1551
|
Zhu X, Wang X, Wei S, Chen Y, Chen Y, Fan X, Han S, Wu G. hsa_circ_0013958: a circular RNA and potential novel biomarker for lung adenocarcinoma. FEBS J 2017; 284:2170-2182. [PMID: 28685964 DOI: 10.1111/febs.14132] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 04/07/2017] [Accepted: 06/08/2017] [Indexed: 12/12/2022]
Abstract
Circular RNAs (circRNAs) are associated with cancer progression and metastasis, although little is known about their role in lung adenocarcinoma (LAC). In the present study, microarrays were first used to screen for tumour-specific circRNA candidates in LAC tissue. Thirty-nine circRNAs were found to be up-regulated and 20 were down-regulated (fold change > 2.0). Among them, hsa_circ_0013958 was further confirmed to be up-regulated in all of the LAC tissues, cells and plasma. In addition, hsa_circ_0013958 levels were associated with TNM stage (P = 0.009) and lymphatic metastasis (P = 0.006). The area under the receiver operating characteristic curve was 0.815 (95% confidence interval = 0.727-0.903; P < 0.001). In addition, to further illustrate the bioactivities of hsa_circ_0013958 in LAC, siRNA-mediated inhibition of hsa_circ_0013958 was performed in vitro. The results showed that hsa_circ_0013958 promoted cell proliferation and invasion and inhibited cell apoptosis in LAC. Moreover, hsa_circ_0013958 was identified as a sponge of miR-134, and thus it up-regulated oncogenic cyclin D1, which plays a pivotal role in the development of non-small cell lung cancer. In conclusion, our results suggested that hsa_circ_0013958 could be used as a potential non-invasive biomarker for the early detection and screening of LAC.
Collapse
Affiliation(s)
- Xiaoli Zhu
- Department of Respiratory, Zhongda Hospital, Southeast University, Nanjing, China.,Medical School of Southeast University, Nanjing, China
| | - Xiyong Wang
- Department of Respiratory, Zhongda Hospital, Southeast University, Nanjing, China.,Medical School of Southeast University, Nanjing, China
| | - Shuzhen Wei
- Department of Respiratory, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yan Chen
- Medical School of Southeast University, Nanjing, China
| | - Yang Chen
- Medical School of Southeast University, Nanjing, China
| | - Xiaobo Fan
- Medical School of Southeast University, Nanjing, China
| | - Shuhua Han
- Department of Respiratory, Zhongda Hospital, Southeast University, Nanjing, China
| | - Guoqiu Wu
- Medical School of Southeast University, Nanjing, China.,Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
1552
|
Huang S, Yang B, Chen BJ, Bliim N, Ueberham U, Arendt T, Janitz M. The emerging role of circular RNAs in transcriptome regulation. Genomics 2017; 109:401-407. [PMID: 28655641 DOI: 10.1016/j.ygeno.2017.06.005] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/19/2017] [Accepted: 06/22/2017] [Indexed: 01/01/2023]
Abstract
Circular RNAs (circRNAs) are a recently discovered form of RNA that has been found to regulate mammalian transcription. CircRNAs are covalently closed, single-stranded transcripts produced from precursor mRNA. While initially circRNAs were considered to be splicing artefacts, next-generation RNA sequencing of non-polyadenylated transcriptomes has recently shown that the expression of circRNAs is widespread and over 20% of expressed genes in examined cells and tissues can produce these transcripts. Until now thousands of circRNAs have been discovered in organisms ranging from Drosophila melanogaster to Homo sapiens. Functional studies indicate that these transcripts regulate expression of protein-coding linear transcripts and thus comprise an important component of gene expression regulation. Here we provide a comprehensive overview on the biology of circRNAs, including the expression patterns and function. Moreover, we discuss current methodologies for the discovery and validation of circular transcripts. Finally, perspectives on the utilization of circRNA as molecular markers of complex diseases are presented.
Collapse
Affiliation(s)
- S Huang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - B Yang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - B J Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - N Bliim
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - U Ueberham
- Paul-Flechsig-Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - T Arendt
- Paul-Flechsig-Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - M Janitz
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
1553
|
Circular RNA Profiling and Bioinformatic Modeling Identify Its Regulatory Role in Hepatic Steatosis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5936171. [PMID: 28717649 PMCID: PMC5499244 DOI: 10.1155/2017/5936171] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 03/07/2017] [Indexed: 12/14/2022]
Abstract
Circular RNAs (circRNAs) exhibit a wide range of physiological and pathological activities. To uncover their role in hepatic steatosis, we investigated the expression profile of circRNAs in HepG2-based hepatic steatosis induced by high-fat stimulation. Differentially expressed circRNAs were subjected to validation using QPCR and functional analyses using principal component analysis, hierarchical clustering, target prediction, gene ontology (GO), and pathway annotation, respectively. Bioinformatic integration established the circRNA-miRNA-mRNA regulatory network so as to identify the mechanisms underlying circRNAs' metabolic effect. Here we reported that hepatic steatosis was associated with a total of 357 circRNAs. Enrichment of transcription-related GOs, especially GO: 0006355, GO: 004589, GO: 0045944, GO: 0045892, and GO: 0000122, demonstrated their specific actions in transcriptional regulation. Lipin 1 (LPIN1) was recognized to mediate the transcriptional regulatory effect of circRNAs on metabolic pathways. circRNA-miRNA-mRNA network further identified the signaling cascade of circRNA_021412/miR-1972/LPIN1, which was characterized by decreased level of circRNA_021412 and miR-1972-based inhibition of LPIN1. LPIN1-induced downregulation of long chain acyl-CoA synthetases (ACSLs) expression finally resulted in the hepatosteatosis. These findings identify circRNAs to be important regulators of hepatic steatosis. Transcription-dependent modulation of metabolic pathways may underlie their effects, partially by the circRNA_021412/miR-1972/LPIN1 signaling.
Collapse
|
1554
|
Greene J, Baird AM, Brady L, Lim M, Gray SG, McDermott R, Finn SP. Circular RNAs: Biogenesis, Function and Role in Human Diseases. Front Mol Biosci 2017. [PMID: 28634583 PMCID: PMC5459888 DOI: 10.3389/fmolb.2017.00038] [Citation(s) in RCA: 422] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Circular RNAs (circRNAs) are currently classed as non-coding RNA (ncRNA) that, unlike linear RNAs, form covalently closed continuous loops and act as gene regulators in mammals. They were originally thought to represent errors in splicing and considered to be of low abundance, however, there is now an increased appreciation of their important function in gene regulation. circRNAs are differentially generated by backsplicing of exons or from lariat introns. Unlike linear RNA, the 3' and 5' ends normally present in an RNA molecule have been joined together by covalent bonds leading to circularization. Interestingly, they have been found to be abundant, evolutionally conserved and relatively stable in the cytoplasm. These features confer numerous potential functions to circRNAs, such as acting as miRNA sponges, or binding to RNA-associated proteins to form RNA-protein complexes that regulate gene transcription. It has been proposed that circRNA regulate gene expression at the transcriptional or post-transcriptional level by interacting with miRNAs and that circRNAs may have a role in regulating miRNA function in cancer initiation and progression. circRNAs appear to be more often downregulated in tumor tissue compared to normal tissue and this may be due to (i) errors in the back-splice machinery in malignant tissues, (ii) degradation of circRNAs by deregulated miRNAs in tumor tissue, or (iii) increasing cell proliferation leading to a reduction of circRNAs. circRNAs have been identified in exosomes and more recently, chromosomal translocations in cancer have been shown to generate aberrant fusion-circRNAs associated with resistance to drug treatments. In addition, though originally thought to be non-coding, there is now increasing evidence to suggest that select circRNAs can be translated into functional proteins. Although much remains to be elucidated about circRNA biology and mechanisms of gene regulation, these ncRNAs are quickly emerging as potential disease biomarkers and therapeutic targets in cancer.
Collapse
Affiliation(s)
- John Greene
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College DublinDublin, Ireland.,Department of Medical Oncology, Tallaght HospitalDublin, Ireland
| | - Anne-Marie Baird
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College DublinDublin, Ireland.,Thoracic Oncology Research Group, Trinity Translational Medical Institute, St. James's HospitalDublin, Ireland.,Department of Clinical Medicine, Trinity College DublinDublin, Ireland.,Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of TechnologyBrisbane, QLD, Australia
| | - Lauren Brady
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College DublinDublin, Ireland
| | - Marvin Lim
- Department of Medical Oncology, St. Vincent's University HospitalDublin, Ireland
| | - Steven G Gray
- Thoracic Oncology Research Group, Trinity Translational Medical Institute, St. James's HospitalDublin, Ireland.,Department of Clinical Medicine, Trinity College DublinDublin, Ireland.,HOPE Directorate, St. James's HospitalDublin, Ireland.,Labmed Directorate, St. James's HospitalDublin, Ireland
| | - Raymond McDermott
- Department of Medical Oncology, Tallaght HospitalDublin, Ireland.,Department of Medical Oncology, St. Vincent's University HospitalDublin, Ireland
| | - Stephen P Finn
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College DublinDublin, Ireland.,Thoracic Oncology Research Group, Trinity Translational Medical Institute, St. James's HospitalDublin, Ireland.,Department of Clinical Medicine, Trinity College DublinDublin, Ireland.,Department of Histopathology, St. James's HospitalDublin, Ireland
| |
Collapse
|
1555
|
Circular RNAs: A novel type of biomarker and genetic tools in cancer. Oncotarget 2017; 8:64551-64563. [PMID: 28969093 PMCID: PMC5610025 DOI: 10.18632/oncotarget.18350] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/23/2017] [Indexed: 12/13/2022] Open
Abstract
Circular RNAs (circRNAs) are a novel type of universal and diverse endogenous noncoding RNAs (ncRNAs) and they form a covalently closed continuous loop without 5′ or 3′ tails unlike linear RNAs. Most circRNAs are presented with characteristics of abundance, stability, conservatism, and often exhibiting tissue/developmental-stage-specific expression. CircRNAs are generated either from exons or introns by back splicing or lariat introns. CircRNAs play important roles as miRNA sponges, gene transcription and expression regulators, RNA-binding protein (RBP) sponges and protein/peptide translators. Emerging evidence revealed the function of circRNAs in cancer and may potentially serve as a required novel biomarker and therapeutic target for cancer treatment. In this review, we discuss about the origins, characteristics and functions of circRNA and how they work as miRNA sponges, gene transcription and expression regulators, RBP sponges in cancer as well as current research methods of circRNAs, providing evidence for the significance of circRNAs in cancer diagnosis and clinical treatment.
