1551
|
Abbondante S, Eckel-Mahan KL, Ceglia NJ, Baldi P, Sassone-Corsi P. Comparative Circadian Metabolomics Reveal Differential Effects of Nutritional Challenge in the Serum and Liver. J Biol Chem 2015; 291:2812-28. [PMID: 26644470 DOI: 10.1074/jbc.m115.681130] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Indexed: 01/07/2023] Open
Abstract
Diagnosis and therapeutic interventions in pathological conditions rely upon clinical monitoring of key metabolites in the serum. Recent studies show that a wide range of metabolic pathways are controlled by circadian rhythms whose oscillation is affected by nutritional challenges, underscoring the importance of assessing a temporal window for clinical testing and thereby questioning the accuracy of the reading of critical pathological markers in circulation. We have been interested in studying the communication between peripheral tissues under metabolic homeostasis perturbation. Here we present a comparative circadian metabolomic analysis on serum and liver in mice under high fat diet. Our data reveal that the nutritional challenge induces a loss of serum metabolite rhythmicity compared with liver, indicating a circadian misalignment between the tissues analyzed. Importantly, our results show that the levels of serum metabolites do not reflect the circadian liver metabolic signature or the effect of nutritional challenge. This notion reveals the possibility that misleading reads of metabolites in circulation may result in misdiagnosis and improper treatments. Our findings also demonstrate a tissue-specific and time-dependent disruption of metabolic homeostasis in response to altered nutrition.
Collapse
Affiliation(s)
- Serena Abbondante
- From the Center for Epigenetics and Metabolism, U904 INSERM, and the Department of Biological Chemistry, University of California, Irvine, California 92697-4625 and
| | - Kristin L Eckel-Mahan
- From the Center for Epigenetics and Metabolism, U904 INSERM, and the Department of Biological Chemistry, University of California, Irvine, California 92697-4625 and
| | - Nicholas J Ceglia
- the Department of Biological Chemistry, University of California, Irvine, California 92697-4625 and the Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, California 92697-3435
| | - Pierre Baldi
- the Department of Biological Chemistry, University of California, Irvine, California 92697-4625 and the Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, California 92697-3435
| | - Paolo Sassone-Corsi
- From the Center for Epigenetics and Metabolism, U904 INSERM, and the Department of Biological Chemistry, University of California, Irvine, California 92697-4625 and
| |
Collapse
|
1552
|
Barandas R, Landgraf D, McCarthy MJ, Welsh DK. Circadian Clocks as Modulators of Metabolic Comorbidity in Psychiatric Disorders. Curr Psychiatry Rep 2015; 17:98. [PMID: 26483181 DOI: 10.1007/s11920-015-0637-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Psychiatric disorders such as schizophrenia, bipolar disorder, and major depressive disorder are often accompanied by metabolic dysfunction symptoms, including obesity and diabetes. Since the circadian system controls important brain systems that regulate affective, cognitive, and metabolic functions, and neuropsychiatric and metabolic diseases are often correlated with disturbances of circadian rhythms, we hypothesize that dysregulation of circadian clocks plays a central role in metabolic comorbidity in psychiatric disorders. In this review paper, we highlight the role of circadian clocks in glucocorticoid, dopamine, and orexin/melanin-concentrating hormone systems and describe how a dysfunction of these clocks may contribute to the simultaneous development of psychiatric and metabolic symptoms.
Collapse
Affiliation(s)
- Rita Barandas
- Department of Psychiatry, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- VA San Diego Healthcare System Psychiatry Service, La Jolla, CA, USA
- Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, 9500 Gilman Drive MC-0603, La Jolla, CA, 92093-0603, USA
| | - Dominic Landgraf
- VA San Diego Healthcare System Psychiatry Service, La Jolla, CA, USA.
- Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, 9500 Gilman Drive MC-0603, La Jolla, CA, 92093-0603, USA.
| | - Michael J McCarthy
- VA San Diego Healthcare System Psychiatry Service, La Jolla, CA, USA
- Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, 9500 Gilman Drive MC-0603, La Jolla, CA, 92093-0603, USA
| | - David K Welsh
- VA San Diego Healthcare System Psychiatry Service, La Jolla, CA, USA
- Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, 9500 Gilman Drive MC-0603, La Jolla, CA, 92093-0603, USA
| |
Collapse
|
1553
|
|
1554
|
A brief history of circadian time: The emergence of redox oscillations as a novel component of biological rhythms. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.pisc.2015.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
1555
|
Atger F, Gobet C, Marquis J, Martin E, Wang J, Weger B, Lefebvre G, Descombes P, Naef F, Gachon F. Circadian and feeding rhythms differentially affect rhythmic mRNA transcription and translation in mouse liver. Proc Natl Acad Sci U S A 2015; 112:E6579-88. [PMID: 26554015 PMCID: PMC4664316 DOI: 10.1073/pnas.1515308112] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Diurnal oscillations of gene expression are a hallmark of rhythmic physiology across most living organisms. Such oscillations are controlled by the interplay between the circadian clock and feeding rhythms. Although rhythmic mRNA accumulation has been extensively studied, comparatively less is known about their transcription and translation. Here, we quantified simultaneously temporal transcription, accumulation, and translation of mouse liver mRNAs under physiological light-dark conditions and ad libitum or night-restricted feeding in WT and brain and muscle Arnt-like 1 (Bmal1)-deficient animals. We found that rhythmic transcription predominantly drives rhythmic mRNA accumulation and translation for a majority of genes. Comparison of wild-type and Bmal1 KO mice shows that circadian clock and feeding rhythms have broad impact on rhythmic gene expression, Bmal1 deletion affecting surprisingly both transcriptional and posttranscriptional levels. Translation efficiency is differentially regulated during the diurnal cycle for genes with 5'-Terminal Oligo Pyrimidine tract (5'-TOP) sequences and for genes involved in mitochondrial activity, many harboring a Translation Initiator of Short 5'-UTR (TISU) motif. The increased translation efficiency of 5'-TOP and TISU genes is mainly driven by feeding rhythms but Bmal1 deletion also affects amplitude and phase of translation, including TISU genes. Together this study emphasizes the complex interconnections between circadian and feeding rhythms at several steps ultimately determining rhythmic gene expression and translation.
Collapse
Affiliation(s)
- Florian Atger
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland; Department of Pharmacology and Toxicology, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Cédric Gobet
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland; Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Julien Marquis
- Functional Genomic, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Eva Martin
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Jingkui Wang
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Benjamin Weger
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Grégory Lefebvre
- Functional Genomic, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Patrick Descombes
- Functional Genomic, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland; Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Felix Naef
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland;
| | - Frédéric Gachon
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland; Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
1556
|
Circadian Control of Global Transcription. BIOMED RESEARCH INTERNATIONAL 2015; 2015:187809. [PMID: 26682214 PMCID: PMC4670846 DOI: 10.1155/2015/187809] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/04/2015] [Indexed: 01/10/2023]
Abstract
Circadian rhythms exist in most if not all organisms on the Earth and manifest in various aspects of physiology and behavior. These rhythmic processes are believed to be driven by endogenous molecular clocks that regulate rhythmic expression of clock-controlled genes (CCGs). CCGs consist of a significant portion of the genome and are involved in diverse biological pathways. The transcription of CCGs is tuned by rhythmic actions of transcription factors and circadian alterations in chromatin. Here, we review the circadian control of CCG transcription in five model organisms that are widely used, including cyanobacterium, fungus, plant, fruit fly, and mouse. Comparing the similarity and differences in the five organisms could help us better understand the function of the circadian clock, as well as its output mechanisms adapted to meet the demands of diverse environmental conditions.
Collapse
|
1557
|
Sundar IK, Yao H, Sellix MT, Rahman I. Circadian clock-coupled lung cellular and molecular functions in chronic airway diseases. Am J Respir Cell Mol Biol 2015; 53:285-90. [PMID: 25938935 DOI: 10.1165/rcmb.2014-0476tr] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Airway diseases are associated with abnormal circadian rhythms of lung function, reflected in daily changes of airway caliber, airway resistance, respiratory symptoms, and abnormal immune-inflammatory responses. Circadian rhythms are generated at the cellular level by an autoregulatory feedback loop of interlocked transcription factors collectively referred to as clock genes. The molecular clock is altered by cigarette smoke, LPS, and bacterial and viral infections in mouse and human lungs and in patients with chronic airway diseases. Stress-mediated post-translational modification of molecular clock proteins, brain and muscle aryl hydrocarbon receptor nuclear translocator-like 1 (BMAL1) and PERIOD 2, is associated with a reduction in the activity/level of the deacetylase sirtuin 1 (SIRT1). Similarly, the levels of the nuclear receptor REV-ERBα and retinoic acid receptor-related orphan receptor α (ROR α), critical regulators of Bmal1 expression, are altered by environmental stresses. Molecular clock dysfunction is implicated in immune and inflammatory responses, DNA damage response, and cellular senescence. The molecular clock in the lung also regulates the timing of glucocorticoid sensitivity and phasic responsiveness to inflammation. Herein, we review our current understanding of clock-controlled cellular and molecular functions in the lungs, the impact of clock dysfunction in chronic airway disease, and the response of the pulmonary clock to different environmental perturbations. Furthermore, we discuss the evidence for candidate signaling pathways, such as the SIRT1-BMAL1-REV-ERBα axis, as novel targets for chronopharmacological management of chronic airway diseases.
