, University of Oxford, Oxford, United Kingdom; and
| | - F van Ede
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom.,Oxford Centre for Human Brain Activity, University of Oxford, Oxford, United Kingdom; and
| | - M Woolrich
- Oxford Centre for Human Brain Activity, University of Oxford, Oxford, United Kingdom; and
| | - C R Gillebert
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom.,Oxford Centre for Human Brain Activity, University of Oxford, Oxford, United Kingdom; and.,Department of Brain and Cognition, University of Leuven, Belgium
| | - A C Nobre
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom; .,Oxford Centre for Human Brain Activity, University of Oxford, Oxford, United Kingdom; and
| |
Collapse
|
1476
|
Spatial Mnemonic Encoding: Theta Power Decreases and Medial Temporal Lobe BOLD Increases Co-Occur during the Usage of the Method of Loci. eNeuro 2017; 3:eN-NWR-0184-16. [PMID: 28101523 PMCID: PMC5223054 DOI: 10.1523/eneuro.0184-16.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 01/13/2023] Open
Abstract
The method of loci is one, if not the most, efficient mnemonic encoding strategy. This spatial mnemonic combines the core cognitive processes commonly linked to medial temporal lobe (MTL) activity: spatial and associative memory processes. During such processes, fMRI studies consistently demonstrate MTL activity, while electrophysiological studies have emphasized the important role of theta oscillations (3-8 Hz) in the MTL. However, it is still unknown whether increases or decreases in theta power co-occur with increased BOLD signal in the MTL during memory encoding. To investigate this question, we recorded EEG and fMRI separately, while human participants used the spatial method of loci or the pegword method, a similarly associative but nonspatial mnemonic. The more effective spatial mnemonic induced a pronounced theta power decrease source localized to the left MTL compared with the nonspatial associative mnemonic strategy. This effect was mirrored by BOLD signal increases in the MTL. Successful encoding, irrespective of the strategy used, elicited decreases in left temporal theta power and increases in MTL BOLD activity. This pattern of results suggests a negative relationship between theta power and BOLD signal changes in the MTL during memory encoding and spatial processing. The findings extend the well known negative relation of alpha/beta oscillations and BOLD signals in the cortex to theta oscillations in the MTL.
Collapse
|
1477
|
Pihko E, Lönnberg P, Lauronen L, Wolford E, Andersson S, Lano A, Metsäranta M, Nevalainen P. Lack of Cortical Correlates of Response Inhibition in 6-Year-Olds Born Extremely Preterm - Evidence from a Go/NoGo Task in Magnetoencephalographic Recordings. Front Hum Neurosci 2017; 10:666. [PMID: 28111544 PMCID: PMC5216039 DOI: 10.3389/fnhum.2016.00666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/14/2016] [Indexed: 11/13/2022] Open
Abstract
Children born extremely preterm (EPT) may have difficulties in response inhibition, but the neural basis of such problems is unknown. We recorded magnetoencephalography (MEG) during a somatosensory Go/NoGo task in 6-year-old children born EPT (n = 22) and in children born full term (FT; n = 21). The children received tactile stimuli randomly to their left little (target) and index (non-target) finger and were instructed to squeeze a soft toy with the opposite hand every time they felt a stimulus on the little finger. Behaviorally, the EPT children performed worse than the FT children, both in responding to the target finger stimulation and in refraining from responding to the non-target finger stimulation. In MEG, after the non-target finger stimulation (i.e., during the response inhibition), the sensorimotor alpha oscillation levels in the contralateral-to-squeeze hemisphere were elevated in the FT children when compared with a condition with corresponding stimulation but no task (instead the children were listening to a story and not attending to the fingers). This NoGo task effect was absent in the EPT children. Further, in the sensorimotor cortex contralateral to the tactile stimulation, the post-stimulus suppression was less pronounced in the EPT than FT children. We suggest that the missing NoGo task effect and lower suppression of sensorimotor oscillations are markers of deficient functioning of the sensorimotor networks in the EPT children.