Collapse
|
1556
|
Meng S, Zhou H, Feng Z, Xu Z, Tang Y, Li P, Wu M. CircRNA: functions and properties of a novel potential biomarker for cancer. Mol Cancer 2017; 16:94. [PMID: 28535767 PMCID: PMC5440908 DOI: 10.1186/s12943-017-0663-2] [Citation(s) in RCA: 1139] [Impact Index Per Article: 142.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 05/16/2017] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs, a novel class of endogenous noncoding RNAs, are characterized by their covalently closed loop structures without a 5′ cap or a 3′ Poly A tail. Although the mechanisms of circular RNAs’ generation and function are not fully clear, recent research has shown that circular RNAs may function as potential molecular markers for disease diagnosis and treatment and play an important role in the initiation and progression of human diseases, especially in tumours. This review summarizes some information about categories, biogenesis, functions at the molecular level, properties of circular RNAs and the possibility of circular RNAs as biomarkers in cancers.
Collapse
Affiliation(s)
- Shujuan Meng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410008, China
| | - Hecheng Zhou
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410008, China
| | - Ziyang Feng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410008, China
| | - Zihao Xu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410008, China
| | - Ying Tang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410008, China
| | - Peiyao Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410008, China
| | - Minghua Wu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
1557
|
Wu N, Jin L, Cai J. Profiling and bioinformatics analyses reveal differential circular RNA expression in hypertensive patients. Clin Exp Hypertens 2017; 39:454-459. [PMID: 28534714 DOI: 10.1080/10641963.2016.1273944] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Na Wu
- Department of Cardiology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Ling Jin
- Hypertension Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Cai
- Hypertension Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
1558
|
Hsiao KY, Sun HS, Tsai SJ. Circular RNA - New member of noncoding RNA with novel functions. Exp Biol Med (Maywood) 2017; 242:1136-1141. [PMID: 28485684 DOI: 10.1177/1535370217708978] [Citation(s) in RCA: 316] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A growing body of evidence indicates that circular RNAs are not simply a side product of splicing but a new class of noncoding RNAs in higher eukaryotes. The progression for the studies of circular RNAs is accelerated by combination of several advanced technologies such as next generation sequencing, gene silencing (small interfering RNAs) and editing (CRISPR/Cas9). More and more studies showed that dysregulated expression of circular RNAs plays critical roles during the development of several human diseases. Herein, we review the current advance of circular RNAs for their biosynthesis, molecular functions, and implications in human diseases. Impact statement The accumulating evidence indicate that circular RNA (circRNA) is a novel class of noncoding RNA with diverse molecular functions. Our review summarizes the current hypotheses for the models of circRNA biosynthesis including the direct interaction between upstream and downstream introns and lariat-driven circularization. In addition, molecular functions such as a decoy of microRNA (miRNA) termed miRNA sponge, transcriptional regulator, and protein-like modulator are also discussed. Finally, we reviewed the potential roles of circRNAs in neural system, cardiovascular system as well as cancers. These should provide insightful information for studying the regulation and functions of circRNA in other model of human diseases.
Collapse
Affiliation(s)
- Kuei-Yang Hsiao
- 1 Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - H Sunny Sun
- 2 Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Shaw-Jenq Tsai
- 1 Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
1559
|
Li LJ, Zhao W, Tao SS, Leng RX, Fan YG, Pan HF, Ye DQ. Competitive endogenous RNA network: potential implication for systemic lupus erythematosus. Expert Opin Ther Targets 2017; 21:639-648. [DOI: 10.1080/14728222.2017.1319938] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
1560
|
Rong D, Tang W, Li Z, Zhou J, Shi J, Wang H, Cao H. Novel insights into circular RNAs in clinical application of carcinomas. Onco Targets Ther 2017; 10:2183-2188. [PMID: 28458561 PMCID: PMC5403007 DOI: 10.2147/ott.s134403] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs), formed by nonsequential back-splicing of pre-messenger RNA (pre-mRNA) transcripts, have been widely concerned in recent years. With advances in high-throughput RNA sequencing (RNA-seq) technology, previous work has revealed that a large number of circRNAs, which are endogenous, abundant and stable in mammalian cells, may be involved in atherosclerotic vascular disease risk, neurological disorders, prion diseases and carcinomas. Remarkably, interaction between circRNAs and microRNA has already been observed to perform a significant role in a variety of cancers, including gastric cancer and colorectal cancer. Recent work has suggested that circRNAs may play critical roles in the initiation and development of cancers and could become potential new biomarkers for cancers. Herein, we review the current understanding of the roles of circRNAs in cancers and the potential implications of circRNAs in cancer-targeted therapy.
Collapse
Affiliation(s)
- Dawei Rong
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Weiwei Tang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Zhouxiao Li
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,Department of Plastic and Hand Surgery, University Hospital Munich, Munich, Germany
| | | | - Junfeng Shi
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Hanjin Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Hongyong Cao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
1561
|
Fu L, Yao T, Chen Q, Mo X, Hu Y, Guo J. Screening differential circular RNA expression profiles reveals hsa_circ_0004018 is associated with hepatocellular carcinoma. Oncotarget 2017; 8:58405-58416. [PMID: 28938566 PMCID: PMC5601662 DOI: 10.18632/oncotarget.16881] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/14/2017] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) have been emerged as an indispensable part of endogenous RNA network. However, the expression significance of circRNAs in hepatocellular carcinoma (HCC) is rarely revealed. The aim of this study was to determine the circRNA expression profile in HCC, and to investigate their clinical significances and relevant mechanisms for cancer progression. The global circRNA expression profile in HCC was measured by circRNA microarray. Levels of one representative circRNAs, hsa_circ_0004018, were confirmed by real-time reverse transcription-polymerase chain reaction. The expression levels of hsa_circ_0004018 in HCC were significantly lower compared with para-tumorous tissue (P<0.001). Our data further showed that lower expression of hsa_circ_0004018 was correlated with serum alpha-fetoprotein (AFP) level, tumor diameters, differentiation, Barcelona Clinic Liver Cancer stage and Tumor-node-metastasis stage. More importantly, we detected liver tissues from chronic hepatitis, cirrhosis and HCC patients; and found that hsa_circ_0004018 harbored HCC-stage-specific expression features in diverse chronic liver diseases (P<0.001). The area under receiver operating characteristic curve was up to 0.848 (95% CI=0.803–0.894, P<0.001). The sensitivity and specificity were 0.716 and 0.815, respectively. Finally, hsa_circ_0004018 might be involved in cancer-related pathways via interactions with miRNAs.
Collapse
Affiliation(s)
- Liyun Fu
- Department of Hepatology, Ningbo No. 2 Hospital and The Affiliated Hospital, Medical School of Ningbo University, Ningbo 315010, China
| | - Ting Yao
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Qingqing Chen
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Xiaoyan Mo
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Yaoren Hu
- Department of Hepatology, Ningbo No. 2 Hospital and The Affiliated Hospital, Medical School of Ningbo University, Ningbo 315010, China
| | - Junming Guo
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| |
Collapse
|
1562
|
circRNA_100290 plays a role in oral cancer by functioning as a sponge of the miR-29 family. Oncogene 2017; 36:4551-4561. [PMID: 28368401 PMCID: PMC5558096 DOI: 10.1038/onc.2017.89] [Citation(s) in RCA: 329] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 02/24/2017] [Accepted: 02/26/2017] [Indexed: 01/17/2023]
Abstract
Circular RNAs (circRNAs) represent a class of non-coding RNAs that are widely expressed in mammals. However, it is largely unknown about the function of human circRNAs and the roles of circRNAs in human oral squamous cell carcinomas (OSCC). Here we performed a comprehensive study of circRNAs in human OSCC using circRNA and mRNA microarrays, and identified many circRNAs that are differentially expressed between OSCC tissue and paired non-cancerous matched tissue. We further found a circRNA termed circRNA_100290 that served as a critical regulator in OSCC development. We discovered that circRNA_100290 was upregulated and co-expressed with CDK6 in OSCC tissue. Knockdown of circRNA_100290 decreased expression of CDK6 and inhibited proliferation of OSCC cell lines in vitro and in vivo. Via luciferase reporter assays, circRNA_100290 was observed to directly bind to miR-29 family members. Further EGFP/RFP reporter assays showed that CDK6 was the direct target of miR-29b. Taken together, we conclude that circRNA_100290 may function as a competing endogenous RNA to regulate CDK6 expression through sponging up miR-29b family members. Taken together, it indicates that circRNAs may exert regulatory functions in OSCC and may be a potential target for OSCC therapy.
Collapse
|
1563
|
Errichelli L, Dini Modigliani S, Laneve P, Colantoni A, Legnini I, Capauto D, Rosa A, De Santis R, Scarfò R, Peruzzi G, Lu L, Caffarelli E, Shneider NA, Morlando M, Bozzoni I. FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nat Commun 2017; 8:14741. [PMID: 28358055 PMCID: PMC5379105 DOI: 10.1038/ncomms14741] [Citation(s) in RCA: 392] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 01/26/2017] [Indexed: 12/13/2022] Open
Abstract
The RNA-binding protein FUS participates in several RNA biosynthetic processes and has been linked to the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Here we report that FUS controls back-splicing reactions leading to circular RNA (circRNA) production. We identified circRNAs expressed in in vitro-derived mouse motor neurons (MNs) and determined that the production of a considerable number of these circRNAs is regulated by FUS. Using RNAi and overexpression of wild-type and ALS-associated FUS mutants, we directly correlate the modulation of circRNA biogenesis with alteration of FUS nuclear levels and with putative toxic gain of function activities. We also demonstrate that FUS regulates circRNA biogenesis by binding the introns flanking the back-splicing junctions and that this control can be reproduced with artificial constructs. Most circRNAs are conserved in humans and specific ones are deregulated in human-induced pluripotent stem cell-derived MNs carrying the FUSP525L mutation associated with ALS. The RNA binding protein FUS functions in several RNA biosynthetic processes and has been linked to the pathogenesis of amyotrophic lateral sclerosis (ALS). Here the authors show that FUS controls back-splicing reactions leading to circular RNA (circRNA) production in stem cell-derived motor neurons and that ALS-associated FUS mutations affect the biogenesis of circRNAs.