Collapse
Affiliation(s)
- Isaac K Sundar
- Departments of 1 Environmental Medicine, Lung Biology and Disease Program, and
| | - Hongwei Yao
- Departments of 1 Environmental Medicine, Lung Biology and Disease Program, and
| | - Michael T Sellix
- 2 Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester Medical Center, Rochester, New York
| | - Irfan Rahman
- Departments of 1 Environmental Medicine, Lung Biology and Disease Program, and
| |
Collapse
|
1558
|
Wang GZ, Hickey SL, Shi L, Huang HC, Nakashe P, Koike N, Tu BP, Takahashi JS, Konopka G. Cycling Transcriptional Networks Optimize Energy Utilization on a Genome Scale. Cell Rep 2015; 13:1868-80. [PMID: 26655902 DOI: 10.1016/j.celrep.2015.10.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 09/08/2015] [Accepted: 10/14/2015] [Indexed: 12/22/2022] Open
Abstract
Genes expressing circadian RNA rhythms are enriched for metabolic pathways, but the adaptive significance of cyclic gene expression remains unclear. We estimated the genome-wide synthetic and degradative cost of transcription and translation in three organisms and found that the cost of cycling genes is strikingly higher compared to non-cycling genes. Cycling genes are expressed at high levels and constitute the most costly proteins to synthesize in the genome. We demonstrate that metabolic cycling is accelerated in yeast grown under higher nutrient flux and the number of cycling genes increases ∼40%, which are achieved by increasing the amplitude and not the mean level of gene expression. These results suggest that rhythmic gene expression optimizes the metabolic cost of global gene expression and that highly expressed genes have been selected to be downregulated in a cyclic manner for energy conservation.
Collapse
Affiliation(s)
- Guang-Zhong Wang
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Stephanie L Hickey
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lei Shi
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hung-Chung Huang
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prachi Nakashe
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nobuya Koike
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Benjamin P Tu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joseph S Takahashi
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Genevieve Konopka
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
1559
|
Bhargava A, Herzel H, Ananthasubramaniam B. Mining for novel candidate clock genes in the circadian regulatory network. BMC SYSTEMS BIOLOGY 2015; 9:78. [PMID: 26576534 PMCID: PMC4650315 DOI: 10.1186/s12918-015-0227-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 11/03/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND Most physiological processes in mammals are temporally regulated by means of a master circadian clock in the brain and peripheral oscillators in most other tissues. A transcriptional-translation feedback network of clock genes produces near 24 h oscillations in clock gene and protein expression. Here, we aim to identify novel additions to the clock network using a meta-analysis of public chromatin immunoprecipitation sequencing (ChIP-seq), proteomics and protein-protein interaction data starting from a published list of 1000 genes with robust transcriptional rhythms and circadian phenotypes of knockdowns. RESULTS We identified 20 candidate genes including nine known clock genes that received significantly high scores and were also robust to the relative weights assigned to different data types. Our scoring was consistent with the original ranking of the 1000 genes, but also provided novel complementary insights. Candidate genes were enriched for genes expressed in a circadian manner in multiple tissues with regulation driven mainly by transcription factors BMAL1 and REV-ERB α,β. Moreover, peak transcription of candidate genes was remarkably consistent across tissues. While peaks of the 1000 genes were distributed uniformly throughout the day, candidate gene peaks were strongly concentrated around dusk. Finally, we showed that binding of specific transcription factors to a gene promoter was predictive of peak transcription at a certain time of day and discuss combinatorial phase regulation. CONCLUSIONS Combining complementary publicly-available data targeting different levels of regulation within the circadian network, we filtered the original list and found 11 novel robust candidate clock genes. Using the criteria of circadian proteomic expression, circadian expression in multiple tissues and independent gene knockdown data, we propose six genes (Por, Mtss1, Dgat2, Pim3, Ppp1r3b, Upp2) involved in metabolism and cancer for further experimental investigation. The availability of public high-throughput databases makes such meta-analysis a promising approach to test consistency between sources and tap their entire potential.
Collapse
Affiliation(s)
- Anuprabha Bhargava
- Institute for Theoretical Biology, Charité Universitätsmedizin, Phillipstr. 13, Haus 4, Berlin, 10115, Germany.
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Humboldt Universität zu Berlin, Invalidenstr. 43, Berlin, 10115, Germany.
| | - Bharath Ananthasubramaniam
- Institute for Theoretical Biology, Charité Universitätsmedizin, Phillipstr. 13, Haus 4, Berlin, 10115, Germany.
| |
Collapse
|
1560
|
Ma D, Liu T, Chang L, Rui C, Xiao Y, Li S, Hogenesch JB, Chen YE, Lin JD. The Liver Clock Controls Cholesterol Homeostasis through Trib1 Protein-mediated Regulation of PCSK9/Low Density Lipoprotein Receptor (LDLR) Axis. J Biol Chem 2015; 290:31003-12. [PMID: 26547624 DOI: 10.1074/jbc.m115.685982] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Indexed: 12/27/2022] Open
Abstract
Disruption of the body clock has been recognized as a risk factor for cardiovascular disease. How the circadian pacemaker interacts with the genetic factors associated with plasma lipid traits remains poorly understood. Recent genome-wide association studies have identified an expanding list of genetic variants that influence plasma cholesterol and triglyceride levels. Here we analyzed circadian regulation of lipid-associated candidate genes in the liver and identified two distinct groups exhibiting rhythmic and non-rhythmic patterns of expression during light-dark cycles. Liver-specific inactivation of Bmal1 led to elevated plasma LDL/VLDL cholesterol levels as a consequence of the disruption of the PCSK9/LDL receptor regulatory axis. Ablation of the liver clock perturbed diurnal regulation of lipid-associated genes in the liver and markedly reduced the expression of the non-rhythmically expressed gene Trib1. Adenovirus-mediated rescue of Trib1 expression lowered plasma PCSK9 levels, increased LDL receptor protein expression, and restored plasma cholesterol homeostasis in mice lacking a functional liver clock. These results illustrate an unexpected mechanism through which the biological clock regulates cholesterol homeostasis through its regulation of non-rhythmic genes in the liver.
Collapse
Affiliation(s)
- Di Ma
- From the Life Sciences Institute and Department of Cell and Developmental Biology and
| | - Tongyu Liu
- From the Life Sciences Institute and Department of Cell and Developmental Biology and
| | - Lin Chang
- Center for Advanced Models for Translational Sciences and Therapeutics, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109 and
| | - Crystal Rui
- From the Life Sciences Institute and Department of Cell and Developmental Biology and
| | - Yuanyuan Xiao
- From the Life Sciences Institute and Department of Cell and Developmental Biology and
| | - Siming Li
- From the Life Sciences Institute and Department of Cell and Developmental Biology and
| | - John B Hogenesch
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109 and
| | - Jiandie D Lin
- From the Life Sciences Institute and Department of Cell and Developmental Biology and
| |
Collapse
|
1561
|
Gill S, Panda S. A Smartphone App Reveals Erratic Diurnal Eating Patterns in Humans that Can Be Modulated for Health Benefits. Cell Metab 2015; 22:789-98. [PMID: 26411343 PMCID: PMC4635036 DOI: 10.1016/j.cmet.2015.09.005] [Citation(s) in RCA: 631] [Impact Index Per Article: 63.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/20/2015] [Accepted: 09/08/2015] [Indexed: 02/07/2023]
Abstract
A diurnal rhythm of eating-fasting promotes health, but the eating pattern of humans is rarely assessed. Using a mobile app, we monitored ingestion events in healthy adults with no shift-work for several days. Most subjects ate frequently and erratically throughout wakeful hours, and overnight fasting duration paralleled time in bed. There was a bias toward eating late, with an estimated <25% of calories being consumed before noon and >35% after 6 p.m. "Metabolic jetlag" resulting from weekday/weekend variation in eating pattern akin to travel across time zones was prevalent. The daily intake duration (95% interval) exceeded 14.75 hr for half of the cohort. When overweight individuals with >14 hr eating duration ate for only 10-11 hr daily for 16 weeks assisted by a data visualization (raster plot of dietary intake pattern, "feedogram") that we developed, they reduced body weight, reported being energetic, and improved sleep. Benefits persisted for a year.
Collapse
Affiliation(s)
- Shubhroz Gill
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Satchidananda Panda
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
1562
|
Abstract
Since the kidney is integral to maintenance of fluid and ion homeostasis, and therefore blood pressure regulation, its proper function is paramount. Circadian fluctuations in blood pressure, renal blood flow, glomerular filtration rate, and sodium and water excretion have been documented for decades, if not longer. Recent studies on the role of circadian clock proteins in the regulation of a variety of renal transport genes suggest that the molecular clock in the kidney controls circadian fluctuations in renal function. The circadian clock appears to be a critical regulator of renal function with important implications for the treatment of renal pathologies, which include chronic kidney disease and hypertension. The development, regulation, and mechanism of the kidney clock are reviewed here.