Collapse
Affiliation(s)
- Elina Pihko
- Department of Neuroscience and Biomedical Engineering, Aalto UniversityEspoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University HospitalHelsinki, Finland
| | - Piia Lönnberg
- BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University HospitalHelsinki, Finland; Department of Child Neurology, Children's Hospital, University of Helsinki and Helsinki University HospitalHelsinki, Finland
| | - Leena Lauronen
- Department of Clinical Neurophysiology, Children's Hospital, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital Helsinki, Finland
| | - Elina Wolford
- Institute of Behavioural Sciences, University of Helsinki Helsinki, Finland
| | - Sture Andersson
- Department of Pediatrics, Children's Hospital, University of Helsinki and Helsinki University Hospital Helsinki, Finland
| | - Aulikki Lano
- Department of Child Neurology, Children's Hospital, University of Helsinki and Helsinki University Hospital Helsinki, Finland
| | - Marjo Metsäranta
- Department of Pediatrics, Children's Hospital, University of Helsinki and Helsinki University Hospital Helsinki, Finland
| | - Päivi Nevalainen
- BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University HospitalHelsinki, Finland; Department of Clinical Neurophysiology, Children's Hospital, HUS Medical Imaging Center, University of Helsinki and Helsinki University HospitalHelsinki, Finland
| |
Collapse
|
1478
|
Cohen MX. Rigor and replication in time-frequency analyses of cognitive electrophysiology data. Int J Psychophysiol 2017; 111:80-87. [DOI: 10.1016/j.ijpsycho.2016.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/18/2016] [Accepted: 02/10/2016] [Indexed: 10/22/2022]
|
1479
|
Cash RFH, Noda Y, Zomorrodi R, Radhu N, Farzan F, Rajji TK, Fitzgerald PB, Chen R, Daskalakis ZJ, Blumberger DM. Characterization of Glutamatergic and GABA A-Mediated Neurotransmission in Motor and Dorsolateral Prefrontal Cortex Using Paired-Pulse TMS-EEG. Neuropsychopharmacology 2017; 42:502-511. [PMID: 27461082 PMCID: PMC5399228 DOI: 10.1038/npp.2016.133] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/22/2016] [Accepted: 07/10/2016] [Indexed: 12/26/2022]
Abstract
Short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) are noninvasive transcranial magnetic stimulation (TMS) measures of GABAA receptor-mediated inhibition and glutamatergic excitatory transmission, respectively. Conventionally these measures have been restricted to the motor cortex. We investigated whether SICI and ICF could be recorded from the dorsolateral prefrontal cortex (DLPFC) using combined TMS and electroencephalography (TMS-EEG). We first characterized the neural signature of SICI and ICF in M1 in terms of TMS-evoked potentials (TEPs) and spectral power modulation. Subsequently, these paradigms were applied in the DLPFC to determine whether similar neural signatures were evident. With TMS at M1, SICI and ICF led to bidirectional modulation (inhibition and facilitation, respectively) of P30 and P60 TEP amplitude, which correlated with MEP amplitude changes. With DLPFC stimulation, P60 was bidirectionally modulated by SICI and ICF in the same manner as for M1 stimulation, whereas P30 was absent. The sole modulation of early TEP components is in contradistinction to other measures such as long-interval intracortical inhibition and may reflect modulation of short latency excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs). Overall, the data suggest that SICI and ICF can be recorded using TMS-EEG in DLPFC providing noninvasive measures of glutamatergic and GABAA receptor-mediated neurotransmission. This may facilitate future research attempting to ascertain the role of these neurotransmitters in the pathophysiology and treatment of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Robin F H Cash
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada,Division of Neurology, Department of Medicine, University of Toronto, Division of Brain, Imaging and Behaviour—Systems Neuroscience, Toronto Western Research Institute, University Health Network, Toronto, ON, Canada,Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred, Melbourne, VIC, Australia
| | - Yoshihiro Noda
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Natasha Radhu
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada,Division of Neurology, Department of Medicine, University of Toronto, Division of Brain, Imaging and Behaviour—Systems Neuroscience, Toronto Western Research Institute, University Health Network, Toronto, ON, Canada
| | - Faranak Farzan
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Tarek K Rajji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred, Melbourne, VIC, Australia
| | - Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto, Division of Brain, Imaging and Behaviour—Systems Neuroscience, Toronto Western Research Institute, University Health Network, Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada,Temerty Centre for Therapeutic Brain Intervention, Head, Late-Life Mood Disorders Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, 1001 Queen St. W. Unit 4-115, Toronto, ON M6J 1H4, Canada, Tel: +1 416 535 8501, Fax: +1 416 583 4613, E-mail:
| |
Collapse
|
1480
|
Keil J, Senkowski D. Individual Alpha Frequency Relates to the Sound-Induced Flash Illusion. Multisens Res 2017; 30:565-578. [DOI: 10.1163/22134808-00002572] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/30/2017] [Indexed: 01/21/2023]
Abstract
Ongoing neural oscillations reflect fluctuations of cortical excitability. A growing body of research has underlined the role of neural oscillations for stimulus processing. Neural oscillations in the alpha band have gained special interest in electrophysiological research on perception. Recent studies proposed the idea that neural oscillations provide temporal windows in which sensory stimuli can be perceptually integrated. This also includes multisensory integration. In the current high-density EEG-study we examined the relationship between the individual alpha frequency (IAF) and cross-modal audiovisual integration in the sound-induced flash illusion (SIFI). In 26 human volunteers we found a negative correlation between the IAF and the SIFI illusion rate. Individuals with a lower IAF showed higher audiovisual illusions. Source analysis suggested an involvement of the visual cortex, especially the calcarine sulcus, for this relationship. Our findings corroborate the notion that the IAF affects the cross-modal integration of auditory on visual stimuli in the SIFI. We integrate our findings with recent observations on the relationship between audiovisual integration and neural oscillations and suggest a multifaceted influence of neural oscillations on multisensory processing.