Collapse
Affiliation(s)
- Lorenzo Errichelli
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy.,Deparment of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy
| | - Stefano Dini Modigliani
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy
| | - Pietro Laneve
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy
| | - Alessio Colantoni
- Deparment of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy
| | - Ivano Legnini
- Deparment of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy
| | - Davide Capauto
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy.,Deparment of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy
| | - Alessandro Rosa
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy.,Deparment of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy
| | - Riccardo De Santis
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy.,Deparment of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy
| | - Rebecca Scarfò
- Deparment of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy
| | - Giovanna Peruzzi
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy
| | - Lei Lu
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, 630 W 168th Street, New York, New York 10032, USA
| | - Elisa Caffarelli
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy.,Institute of Molecular Biology and Pathology, CNR, Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy
| | - Neil A Shneider
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, 630 W 168th Street, New York, New York 10032, USA
| | - Mariangela Morlando
- Deparment of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy
| | - Irene Bozzoni
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy.,Deparment of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy.,Institute of Molecular Biology and Pathology, CNR, Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy.,Institute Pasteur Fondazione Cenci-Bolognetti, Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy
| |
Collapse
|
1564
|
Li Y, Dong Y, Huang Z, Kuang Q, Wu Y, Li Y, Li M. Computational identifying and characterizing circular RNAs and their associated genes in hepatocellular carcinoma. PLoS One 2017; 12:e0174436. [PMID: 28346469 PMCID: PMC5367815 DOI: 10.1371/journal.pone.0174436] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/09/2017] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is currently still a major factor leading to death, lacking of reliable biomarkers. Therefore, deep understanding the pathogenesis for HCC is of great importance. The emergence of circular RNA (circRNA) provides a new way to study the pathogenesis of human disease. Here, we employed the prediction tool to identify circRNAs based on RNA-seq data. Then, to investigate the biological function of the circRNA, the candidate circRNAs were associated with the protein-coding genes (PCGs) by GREAT. We found significant candidate circRNAs expression alterations between normal and tumor samples. Additionally, the PCGs associated with these candidate circRNAs were also found have discriminative expression patterns between normal and tumor samples. The enrichment analysis illustrated that these PCGs were predominantly enriched for liver/cardiovascular-related diseases such as atherosclerosis, myocardial ischemia and coronary heart disease, and participated in various metabolic processes. Together, a further network analysis indicated that these PCGs play important roles in the regulatory and the PPI network. Finally, we built a classification model to distinguish normal and tumor samples by using candidate circRNAs and their associated genes, respectively. Both of them obtained satisfactory results (~ 0.99 of AUC for circRNA and PCG). Our findings suggested that the circRNA could be a critical factor in HCC, providing a useful resource to explore the pathogenesis of HCC.
Collapse
Affiliation(s)
- Yan Li
- College of Chemistry, Sichuan University, Chengdu, China
| | - Yongcheng Dong
- College of Life Science, Sichuan University, Chengdu, China
| | - Ziyan Huang
- College of Chemistry, Sichuan University, Chengdu, China
| | - Qifan Kuang
- College of Chemistry, Sichuan University, Chengdu, China
| | - Yiming Wu
- College of Chemistry, Sichuan University, Chengdu, China
| | - Yizhou Li
- College of Chemistry, Sichuan University, Chengdu, China
- * E-mail: (ML); (YiL)
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, China
- * E-mail: (ML); (YiL)
| |
Collapse
|
1565
|
Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, Laneve P, Rajewsky N, Bozzoni I. Circ-ZNF609 Is a Circular RNA that Can Be Translated and Functions in Myogenesis. Mol Cell 2017; 66:22-37.e9. [PMID: 28344082 PMCID: PMC5387670 DOI: 10.1016/j.molcel.2017.02.017] [Citation(s) in RCA: 1576] [Impact Index Per Article: 197.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/28/2016] [Accepted: 02/16/2017] [Indexed: 12/17/2022]
Abstract
Circular RNAs (circRNAs) constitute a family of transcripts with unique structures and still largely unknown functions. Their biogenesis, which proceeds via a back-splicing reaction, is fairly well characterized, whereas their role in the modulation of physiologically relevant processes is still unclear. Here we performed expression profiling of circRNAs during in vitro differentiation of murine and human myoblasts, and we identified conserved species regulated in myogenesis and altered in Duchenne muscular dystrophy. A high-content functional genomic screen allowed the study of their functional role in muscle differentiation. One of them, circ-ZNF609, resulted in specifically controlling myoblast proliferation. Circ-ZNF609 contains an open reading frame spanning from the start codon, in common with the linear transcript, and terminating at an in-frame STOP codon, created upon circularization. Circ-ZNF609 is associated with heavy polysomes, and it is translated into a protein in a splicing-dependent and cap-independent manner, providing an example of a protein-coding circRNA in eukaryotes. CircRNAs are conserved, abundant, and regulated in myogenesis High-throughput phenotypic screening reveals functional circRNAs Circ-ZNF609 regulates myoblast proliferation Circ-ZNF609 can be translated
Collapse
Affiliation(s)
- Ivano Legnini
- Department of Biology and Biotechnology Charles Darwin and IBPM, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Gaia Di Timoteo
- Department of Biology and Biotechnology Charles Darwin and IBPM, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Francesca Rossi
- Department of Biology and Biotechnology Charles Darwin and IBPM, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Mariangela Morlando
- Department of Biology and Biotechnology Charles Darwin and IBPM, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Francesca Briganti
- Department of Biology and Biotechnology Charles Darwin and IBPM, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Olga Sthandier
- Department of Biology and Biotechnology Charles Darwin and IBPM, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Alessandro Fatica
- Department of Biology and Biotechnology Charles Darwin and IBPM, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Tiziana Santini
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Adrian Andronache
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Via Adamello 16, 20139 Milan, Italy
| | - Mark Wade
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Via Adamello 16, 20139 Milan, Italy
| | - Pietro Laneve
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Nikolaus Rajewsky
- Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Irene Bozzoni
- Department of Biology and Biotechnology Charles Darwin and IBPM, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; Institut Pasteur Italy, Fondazione Cenci-Bolognetti, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
1566
|
Zhu M, Liu J, Xiao J, Yang L, Cai M, Shen H, Chen X, Ma Y, Hu S, Wang Z, Hong A, Li Y, Sun Y, Wang X. Lnc-mg is a long non-coding RNA that promotes myogenesis. Nat Commun 2017; 8:14718. [PMID: 28281528 PMCID: PMC5353601 DOI: 10.1038/ncomms14718] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/25/2017] [Indexed: 12/11/2022] Open
Abstract
Recent studies indicate important roles for long noncoding RNAs (lncRNAs) as essential regulators of myogenesis and adult skeletal muscle regeneration. However, the specific roles of lncRNAs in myogenic differentiation of adult skeletal muscle stem cells and myogenesis are still largely unknown. Here we identify a lncRNA that is specifically enriched in skeletal muscle (myogenesis-associated lncRNA, in short, lnc-mg). In mice, conditional knockout of lnc-mg in skeletal muscle results in muscle atrophy and the loss of muscular endurance during exercise. Alternatively, skeletal muscle-specific overexpression of lnc-mg promotes muscle hypertrophy. In vitro analysis of primary skeletal muscle cells shows that lnc-mg increases gradually during myogenic differentiation and its overexpression improves cell differentiation. Mechanistically, lnc-mg promotes myogenesis, by functioning as a competing endogenous RNA (ceRNA) for microRNA-125b to control protein abundance of insulin-like growth factor 2. These findings identify lnc-mg as a novel noncoding regulator for muscle cell differentiation and skeletal muscle development.
Collapse
Affiliation(s)
- Mu Zhu
- Guangdong Provincial Key Laboratory of Bioengineering Medicine &National Engineering Research Center of Genetic Medicine, Department of Cell Biology and Institute of Biomedicine, Jinan University, Huang-Pu Avenue West 601, Guangzhou 510632, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China.,Preclinical Medical School, Beijing University of Chinese Medicine, Beijing 100019, China
| | - Jiafan Liu
- Guangdong Provincial Key Laboratory of Bioengineering Medicine &National Engineering Research Center of Genetic Medicine, Department of Cell Biology and Institute of Biomedicine, Jinan University, Huang-Pu Avenue West 601, Guangzhou 510632, China
| | - Jia Xiao
- State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen 518116, China
| | - Li Yang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine &National Engineering Research Center of Genetic Medicine, Department of Cell Biology and Institute of Biomedicine, Jinan University, Huang-Pu Avenue West 601, Guangzhou 510632, China
| | - Mingxiang Cai
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School and Hospital of Stomatology, Tongji University, Shanghai 200072, China
| | - Hongyu Shen
- Guangdong Provincial Key Laboratory of Bioengineering Medicine &National Engineering Research Center of Genetic Medicine, Department of Cell Biology and Institute of Biomedicine, Jinan University, Huang-Pu Avenue West 601, Guangzhou 510632, China
| | - Xiaojia Chen
- Guangdong Provincial Key Laboratory of Bioengineering Medicine &National Engineering Research Center of Genetic Medicine, Department of Cell Biology and Institute of Biomedicine, Jinan University, Huang-Pu Avenue West 601, Guangzhou 510632, China
| | - Yi Ma
- Guangdong Provincial Key Laboratory of Bioengineering Medicine &National Engineering Research Center of Genetic Medicine, Department of Cell Biology and Institute of Biomedicine, Jinan University, Huang-Pu Avenue West 601, Guangzhou 510632, China
| | - Sumin Hu
- Preclinical Medical School, Beijing University of Chinese Medicine, Beijing 100019, China
| | - Zuolin Wang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School and Hospital of Stomatology, Tongji University, Shanghai 200072, China
| | - An Hong
- Guangdong Provincial Key Laboratory of Bioengineering Medicine &National Engineering Research Center of Genetic Medicine, Department of Cell Biology and Institute of Biomedicine, Jinan University, Huang-Pu Avenue West 601, Guangzhou 510632, China
| | - Yingxian Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China
| | - Yao Sun
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School and Hospital of Stomatology, Tongji University, Shanghai 200072, China
| | - Xiaogang Wang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine &National Engineering Research Center of Genetic Medicine, Department of Cell Biology and Institute of Biomedicine, Jinan University, Huang-Pu Avenue West 601, Guangzhou 510632, China
| |
Collapse
|
1567
|
Characterization of hsa_circ_0004277 as a New Biomarker for Acute Myeloid Leukemia via Circular RNA Profile and Bioinformatics Analysis. Int J Mol Sci 2017; 18:ijms18030597. [PMID: 28282919 PMCID: PMC5372613 DOI: 10.3390/ijms18030597] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 02/23/2017] [Accepted: 03/06/2017] [Indexed: 11/17/2022] Open
Abstract
Circular RNAs (circRNAs) represent a widespread class of non-coding RNAs, which drew little attention in the past. Recently, limited data showed their promising future to act as biomarkers in human cancer, but the characteristics and functions remain largely unknown in hematopoietic malignancies, especially in leukemia. In this study, with the help of circRNA microarray, we demonstrated the expression profile of circRNAs in acute myeloid leukemia (AML) patients, and identified a large number of circRNAs possibly expressed in a leukemia specific manner. We also described a circRNA signature related to AML risk-status based on the bioinformatics prediction. In particular, a downregulated circRNA, hsa_circ_0004277, was characterized and functionally evaluated in a cohort of 115 human samples, thus offering a potential diagnostic marker and treatment target in AML. Interestingly, we found chemotherapy could significantly restore the expression of hsa_circ_0004277, indicating the increasing level of hsa_circ_0004277 was associated with successful treatment. Furthermore, a detailed circRNA–miRNA–mRNA interaction network was presented for hsa_circ_0004277, allowing us to better understand its underlying mechanisms for function in AML.