Collapse
Affiliation(s)
- Kristen Solocinski
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FloridaDepartment of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
| | - Michelle L Gumz
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FloridaDepartment of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
| |
Collapse
|
1563
|
Pembroke WG, Babbs A, Davies KE, Ponting CP, Oliver PL. Temporal transcriptomics suggest that twin-peaking genes reset the clock. eLife 2015; 4. [PMID: 26523393 PMCID: PMC4718813 DOI: 10.7554/elife.10518] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/01/2015] [Indexed: 01/08/2023] Open
Abstract
The mammalian suprachiasmatic nucleus (SCN) drives daily rhythmic behavior and physiology, yet a detailed understanding of its coordinated transcriptional programmes is lacking. To reveal the finer details of circadian variation in the mammalian SCN transcriptome we combined laser-capture microdissection (LCM) and RNA-seq over a 24 hr light / dark cycle. We show that 7-times more genes exhibited a classic sinusoidal expression signature than previously observed in the SCN. Another group of 766 genes unexpectedly peaked twice, near both the start and end of the dark phase; this twin-peaking group is significantly enriched for synaptic transmission genes that are crucial for light-induced phase shifting of the circadian clock. 341 intergenic non-coding RNAs, together with novel exons of annotated protein-coding genes, including Cry1, also show specific circadian expression variation. Overall, our data provide an important chronobiological resource (www.wgpembroke.com/shiny/SCNseq/) and allow us to propose that transcriptional timing in the SCN is gating clock resetting mechanisms. DOI:http://dx.doi.org/10.7554/eLife.10518.001 The daily cycles of life in mammals are driven by a small region of the brain called the suprachiasmatic nucleus (or SCN). The SCN receives signals from sunlight and other environmental factors to help coordinate most aspects of daily biological activity and behaviour. To work correctly, it is essential that the SCN switches certain genes on and off at exactly the right time. However, many questions remain over the identity of these genes and how their levels of activity change during a 24-hour period. When a gene is active (or “being expressed”), it is used as a template to build the molecules of RNA that are needed to make proteins and to help to control how cells work. Pembroke et al. have now sequenced the RNA molecules made in the SCN of mice (which plays the same role as the equivalent human brain region) over a 24-hour period. The mice spent half of each day in the light, and half in the dark. This revealed that the expression levels of over a quarter of all the genes that are found in the SCN fluctuate over a 24-hour period. One particular group of genes peak in activity twice a day; Pembroke et al. suggest that these genes are important for controlling how an animal can adjust its body clock to light. Further research is now needed to find out which of the newly discovered fluctuating genes play the most important roles in daily activity rhythms, and which might play a part in disease. DOI:http://dx.doi.org/10.7554/eLife.10518.002
Collapse
Affiliation(s)
- William G Pembroke
- MRC Functional Genomics Unit, Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Arran Babbs
- MRC Functional Genomics Unit, Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Kay E Davies
- MRC Functional Genomics Unit, Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Chris P Ponting
- MRC Functional Genomics Unit, Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Peter L Oliver
- MRC Functional Genomics Unit, Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
1564
|
Renaud J, Dumont F, Khelfaoui M, Foisset S, Letourneur F, Bienvenu T, Khwaja O, Dorseuil O, Billuart P. Identification of intellectual disability genes showing circadian clock-dependent expression in the mouse hippocampus. Neuroscience 2015; 308:11-50. [DOI: 10.1016/j.neuroscience.2015.08.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 08/24/2015] [Accepted: 08/26/2015] [Indexed: 10/23/2022]
|
1565
|
|
1566
|
Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames. Genome Res 2015; 25:1848-59. [PMID: 26486724 PMCID: PMC4665006 DOI: 10.1101/gr.195404.115] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/14/2015] [Indexed: 11/25/2022]
Abstract
Mammalian gene expression displays widespread circadian oscillations. Rhythmic transcription underlies the core clock mechanism, but it cannot explain numerous observations made at the level of protein rhythmicity. We have used ribosome profiling in mouse liver to measure the translation of mRNAs into protein around the clock and at high temporal and nucleotide resolution. We discovered, transcriptome-wide, extensive rhythms in ribosome occupancy and identified a core set of approximately 150 mRNAs subject to particularly robust daily changes in translation efficiency. Cycling proteins produced from nonoscillating transcripts revealed thus-far-unknown rhythmic regulation associated with specific pathways (notably in iron metabolism, through the rhythmic translation of transcripts containing iron responsive elements), and indicated feedback to the rhythmic transcriptome through novel rhythmic transcription factors. Moreover, estimates of relative levels of core clock protein biosynthesis that we deduced from the data explained known features of the circadian clock better than did mRNA expression alone. Finally, we identified uORF translation as a novel regulatory mechanism within the clock circuitry. Consistent with the occurrence of translated uORFs in several core clock transcripts, loss-of-function of Denr, a known regulator of reinitiation after uORF usage and of ribosome recycling, led to circadian period shortening in cells. In summary, our data offer a framework for understanding the dynamics of translational regulation, circadian gene expression, and metabolic control in a solid mammalian organ.
Collapse
|
1567
|
Saleh M, Jürchott K, Oberland S, Neuhaus EM, Kramer A, Abraham U. Genome-Wide Screen Reveals Rhythmic Regulation of Genes Involved in Odor Processing in the Olfactory Epithelium. J Biol Rhythms 2015; 30:506-18. [PMID: 26482709 DOI: 10.1177/0748730415610197] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Odor discrimination behavior displays circadian fluctuations in mice, indicating that mammalian olfactory function is under control of the circadian system. This is further supported by the facts that odor discrimination rhythms depend on the presence of clock genes and that olfactory tissues contain autonomous circadian clocks. However, the molecular link between circadian function and olfactory processing is still unknown. To elucidate the molecular mechanisms underlying this link, we focused on the olfactory epithelium (OE), the primary target of odors and the site of the initial events in olfactory processing. We asked whether olfactory sensory neurons (OSNs) within the OE possess an autonomous circadian clock and whether olfactory pathways are under circadian control. Employing clock gene-driven bioluminescence reporter assays and time-dependent immunohistochemistry on OE samples, we found robust circadian rhythms of core clock genes and their proteins in OSNs, suggesting that the OE indeed contains an autonomous circadian clock. Furthermore, we performed a circadian transcriptome analysis and identified several OSN-specific components that are under circadian control, including those with putative roles in circadian olfactory processing, such as KIRREL2-an established factor involved in short-term OSN activation. The spatiotemporal expression patterns of our candidate proteins suggest that they are involved in short-term anabolic processes to rhythmically prepare the cell for peak performances and to promote circadian function of OSNs.
Collapse
Affiliation(s)
- Manjana Saleh
- Laboratory of Chronobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Karsten Jürchott
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sonja Oberland
- Cluster of Excellence NeuroCure, Charité-Universtitätsmedizin Berlin, Berlin, Germany Department of Pharmacology and Toxicology, University Hospital Jena, Jena, Germany
| | - Eva M Neuhaus
- Department of Pharmacology and Toxicology, University Hospital Jena, Jena, Germany
| | - Achim Kramer
- Laboratory of Chronobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ute Abraham
- Laboratory of Chronobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
1568
|
Dueck A, Berger C, Wunsch K, Thome J, Cohrs S, Reis O, Haessler F. The role of sleep problems and circadian clock genes in attention-deficit hyperactivity disorder and mood disorders during childhood and adolescence: an update. J Neural Transm (Vienna) 2015; 124:127-138. [DOI: 10.1007/s00702-015-1455-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/02/2015] [Indexed: 12/13/2022]
|
1569
|
Chen WD, Yeh JK, Peng MT, Shie SS, Lin SL, Yang CH, Chen TH, Hung KC, Wang CC, Hsieh IC, Wen MS, Wang CY. Circadian CLOCK Mediates Activation of Transforming Growth Factor-β Signaling and Renal Fibrosis through Cyclooxygenase 2. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:3152-63. [PMID: 26458764 DOI: 10.1016/j.ajpath.2015.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 08/06/2015] [Accepted: 08/11/2015] [Indexed: 12/21/2022]
Abstract
The circadian rhythm regulates blood pressure and maintains fluid and electrolyte homeostasis with central and peripheral clock. However, the role of circadian rhythm in the pathogenesis of tubulointerstitial fibrosis remains unclear. Here, we found that the amplitudes of circadian rhythm oscillation in kidneys significantly increased after unilateral ureteral obstruction. In mice that are deficient in the circadian gene Clock, renal fibrosis and renal parenchymal damage were significantly worse after ureteral obstruction. CLOCK-deficient mice showed increased synthesis of collagen, increased oxidative stress, and greater transforming growth factor-β (TGF-β) expression. TGF-β mRNA expression oscillated with the circadian rhythms under the control of CLOCK-BMAL1 heterodimers. The expression of cyclooxygenase 2 was significantly higher in kidneys from CLOCK-deficient mice with ureteral obstruction. Treatment with a cyclooxygenase 2 inhibitor celecoxib significantly improved renal fibrosis in CLOCK-deficient mice. Taken together, these data establish the importance of the circadian rhythm in tubulointerstitial fibrosis and suggest CLOCK/TGF-β signaling as a novel therapeutic target of cyclooxygenase inhibition.