Collapse
Affiliation(s)
- Julian Keil
- Department of Psychiatry and Psychotherapy, St. Hedwig Hospital, Charité — Universitätsmedizin Berlin, Grosse Hambuger Strasse 5-1, 10115 Berlin, Germany
| | - Daniel Senkowski
- Department of Psychiatry and Psychotherapy, St. Hedwig Hospital, Charité — Universitätsmedizin Berlin, Grosse Hambuger Strasse 5-1, 10115 Berlin, Germany
| |
Collapse
|
1481
|
Steinmetzger K, Rosen S. Effects of acoustic periodicity and intelligibility on the neural oscillations in response to speech. Neuropsychologia 2017; 95:173-181. [DOI: 10.1016/j.neuropsychologia.2016.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 09/07/2016] [Accepted: 12/05/2016] [Indexed: 10/20/2022]
|
1482
|
Preserved and attenuated electrophysiological correlates of visual spatial attention in elderly subjects. Behav Brain Res 2017; 317:415-423. [DOI: 10.1016/j.bbr.2016.09.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/02/2016] [Accepted: 09/23/2016] [Indexed: 11/18/2022]
|
1483
|
Van der Lubbe RHJ, Szumska I, Fajkowska M. Two Sides of the Same Coin: ERP and Wavelet Analyses of Visual Potentials Evoked and Induced by Task-Relevant Faces. Adv Cogn Psychol 2016; 12:154-168. [PMID: 28154612 PMCID: PMC5279858 DOI: 10.5709/acp-0195-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 05/25/2016] [Indexed: 11/23/2022] Open
Abstract
New analysis techniques of the electroencephalogram (EEG) such as wavelet analysis open the possibility to address questions that may largely improve our understanding of the EEG and clarify its relation with related potentials (ER Ps). Three issues were addressed. 1) To what extent can early ERERP components be described as transient evoked oscillations in specific frequency bands? 2) Total EEG power (TP) after a stimulus consists of pre-stimulus baseline power (BP), evoked power (EP), and induced power (IP), but what are their respective contributions? 3) The Phase Reset model proposes that BP predicts EP, while the evoked model holds that BP is unrelated to EP; which model is the most valid one? EEG results on NoGo trials for 123 individuals that took part in an experiment with emotional facial expressions were examined by computing ERPs and by performing wavelet analyses on the raw EEG and on ER Ps. After performing several multiple regression analyses, we obtained the following answers. First, the P1, N1, and P2 components can by and large be described as transient oscillations in the α and θ bands. Secondly, it appears possible to estimate the separate contributions of EP, BP, and IP to TP, and importantly, the contribution of IP is mostly larger than that of EP. Finally, no strong support was obtained for either the Phase Reset or the Evoked model. Recent models are discussed that may better explain the relation between raw EEG and ERPs.
Collapse
Affiliation(s)
| | - Izabela Szumska
- Cognitive Psychology, University of Finance and Management, Warsaw,
Poland
| | | |
Collapse
|
1484
|
Craddock M, Poliakoff E, El-Deredy W, Klepousniotou E, Lloyd DM. Pre-stimulus alpha oscillations over somatosensory cortex predict tactile misperceptions. Neuropsychologia 2016; 96:9-18. [PMID: 28041948 DOI: 10.1016/j.neuropsychologia.2016.12.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/15/2016] [Accepted: 12/28/2016] [Indexed: 01/08/2023]
Abstract
Fluctuations of pre-stimulus oscillatory activity in the somatosensory alpha band (8-14Hz) observed using human EEG and MEG have been shown to influence the detection of supra- and peri-threshold somatosensory stimuli. However, some reports of touch occur even without a stimulus. We investigated the possibility that pre-stimulus alpha oscillations might also influence these false reports of touch - known as tactile misperceptions. We recorded EEG while participants performed the Somatic Signal Detection Task (SSDT), in which participants must detect brief, peri-threshold somatosensory targets. We found that pre-stimulus oscillatory power in the somatosensory alpha range exhibited a negative linear relationship with reporting of touch at electrode clusters over both contralateral and ipsilateral somatosensory regions. As pre-stimulus alpha power increased, the probability of reporting a touch declined; as it decreased, the probability of reporting a touch increased. This relationship was stronger on trials without a somatosensory stimulus than on trials with a somatosensory stimulus, although was present for both trial types. Spatio-temporal cluster-based permutation analysis also found that pre-stimulus alpha was lower on trials when touch was reported - irrespective of whether it was present - over contralateral and ipsilateral somatosensory cortices, as well as left frontocentral areas. We argue that alpha power may reflect changes in response criterion rather than sensitivity alone. Low alpha power relates to a low barrier to reporting a touch even when one is not present, while high alpha power is linked to less frequent reporting of touch overall.