Collapse
|
1568
|
Zhang P, Zuo Z, Shang W, Wu A, Bi R, Wu J, Li S, Sun X, Jiang L. Identification of differentially expressed circular RNAs in human colorectal cancer. Tumour Biol 2017; 39:1010428317694546. [PMID: 28349836 DOI: 10.1177/1010428317694546] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Circular RNA, a class of non-coding RNA, is a new group of RNAs and is related to tumorigenesis. Circular RNAs are suggested to be ideal candidate biomarkers with potential diagnostic and therapeutic implications. However, little is known about their expression in human colorectal cancer. In our study, differentially expressed circular RNAs were detected using circular RNA array in paired tumor and adjacent non-tumorous tissues from six colorectal cancer patients. Expression levels of selected circular RNAs (hsa_circRNA_103809 and hsa_circRNA_104700) were measured by real-time polymerase chain reaction in 170 paired colorectal cancer samples for validation. Statistical analyses were conducted to investigate the association between hsa_circRNA_103809 and hsa_circRNA_104700 expression levels and respective patient clinicopathological features. Receiver operating characteristic curve was constructed to evaluate the diagnostic values. Our results indicated that there were 125 downregulated and 76 upregulated circular RNAs in colorectal cancer tissues compared with normal tissues. We also first demonstrated that the expression levels of hsa_circRNA_103809 ( p < 0.0001) and hsa_circRNA_104700 ( p = 0.0003) were significantly lower in colorectal cancer than in normal tissues. The expression level of hsa_circRNA_103809 was significantly correlated with lymph node metastasis ( p = 0.021) and tumor-node-metastasis stage ( p = 0.011), and the expression level of hsa_circRNA_104700 was significantly correlated with distal metastasis ( p = 0.036). The area under receiver operating characteristic curves of hsa_circRNA_103809 and hsa_circRNA_104700 were 0.699 ( p < 0.0001) and 0.616 ( p < 0.0001), respectively. In conclusion, these results suggest that hsa_circRNA_103809 and hsa_circRNA_104700 may be potentially involved in the development of colorectal cancer and serve as potential biomarkers for the diagnosis of colorectal cancer.
Collapse
Affiliation(s)
- Peili Zhang
- 1 Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhigui Zuo
- 2 Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenjing Shang
- 1 Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Aihua Wu
- 1 Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruichun Bi
- 1 Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianbo Wu
- 1 Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shaotang Li
- 3 Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuecheng Sun
- 4 Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Jiang
- 1 Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
1569
|
Xue J, Liu Y, Luo F, Lu X, Xu H, Liu X, Lu L, Yang Q, Chen C, Fan W, Liu Q. Circ100284, via miR-217 regulation of EZH2, is involved in the arsenite-accelerated cell cycle of human keratinocytes in carcinogenesis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:753-763. [DOI: 10.1016/j.bbadis.2016.12.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/21/2016] [Accepted: 12/31/2016] [Indexed: 12/12/2022]
|
1570
|
Hsiao KY, Lin YC, Gupta SK, Chang N, Yen L, Sun HS, Tsai SJ. Noncoding Effects of Circular RNA CCDC66 Promote Colon Cancer Growth and Metastasis. Cancer Res 2017; 77:2339-2350. [PMID: 28249903 DOI: 10.1158/0008-5472.can-16-1883] [Citation(s) in RCA: 513] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 08/18/2016] [Accepted: 02/22/2017] [Indexed: 12/23/2022]
Abstract
Circular RNA (circRNA) is a class of noncoding RNA whose functions remain mostly unknown. Recent studies indicate circRNA may be involved in disease pathogenesis, but direct evidence is scarce. Here, we characterize the functional role of a novel circRNA, circCCDC66, in colorectal cancer. RNA-Seq data from matched normal and tumor colon tissue samples identified numerous circRNAs specifically elevated in cancer cells, several of which were verified by quantitative RT-PCR. CircCCDC66 expression was elevated in polyps and colon cancer and was associated with poor prognosis. Gain-of-function and loss-of-function studies in colorectal cancer cell lines demonstrated that circCCDC66 controlled multiple pathological processes, including cell proliferation, migration, invasion, and anchorage-independent growth. In-depth characterization revealed that circCCDC66 exerts its function via regulation of a subset of oncogenes, and knockdown of circCCDC66 inhibited tumor growth and cancer invasion in xenograft and orthotopic mouse models, respectively. Taken together, these findings highlight a novel oncogenic function of circRNA in cancer progression and metastasis. Cancer Res; 77(9); 2339-50. ©2017 AACR.
Collapse
Affiliation(s)
- Kuei-Yang Hsiao
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Chi Lin
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sachin Kumar Gupta
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Ning Chang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Laising Yen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - H Sunny Sun
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Shaw-Jenq Tsai
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
1571
|
Hua J, Lu J, Isaev K, Soares F, Guo H, Ahmed M, He HH. Noncoding RNA for personalized prostate cancer treatment: utilizing the 'dark matters' of the genome. Per Med 2017; 14:159-169. [PMID: 29754555 DOI: 10.2217/pme-2016-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Prostate cancer is the most commonly diagnosed cancer in men in western countries, with significant health impact. Clinically, it is complicated with the lack of biomarkers and effective treatments for aggressive disease, particularly castration-resistant prostate cancer. Although we have gained much insight into the biology of prostate cancer through studying protein-coding genes, they represent only a small fraction of our genome. Therefore, it is essential for us to investigate noncoding RNAs, which comprise the majority of our transcriptome, in order to achieve a better understanding of prostate cancer and move toward personalized medicine. In this article, we will address recent advancements in our knowledge of noncoding RNAs, and discuss the clinical potentials and challenges of different types of noncoding RNAs in prostate cancer.
Collapse
Affiliation(s)
- Junjie Hua
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer Lu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Keren Isaev
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Fraser Soares
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Haiyang Guo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Musaddeque Ahmed
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Housheng Hansen He
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
1572
|
Zhu J, Ye J, Zhang L, Xia L, Hu H, Jiang H, Wan Z, Sheng F, Ma Y, Li W, Qian J, Luo C. Differential Expression of Circular RNAs in Glioblastoma Multiforme and Its Correlation with Prognosis. Transl Oncol 2017; 10:271-279. [PMID: 28236760 PMCID: PMC5328755 DOI: 10.1016/j.tranon.2016.12.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE: The present study aimed to explore the expression profiles of circular RNAs (circRNAs) in glioblastoma multiforme (GBM) in an attempt to identify potential core genes in the pathogenesis of this tumor. METHODS: Differentially expressed circRNAs were screened between tumor tissues from five GBM patients and five normal brain samples using Illumina Hiseq. Bioinformatics analysis was used to analyze their potential function. CircBRAF was further detected in different WHO grades glioma tissues and normal brain tissues. Kaplan-Meier curves and multivariate Cox's analysis were used to analyze the association between circBRAF expression level and prognosis of glioma patients. RESULTS: A total of 1411 differentially expressed circRNAs were identified in GBM patients including 206 upregulated circRNAs and 1205 downregulated circRNAs. Differential expression of circRNAs was closely associated with the biological process and molecular function. The downregulated circRNAs were mainly associated with ErbB and Neurotrophin signaling pathways. Moreover, the expression level of circBRAF in normal brain tissues was significantly higher than that in glioma tissues (P < .001). CircBRAF was significantly lower in glioma patients with high pathological grade (WHO III & IV) than those with low grade (WHO I & II) (P < .001). Cox analysis revealed that high circBRAF expression was an independent biomarker for predicting good progression-free survival and overall survival in glioma patients (HR = 0.413, 95% CI 0.201-0.849; HR = 0.299, 95% CI 0.135-0.661; respectively). CONCLUSION: The present study identified a profile of dysregulated circRNAs in GBM. Bioinformatics analysis showed that dysregulated circRNAs might be associated with tumorigenesis and development of GBM. In addition, circBRAF could severe as a biomarker for predicting pathological grade and prognosis in glioma patients.
Collapse
Affiliation(s)
- Junle Zhu
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Jingliang Ye
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, China; Department of Neurosurgery, No. 98 Hospital of Chinese People's Liberation Army, Huzhou 313000, China
| | - Lei Zhang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Lili Xia
- Department of Emergency, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Hongkang Hu
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Heng Jiang
- Department of spinal surgery, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Zhiping Wan
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Fei Sheng
- Department of Reproductive Medical Center, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Yan Ma
- Department of Reproductive Medical Center, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Wen Li
- Department of Reproductive Medical Center, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Jun Qian
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, China.
| | - Chun Luo
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, China.
| |
Collapse
|
1573
|
Ma P, Pan Y, Li W, Sun C, Liu J, Xu T, Shu Y. Extracellular vesicles-mediated noncoding RNAs transfer in cancer. J Hematol Oncol 2017; 10:57. [PMID: 28231804 PMCID: PMC5324273 DOI: 10.1186/s13045-017-0426-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/21/2017] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are small membranous vesicles secreted from numerous cell types and have been found involved in cell-to-cell communication by transferring noncoding RNAs (ncRNAs) including microRNAs, long noncoding RNAs, and circular RNAs. Emerging evidence shows that EV-associated ncRNAs play important roles in a wide range of diseases, particularly in cancer where they function through regulating protein expression of the pivotal genes that make contributions to tumorigenesis. Given their stability and abundance in serum, EV-associated ncRNAs can act as new diagnostic biomarkers and new therapeutic targets for cancer. Herein, we review the properties of EV-associated ncRNAs, their functions, and potential significance in cancer.