Collapse
Affiliation(s)
- Wei-Dar Chen
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Jih-Kai Yeh
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Meng-Ting Peng
- Department of Oncology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Shian-Sen Shie
- Department of Infectious Disease, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Shuei-Liong Lin
- Renal Division, Department of Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Physiology, National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Chia-Hung Yang
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Tien-Hsing Chen
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Kuo-Chun Hung
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chun-Chieh Wang
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - I-Chang Hsieh
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ming-Shien Wen
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chao-Yung Wang
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
1570
|
Montenegro-Montero A, Larrondo LF. In the Driver's Seat: The Case for Transcriptional Regulation and Coupling as Relevant Determinants of the Circadian Transcriptome and Proteome in Eukaryotes. J Biol Rhythms 2015; 31:37-47. [PMID: 26446874 DOI: 10.1177/0748730415607321] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Circadian clocks drive daily oscillations in a variety of biological processes through the coordinate orchestration of precise gene expression programs. Global expression profiling experiments have suggested that a significant fraction of the transcriptome and proteome is under circadian control, and such output rhythms have historically been assumed to rely on the rhythmic transcription of these genes. Recent genome-wide studies, however, have challenged this long-held view and pointed to a major contribution of posttranscriptional regulation in driving oscillations at the messenger RNA (mRNA) level, while others have highlighted extensive clock translational regulation, regardless of mRNA rhythms. There are various examples of genes that are uniformly transcribed throughout the day but that exhibit rhythmic mRNA levels, and of flat mRNAs, with oscillating protein levels, and such observations have largely been considered to result from independent regulation at each step. These studies have thereby obviated any connections, or coupling, that might exist between the different steps of gene expression and the impact that any of them could have on subsequent ones. Here, we argue that due to both biological and technical reasons, the jury is still out on the determination of the relative contributions of each of the different stages of gene expression in regulating output molecular rhythms. In addition, we propose that through a variety of coupling mechanisms, gene transcription (even when apparently arrhythmic) might play a much relevant role in determining oscillations in gene expression than currently estimated, regulating rhythms at downstream steps. Furthermore, we posit that eukaryotic genomes regulate daily RNA polymerase II (RNAPII) recruitment and histone modifications genome-wide, setting the stage for global nascent transcription, but that tissue-specific mechanisms locally specify the different processes under clock control.
Collapse
Affiliation(s)
- Alejandro Montenegro-Montero
- Millennium Nucleus for Fungal Integrative and Synthetic Biology, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis F Larrondo
- Millennium Nucleus for Fungal Integrative and Synthetic Biology, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
1571
|
Ozburn AR, Janowsky AJ, Crabbe JC. Commonalities and Distinctions Among Mechanisms of Addiction to Alcohol and Other Drugs. Alcohol Clin Exp Res 2015; 39:1863-77. [PMID: 26431116 PMCID: PMC4594192 DOI: 10.1111/acer.12810] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/10/2015] [Indexed: 01/25/2023]
Abstract
BACKGROUND Alcohol abuse is comorbid with abuse of many other drugs, some with similar pharmacology and others quite different. This leads to the hypothesis of an underlying, unitary dysfunctional neurobiological basis for substance abuse risk and consequences. METHODS In this review, we discuss commonalities and distinctions of addiction to alcohol and other drugs. We focus on recent advances in preclinical studies using rodent models of drug self-administration. RESULTS While there are specific behavioral and molecular manifestations common to alcohol, psychostimulant, opioid, and nicotine dependence, attempts to propose a unifying theory of the addictions inevitably face details where distinctions are found among classes of drugs. CONCLUSIONS For alcohol, versus other drugs of abuse, we discuss and compare advances in: (i) neurocircuitry important for the different stages of drug dependence; (ii) transcriptomics and genetical genomics; and (iii) enduring effects, noting in particular the contributions of behavioral genetics and animal models.
Collapse
Affiliation(s)
- Angela R. Ozburn
- Research & Development Service, Portland VA Medical Center, Portland, Oregon, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, School of Medicine, Portland, Oregon, USA
- Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Aaron J. Janowsky
- Research & Development Service, Portland VA Medical Center, Portland, Oregon, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, School of Medicine, Portland, Oregon, USA
- Department of Psychiatry, Oregon Health & Science University, School of Medicine, Portland, Oregon, USA and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - John C. Crabbe
- Research & Development Service, Portland VA Medical Center, Portland, Oregon, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, School of Medicine, Portland, Oregon, USA
- Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
1572
|
Abstract
Despite an extensive body of reported information about peripheral and central mechanisms involved in the pathophysiology of IBS symptoms, no comprehensive disease model has emerged that would guide the development of novel, effective therapies. In this Review, we will first describe novel insights into some key components of brain-gut interactions, starting with the emerging findings of distinct functional and structural brain signatures of IBS. We will then point out emerging correlations between these brain networks and genomic, gastrointestinal, immune and gut-microbiome-related parameters. We will incorporate this new information, as well as the reported extensive literature on various peripheral mechanisms, into a systems-based disease model of IBS, and discuss the implications of such a model for improved understanding of the disorder, and for the development of more-effective treatment approaches in the future.
Collapse
Affiliation(s)
- Emeran A Mayer
- Department of Medicine, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-7378, USA
| | - Jennifer S Labus
- Department of Medicine, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-7378, USA
| | - Kirsten Tillisch
- Department of Medicine, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-7378, USA and West Los Angeles VA Medical Center, 11301 Wilshire Boulevard, Los Angeles, CA 90073, USA
| | - Steven W Cole
- Department of Medicine, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-7378, USA
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, University of California at Irvine, 4038 Bren Hall, Irvine, CA 92697-3435, USA
| |
Collapse
|
1573
|
Abstract
Circadian rhythms have a major role in physiology and behavior. Circadian disruption has negative consequences for physiologic homeostasis at molecular, cellular, organ-system, and whole-organism levels. The onset of many cerebrovascular insults shows circadian temporal trends. Impaired sleep-wake cycle, the most robust output rhythms of the circadian system, is significantly affected by neurodegenerative disorders, may precede them by decades, and may also affect their progression. Emerging evidence suggests that circadian disruption may be a risk factor for these neurologic disorders. This article discusses the implications of circadian rhythms in brain disorders, with an emphasis on cerebrovascular and neurodegenerative disorders.
Collapse
Affiliation(s)
- Aleksandar Videnovic
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 165 Cambridge Street, Suite 600, Boston, MA 02114, USA.
| | - Phyllis C Zee
- Northwestern University Feinberg School of Medicine, Abbott Hall 11th Floor, 710 North Lake Shore Drive, Chicago, IL 60611, USA
| |
Collapse
|
1574
|
Dyar KA, Ciciliot S, Tagliazucchi GM, Pallafacchina G, Tothova J, Argentini C, Agatea L, Abraham R, Ahdesmäki M, Forcato M, Bicciato S, Schiaffino S, Blaauw B. The calcineurin-NFAT pathway controls activity-dependent circadian gene expression in slow skeletal muscle. Mol Metab 2015; 4:823-33. [PMID: 26629406 PMCID: PMC4632177 DOI: 10.1016/j.molmet.2015.09.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 09/15/2015] [Indexed: 12/17/2022] Open
Abstract
Objective Physical activity and circadian rhythms are well-established determinants of human health and disease, but the relationship between muscle activity and the circadian regulation of muscle genes is a relatively new area of research. It is unknown whether muscle activity and muscle clock rhythms are coupled together, nor whether activity rhythms can drive circadian gene expression in skeletal muscle. Methods We compared the circadian transcriptomes of two mouse hindlimb muscles with vastly different circadian activity patterns, the continuously active slow soleus and the sporadically active fast tibialis anterior, in the presence or absence of a functional skeletal muscle clock (skeletal muscle-specific Bmal1 KO). In addition, we compared the effect of denervation on muscle circadian gene expression. Results We found that different skeletal muscles exhibit major differences in their circadian transcriptomes, yet core clock gene oscillations were essentially identical in fast and slow muscles. Furthermore, denervation caused relatively minor changes in circadian expression of most core clock genes, yet major differences in expression level, phase and amplitude of many muscle circadian genes. Conclusions We report that activity controls the oscillation of around 15% of skeletal muscle circadian genes independently of the core muscle clock, and we have identified the Ca2+-dependent calcineurin-NFAT pathway as an important mediator of activity-dependent circadian gene expression, showing that circadian locomotor activity rhythms drive circadian rhythms of NFAT nuclear translocation and target gene expression. Activity is a major extrinsic factor driving ∼15% of muscle circadian genes. Calcineurin-NFAT drives activity-dependent circadian gene expression in muscle. The majority of skeletal muscle circadian genes are muscle type-specific. A common set of skeletal muscle circadian genes are clock-dependent.
Collapse
Affiliation(s)
- Kenneth A Dyar
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | | | - Guidantonio Malagoli Tagliazucchi
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy ; Istituto Nazionale Genetica Molecolare 'Romeo ed Enrica Invernizzi', Via F. Sforza 35, 20122 Milan, Italy
| | - Giorgia Pallafacchina
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy ; Institute of Neurosciences, Consiglio Nazionale delle Ricerche (CNR), Padova, Italy
| | - Jana Tothova
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Carla Argentini
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Lisa Agatea
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Reimar Abraham
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Miika Ahdesmäki
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Germany
| | - Mattia Forcato
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvio Bicciato
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Schiaffino
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy ; Institute of Neurosciences, Consiglio Nazionale delle Ricerche (CNR), Padova, Italy
| | - Bert Blaauw
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy ; Department of Biomedical Sciences, University of Padova, Italy
| |
Collapse
|
1575
|
Burke TM, Markwald RR, McHill AW, Chinoy ED, Snider JA, Bessman SC, Jung CM, O'Neill JS, Wright KP. Effects of caffeine on the human circadian clock in vivo and in vitro. Sci Transl Med 2015; 7:305ra146. [PMID: 26378246 PMCID: PMC4657156 DOI: 10.1126/scitranslmed.aac5125] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Caffeine's wakefulness-promoting and sleep-disrupting effects are well established, yet whether caffeine affects human circadian timing is unknown. We show that evening caffeine consumption delays the human circadian melatonin rhythm in vivo and that chronic application of caffeine lengthens the circadian period of molecular oscillations in vitro, primarily with an adenosine receptor/cyclic adenosine monophosphate (AMP)-dependent mechanism. In a double-blind, placebo-controlled, ~49-day long, within-subject study, we found that consumption of a caffeine dose equivalent to that in a double espresso 3 hours before habitual bedtime induced a ~40-min phase delay of the circadian melatonin rhythm in humans. This magnitude of delay was nearly half of the magnitude of the phase-delaying response induced by exposure to 3 hours of evening bright light (~3000 lux, ~7 W/m(2)) that began at habitual bedtime. Furthermore, using human osteosarcoma U2OS cells expressing clock gene luciferase reporters, we found a dose-dependent lengthening of the circadian period by caffeine. By pharmacological dissection and small interfering RNA knockdown, we established that perturbation of adenosine receptor signaling, but not ryanodine receptor or phosphodiesterase activity, was sufficient to account for caffeine's effects on cellular timekeeping. We also used a cyclic AMP biosensor to show that caffeine increased cyclic AMP levels, indicating that caffeine influenced a core component of the cellular circadian clock. Together, our findings demonstrate that caffeine influences human circadian timing, showing one way that the world's most widely consumed psychoactive drug affects human physiology.