Collapse
Affiliation(s)
| | | | - Wael El-Deredy
- University of Manchester, Manchester, UK; University of Valparaiso, Valparaiso, Chile
| | | | | |
Collapse
|
1485
|
van den Berg B, Appelbaum LG, Clark K, Lorist MM, Woldorff MG. Visual search performance is predicted by both prestimulus and poststimulus electrical brain activity. Sci Rep 2016; 6:37718. [PMID: 27901053 PMCID: PMC5128787 DOI: 10.1038/srep37718] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/26/2016] [Indexed: 11/09/2022] Open
Abstract
An individual’s performance on cognitive and perceptual tasks varies considerably across time and circumstances. We investigated neural mechanisms underlying such performance variability using regression-based analyses to examine trial-by-trial relationships between response times (RTs) and different facets of electrical brain activity. Thirteen participants trained five days on a color-popout visual-search task, with EEG recorded on days one and five. The task was to find a color-popout target ellipse in a briefly presented array of ellipses and discriminate its orientation. Later within a session, better preparatory attention (reflected by less prestimulus Alpha-band oscillatory activity) and better poststimulus early visual responses (reflected by larger sensory N1 waves) correlated with faster RTs. However, N1 amplitudes decreased by half throughout each session, suggesting adoption of a more efficient search strategy within a session. Additionally, fast RTs were preceded by earlier and larger lateralized N2pc waves, reflecting faster and stronger attentional orienting to the targets. Finally, SPCN waves associated with target-orientation discrimination were smaller for fast RTs in the first but not the fifth session, suggesting optimization with practice. Collectively, these results delineate variations in visual search processes that change over an experimental session, while also pointing to cortical mechanisms underlying performance in visual search.
Collapse
Affiliation(s)
- Berry van den Berg
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, United States.,University of Groningen, Univ Med Ctr Groningen, Department of Neuroscience, NL-9713 AW Groningen, The Netherlands.,Department of Experimental Psychology, Faculty of Behavioural and Social Sciences, University of Groningen, Groningen, The Netherlands.,BCN-NeuroImaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lawrence G Appelbaum
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, United States.,Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, United States
| | - Kait Clark
- School of Psychology, Cardiff University, Cardiff, Wales, CF10 3AT, United Kingdom
| | - Monicque M Lorist
- University of Groningen, Univ Med Ctr Groningen, Department of Neuroscience, NL-9713 AW Groningen, The Netherlands.,Department of Experimental Psychology, Faculty of Behavioural and Social Sciences, University of Groningen, Groningen, The Netherlands.,BCN-NeuroImaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marty G Woldorff
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, United States.,Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, United States
| |
Collapse
|
1486
|
Influencing connectivity and cross-frequency coupling by real-time source localized neurofeedback of the posterior cingulate cortex reduces tinnitus related distress. Neurobiol Stress 2016; 8:211-224. [PMID: 29888315 PMCID: PMC5991329 DOI: 10.1016/j.ynstr.2016.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 11/15/2016] [Accepted: 11/19/2016] [Indexed: 12/20/2022] Open
Abstract
Background In this study we are using source localized neurofeedback to moderate tinnitus related distress by influencing neural activity of the target region as well as the connectivity within the default network. Hypothesis We hypothesize that up-training alpha and down-training beta and gamma activity in the posterior cingulate cortex has a moderating effect on tinnitus related distress by influencing neural activity of the target region as well as the connectivity within the default network and other functionally connected brain areas. Methods Fifty-eight patients with chronic tinnitus were included in the study. Twenty-three tinnitus patients received neurofeedback training of the posterior cingulate cortex with the aim of up-training alpha and down-training beta and gamma activity, while 17 patients underwent training of the lingual gyrus as a control situation. A second control group consisted of 18 tinnitus patients on a waiting list for future tinnitus treatment. Results This study revealed that neurofeedback training of the posterior cingulate cortex results in a significant decrease of tinnitus related distress. No significant effect on neural activity of the target region could be obtained. However, functional and effectivity connectivity changes were demonstrated between remote brain regions or functional networks as well as by altering cross frequency coupling of the posterior cingulate cortex. Conclusion This suggests that neurofeedback could remove the information, processed in beta and gamma, from the carrier wave, alpha, which transports the high frequency information and influences the salience attributed to the tinnitus sound. Based on the observation that much pathology is the result of an abnormal functional connectivity within and between neural networks various pathologies should be considered eligible candidates for the application of source localized EEG based neurofeedback training.