Collapse
Affiliation(s)
- Pei Ma
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Yutian Pan
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Wei Li
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Chongqi Sun
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Jie Liu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Tongpeng Xu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Yongqian Shu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, People's Republic of China.
| |
Collapse
|
1574
|
Zheng J, Liu X, Xue Y, Gong W, Ma J, Xi Z, Que Z, Liu Y. TTBK2 circular RNA promotes glioma malignancy by regulating miR-217/HNF1β/Derlin-1 pathway. J Hematol Oncol 2017; 10:52. [PMID: 28219405 PMCID: PMC5319142 DOI: 10.1186/s13045-017-0422-2] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/14/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Circular RNAs are a subgroup of non-coding RNAs and generated by a mammalian genome. Herein, the expression and function of circular RNA circ-TTBK2 were investigated in human glioma cells. METHODS Fluorescence in situ hybridization and quantitative real-time PCR were conducted to profile the cell distribution and expression of circ-TTBK2 and microRNA-217 (miR-217) in glioma tissues and cells. Immunohistochemical and western blot were used to determine the expression of HNF1β and Derlin-1 in glioma tissues and cells. Stable knockdown of circ-TTBK2 or overexpression of miR-217 glioma cell lines (U87 and U251) were established to explore the function of circ-TTBK2 and miR-217 in glioma cells. Further, luciferase reports and RNA immunoprecipitation were used to investigate the correlation between circ-TTBK2 and miR-217. Cell Counting Kit-8, transwell assays, and flow cytometry were used to investigate circ-TTBK2 and miR-217 function including cell proliferation, migration and invasion, and apoptosis, respectively. ChIP assays were used to ascertain the correlations between HNF1β and Derlin-1. RESULTS We found that circ-TTBK2 was upregulated in glioma tissues and cell lines, while linear TTBK2 was not dysregulated in glioma tissues and cells. Enhanced expression of circ-TTBK2 promoted cell proliferation, migration, and invasion, while inhibited apoptosis. MiR-217 was downregulated in glioma tissues and cell lines. We also found that circ-TTBK2, but not linear TTBK2, acted as miR-217 sponge in a sequence-specific manner. In addition, upregulated circ-TTBK2 decreased miR-217 expression and there was a reciprocal negative feedback between them in an Argonaute2-dependent manner. Moreover, reintroduction of miR-217 significantly reversed circ-TTBK2-mediated promotion of glioma progression. HNF1β was a direct target of miR-217, and played oncogenic role in glioma cells. Remarkably, circ-TTBK2 knockdown combined with miR-217 overexpression led to tumor regression in vivo. CONCLUSIONS These results demonstrated a novel role circ-TTBK2 in the glioma progression.
Collapse
Affiliation(s)
- Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, 110004, People's Republic of China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, 110004, People's Republic of China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Wei Gong
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Zhuo Xi
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, 110004, People's Republic of China
| | - Zhongyou Que
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, 110004, People's Republic of China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China. .,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
1575
|
CirComPara: A Multi-Method Comparative Bioinformatics Pipeline to Detect and Study circRNAs from RNA-seq Data. Noncoding RNA 2017; 3:ncrna3010008. [PMID: 29657280 PMCID: PMC5832002 DOI: 10.3390/ncrna3010008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/27/2017] [Indexed: 12/22/2022] Open
Abstract
Circular RNAs (circRNAs) are generated by back-splicing of immature RNA forming covalently closed loops of intron/exon RNA molecules. Pervasiveness, evolutionary conservation, massive and regulated expression, and post-transcriptional regulatory roles of circRNAs in eukaryotes have been appreciated and described only recently. Moreover, being easily detectable disease markers, circRNAs undoubtedly represent a molecular class with high bearing on molecular pathobiology. CircRNAs can be detected from RNA-seq data using appropriate computational methods to identify the sequence reads spanning back-splice junctions that do not co-linearly map to the reference genome. To this end, several programs were developed and critical assessment of various strategies and tools suggested the combination of at least two methods as good practice to guarantee robust circRNA detection. Here, we present CirComPara (http://github.com/egaffo/CirComPara), an automated bioinformatics pipeline, to detect, quantify and annotate circRNAs from RNA-seq data using in parallel four different methods for back-splice identification. CirComPara also provides quantification of linear RNAs and gene expression, ultimately comparing and correlating circRNA and gene/transcript expression levels. We applied our method to RNA-seq data of monocyte and macrophage samples in relation to haploinsufficiency of the RNA-binding splicing factor Quaking (QKI). The biological relevance of the results, in terms of number, types and variations of circRNAs expressed, illustrates CirComPara potential to enlarge the knowledge of the transcriptome, adding details on the circRNAome, and facilitating further computational and experimental studies.
Collapse
|
1576
|
Wang Y, Mo Y, Gong Z, Yang X, Yang M, Zhang S, Xiong F, Xiang B, Zhou M, Liao Q, Zhang W, Li X, Li X, Li Y, Li G, Zeng Z, Xiong W. Circular RNAs in human cancer. Mol Cancer 2017; 16:25. [PMID: 28143578 PMCID: PMC5282898 DOI: 10.1186/s12943-017-0598-7] [Citation(s) in RCA: 292] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/19/2017] [Indexed: 12/15/2022] Open
Abstract
CircRNAs are a novel type of RNAs. With the newly developed technology of next-generation sequencing (NGS), especially RNA-seq technology, over 30,000 circRNAs have already been found. Owing to their unique structure, they are more stable than linear RNAs. CircRNAs play important roles in the carcinogenesis of cancer. The expression of circRNAs is correlated with patients’ clinical characteristics, and circRNAs play a vital role in many aspects of malignant phenotypes, including cell cycle, apoptosis, vascularization, and invasion; metastasis as a RNA sponge, binding to RBP; or translation. Therefore, it is meaningful to further study the mechanism of interactions between circRNAs and tumors. The role of circRNAs as molecular markers or potential targets will provide promising application perspectives, such as early tumor diagnosis, therapeutic evaluation, prognosis prediction, and even gene therapy for tumors.
Collapse
Affiliation(s)
- Yumin Wang
- Key Laboratory of Carcinogenesis of Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Yongzhen Mo
- Key Laboratory of Carcinogenesis of Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Zhaojian Gong
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China.,Department of Stomatolog, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiang Yang
- Key Laboratory of Carcinogenesis of Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
| | - Mo Yang
- Key Laboratory of Carcinogenesis of Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
| | - Shanshan Zhang
- Key Laboratory of Carcinogenesis of Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
| | - Fang Xiong
- Key Laboratory of Carcinogenesis of Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
| | - Bo Xiang
- Key Laboratory of Carcinogenesis of Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.,Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Qianjin Liao
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China.,Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Wenling Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China
| | - Xiayu Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Xiaoling Li
- Key Laboratory of Carcinogenesis of Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Yong Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Guiyuan Li
- Key Laboratory of Carcinogenesis of Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Zhaoyang Zeng
- Key Laboratory of Carcinogenesis of Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.
| | - Wei Xiong
- Key Laboratory of Carcinogenesis of Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
1577
|
Abstract
Circular RNAs (circRNAs), a novel type of widespread and diverse endogenous non-coding RNAs (ncRNAs), which are different from the linear RNAs, form a covalently closed continuous loop without 5' or 3' polarities. The majority of circRNAs are abundant, conserved and stable across different species, and exhibit tissue/developmental-stage-specific characteristics. They are generated primarily through a type of alternative RNA splicing called "back-splicing," in which a downstream splice donor is joined to an upstream splice acceptor through splice skipping or direct splice. Recent studies have discovered circRNAs function as microRNA sponges, binding with RNA-associated proteins to form RNA-protein complexes and then regulating gene transcription and translation into polypeptides. Emerging evidence indicates that circRNAs play important roles in the regulation of the development and progression of multiple cancers by serving as potential diagnostic and predictive biomarkers involved in tumor growth and invasion and providing new strategies for cancer diagnosis and targeted therapy. In this review, we briefly delineate the diversity and characteristics of circRNAs and discuss the highlights of the biogenesis of circRNAs and their potential functions in tumor.
Collapse
Affiliation(s)
- Li-Dan Hou
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
1578
|
Abstract
Circular RNAs (CircRNAs) were first identified as a viroid and later found to also be an endogenous RNA splicing product in eukaryotes. In recent years, a series of RNA-sequencing analyses from a diverse range of eukaryotes have shed new light on these eukaryotic circRNAs, revealing dynamic expression patterns in various developmental stages and physiological conditions. In this review, we focus on circRNAs implicated in stress response pathways and explore potential mechanisms underlying their regulation. To date, circRNAs have been shown to act as scaffolds in the assembly of protein complexes, sequester proteins from native subcellular localization, activate transcription of parental genes, inhibit RNA-protein interactions, and function as regulators of microRNA activity. Although the mechanism modulating circRNA levels during stress remains unclear, circRNAs are shown to be regulated during biogenesis, degradation, and exportation. As circRNAs do not have 5' and 3' ends, there are no entry points for exoribonucleases to initiate degradation. Such inherent stability makes this class of RNA a strong candidate to maintain homeostasis in the face of environmental challenges.
Collapse
Affiliation(s)
- Joseph W Fischer
- a McKusick-Nathans Institute of Genetic Medicine, School of Medicine , Johns Hopkins University , Baltimore , MD , USA.,b Department of Biochemistry and Molecular Biology , Bloomberg School of Public Health, Johns Hopkins University , Baltimore , MD , USA
| | - Anthony K L Leung
- a McKusick-Nathans Institute of Genetic Medicine, School of Medicine , Johns Hopkins University , Baltimore , MD , USA.,b Department of Biochemistry and Molecular Biology , Bloomberg School of Public Health, Johns Hopkins University , Baltimore , MD , USA.,c Department of Oncology , School of Medicine, Johns Hopkins University , Baltimore , MD , USA
| |
Collapse
|
1579
|
Zhu M, Xu Y, Chen Y, Yan F. Circular BANP, an upregulated circular RNA that modulates cell proliferation in colorectal cancer. Biomed Pharmacother 2017; 88:138-144. [PMID: 28103507 DOI: 10.1016/j.biopha.2016.12.097] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 12/21/2022] Open
Abstract
Circular RNAs (circRNAs) are recently identified as widespread and diverse endogenous noncoding RNAs that may harbor vital functions in human and animals. However, the role of circRNAs in the process of tumorigenesis and development of colorectal cancer (CRC) remains vague. Here we characterized the circRNA expression profile from three paired CRC cancerous and adjacent normal tissues by human circRNA array, and identified 136 significantly overexpressed circRNAs and 243 downregulated circRNAs in CRC cancerous tissues (>2-fold changes). We further validated one circRNA generated from Exon 5-11 of BANP gene, termed circ-BANP. In addition, RT-PCR result showed that circ-BANP was overexpressed in 35 CRC cancerous tissues. Knockdown of circ-BANP with siRNA significantly attenuate the proliferation of CRC cells. In summary, our findings demonstrated that dysregulated circ-BANP appears to have an important role in CRC cells and could serve as a prognostic and therapeutic marker for CRC.