Collapse
Affiliation(s)
- Tina M Burke
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA
| | - Rachel R Markwald
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA
| | - Andrew W McHill
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA
| | - Evan D Chinoy
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA
| | - Jesse A Snider
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA
| | - Sara C Bessman
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA
| | - Christopher M Jung
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA
| | - John S O'Neill
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Kenneth P Wright
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| |
Collapse
|
1576
|
Sundar IK, Yao H, Sellix MT, Rahman I. Circadian molecular clock in lung pathophysiology. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1056-75. [PMID: 26361874 DOI: 10.1152/ajplung.00152.2015] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/08/2015] [Indexed: 02/06/2023] Open
Abstract
Disrupted daily or circadian rhythms of lung function and inflammatory responses are common features of chronic airway diseases. At the molecular level these circadian rhythms depend on the activity of an autoregulatory feedback loop oscillator of clock gene transcription factors, including the BMAL1:CLOCK activator complex and the repressors PERIOD and CRYPTOCHROME. The key nuclear receptors and transcription factors REV-ERBα and RORα regulate Bmal1 expression and provide stability to the oscillator. Circadian clock dysfunction is implicated in both immune and inflammatory responses to environmental, inflammatory, and infectious agents. Molecular clock function is altered by exposomes, tobacco smoke, lipopolysaccharide, hyperoxia, allergens, bleomycin, as well as bacterial and viral infections. The deacetylase Sirtuin 1 (SIRT1) regulates the timing of the clock through acetylation of BMAL1 and PER2 and controls the clock-dependent functions, which can also be affected by environmental stressors. Environmental agents and redox modulation may alter the levels of REV-ERBα and RORα in lung tissue in association with a heightened DNA damage response, cellular senescence, and inflammation. A reciprocal relationship exists between the molecular clock and immune/inflammatory responses in the lungs. Molecular clock function in lung cells may be used as a biomarker of disease severity and exacerbations or for assessing the efficacy of chronotherapy for disease management. Here, we provide a comprehensive overview of clock-controlled cellular and molecular functions in the lungs and highlight the repercussions of clock disruption on the pathophysiology of chronic airway diseases and their exacerbations. Furthermore, we highlight the potential for the molecular clock as a novel chronopharmacological target for the management of lung pathophysiology.
Collapse
Affiliation(s)
- Isaac K Sundar
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York; and
| | - Hongwei Yao
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York; and
| | - Michael T Sellix
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester Medical Center, Rochester, New York
| | - Irfan Rahman
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York; and
| |
Collapse
|
1577
|
Higgins GA, Allyn-Feuer A, Athey BD. Epigenomic mapping and effect sizes of noncoding variants associated with psychotropic drug response. Pharmacogenomics 2015; 16:1565-83. [PMID: 26340055 DOI: 10.2217/pgs.15.105] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AIM To provide insight into potential regulatory mechanisms of gene expression underlying addiction, analgesia, psychotropic drug response and adverse drug events, genome-wide association studies searching for variants associated with these phenotypes has been undertaken with limited success. We undertook analysis of these results with the aim of applying epigenetic knowledge to aid variant discovery and interpretation. METHODS We applied conditional imputation to results from 26 genome-wide association studies and three candidate gene-association studies. The analysis workflow included data from chromatin conformation capture, chromatin state annotation, DNase I hypersensitivity, hypomethylation, anatomical localization and biochronicity. We also made use of chromatin state data from the epigenome roadmap, transcription factor-binding data, spatial maps from published Hi-C datasets and 'guilt by association' methods. RESULTS We identified 31 pharmacoepigenomic SNPs from a total of 2024 variants in linkage disequilibrium with lead SNPs, of which only 6% were coding variants. Interrogation of chromatin state using our workflow and the epigenome roadmap showed agreement on 34 of 35 tissue assignments to regulatory elements including enhancers and promoters. Loop boundary domains were inferred by association with CTCF (CCCTC-binding factor) and cohesin, suggesting proximity to topologically associating domain boundaries and enhancer clusters. Spatial interactions between enhancer-promoter pairs detected both known and previously unknown mechanisms. Addiction and analgesia SNPs were common in relevant populations and exhibited large effect sizes, whereas a SNP located in the promoter of the SLC1A2 gene exhibited a moderate effect size for lithium response in bipolar disorder in patients of European ancestry. SNPs associated with drug-induced organ injury were rare but exhibited the largest effect sizes, consistent with the published literature. CONCLUSION This work demonstrates that an in silico bioinformatics-based approach using integrative analysis of a diversity of molecular and morphological data types can discover pharmacoepigenomic variants that are suitable candidates for further validation in cell lines, animal models and human clinical trials.
Collapse
Affiliation(s)
- Gerald A Higgins
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, 1301 Catherine Road, Ann Arbor, MI 48109, USA
- Pharmacogenomic Science, Assurex Health, Inc., Mason, OH, USA
| | - Ari Allyn-Feuer
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, 1301 Catherine Road, Ann Arbor, MI 48109, USA
| | - Brian D Athey
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, 1301 Catherine Road, Ann Arbor, MI 48109, USA
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
1578
|
Hayer KE, Pizarro A, Lahens NF, Hogenesch JB, Grant GR. Benchmark analysis of algorithms for determining and quantifying full-length mRNA splice forms from RNA-seq data. Bioinformatics 2015; 31:3938-45. [PMID: 26338770 PMCID: PMC4673975 DOI: 10.1093/bioinformatics/btv488] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 08/17/2015] [Indexed: 01/26/2023] Open
Abstract
MOTIVATION Because of the advantages of RNA sequencing (RNA-Seq) over microarrays, it is gaining widespread popularity for highly parallel gene expression analysis. For example, RNA-Seq is expected to be able to provide accurate identification and quantification of full-length splice forms. A number of informatics packages have been developed for this purpose, but short reads make it a difficult problem in principle. Sequencing error and polymorphisms add further complications. It has become necessary to perform studies to determine which algorithms perform best and which if any algorithms perform adequately. However, there is a dearth of independent and unbiased benchmarking studies. Here we take an approach using both simulated and experimental benchmark data to evaluate their accuracy. RESULTS We conclude that most methods are inaccurate even using idealized data, and that no method is highly accurate once multiple splice forms, polymorphisms, intron signal, sequencing errors, alignment errors, annotation errors and other complicating factors are present. These results point to the pressing need for further algorithm development. AVAILABILITY AND IMPLEMENTATION Simulated datasets and other supporting information can be found at http://bioinf.itmat.upenn.edu/BEERS/bp2. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Katharina E Hayer
- University of Pennsylvania, Institute for Translational Medicine and Therapeutics, Philadelphia, PA 19104
| | - Angel Pizarro
- Scientific Computing at Amazon Web Services, Seattle, WA 98108
| | | | | | - Gregory R Grant
- University of Pennsylvania, Institute for Translational Medicine and Therapeutics, Philadelphia, PA 19104, Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
1579
|
Jang C, Lahens NF, Hogenesch JB, Sehgal A. Ribosome profiling reveals an important role for translational control in circadian gene expression. Genome Res 2015; 25:1836-47. [PMID: 26338483 PMCID: PMC4665005 DOI: 10.1101/gr.191296.115] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 09/02/2015] [Indexed: 01/30/2023]
Abstract
Physiological and behavioral circadian rhythms are driven by a conserved transcriptional/translational negative feedback loop in mammals. Although most core clock factors are transcription factors, post-transcriptional control introduces delays that are critical for circadian oscillations. Little work has been done on circadian regulation of translation, so to address this deficit we conducted ribosome profiling experiments in a human cell model for an autonomous clock. We found that most rhythmic gene expression occurs with little delay between transcription and translation, suggesting that the lag in the accumulation of some clock proteins relative to their mRNAs does not arise from regulated translation. Nevertheless, we found that translation occurs in a circadian fashion for many genes, sometimes imposing an additional level of control on rhythmically expressed mRNAs and, in other cases, conferring rhythms on noncycling mRNAs. Most cyclically transcribed RNAs are translated at one of two major times in a 24-h day, while rhythmic translation of most noncyclic RNAs is phased to a single time of day. Unexpectedly, we found that the clock also regulates the formation of cytoplasmic processing (P) bodies, which control the fate of mRNAs, suggesting circadian coordination of mRNA metabolism and translation.