Collapse
|
1487
|
Fallon SJ, Zokaei N, Norbury A, Manohar SG, Husain M. Dopamine Alters the Fidelity of Working Memory Representations according to Attentional Demands. J Cogn Neurosci 2016; 29:728-738. [PMID: 27897674 PMCID: PMC5889096 DOI: 10.1162/jocn_a_01073] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Capacity limitations in working memory (WM) necessitate the need to
effectively control its contents. Here, we examined the effect of cabergoline, a
dopamine D2 receptor agonist, on WM using a continuous report
paradigm that allowed us to assess the fidelity with which items are stored. We
assessed recall performance under three different gating conditions: remembering
only one item, being cued to remember one target among distractors, and having
to remember all items. Cabergoline had differential effects on recall
performance according to whether distractors had to be ignored and whether
mnemonic resources could be deployed exclusively to the target. Compared with
placebo, cabergoline improved mnemonic performance when there were no
distractors but significantly reduced performance when distractors were
presented in a precue condition. No significant difference in performance was
observed under cabergoline when all items had to be remembered. By applying a
stochastic model of response selection, we established that the causes of
drug-induced changes in performance were due to changes in the precision with
which items were stored in WM. However, there was no change in the extent to
which distractors were mistaken for targets. Thus, D2 agonism causes
changes in the fidelity of mnemonic representations without altering
interference between memoranda.
Collapse
Affiliation(s)
| | | | | | | | - Masud Husain
- University of Oxford.,John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
1488
|
Auditory cortical delta-entrainment interacts with oscillatory power in multiple fronto-parietal networks. Neuroimage 2016; 147:32-42. [PMID: 27903440 PMCID: PMC5315055 DOI: 10.1016/j.neuroimage.2016.11.062] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/25/2016] [Accepted: 11/25/2016] [Indexed: 01/28/2023] Open
Abstract
The timing of slow auditory cortical activity aligns to the rhythmic fluctuations in speech. This entrainment is considered to be a marker of the prosodic and syllabic encoding of speech, and has been shown to correlate with intelligibility. Yet, whether and how auditory cortical entrainment is influenced by the activity in other speech–relevant areas remains unknown. Using source-localized MEG data, we quantified the dependency of auditory entrainment on the state of oscillatory activity in fronto-parietal regions. We found that delta band entrainment interacted with the oscillatory activity in three distinct networks. First, entrainment in the left anterior superior temporal gyrus (STG) was modulated by beta power in orbitofrontal areas, possibly reflecting predictive top-down modulations of auditory encoding. Second, entrainment in the left Heschl's Gyrus and anterior STG was dependent on alpha power in central areas, in line with the importance of motor structures for phonological analysis. And third, entrainment in the right posterior STG modulated theta power in parietal areas, consistent with the engagement of semantic memory. These results illustrate the topographical network interactions of auditory delta entrainment and reveal distinct cross-frequency mechanisms by which entrainment can interact with different cognitive processes underlying speech perception. We study auditory cortical speech entrainment from a network perspective. Found three distinct networks interacting with delta-entrainment in auditory cortex. Entrainment is modulated by frontal beta power, possibly indexing predictions. Central alpha power interacts with entrainment, suggesting motor involvement. Parietal theta is modulated by entrainment, suggesting working memory compensation.
Collapse
|
1489
|
Blacker KJ, Courtney SM. Distinct Neural Substrates for Maintaining Locations and Spatial Relations in Working Memory. Front Hum Neurosci 2016; 10:594. [PMID: 27932963 PMCID: PMC5121279 DOI: 10.3389/fnhum.2016.00594] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/09/2016] [Indexed: 01/28/2023] Open
Abstract
Previous work has demonstrated a distinction between maintenance of two types of spatial information in working memory (WM): spatial locations and spatial relations. While a body of work has investigated the neural mechanisms of sensory-based information like spatial locations, little is known about how spatial relations are maintained in WM. In two experiments, we used fMRI to investigate the involvement of early visual cortex in the maintenance of spatial relations in WM. In both experiments, we found less quadrant-specific BOLD activity in visual cortex when a single spatial relation, compared to a single spatial location, was held in WM. Also across both experiments, we found a consistent set of brain regions that were differentially activated during maintenance of locations vs. relations. Maintaining a location, compared to a relation, was associated with greater activity in typical spatial WM regions like posterior parietal cortex and prefrontal regions. Whereas maintaining a relation, compared to a location, was associated with greater activity in the parahippocampal gyrus and precuneus/retrosplenial cortex. Further, in Experiment 2 we manipulated WM load and included trials where participants had to maintain three spatial locations or relations. Under this high load condition, the regions sensitive to locations vs. relations were somewhat different than under low load. We also identified regions that were sensitive to load specifically for location or relation maintenance, as well as overlapping regions sensitive to load more generally. These results suggest that the neural substrates underlying WM maintenance of spatial locations and relations are distinct from one another and that the neural representations of these distinct types of spatial information change with load.