Collapse
Affiliation(s)
- Mingchen Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Department of Clinical Laboratory, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China
| | - Yijun Xu
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Feng Yan
- Department of Clinical Laboratory, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China.
| |
Collapse
|
1580
|
Abdelmohsen K, Panda AC, Munk R, Grammatikakis I, Dudekula DB, De S, Kim J, Noh JH, Kim KM, Martindale JL, Gorospe M. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol 2017; 14:361-369. [PMID: 28080204 DOI: 10.1080/15476286.2017.1279788] [Citation(s) in RCA: 634] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
HuR influences gene expression programs and hence cellular phenotypes by binding to hundreds of coding and noncoding linear RNAs. However, whether HuR binds to circular RNAs (circRNAs) and impacts on their function is unknown. Here, we have identified en masse circRNAs binding HuR in human cervical carcinoma HeLa cells. One of the most prominent HuR target circRNAs was hsa_circ_0031288, renamed CircPABPN1 as it arises from the PABPN1 pre-mRNA. Further analysis revealed that HuR did not influence CircPABPN1 abundance; interestingly, however, high levels of CircPABPN1 suppressed HuR binding to PABPN1 mRNA. Evaluation of PABPN1 mRNA polysomes indicated that PABPN1 translation was modulated positively by HuR and hence negatively by CircPABPN1. We propose that the extensive binding of CircPABPN1 to HuR prevents HuR binding to PABPN1 mRNA and lowers PABPN1 translation, providing the first example of competition between a circRNA and its cognate mRNA for an RBP that affects translation.
Collapse
Affiliation(s)
- Kotb Abdelmohsen
- a Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health , Baltimore , MD , USA
| | - Amaresh C Panda
- a Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health , Baltimore , MD , USA
| | - Rachel Munk
- a Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health , Baltimore , MD , USA
| | - Ioannis Grammatikakis
- a Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health , Baltimore , MD , USA
| | - Dawood B Dudekula
- a Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health , Baltimore , MD , USA
| | - Supriyo De
- a Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health , Baltimore , MD , USA
| | - Jiyoung Kim
- a Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health , Baltimore , MD , USA
| | - Ji Heon Noh
- a Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health , Baltimore , MD , USA
| | - Kyoung Mi Kim
- a Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health , Baltimore , MD , USA
| | - Jennifer L Martindale
- a Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health , Baltimore , MD , USA
| | - Myriam Gorospe
- a Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health , Baltimore , MD , USA
| |
Collapse
|
1581
|
Maiese K. Harnessing the Power of SIRT1 and Non-coding RNAs in Vascular Disease. Curr Neurovasc Res 2017; 14:82-88. [PMID: 27897112 PMCID: PMC5383524 DOI: 10.2174/1567202613666161129112822] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/31/2016] [Accepted: 11/14/2016] [Indexed: 02/06/2023]
Abstract
Noncommunicable diseases (NCDs) contribute to a significant amount of disability and death in the world. Of these disorders, vascular disease is ranked high, falls within the five leading causes of death, and impacts multiple other disease entities such as those of the cardiac system, nervous system, and metabolic disease. Targeting the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) pathway and the modulation of micro ribonucleic acids (miRNAs) may hold great promise for the development of novel strategies for the treatment of vascular disease since each of these pathways are highly relevant to cardiac and nervous system disorders as well as to metabolic dysfunction. SIRT1 is vital in determining the course of stem cell development and the survival, metabolism, and life span of differentiated cells that are overseen by both autophagy and apoptosis. SIRT1 interfaces with a number of pathways that involve forkhead transcription factors, mechanistic of rapamycin (mTOR), AMP activated protein kinase (AMPK) and Wnt1 inducible signaling pathway protein 1 (WISP1) such that the level of activity of SIRT1 can become a critical determinant for biological and clinical outcomes. The essential fine control of SIRT1 is directly tied to the world of non-coding RNAs that ultimately oversee SIRT1 activity to either extend or end cellular survival. Future studies that can further elucidate the crosstalk between SIRT1 and non-coding RNAs should serve well our ability to harness the power of SIRT1 and non-coding RNAs for the treatment of vascular disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101
| |
Collapse
|
1582
|
Cortés-López M, Miura P. Emerging Functions of Circular RNAs. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:527-537. [PMID: 28018143 PMCID: PMC5168830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Many thousands of Circular RNAs (circRNAs) have recently been identified in metazoan genomes by transcriptome-wide sequencing. Most circRNAs are generated by back-splicing events from exons of protein-coding genes. A great deal of progress has recently been made in understanding the genome-wide expression patterns, biogenesis, and regulation of circRNAs. To date, however, few functions of circRNAs have been identified. CircRNAs are preferentially expressed in neural tissues and some are found at synapses, suggesting possible functions in the nervous system. Several circRNAs have been shown to function as microRNA "sponges" to counteract microRNA mediated repression of mRNA. New functions for circRNAs are arising, including protein sequestration, transcriptional regulation, and potential functions in cancer. Here, we highlight the recent progress made in understanding the biogenesis and regulation of circRNAs, discuss newly uncovered circRNA functions, and explain the methodological approaches that could reveal more exciting and unexpected roles for these RNAs.
Collapse
Affiliation(s)
- Mariela Cortés-López
- Centro de Ciencias Genómicas UNAM Cuernavaca, Morelos, Mexico,University of Nevada, Reno, Department of Biology, Reno, NV, USA
| | - Pedro Miura
- University of Nevada, Reno, Department of Biology, Reno, NV, USA,To whom all correspondence should be addressed: Pedro Miura, 1664 N. Virginia St. Reno, NV, 89557 Phone: 775-682-7004; Fax (775) 784-1302;
| |
Collapse
|
1583
|
Shen Y, Guo X, Wang W. Identification and characterization of circular RNAs in zebrafish. FEBS Lett 2016; 591:213-220. [DOI: 10.1002/1873-3468.12500] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 11/06/2016] [Accepted: 11/07/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Yudong Shen
- College of Fisheries; Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding; Ministry of Agriculture; Huazhong Agricultural University; Wuhan Hubei China
| | - Xianwu Guo
- Lab of Biotecnología Genómica; Centro de Biotecnología Genómica; Instituto de Politécnico Nacional; Reynosa Tamaulipas Mexico
| | - Weimin Wang
- College of Fisheries; Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding; Ministry of Agriculture; Huazhong Agricultural University; Wuhan Hubei China
| |
Collapse
|
1584
|
Abstract
Circular RNAs (circRNAs) are a novel class of non-coding RNA characterized by a covalently closed-loop structure generated through a special type of alternative splicing termed backsplicing. CircRNAs are emerging as a heterogeneous class of molecules involved in modulating gene expression by regulation of transcription, protein and miRNA functions. CircRNA expression is cell type and tissue specific and can be largely independent of the expression level of the linear host gene, indicating that regulation of expression might be an important aspect with regard to control of circRNA function. In this review, a brief introduction to the characteristics that define a circRNA will be given followed by a discussion of putative biogenesis pathways and modulators of circRNA expression as well as of the stage at which circRNA formation takes place. A brief summary of circRNA functions will also be provided and lastly, an outlook with a focus on unanswered questions regarding circRNA biology will be included.
Collapse
Affiliation(s)
- Karoline K Ebbesen
- a Department of Molecular Biology and Genetics (MBG) and Aarhus University , Aarhus , Denmark.,b Interdisciplinary Nanoscience Center (iNANO) , Aarhus University , Aarhus , Denmark
| | - Thomas B Hansen
- a Department of Molecular Biology and Genetics (MBG) and Aarhus University , Aarhus , Denmark
| | - Jørgen Kjems
- a Department of Molecular Biology and Genetics (MBG) and Aarhus University , Aarhus , Denmark.,b Interdisciplinary Nanoscience Center (iNANO) , Aarhus University , Aarhus , Denmark
| |
Collapse
|
1585
|
Dong WW, Li HM, Qing XR, Huang DH, Li HG. Identification and characterization of human testis derived circular RNAs and their existence in seminal plasma. Sci Rep 2016; 6:39080. [PMID: 27958373 PMCID: PMC5153637 DOI: 10.1038/srep39080] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/17/2016] [Indexed: 12/19/2022] Open
Abstract
Circular RNAs (circRNAs) have emerged as novel molecules of interest in gene regulation as other noncoding RNAs. Though they have been explored in some species and tissues, the expression and functions of circRNAs in human reproductive systems remain unknown. Here we revealed the expression profiles of circRNAs in human testis tissue using high-throughput sequencing. The conformation of these testis-derived circRNAs in seminal plasma was also investigated, aiming to provide a non-invasive liquid biopsy surrogate for testicular biopsy. We predicted >15,000 circRNAs in human testis, with most of them (10,792; 67%) new. In all the 5,928 circRNA forming genes, 1,017 are first reported by us to generate circRNAs. Interestingly, these genes are mostly related to spermatogenesis, sperm motility, fertilization, etc. The sequence feature, chromosome location, alternative splicing and other characteristics of the circRNAs in human testis were also explored. Moreover, we found that these testis-derived circRNAs could be stably detected in seminal plasma. Most of them were probably bound with proteins in seminal plasma and were very stable at room temperature. Our work has laid the foundations to decipher regulation mechanisms of circRNAs in spermatogenesis and to develop circRNAs as novel noninvasive biomarkers for male infertile diseases.