Collapse
Affiliation(s)
- Christopher Jang
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Nicholas F Lahens
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - John B Hogenesch
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Amita Sehgal
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA; Howard Hughes Medical Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
1580
|
Li S, Lin JD. Transcriptional control of circadian metabolic rhythms in the liver. Diabetes Obes Metab 2015; 17 Suppl 1:33-8. [PMID: 26332966 PMCID: PMC4562072 DOI: 10.1111/dom.12520] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 04/25/2015] [Indexed: 12/17/2022]
Abstract
Diurnal metabolic rhythms add an important temporal dimension to metabolic homeostasis in mammals. Although it remains a challenge to untangle the intricate networks of crosstalk among the body clock, nutrient signalling and tissue metabolism, there is little doubt that the rhythmic nature of nutrient and energy metabolism is a central aspect of metabolic physiology. Disruption of the synchrony between clock and metabolism has been causally linked to diverse pathophysiological states. As such, restoring the rhythmicity of body physiology and therapeutic targeting directed at specific time windows during the day may have important implications in human health and medicine. In this review, we summarize recent findings on the integration of hepatic glucose metabolism and the body clock through a regulatory network centred on the PPARγ coactivator 1 (PGC-1) transcriptional coactivators. In addition, we discuss the transcriptional mechanisms underlying circadian control of the autophagy gene programme and autophagy in the liver.
Collapse
Affiliation(s)
| | - Jiandie D. Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Corresponding Author: Jiandie Lin, Ph.D., 5437 Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, , Office: (734) 615-3512, Fax: (734) 615-0495
| |
Collapse
|
1581
|
Abstract
While accumulating evidence suggests that circadian desynchrony is linked to obesity and metabolic syndrome, the underlining mechanism is still poorly understood. In this issue, Kettner et al. (2015) demonstrate that leptin resistance, induced by circadian clock deficiency or chronic jet lag, may represent this missing link.
Collapse
Affiliation(s)
- Charna Dibner
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Frédéric Gachon
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland; Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
1582
|
Perelis M, Ramsey KM, Bass J. The molecular clock as a metabolic rheostat. Diabetes Obes Metab 2015; 17 Suppl 1:99-105. [PMID: 26332974 PMCID: PMC4562071 DOI: 10.1111/dom.12521] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/13/2015] [Indexed: 02/02/2023]
Abstract
Circadian clocks are biologic oscillators present in all photosensitive species that produce 24-h cycles in the transcription of rate-limiting metabolic enzymes in anticipation of the light-dark cycle. In mammals, the clock drives energetic cycles to maintain physiologic constancy during the daily switch in behavioural (sleep/wake) and nutritional (fasting/feeding) states. A molecular connection between circadian clocks and tissue metabolism was first established with the discovery that 24-h transcriptional rhythms are cell-autonomous and self-sustained in most tissues and comprise a robust temporal network throughout the body. A major window in understanding how the clock is coupled to metabolism was opened with discovery of metabolic syndrome pathologies in multi-tissue circadian mutant mice including susceptibility to diet-induced obesity and diabetes. Using conditional transgenesis and dynamic metabolic testing, we have pinpointed tissue-specific roles of the clock in energy and glucose homeostasis, with our most detailed understanding of this process in endocrine pancreas. Here, we review evidence for dynamic regulation of insulin secretion and oxidative metabolic functions by the clock transcription pathway to regulate homeostatic responses to feeding and fasting. These studies indicate that clock transcription is a determinant of tissue function and provide a reference for understanding molecular pathologies linking circadian desynchrony to metabolic disease.
Collapse
Affiliation(s)
- Mark Perelis
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Kathryn Moynihan Ramsey
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Correspondence should be addressed to: Joseph Bass, M.D., Ph.D., Department of Medicine, Feinberg School of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, 303 East Superior Street Lurie 7-107, Chicago, Illinois 60611, Phone: 312-503-2258, Fax: 312-503-5453,
| |
Collapse
|
1583
|
Rey G, Reddy AB. Interplay between cellular redox oscillations and circadian clocks. Diabetes Obes Metab 2015; 17 Suppl 1:55-64. [PMID: 26332969 DOI: 10.1111/dom.12519] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/07/2015] [Indexed: 12/19/2022]
Abstract
The circadian clock is a cellular timekeeping mechanism that helps organisms from bacteria to humans to organize their behaviour and physiology around the solar cycle. Current models for circadian timekeeping incorporate transcriptional/translational feedback loop mechanisms in the predominant model systems. However, recent evidence suggests that non-transcriptional oscillations such as metabolic and redox cycles may play a fundamental role in circadian timekeeping. Peroxiredoxins, an antioxidant protein family, undergo rhythmic oxidation on the circadian time scale in a variety of species, including bacteria, insects and mammals, but also in red blood cells, a naturally occurring, non-transcriptional system. The profound interconnectivity between circadian and redox pathways strongly suggests that a conserved timekeeping mechanism based on redox cycles could be integral to generating circadian rhythms.
Collapse
Affiliation(s)
- G Rey
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, NIHR Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - A B Reddy
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, NIHR Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
1584
|
Fitzgerald GA, Yang G, Paschos GK, Liang X, Skarke C. Molecular clocks and the human condition: approaching their characterization in human physiology and disease. Diabetes Obes Metab 2015; 17 Suppl 1:139-42. [PMID: 26332979 PMCID: PMC4562067 DOI: 10.1111/dom.12526] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/11/2015] [Indexed: 01/06/2023]
Abstract
Molecular clockworks knit together diverse biological networks and compelling evidence from model systems infers their importance in metabolism, immunological and cardiovascular function. Despite this and the diurnal variation in many aspects of human physiology and the phenotypic expression of disease, our understanding of the role and importance of clock function and dysfunction in humans is modest. There are tantalizing hints of connection across the translational divide and some correlative evidence of gene variation and human disease but most of what we know derives from forced desynchrony protocols in controlled environments. We now have the ability to monitor quantitatively ex vivo or in vivo the genome, metabolome, proteome and microbiome of humans in the wild. Combining this capability, with the power of mobile telephony and the evolution of remote sensing, affords a new opportunity for deep phenotyping, including the characterization of diurnal behaviour and the assessment of the impact of the clock on approved drug function.
Collapse
Affiliation(s)
- G A Fitzgerald
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School Of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - G Yang
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School Of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - G K Paschos
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School Of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - X Liang
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School Of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - C Skarke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School Of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
1585
|
Higgins GA, Allyn-Feuer A, Handelman S, Sadee W, Athey BD. The epigenome, 4D nucleome and next-generation neuropsychiatric pharmacogenomics. Pharmacogenomics 2015; 16:1649-69. [DOI: 10.2217/pgs.15.111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The 4D nucleome has the potential to render challenges in neuropsychiatric pharmacogenomics more tractable. The epigenome roadmap consortium has demonstrated the critical role that noncoding regions of the human genome play in determination of human phenotype. Chromosome conformation capture methods have revealed the 4D organization of the nucleus, bringing interactions between distant regulatory elements into close spatial proximity in a periodic manner. These functional interactions have the potential to elucidate mechanisms of CNS drug response and side effects that previously have been unrecognized. This perspective assesses recent advances likely to reveal novel pharmacodynamic regulatory pathways in human brain, charting a future new avenue of pharmacogenomics research, using the spatial and temporal architecture of the human epigenome as its foundation.
Collapse
Affiliation(s)
- Gerald A Higgins
- Pharmacogenomic Science, Assurex Health Inc., 6030 Mason Montgomery Road, Mason, OH 45040, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Ari Allyn-Feuer
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Samuel Handelman
- Department of Pharmacology, OSU Program in Pharmacogenomics, The Ohio State University College of Medicine, 333 W 10th Avenue, Columbus, OH 43210, USA
| | - Wolfgang Sadee
- Department of Pharmacology, OSU Program in Pharmacogenomics, The Ohio State University College of Medicine, 333 W 10th Avenue, Columbus, OH 43210, USA
| | - Brian D Athey
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
- Department of Psychiatry, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| |
Collapse
|
1586
|
|
1587
|
Poletini MO, Ramos BC, Moraes MN, Castrucci AML. Nonvisual Opsins and the Regulation of Peripheral Clocks by Light and Hormones. Photochem Photobiol 2015; 91:1046-55. [DOI: 10.1111/php.12494] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/23/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Maristela O. Poletini
- Department of Physiology and Biophysics; Institute of Biological Sciences; Federal University of Minas Gerais; Belo Horizonte Brazil
- Department of Physiology; Institute of Biosciences; University of São Paulo; São Paulo Brazil
| | - Bruno C. Ramos
- Department of Physiology; Institute of Biosciences; University of São Paulo; São Paulo Brazil
| | - Maria Nathalia Moraes
- Department of Physiology; Institute of Biosciences; University of São Paulo; São Paulo Brazil
| | - Ana Maria L. Castrucci
- Department of Physiology; Institute of Biosciences; University of São Paulo; São Paulo Brazil
| |
Collapse
|
1588
|
van Kerkhof LWM, Van Dycke KCG, Jansen EHJM, Beekhof PK, van Oostrom CTM, Ruskovska T, Velickova N, Kamcev N, Pennings JLA, van Steeg H, Rodenburg W. Diurnal Variation of Hormonal and Lipid Biomarkers in a Molecular Epidemiology-Like Setting. PLoS One 2015; 10:e0135652. [PMID: 26285127 PMCID: PMC4540433 DOI: 10.1371/journal.pone.0135652] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/23/2015] [Indexed: 01/10/2023] Open
Abstract
Introduction Many molecular epidemiology studies focusing on high prevalent diseases, such as metabolic disorders and cancer, investigate metabolic and hormonal markers. In general, sampling for these markers can occur at any time-point during the day or after an overnight fast. However, environmental factors, such as light exposure and food intake might affect the levels of these markers, since they provide input for the internal time-keeping system. When diurnal variation is larger than the inter-individual variation, time of day should be taken into account. Importantly, heterogeneity in diurnal variation and disturbance of circadian rhythms among a study population might increasingly occur as a result of our increasing 24/7 economy and related variation in exposure to environmental factors (such as light and food). Aim The aim of the present study was to determine whether a set of often used biomarkers shows diurnal variation in a setting resembling large molecular epidemiology studies, i.e., non-fasted and limited control possibilities for other environmental influences. Results We show that markers for which diurnal variation is not an issue are adrenocorticotropic hormone, follicle stimulating hormone, estradiol and high-density lipoprotein. For all other tested markers diurnal variation was observed in at least one gender (cholesterol, cortisol, dehydroepiandrosterone sulfate, free fatty acids, low-density lipoprotein, luteinizing hormone, prolactin, progesterone, testosterone, triglycerides, total triiodothyronine and thyroid-stimulating hormone) or could not reliably be detected (human growth hormone). Discussion Thus, studies investigating these markers should take diurnal variation into account, for which we provide some options. Furthermore, our study indicates the need for investigating diurnal variation (in literature or experimentally) before setting up studies measuring markers in routine and controlled settings, especially since time-of-day likely matters for many more markers than the ones investigated in the present study.