Collapse
Affiliation(s)
- Kara J. Blacker
- Department of Psychological and Brain Sciences, Johns Hopkins University, BaltimoreMD, USA
| | - Susan M. Courtney
- Department of Psychological and Brain Sciences, Johns Hopkins University, BaltimoreMD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, BaltimoreMD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, BaltimoreMD, USA
| |
Collapse
|
1490
|
Cabral-Calderin Y, Williams KA, Opitz A, Dechent P, Wilke M. Transcranial alternating current stimulation modulates spontaneous low frequency fluctuations as measured with fMRI. Neuroimage 2016; 141:88-107. [DOI: 10.1016/j.neuroimage.2016.07.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/02/2016] [Indexed: 01/05/2023] Open
|
1491
|
Papadelis C, Arfeller C, Erla S, Nollo G, Cattaneo L, Braun C. Inferior frontal gyrus links visual and motor cortices during a visuomotor precision grip force task. Brain Res 2016; 1650:252-266. [DOI: 10.1016/j.brainres.2016.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 11/29/2022]
|
1492
|
Mejias JF, Murray JD, Kennedy H, Wang XJ. Feedforward and feedback frequency-dependent interactions in a large-scale laminar network of the primate cortex. SCIENCE ADVANCES 2016; 2:e1601335. [PMID: 28138530 PMCID: PMC5262462 DOI: 10.1126/sciadv.1601335] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 10/20/2016] [Indexed: 05/25/2023]
Abstract
Interactions between top-down and bottom-up processes in the cerebral cortex hold the key to understanding attentional processes, predictive coding, executive control, and a gamut of other brain functions. However, the underlying circuit mechanism remains poorly understood and represents a major challenge in neuroscience. We approached this problem using a large-scale computational model of the primate cortex constrained by new directed and weighted connectivity data. In our model, the interplay between feedforward and feedback signaling depends on the cortical laminar structure and involves complex dynamics across multiple (intralaminar, interlaminar, interareal, and whole cortex) scales. The model was tested by reproducing, as well as providing insights into, a wide range of neurophysiological findings about frequency-dependent interactions between visual cortical areas, including the observation that feedforward pathways are associated with enhanced gamma (30 to 70 Hz) oscillations, whereas feedback projections selectively modulate alpha/low-beta (8 to 15 Hz) oscillations. Furthermore, the model reproduces a functional hierarchy based on frequency-dependent Granger causality analysis of interareal signaling, as reported in recent monkey and human experiments, and suggests a mechanism for the observed context-dependent hierarchy dynamics. Together, this work highlights the necessity of multiscale approaches and provides a modeling platform for studies of large-scale brain circuit dynamics and functions.
Collapse
Affiliation(s)
- Jorge F. Mejias
- Center for Neural Science, New York University (NYU), New York, NY 10003, USA
| | - John D. Murray
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Henry Kennedy
- Stem Cell and Brain Research Institute, INSERM U846, Bron, France
- Université de Lyon, Université Lyon I, Lyon, France
| | - Xiao-Jing Wang
- Center for Neural Science, New York University (NYU), New York, NY 10003, USA
- NYU–East China Normal University Institute for Brain and Cognitive Science, NYU Shanghai, Shanghai, China
| |
Collapse
|
1493
|
Kizuk SAD, Mathewson KE. Power and Phase of Alpha Oscillations Reveal an Interaction between Spatial and Temporal Visual Attention. J Cogn Neurosci 2016; 29:480-494. [PMID: 28129063 DOI: 10.1162/jocn_a_01058] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Oscillatory brain rhythms can bias attention via phase and amplitude changes, which modulate sensory activity, biasing information to be processed or ignored. Alpha band (7-14 Hz) oscillations lateralize with spatial attention and rhythmically inhibit visual activity and awareness through pulses of inhibition. Here we show that human observers' awareness of spatially unattended targets is dependent on both alpha power and alpha phase at target onset. Following a predictive directional cue, alpha oscillations were entrained bilaterally using repetitive visual stimuli. Subsequently, we presented either spatially cued or uncued targets at SOAs either validly or invalidly predicted in time by the entrainers. Temporal validity maximally modulated perceptual performance outside the spatial focus of attention and was associated with both increased alpha power and increased neural entrainment of phase in the hemisphere processing spatially unattended information. The results demonstrate that alpha oscillations represent a pulsating inhibition, which impedes visual processing for unattended space.