Collapse
Affiliation(s)
- Wei-Wei Dong
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Hui-Min Li
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Xing-Rong Qing
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Dong-Hui Huang
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China.,Wuhan Tongji Reproductive Medicine Hospital, Wuhan, 430030, P. R. China
| | - Hong-Gang Li
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China.,Wuhan Tongji Reproductive Medicine Hospital, Wuhan, 430030, P. R. China
| |
Collapse
|
1586
|
Abstract
Circular RNAs (circRNAs) are a newly appreciated class of RNAs expressed across diverse phyla. These enigmatic transcripts are most commonly generated by back-splicing events from exons of protein-coding genes. This results in highly stable RNAs due to the lack of free 5′ and 3′ ends. CircRNAs are enriched in neural tissues, suggesting that they might have neural functions. Here, we sought to determine whether circRNA accumulation occurs during aging in mice. Total RNA-seq profiling of young (1 month old) and aged (22 month old) cortex, hippocampus and heart samples was performed. This led to the confident detection of 6,791 distinct circRNAs across these samples, including 675 novel circRNAs. Analysis uncovered a strong bias for circRNA upregulation during aging in neural tissues. These age-accumulation trends were verified for individual circRNAs by RT-qPCR and Northern analysis. In contrast, comparison of aged versus young hearts failed to reveal a global trend for circRNA upregulation. Age-accumulation of circRNAs in brain tissues was found to be largely independent from linear RNA expression of host genes. These findings suggest that circRNAs might play biological roles relevant to the aging nervous system.
Collapse
|
1587
|
Acfs: accurate circRNA identification and quantification from RNA-Seq data. Sci Rep 2016; 6:38820. [PMID: 27929140 PMCID: PMC5144000 DOI: 10.1038/srep38820] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/14/2016] [Indexed: 12/22/2022] Open
Abstract
Circular RNAs (circRNAs) are a group of single-stranded RNAs in closed circular form. They are splicing-generated, widely expressed in various tissues and have functional implications in development and diseases. To facilitate genome-wide characterization of circRNAs using RNA-Seq data, we present a freely available software package named acfs. Acfs allows de novo, accurate and fast identification and abundance quantification of circRNAs from single- and paired-ended RNA-Seq data. On simulated datasets, acfs achieved the highest F1 accuracy and lowest false discovery rate among current state-of-the-art tools. On real-world datasets, acfs efficiently identified more bona fide circRNAs. Furthermore, we demonstrated the power of circRNA analysis on two leukemia datasets. We identified a set of circRNAs that are differentially expressed between AML and APL samples, which might shed light on the potential molecular classification of complex diseases using circRNA profiles. Moreover, chromosomal translocation, as manifested in numerous diseases, could produce not only fusion transcripts but also fusion circRNAs of clinical relevance. Featured with high accuracy, low FDR and the ability to identify fusion circRNAs, we believe that acfs is well suited for a wide spectrum of applications in characterizing the landscape of circRNAs from non-model organisms to cancer biology.
Collapse
|
1588
|
Abstract
Circular RNAs (circRNAs) are highly abundant and evolutionarily conserved non-coding RNAs produced by circularization of specific exons. Since their re-discovery as potential regulators of gene expression, thousands of circRNAs were detected in different tissues and cell types across most organisms. Accumulating data suggest key roles for them in the central nervous system. Neuronal-expressed RNAs are diverted to yield highly enriched CircRNAs in human, mouse, pig and flies, with many of them enriched in neuronal tissues. CircRNA levels are dynamically modulated in neurons, both during differentiation and following bursts of electrical activity, and accumulate with age, and many of them are enriched in synapses. Together, available data suggest that circRNAs have important roles in synaptic plasticity and neuronal function. This review covers current advances in the field and lays out hypotheses regarding functions of circRNAs in the brain as well as their putative involvement in initiation and progression of neurodegenerative processes.
Collapse
Affiliation(s)
- Mor Hanan
- a Department of Biological Chemistry , Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus , Jerusalem , Israel
| | - Hermona Soreq
- a Department of Biological Chemistry , Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus , Jerusalem , Israel.,b The Edmond and Lily Safra Center for Brain Sciences , The Hebrew University of Jerusalem, The Edmond J. Safra Campus , Jerusalem , Israel
| | - Sebastian Kadener
- a Department of Biological Chemistry , Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus , Jerusalem , Israel
| |
Collapse
|
1589
|
Migault M, Donnou-Fournet E, Galibert MD, Gilot D. Definition and identification of small RNA sponges: Focus on miRNA sequestration. Methods 2016; 117:35-47. [PMID: 27876678 DOI: 10.1016/j.ymeth.2016.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/18/2016] [Indexed: 02/09/2023] Open
Abstract
Targeting RNAs appears as an important opportunity to modulate biological processes. Here, we overviewed critical parameters implied in RNAs competition to bind small RNAs. These competitions influence small RNA availability and thereby gene expression and cell fate. We focused on the ability of RNAs to sequester small RNA, mainly the microRNAs (miRNAs) and proposed experimental workflows to demonstrate the existence and activity of RNA-sponge. From this basic science, we detailed tailored oligonucleotides, developed to challenge the binding of small RNA. In vitro and in vivo, these tailored oligonucleotides efficiently restore small RNA activity by preventing their sequestration on RNA-sponges.
Collapse
Affiliation(s)
- Mélodie Migault
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6290, Institut de Génétique et Développement de Rennes, France; Université de Rennes 1, Rennes, France; Cancer Research Association (ARC) Labelled Team, France
| | - Emmanuelle Donnou-Fournet
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6290, Institut de Génétique et Développement de Rennes, France; Université de Rennes 1, Rennes, France; Cancer Research Association (ARC) Labelled Team, France
| | - Marie-Dominique Galibert
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6290, Institut de Génétique et Développement de Rennes, France; Université de Rennes 1, Rennes, France; Cancer Research Association (ARC) Labelled Team, France; Department of Medical Genomic, Rennes University Hospital, Rennes, France.
| | - David Gilot
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6290, Institut de Génétique et Développement de Rennes, France; Université de Rennes 1, Rennes, France; Cancer Research Association (ARC) Labelled Team, France.
| |
Collapse
|
1590
|
Profiling of the Predicted Circular RNAs in Ductal In Situ and Invasive Breast Cancer: A Pilot Study. Int J Genomics 2016; 2016:4503840. [PMID: 27965971 PMCID: PMC5124670 DOI: 10.1155/2016/4503840] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 10/18/2016] [Indexed: 12/21/2022] Open
Abstract
The recent advantage obtained by next generation sequencing allows a depth investigation of a new “old” kind of noncoding transcript, the circular RNAs. Circular RNAs are nontranslated RNAs, typically nonpolyadenylated, with a resistance to exonucleases that gives them the ability to be more stable than the common linear RNA isoforms. We used a bioinformatic detection tool (CIRCexplorer) to research predictive circRNAs from the next generation sequenced data of five samples of ductal in situ carcinoma (DCIS) and matched adjacent invasive ductal carcinoma (IDC). Furthermore, we also investigated the circular RNAs expressed in MCF7, an invasive breast ductal carcinoma cell line. We described the genomic context of the predicted circular RNAs and we address the hypothetical possible functional roles. This study showed a perspective of a panel of predictive circRNAs identified and the function that circRNAs could exert.
Collapse
|
1591
|
Xing YH, Bai Z, Liu CX, Hu SB, Ruan M, Chen LL. Research progress of long noncoding RNA in China. IUBMB Life 2016; 68:887-893. [DOI: 10.1002/iub.1564] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Yu-Hang Xing
- State Key Laboratory of Molecular Biology; Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; Shanghai China
- University of Chinese Academy of Sciences; Beijing China
| | - Zhiqiang Bai
- State Key Laboratory of Molecular Biology; Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; Shanghai China
| | - Chu-Xiao Liu
- State Key Laboratory of Molecular Biology; Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; Shanghai China
- University of Chinese Academy of Sciences; Beijing China
| | - Shi-Bin Hu
- State Key Laboratory of Molecular Biology; Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; Shanghai China
- University of Chinese Academy of Sciences; Beijing China
| | - Meihua Ruan
- Shanghai Information Center for Life Sciences; Chinese Academy of Sciences; Shanghai China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology; Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; Shanghai China
- School of Life Science; ShanghaiTech University; Shanghai China
- University of Chinese Academy of Sciences; Beijing China
| |
Collapse
|
1592
|
Ye CY, Zhang X, Chu Q, Liu C, Yu Y, Jiang W, Zhu QH, Fan L, Guo L. Full-length sequence assembly reveals circular RNAs with diverse non-GT/AG splicing signals in rice. RNA Biol 2016; 14:1055-1063. [PMID: 27739910 DOI: 10.1080/15476286.2016.1245268] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Circular RNAs (circRNAs) have been identified in diverse eukaryotic species and are characterized by RNA backsplicing events. Current available methods for circRNA identification are able to determine the start and end locations of circRNAs in the genome but not their full-length sequences. In this study, we developed a method to assemble the full-length sequences of circRNAs using the backsplicing RNA-Seq reads and their corresponding paired-end reads. By applying the method to an rRNA-depleted/RNase R-treated RNA-Seq dataset, we for the first time identified full-length sequences of nearly 3,000 circRNAs in rice. We further showed that alternative circularization of circRNA is a common feature in rice and, surprisingly, found that the junction sites of a large number of rice circRNAs are flanked by diverse non-GT/AG splicing signals while most human exonic circRNAs are flanked by canonical GT/AG splicing signals. Our study provides a method for genome-wide identification of full-length circRNAs and expands our understanding of splicing signals of circRNAs.