Collapse
Affiliation(s)
- Linda W. M. van Kerkhof
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Kirsten C. G. Van Dycke
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Eugene H. J. M. Jansen
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Piet K. Beekhof
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Conny T. M. van Oostrom
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, Stip, Republic of Macedonia
| | - Nevenka Velickova
- Faculty of Medical Sciences, Goce Delcev University, Stip, Republic of Macedonia
| | - Nikola Kamcev
- Faculty of Medical Sciences, Goce Delcev University, Stip, Republic of Macedonia
| | - Jeroen L. A. Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Harry van Steeg
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Wendy Rodenburg
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- * E-mail:
| |
Collapse
|
1589
|
Cytosolic BMAL1 moonlights as a translation factor. Trends Biochem Sci 2015; 40:489-90. [PMID: 26256246 DOI: 10.1016/j.tibs.2015.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 07/28/2015] [Indexed: 01/19/2023]
Abstract
It is widely recognized that BMAL1 is an essential subunit of the primary transcription factor that drives rhythmic circadian transcription in the nucleus. In a surprising turn, Lipton et al. now show that BMAL1 rhythmically interacts with translational machinery in the cytosol to stimulate protein synthesis in response to mTOR signaling.
Collapse
|
1590
|
Circadian systems biology: When time matters. Comput Struct Biotechnol J 2015; 13:417-26. [PMID: 26288701 PMCID: PMC4534520 DOI: 10.1016/j.csbj.2015.07.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 07/09/2015] [Accepted: 07/10/2015] [Indexed: 01/08/2023] Open
Abstract
The circadian clock is a powerful endogenous timing system, which allows organisms to fine-tune their physiology and behaviour to the geophysical time. The interplay of a distinct set of core-clock genes and proteins generates oscillations in expression of output target genes which temporally regulate numerous molecular and cellular processes. The study of the circadian timing at the organismal as well as at the cellular level outlines the field of chronobiology, which has been highly interdisciplinary ever since its origins. The development of high-throughput approaches enables the study of the clock at a systems level. In addition to experimental approaches, computational clock models exist which allow the analysis of rhythmic properties of the clock network. Such mathematical models aid mechanistic understanding and can be used to predict outcomes of distinct perturbations in clock components, thereby generating new hypotheses regarding the putative function of particular clock genes. Perturbations in the circadian timing system are linked to numerous molecular dysfunctions and may result in severe pathologies including cancer. A comprehensive knowledge regarding the mechanistic of the circadian system is crucial to develop new procedures to investigate pathologies associated with a deregulated clock. In this manuscript we review the combination of experimental methodologies, bioinformatics and theoretical models that have been essential to explore this remarkable timing-system. Such an integrative and interdisciplinary approach may provide new strategies with regard to chronotherapeutic treatment and new insights concerning the restoration of the circadian timing in clock-associated diseases.
Collapse
|
1591
|
El Anbari M, Fadda A, Ptitsyn A. Confidence in Phase Definition for Periodicity in Genes Expression Time Series. PLoS One 2015; 10:e0131111. [PMID: 26161537 PMCID: PMC4498625 DOI: 10.1371/journal.pone.0131111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/28/2015] [Indexed: 11/24/2022] Open
Abstract
Circadian oscillation in baseline gene expression plays an important role in the regulation of multiple cellular processes. Most of the knowledge of circadian gene expression is based on studies measuring gene expression over time. Our ability to dissect molecular events in time is determined by the sampling frequency of such experiments. However, the real peaks of gene activity can be at any time on or between the time points at which samples are collected. Thus, some genes with a peak activity near the observation point have their phase of oscillation detected with better precision then those which peak between observation time points. Separating genes for which we can confidently identify peak activity from ambiguous genes can improve the analysis of time series gene expression. In this study we propose a new statistical method to quantify the phase confidence of circadian genes. The numerical performance of the proposed method has been tested using three real gene expression data sets.
Collapse
Affiliation(s)
- Mohammed El Anbari
- Division of Biomedical Informatics, Sidra Medical and Research Center, Doha, Qatar
- * E-mail:
| | - Abeer Fadda
- Division of Biomedical Informatics, Sidra Medical and Research Center, Doha, Qatar
| | - Andrey Ptitsyn
- Division of Biomedical Informatics, Sidra Medical and Research Center, Doha, Qatar
| |
Collapse
|
1592
|
|
1593
|
Alibhai FJ, Tsimakouridze EV, Reitz CJ, Pyle WG, Martino TA. Consequences of Circadian and Sleep Disturbances for the Cardiovascular System. Can J Cardiol 2015; 31:860-72. [DOI: 10.1016/j.cjca.2015.01.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/25/2014] [Accepted: 01/08/2015] [Indexed: 12/01/2022] Open
|
1594
|
Powell WT, LaSalle JM. Epigenetic mechanisms in diurnal cycles of metabolism and neurodevelopment. Hum Mol Genet 2015; 24:R1-9. [PMID: 26105183 DOI: 10.1093/hmg/ddv234] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 06/18/2015] [Indexed: 11/13/2022] Open
Abstract
The circadian cycle is a genetically encoded clock that drives cellular rhythms of transcription, translation and metabolism. The circadian clock interacts with the diurnal environment that also drives transcription and metabolism during light/dark, sleep/wake, hot/cold and feast/fast daily and seasonal cycles. Epigenetic regulation provides a mechanism for cells to integrate genetic programs with environmental signals in order produce an adaptive and consistent output. Recent studies have revealed that DNA methylation is one epigenetic mechanism that entrains the circadian clock to a diurnal environment. We also review recent circadian findings in the epigenetic neurodevelopmental disorders Prader-Willi, Angelman and Rett syndromes and hypothesize a link between optimal brain development and intact synchrony between circadian and diurnal rhythms.
Collapse
Affiliation(s)
- Weston T Powell
- Medical Microbiology and Immunology, Genome Center, MIND Institute, University of California, Davis, CA 95616, USA
| | - Janine M LaSalle
- Medical Microbiology and Immunology, Genome Center, MIND Institute, University of California, Davis, CA 95616, USA
| |
Collapse
|
1595
|
Skelton RL, Kornhauser JM, Tate BA. Personalized medicine for pathological circadian dysfunctions. Front Pharmacol 2015; 6:125. [PMID: 26150790 PMCID: PMC4472982 DOI: 10.3389/fphar.2015.00125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/02/2015] [Indexed: 11/29/2022] Open
Abstract
The recent approval of a therapeutic for a circadian disorder has increased interest in developing additional medicines for disorders characterized by circadian disruption. However, previous experience demonstrates that drug development for central nervous system (CNS) disorders has a high failure rate. Personalized medicine, or the approach to identifying the right treatment for the right patient, has recently become the standard for drug development in the oncology field. In addition to utilizing Companion Diagnostics (CDx) that identify specific genetic biomarkers to prescribe certain targeted therapies, patient profiling is regularly used to enrich for a responsive patient population during clinical trials, resulting in fewer patients required for statistical significance and a higher rate of success for demonstrating efficacy and hence receiving approval for the drug. This personalized medicine approach may be one mechanism that could reduce the high clinical trial failure rate in the development of CNS drugs. This review will discuss current circadian trials, the history of personalized medicine in oncology, lessons learned from a recently approved circadian therapeutic, and how personalized medicine can be tailored for use in future clinical trials for circadian disorders to ultimately lead to the approval of more therapeutics for patients suffering from circadian abnormalities.