Collapse
|
1494
|
Ten Oever S, de Graaf TA, Bonnemayer C, Ronner J, Sack AT, Riecke L. Stimulus Presentation at Specific Neuronal Oscillatory Phases Experimentally Controlled with tACS: Implementation and Applications. Front Cell Neurosci 2016; 10:240. [PMID: 27803651 PMCID: PMC5067922 DOI: 10.3389/fncel.2016.00240] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/30/2016] [Indexed: 01/12/2023] Open
Abstract
In recent years, it has become increasingly clear that both the power and phase of oscillatory brain activity can influence the processing and perception of sensory stimuli. Transcranial alternating current stimulation (tACS) can phase-align and amplify endogenous brain oscillations and has often been used to control and thereby study oscillatory power. Causal investigation of oscillatory phase is more difficult, as it requires precise real-time temporal control over both oscillatory phase and sensory stimulation. Here, we present hardware and software solutions allowing temporally precise presentation of sensory stimuli during tACS at desired tACS phases, enabling causal investigations of oscillatory phase. We developed freely available and easy to use software, which can be coupled with standard commercially available hardware to allow flexible and multi-modal stimulus presentation (visual, auditory, magnetic stimuli, etc.) at pre-determined tACS-phases, opening up a range of new research opportunities. We validate that stimulus presentation at tACS phase in our setup is accurate to the sub-millisecond level with high inter-trial consistency. Conventional methods investigating the role of oscillatory phase such as magneto-/electroencephalography can only provide correlational evidence. Using brain stimulation with the described methodology enables investigations of the causal role of oscillatory phase. This setup turns oscillatory phase into an independent variable, allowing innovative, and systematic studies of its functional impact on perception and cognition.
Collapse
Affiliation(s)
- Sanne Ten Oever
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University Maastricht, Netherlands
| | - Tom A de Graaf
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University Maastricht, Netherlands
| | - Charlie Bonnemayer
- Department of Engineering and Instrumentation, Faculty of Psychology and Neuroscience, Maastricht University Maastricht, Netherlands
| | - Jacco Ronner
- Department of Engineering and Instrumentation, Faculty of Psychology and Neuroscience, Maastricht University Maastricht, Netherlands
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University Maastricht, Netherlands
| | - Lars Riecke
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University Maastricht, Netherlands
| |
Collapse
|
1495
|
Hanslmayr S, Staresina BP, Bowman H. Oscillations and Episodic Memory: Addressing the Synchronization/Desynchronization Conundrum. Trends Neurosci 2016; 39:16-25. [PMID: 26763659 PMCID: PMC4819444 DOI: 10.1016/j.tins.2015.11.004] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 11/25/2022]
Abstract
Brain oscillations are one of the core mechanisms underlying episodic memory. However, while some studies highlight the role of synchronized oscillatory activity, others highlight the role of desynchronized activity. We here describe a framework to resolve this conundrum and integrate these two opposing oscillatory behaviors. Specifically, we argue that the synchronization and desynchronization reflect a division of labor between a hippocampal and a neocortical system, respectively. We describe a novel oscillatory framework that integrates synchronization and desynchronization mechanisms to explain how the two systems interact in the service of episodic memory. Data from rodent as well as human studies suggest that theta/gamma synchronization in the hippocampus (i.e., theta phase to gamma power cross-frequency coupling) mediates the binding of different elements in episodic memory. In vivo and in vitro animal studies suggest that theta provides selective time windows for fast-acting synaptic modifications and recent computational models have implemented these mechanisms to explain human memory formation and retrieval. Recent data from human experiments suggest that low-frequency power decreases in the neocortex, most evident in the alpha/beta frequency range, mediate encoding and reinstatement of episodic memories. The content of reinstated memories can be decoded from cortical low-frequency patterns.
Collapse
Affiliation(s)
- Simon Hanslmayr
- University of Birmingham, School of Psychology, Birmingham, UK.
| | | | - Howard Bowman
- University of Birmingham, School of Psychology, Birmingham, UK; University of Kent, School of Computing, Canterbury, UK
| |
Collapse
|
1496
|
The Role of Alpha Activity in Spatial and Feature-Based Attention. eNeuro 2016; 3:eN-NWR-0204-16. [PMID: 27822505 PMCID: PMC5088778 DOI: 10.1523/eneuro.0204-16.2016] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 11/29/2022] Open
Abstract
Modulations in alpha oscillations (∼10 Hz) are typically studied in the context of anticipating upcoming stimuli. Alpha power decreases in sensory regions processing upcoming targets compared to regions processing distracting input, thereby likely facilitating processing of relevant information while suppressing irrelevant. In this electroencephalography study using healthy human volunteers, we examined whether modulations in alpha power also occur after the onset of a bilaterally presented target and distractor. Spatial attention was manipulated through spatial cues and feature-based attention through adjusting the color-similarity of distractors to the target. Consistent with previous studies, we found that informative spatial cues induced a relative decrease of pretarget alpha power at occipital electrodes contralateral to the expected target location. Interestingly, this pattern reemerged relatively late (300–750 ms) after stimulus onset, suggesting that lateralized alpha reflects not only preparatory attention, but also ongoing attentive stimulus processing. Uninformative cues (i.e., conveying no information about the spatial location of the target) resulted in an interaction between spatial attention and feature-based attention in post-target alpha lateralization. When the target was paired with a low-similarity distractor, post-target alpha was lateralized (500–900 ms). Crucially, the lateralization was absent when target selection was ambiguous because the distractor was highly similar to the target. Instead, during this condition, midfrontal theta was increased, indicative of reactive conflict resolution. Behaviorally, the degree of alpha lateralization was negatively correlated with the reaction time distraction cost induced by target–distractor similarity. These results suggest a pivotal role for poststimulus alpha lateralization in protecting sensory processing of target information.