Collapse
Affiliation(s)
- Chu-Yu Ye
- a Institute of Crop Sciences, Zhejiang University , Hangzhou , China
| | - Xingchen Zhang
- a Institute of Crop Sciences, Zhejiang University , Hangzhou , China
| | - Qinjie Chu
- a Institute of Crop Sciences, Zhejiang University , Hangzhou , China
| | - Chen Liu
- a Institute of Crop Sciences, Zhejiang University , Hangzhou , China
| | - Yongyi Yu
- a Institute of Crop Sciences, Zhejiang University , Hangzhou , China
| | - Weiqin Jiang
- c The First Affiliated Hospital, Zhejiang University , Hangzhou , China
| | - Qian-Hao Zhu
- d CSIRO Agriculture and Food, Black Mountain Laboratories , Canberra , Australia
| | - Longjiang Fan
- a Institute of Crop Sciences, Zhejiang University , Hangzhou , China.,b Institute of Bioinformatics, Zhejiang University , Hangzhou , China
| | - Longbiao Guo
- e China National Rice Research Institute, Chinese Academy of Agricultural Sciences , Hangzhou , China
| |
Collapse
|
1593
|
Panda AC, Grammatikakis I, Munk R, Gorospe M, Abdelmohsen K. Emerging roles and context of circular RNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27612318 DOI: 10.1002/wrna.1386] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/30/2022]
Abstract
Circular RNAs (circRNAs) represent a large class of noncoding RNAs (ncRNAs) that have recently emerged as regulators of gene expression. They have been shown to suppress microRNAs, thereby increasing the translation and stability of the targets of such microRNAs. In this review, we discuss the emerging functions of circRNAs, including RNA transcription, splicing, turnover, and translation. We also discuss other possible facets of circRNAs that can influence their function depending on the cell context, such as circRNA abundance, subcellular localization, interacting partners (RNA, DNA, and proteins), dynamic changes in interactions following stimulation, and potential circRNA translation. The ensuing changes in gene expression patterns elicited by circRNAs are proposed to drive key cellular processes, such as cell proliferation, differentiation, and survival, that govern health and disease. WIREs RNA 2017, 8:e1386. doi: 10.1002/wrna.1386 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Amaresh C Panda
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ioannis Grammatikakis
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
1594
|
Abstract
Circular RNA from backspliced exons (or exonic circular RNA, circRNA) is a type of covalently closed non-colinear RNA that was recently rediscovered in eukaryotes. Although circRNAs are often expressed at low levels, emerging evidence indicates that many circRNAs are linked to physiological development and various diseases. Notably, circRNAs have been shown to serve as oncogenic stimuli or tumor suppressors in cancer. circRNAs may regulate gene expression through different mechanisms. In addition, circRNAs have been shown to be useful as biomarkers of diseases due to their stability, specific expression and relation to diseases both in cells and in extracellular fluid. This review summarizes current knowledge of human circRNAs and discusses the emerging role and clinical implication of these multifarious transcripts.
Collapse
Affiliation(s)
- Dongbin Lyu
- a Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University , Shanghai , China.,b Department of Oncology , Shanghai Medical College, Fudan University , Shanghai , China
| | - Shenglin Huang
- a Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University , Shanghai , China.,b Department of Oncology , Shanghai Medical College, Fudan University , Shanghai , China
| |
Collapse
|
1595
|
Abstract
Circular ribonucleic acids (circRNAs) are non-coding RNAs of approximately 100 nucleotides in length with thousands of members in mammalian cells. The presence of circRNAs is believed to be even greater than that of messenger RNAs. Identification of circRNAs occurred approximately 37 years ago with the subsequent demonstration that covalent bonds are necessary for the unique circular structure of these ribonucleic acids. However, present understanding of the complex biological role of circRNAs remains limited and requires further elucidation. CircRNAs may impact aging, multiple disorders, function as biomarkers, and are able to regulate gene expression by acting as effective microRNA (miRNA) sponges. New work suggests that circRNAs are vital for the modulation of cellular senescence and programmed cell death pathways such as apoptosis. These non-coding RNAs can control cell cycle progression, cellular proliferation, and cellular survival impacting disorders linked to aging, cardiovascular disease, and atherosclerosis through pathways that involve cyclin-dependent kinase 2 (CDK2), cyclin-dependent kinase inhibitor 1 (p21), and mammalian forkhead transcription factors. In addition, circRNAs can oversee cellular metabolism and disorders such as diabetes mellitus through the regulation of insulin signaling as well as limit tumor progression through Wnt signaling and β-catenin pathways. Further understanding of the biology of circRNAs offers great promise for the targeting of novel strategies against a wide spectrum of disease entities.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101, USA
| |
Collapse
|
1596
|
Abstract
Pre-mRNAs from thousands of eukaryotic genes can be non-canonically spliced to generate circular RNAs, some of which accumulate to higher levels than their associated linear mRNA. Recent work has revealed widespread mechanisms that dictate whether the spliceosome generates a linear or circular RNA. For most genes, circular RNA biogenesis via backsplicing is far less efficient than canonical splicing, but circular RNAs can accumulate due to their long half-lives. Backsplicing is often initiated when complementary sequences from different introns base pair and bring the intervening splice sites close together. This process is further regulated by the combinatorial action of RNA binding proteins, which allow circular RNAs to be expressed in unique patterns. Some genes do not require complementary sequences to generate RNA circles and instead take advantage of exon skipping events. It is still unclear what most mature circular RNAs do, but future investigations into their functions will be facilitated by recently described methods to modulate circular RNA levels.
Collapse
Affiliation(s)
- Jeremy E Wilusz
- a Department of Biochemistry and Biophysics , University of Pennsylvania Perelman School of Medicine , PA , USA
| |
Collapse
|
1597
|
van Rossum D, Verheijen BM, Pasterkamp RJ. Circular RNAs: Novel Regulators of Neuronal Development. Front Mol Neurosci 2016; 9:74. [PMID: 27616979 PMCID: PMC4999478 DOI: 10.3389/fnmol.2016.00074] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/10/2016] [Indexed: 12/11/2022] Open
Abstract
Circular RNAs (circRNAs) are highly stable, circularized long non-coding RNAs. circRNAs are conserved across species and appear to be specifically enriched in the nervous system. Recent studies show that many circRNAs are expressed in a tissue- and developmental-stage-specific manner, reveal a striking regulation of circRNAs during neuronal development, and detect their presence at synaptic sites. The exact functions of circRNAs remain poorly understood, but evidence from analysis of some circRNA molecules suggests that they could substantially contribute to the regulation of gene expression, particularly in architecturally complex and polarized cells such as neurons. Emerging evidence also indicates that circRNAs are involved in the development and progression of various neurological disorders. In this review, we summarize the molecular characteristics of circRNAs and discuss their proposed functions and mechanism-of-action in developing neurons.
Collapse
Affiliation(s)
- Daniëlle van Rossum
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Bert M Verheijen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrecht, Netherlands; Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrecht, Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| |
Collapse
|
1598
|
Floris G, Zhang L, Follesa P, Sun T. Regulatory Role of Circular RNAs and Neurological Disorders. Mol Neurobiol 2016; 54:5156-5165. [PMID: 27558238 DOI: 10.1007/s12035-016-0055-4] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/11/2016] [Indexed: 01/22/2023]
Abstract
Circular RNAs (circRNAs) are a class of long noncoding RNAs that are characterized by the presence of covalently linked ends and have been found in all life kingdoms. Exciting studies in regulatory roles of circRNAs are emerging. Here, we summarize classification, characteristics, biogenesis, and regulatory functions of circRNAs. CircRNAs are found to be preferentially expressed along neural genes and in neural tissues. We thus highlight the association of circRNA dysregulation with neurodegenerative diseases such as Alzheimer's disease. Investigation of regulatory role of circRNAs will shed novel light in gene expression mechanisms during development and under disease conditions and may identify circRNAs as new biomarkers for aging and neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | - Paolo Follesa
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Tao Sun
- Department of Cell and Developmental Biology, Cornell University Weill Medical College, 1300 York Avenue, Box 60, New York, NY, 10065, USA.
| |
Collapse
|
1599
|
Abu N, Jamal R. Circular RNAs as Promising Biomarkers: A Mini-Review. Front Physiol 2016; 7:355. [PMID: 27588005 PMCID: PMC4988965 DOI: 10.3389/fphys.2016.00355] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/04/2016] [Indexed: 01/01/2023] Open
Abstract
The interest in circular RNAs has resurfaced in the past few years. What was considered as "junk" for nearly two decades is now one of the most interesting molecules. Circular RNAs are non-coding RNAs that are formed by back-splicing events and have covalently closed loops with no poly-adenylated tails. The regulation of circular RNAs is distinctive and they are selectively abundant in different types of tissues. Based on the current knowledge of circular RNAs, these molecules have the potential to be the "next big thing" especially as biomarkers for different diseases. This mini-review attempts to concisely look at the biology of circular RNAs, the putative functional activities, the prevalence of circular RNAs, and the possible role of circular RNA as biomarkers for diagnosis or measuring drug response.
Collapse
Affiliation(s)
- Nadiah Abu
- UKM Medical Molecular Biology Institute, University Kebangsaan Malaysia (UKM) Medical Centre Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute, University Kebangsaan Malaysia (UKM) Medical Centre Kuala Lumpur, Malaysia
| |
Collapse
|
1600
|
Qu S, Zhong Y, Shang R, Zhang X, Song W, Kjems J, Li H. The emerging landscape of circular RNA in life processes. RNA Biol 2016; 14:992-999. [PMID: 27617908 PMCID: PMC5680710 DOI: 10.1080/15476286.2016.1220473] [Citation(s) in RCA: 320] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs (circRNAs) are a novel class of non-coding RNA that assumes a covalently closed continuous conformation. CircRNAs were previously thought to be the byproducts of splicing errors caused by low abundance and the technological limitations. With the recent development of high-throughput sequencing technology, numerous circRNAs have been discovered in many species. Recent studies have revealed that circRNAs are stable and widely expressed, and often exhibit cell type-specific or tissue-specific expression. Most circRNAs can be generated from exons, introns, or both. Remarkably, emerging evidence indicates that some circRNAs can serve as microRNA (miRNA) sponges, regulate transcription or splicing, and can interact with RNA binding proteins (RBPs). Moreover, circRNAs have been reported to play essential roles in myriad life processes, such as aging, insulin secretion, tissue development, atherosclerotic vascular disease risk, cardiac hypertrophy and cancer. Although circRNAs are ancient molecules, they represent a newly appreciated form of noncoding RNA and as such have great potential implications in clinical and research fields. Here, we review the current understanding of circRNA classification, function and significance in physiological and pathological processes. We believe that future research will increase our understanding of the regulation and function of these novel molecules.
Collapse
Affiliation(s)
- Shibin Qu
- a Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University , Xi'an , China
| | - Yue Zhong
- a Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University , Xi'an , China.,b Department of General Surgery , The Second People's Hospital of Shaanxi Province , Xi'an , China
| | - Runze Shang
- a Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University , Xi'an , China
| | - Xuan Zhang
- a Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University , Xi'an , China
| | - Wenjie Song
- a Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University , Xi'an , China
| | - Jørgen Kjems
- c Department of Molecular Biology and Genetics (MBG) and Interdisciplinary Nanoscience Center (iNANO) , Aarhus University , Aarhus , Denmark
| | - Haimin Li
- a Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University , Xi'an , China
| |
Collapse
|