Collapse
|
1596
|
Archer SN, Oster H. How sleep and wakefulness influence circadian rhythmicity: effects of insufficient and mistimed sleep on the animal and human transcriptome. J Sleep Res 2015; 24:476-93. [PMID: 26059855 DOI: 10.1111/jsr.12307] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/04/2015] [Indexed: 12/12/2022]
Abstract
The mammalian circadian system is a multi-oscillator, hierarchically organised system where a central pacemaker synchronises behavioural, physiological and gene expression rhythms in peripheral tissues. Epidemiological studies show that disruption of this internal synchronisation by short sleep and shift work is associated with adverse health outcomes through mechanisms that remain to be elucidated. Here, we review recent animal and human studies demonstrating the profound effects of insufficient and mistimed sleep on the rhythms of gene expression in central and peripheral tissues. In mice, sleep restriction leads to an ~80% reduction in circadian transcripts in the brain and profound disruption of the liver transcriptome. In humans, sleep restriction leads to a 1.9% reduction in circadian transcripts in whole blood, and when sleep is displaced to the daytime, 97% of rhythmic genes become arrhythmic and one-third of all genes show changes in temporal expression profiles. These changes in mice and humans include a significant reduction in the circadian regulation of transcription and translation and core clock genes in the periphery, while at the same time rhythms within the suprachiasmatic nucleus are not disrupted. Although the physiological mediators of these sleep disruption effects on the transcriptome have not been established, altered food intake, changes in hormones such as cortisol, and changes in body and brain temperature may play important roles. Processes and molecular pathways associated with these disruptions include metabolism, immune function, inflammatory and stress responses, and point to the molecular mechanisms underlying the established adverse health outcomes associated with short sleep duration and shift work, such as metabolic syndrome and cancer.
Collapse
Affiliation(s)
- Simon N Archer
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Henrik Oster
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| |
Collapse
|
1597
|
Patel VR, Ceglia N, Zeller M, Eckel-Mahan K, Sassone-Corsi P, Baldi P. The pervasiveness and plasticity of circadian oscillations: the coupled circadian-oscillators framework. Bioinformatics 2015; 31:3181-8. [PMID: 26049162 DOI: 10.1093/bioinformatics/btv353] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 06/02/2015] [Indexed: 01/20/2023] Open
Abstract
MOTIVATION Circadian oscillations have been observed in animals, plants, fungi and cyanobacteria and play a fundamental role in coordinating the homeostasis and behavior of biological systems. Genetically encoded molecular clocks found in nearly every cell, based on negative transcription/translation feedback loops and involving only a dozen genes, play a central role in maintaining these oscillations. However, high-throughput gene expression experiments reveal that in a typical tissue, a much larger fraction ([Formula: see text]) of all transcripts oscillate with the day-night cycle and the oscillating species vary with tissue type suggesting that perhaps a much larger fraction of all transcripts, and perhaps also other molecular species, may bear the potential for circadian oscillations. RESULTS To better quantify the pervasiveness and plasticity of circadian oscillations, we conduct the first large-scale analysis aggregating the results of 18 circadian transcriptomic studies and 10 circadian metabolomic studies conducted in mice using different tissues and under different conditions. We find that over half of protein coding genes in the cell can produce transcripts that are circadian in at least one set of conditions and similarly for measured metabolites. Genetic or environmental perturbations can disrupt existing oscillations by changing their amplitudes and phases, suppressing them or giving rise to novel circadian oscillations. The oscillating species and their oscillations provide a characteristic signature of the physiological state of the corresponding cell/tissue. Molecular networks comprise many oscillator loops that have been sculpted by evolution over two trillion day-night cycles to have intrinsic circadian frequency. These oscillating loops are coupled by shared nodes in a large network of coupled circadian oscillators where the clock genes form a major hub. Cells can program and re-program their circadian repertoire through epigenetic and other mechanisms. AVAILABILITY AND IMPLEMENTATION High-resolution and tissue/condition specific circadian data and networks available at http://circadiomics.igb.uci.edu. CONTACT pfbaldi@ics.uci.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Vishal R Patel
- Department of Computer Science, Institute for Genomics and Bioinformatics
| | - Nicholas Ceglia
- Department of Computer Science, Institute for Genomics and Bioinformatics
| | - Michael Zeller
- Department of Computer Science, Institute for Genomics and Bioinformatics
| | - Kristin Eckel-Mahan
- Department of Biological Chemistry and Center for Epigenetics and Metabolism, University of California, Irvine (UCI), Irvine, CA - 92697, USA
| | - Paolo Sassone-Corsi
- Institute for Genomics and Bioinformatics, Department of Biological Chemistry and Center for Epigenetics and Metabolism, University of California, Irvine (UCI), Irvine, CA - 92697, USA
| | - Pierre Baldi
- Department of Computer Science, Institute for Genomics and Bioinformatics, Department of Biological Chemistry and Center for Epigenetics and Metabolism, University of California, Irvine (UCI), Irvine, CA - 92697, USA
| |
Collapse
|
1598
|
Michael AK, Harvey SL, Sammons PJ, Anderson AP, Kopalle HM, Banham AH, Partch CL. Cancer/Testis Antigen PASD1 Silences the Circadian Clock. Mol Cell 2015; 58:743-54. [PMID: 25936801 PMCID: PMC4458219 DOI: 10.1016/j.molcel.2015.03.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 02/13/2015] [Accepted: 03/25/2015] [Indexed: 01/06/2023]
Abstract
The circadian clock orchestrates global changes in transcriptional regulation on a daily basis via the bHLH-PAS transcription factor CLOCK:BMAL1. Pathways driven by other bHLH-PAS transcription factors have a homologous repressor that modulates activity on a tissue-specific basis, but none have been identified for CLOCK:BMAL1. We show here that the cancer/testis antigen PASD1 fulfills this role to suppress circadian rhythms. PASD1 is evolutionarily related to CLOCK and interacts with the CLOCK:BMAL1 complex to repress transcriptional activation. Expression of PASD1 is restricted to germline tissues in healthy individuals but can be induced in cells of somatic origin upon oncogenic transformation. Reducing PASD1 in human cancer cells significantly increases the amplitude of transcriptional oscillations to generate more robust circadian rhythms. Our results describe a function for a germline-specific protein in regulation of the circadian clock and provide a molecular link from oncogenic transformation to suppression of circadian rhythms.
Collapse
Affiliation(s)
- Alicia K Michael
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Stacy L Harvey
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Patrick J Sammons
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Amanda P Anderson
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Hema M Kopalle
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Alison H Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Center for Circadian Biology, University of California, San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
1599
|
Zhang Y, Fang B, Emmett MJ, Damle M, Sun Z, Feng D, Armour SM, Remsberg JR, Jager J, Soccio RE, Steger DJ, Lazar MA. GENE REGULATION. Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock. Science 2015; 348:1488-92. [PMID: 26044300 DOI: 10.1126/science.aab3021] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/22/2015] [Indexed: 12/21/2022]
Abstract
Circadian and metabolic physiology are intricately intertwined, as illustrated by Rev-erbα, a transcription factor (TF) that functions both as a core repressive component of the cell-autonomous clock and as a regulator of metabolic genes. Here, we show that Rev-erbα modulates the clock and metabolism by different genomic mechanisms. Clock control requires Rev-erbα to bind directly to the genome at its cognate sites, where it competes with activating ROR TFs. By contrast, Rev-erbα regulates metabolic genes primarily by recruiting the HDAC3 co-repressor to sites to which it is tethered by cell type-specific transcription factors. Thus, direct competition between Rev-erbα and ROR TFs provides a universal mechanism for self-sustained control of the molecular clock across all tissues, whereas Rev-erbα uses lineage-determining factors to convey a tissue-specific epigenomic rhythm that regulates metabolism tailored to the specific need of that tissue.
Collapse
Affiliation(s)
- Yuxiang Zhang
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bin Fang
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew J Emmett
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Manashree Damle
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zheng Sun
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Department of Molecular and Cellular Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dan Feng
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sean M Armour
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jarrett R Remsberg
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer Jager
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raymond E Soccio
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David J Steger
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mitchell A Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
1600
|
Abstract
Circadian rhythm, or daily oscillation, of behaviors and biological processes is a fundamental feature of mammalian physiology that has developed over hundreds of thousands of years under the continuous evolutionary pressure of energy conservation and efficiency. Evolution has fine-tuned the body's clock to anticipate and respond to numerous environmental cues in order to maintain homeostatic balance and promote survival. However, we now live in a society in which these classic circadian entrainment stimuli have been dramatically altered from the conditions under which the clock machinery was originally set. A bombardment of artificial lighting, heating, and cooling systems that maintain constant ambient temperature; sedentary lifestyle; and the availability of inexpensive, high-calorie foods has threatened even the most powerful and ancient circadian programming mechanisms. Such environmental changes have contributed to the recent staggering elevation in lifestyle-influenced pathologies, including cancer, cardiovascular disease, depression, obesity, and diabetes. This review scrutinizes the role of the body's internal clocks in the hard-wiring of circadian networks that have evolved to achieve energetic balance and adaptability, and it discusses potential therapeutic strategies to reset clock metabolic control to modern time for the benefit of human health.
Collapse
Affiliation(s)
- Zachary Gerhart-Hines
- Section for Metabolic Receptology (Z.G.-H.), Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; and Division of Endocrinology, Diabetes, and Metabolism (M.A.L.), Department of Medicine, Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Mitchell A Lazar
- Section for Metabolic Receptology (Z.G.-H.), Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; and Division of Endocrinology, Diabetes, and Metabolism (M.A.L.), Department of Medicine, Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|