Collapse
|
1497
|
Pornpattananangkul N, Nusslock R. Willing to wait: Elevated reward-processing EEG activity associated with a greater preference for larger-but-delayed rewards. Neuropsychologia 2016; 91:141-162. [PMID: 27477630 PMCID: PMC5110616 DOI: 10.1016/j.neuropsychologia.2016.07.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 07/28/2016] [Indexed: 12/25/2022]
Abstract
While almost everyone discounts the value of future rewards over immediate rewards, people differ in their so-called delay-discounting. One of the several factors that may explain individual differences in delay-discounting is reward-processing. To study individual-differences in reward-processing, however, one needs to consider the heterogeneity of neural-activity at each reward-processing stage. Here using EEG, we separated reward-related neural activity into distinct reward-anticipation and reward-outcome stages using time-frequency characteristics. Thirty-seven individuals first completed a behavioral delay-discounting task. Then reward-processing EEG activity was assessed using a separate reward-learning task, called a reward time-estimation task. During this EEG task, participants were instructed to estimate time duration and were provided performance feedback on a trial-by-trial basis. Participants received monetary-reward for accurate-performance on Reward trials, but not on No-Reward trials. Reward trials, relative to No-Reward trials, enhanced EEG activity during both reward-anticipation (including, cued-locked delta power during cue-evaluation and pre-feedback alpha suppression during feedback-anticipation) and reward-outcome (including, feedback-locked delta, theta and beta power) stages. Moreover, all of these EEG indices correlated with behavioral performance in the time-estimation task, suggesting their essential roles in learning and adjusting performance to maximize winnings in a reward-learning situation. Importantly, enhanced EEG power during Reward trials, as reflected by stronger 1) pre-feedback alpha suppression, 2) feedback-locked theta and 3) feedback-locked beta, was associated with a greater preference for larger-but-delayed rewards in a separate, behavioral delay-discounting task. Results highlight the association between a stronger preference toward larger-but-delayed rewards and enhanced reward-processing. Moreover, our reward-processing EEG indices detail the specific stages of reward-processing where these associations occur.
Collapse
Affiliation(s)
- Narun Pornpattananangkul
- Department of Psychology, Northwestern University, Evanston, IL, United States; Department of Psychology, University of Singapore, Singapore.
| | - Robin Nusslock
- Department of Psychology, Northwestern University, Evanston, IL, United States
| |
Collapse
|
1498
|
Brain Networks and α-Oscillations: Structural and Functional Foundations of Cognitive Control. Trends Cogn Sci 2016; 20:805-817. [PMID: 27707588 DOI: 10.1016/j.tics.2016.09.004] [Citation(s) in RCA: 259] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/22/2016] [Accepted: 09/06/2016] [Indexed: 01/21/2023]
Abstract
The most salient electrical signal measured from the human brain is the α-rhythm, neural activity oscillating at ∼100ms intervals. Recent findings challenge the longstanding dogma of α-band oscillations as the signature of a passively idling brain state but diverge in terms of interpretation. Despite firm correlations with behavior, the mechanistic role of the α-rhythm in brain function remains debated. We suggest that three large-scale brain networks involved in different facets of top-down cognitive control differentially modulate α-oscillations, ranging from power within and synchrony between brain regions. Thereby, these networks selectively influence local signal processing, widespread information exchange, and ultimately perception and behavior.
Collapse
|
1499
|
Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: Current approaches and future perspectives. Neuroimage 2016; 140:4-19. [DOI: 10.1016/j.neuroimage.2016.02.012] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 01/26/2016] [Accepted: 02/07/2016] [Indexed: 12/23/2022] Open
|
1500
|
Physiological processes non-linearly affect electrophysiological recordings during transcranial electric stimulation. Neuroimage 2016; 140:99-109. [DOI: 10.1016/j.neuroimage.2016.03.065] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 11/18/2022] Open
|