1601
|
Ni Z, Lee SS. RNAi screens to identify components of gene networks that modulate aging in Caenorhabditis elegans. Brief Funct Genomics 2010; 9:53-64. [PMID: 20053814 DOI: 10.1093/bfgp/elp051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Our understanding of the genetic mechanisms of organismal aging has advanced dramatically during the past two decades. With the development of large-scale RNAi screens, the last few years saw the remarkable identifications of hundreds of new longevity genes in the roundworm Caenorhabditis elegans. The various RNAi screens revealed many biological pathways previously unknown to be related to aging. In this review, we focus on findings from the recent large-scale RNAi longevity screens, and discuss insights they have provided into the complex biological process of aging and considerations of the RNAi technology will continue to have on the future development of the aging field.
Collapse
Affiliation(s)
- Zhuoyu Ni
- Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
1602
|
Mariño G, Fernández AF, López-Otín C. Autophagy and aging: lessons from progeria models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 694:61-8. [PMID: 20886757 DOI: 10.1007/978-1-4419-7002-2_6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autophagy is an evolutionarily conserved process essential for cellular homeostasis and organismal viability. In fact, this pathway is one of the major protein degradation mechanisms in eukaryotic cells. It has been repeatedly reported that the autophagic activity of living cells decreases with age, probably contributing to the accumulation of damaged macromolecules and organelles during aging. Moreover, autophagy modulation in different model organisms has yielded very promising results suggesting that the maintenance of a proper autophagic activity contributes to extend longevity. On the other hand, recent findings have shown that distinct premature-aging murine models exhibit an extensive basal activation of autophagy instead of the characteristic decline in this process occurring during normal aging. This unexpected autophagic increase in progeroid models is usually associated with a series of metabolic alterations resembling those occurring under calorie restriction or in other situations reported to prolong life-span. In this chapter, we will discuss the current knowledge on the relationship between the autophagy pathway and aging with a special emphasis on the unexpected and novel link between premature aging and autophagy up-regulation.
Collapse
Affiliation(s)
- Guillermo Mariño
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, 33006 Spain
| | | | | |
Collapse
|
1603
|
Bjedov I, Toivonen JM, Kerr F, Slack C, Jacobson J, Foley A, Partridge L. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab 2010; 11:35-46. [PMID: 20074526 PMCID: PMC2824086 DOI: 10.1016/j.cmet.2009.11.010] [Citation(s) in RCA: 770] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 10/13/2009] [Accepted: 11/19/2009] [Indexed: 12/14/2022]
Abstract
The target of rapamycin (TOR) pathway is a major nutrient-sensing pathway that, when genetically downregulated, increases life span in evolutionarily diverse organisms including mammals. The central component of this pathway, TOR kinase, is the target of the inhibitory drug rapamycin, a highly specific and well-described drug approved for human use. We show here that feeding rapamycin to adult Drosophila produces the life span extension seen in some TOR mutants. Increase in life span by rapamycin was associated with increased resistance to both starvation and paraquat. Analysis of the underlying mechanisms revealed that rapamycin increased longevity specifically through the TORC1 branch of the TOR pathway, through alterations to both autophagy and translation. Rapamycin could increase life span of weak insulin/Igf signaling (IIS) pathway mutants and of flies with life span maximized by dietary restriction, indicating additional mechanisms.
Collapse
Affiliation(s)
- Ivana Bjedov
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, UK
| | | | | | | | | | | | | |
Collapse
|
1604
|
Sitzmann BD, Mattison JA, Ingram DK, Roth GS, Ottinger MA, Urbanski HF. Impact of Moderate Calorie Restriction on the Reproductive Neuroendocrine Axis of Male Rhesus Macaques. OPEN LONGEVITY SCIENCE 2010; 3:38-47. [PMID: 20814446 PMCID: PMC2929798 DOI: 10.2174/1876326x00903010038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The impact of moderate calorie restriction on reproductive neuroendocrine function was investigated in young adult male rhesus macaques (Macaca mulatta). The animals were subjected to either 30% calorie restriction (CR; n=5), or were fed a standard control diet (CON; n=5), starting during their peripubertal period. Plasma LH and testosterone concentrations were examined after 7 years of differential dietary treatment, and were found to be similar in both groups, both during the day and during the night. Microarray profiling of pituitary gland and testicular gene expression was performed after 8 years of treatment, using GeneChip® Rhesus Macaque Genome Arrays (Affymetrix), and showed very little effect of caloric restriction. Using a 1.5-fold difference threshold, our microarray analysis revealed differential expression of only 145 probesets in the pituitary gland and 260 in the testes, out of a total of >54,000. Semi-quantitative RT-PCR performed on pituitary gland mRNA corroborated the microarray findings for selected modulated genes, including TSH receptor (TSHR) and sperm-specific antigen 2 (SSFA2). Most notably, significantly lower expression of TSH receptor mRNA was observed in the pituitary of CR compared to CON animals. Also, significantly lower expression of the glycoprotein hormone alpha subunit (CGA) was observed in CR animals, and this finding was further corroborated using quantitative real-time RT-PCR. No significant diet-induced changes were detected in the testis for genes associated with reproduction, circadian clocks, or oxidative stress. There is mounting evidence that CR may promote health and longevity in a wide range of organisms, including nonhuman primates. Importantly, our data suggest that moderate CR has no obvious lasting detrimental effect on the reproductive neuroendocrine axis of long-lived primates, and has only a modest influence on pituitary and testicular gene expression.
Collapse
Affiliation(s)
- Brandon D. Sitzmann
- Department of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742
| | - Julie A. Mattison
- Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224
| | - Donald K. Ingram
- Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224
- Nutritional Neuroscience and Aging Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808
| | | | - Mary Ann Ottinger
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742
| | - Henryk F. Urbanski
- Department of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006
- Departments of Behavioral Neuroscience, and Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97239
| |
Collapse
|
1605
|
Okazaki M, Iwasaki Y, Nishiyama M, Taguchi T, Tsugita M, Nakayama S, Kambayashi M, Hashimoto K, Terada Y. PPARbeta/delta regulates the human SIRT1 gene transcription via Sp1. Endocr J 2010; 57:403-13. [PMID: 20160399 DOI: 10.1507/endocrj.k10e-004] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
NAD-dependent deacetylase SIRT1 is known to be activated by caloric restriction and is related to longevity. A natural polyphenolic compound resveratrol is also shown to increases SIRT1 activity and extends lifespan. However, the transcriptional regulation of SIRT1 gene has not completely examined in the context of metabolism. Thus, in this study, we characterized the 5' -flanking region of human SIRT1 gene. We first found that representative metabolic hormones and related factors (glucocorticoid, glucagon/cAMP, and insulin) did not show significant effect on SIRT1 gene transcription. PPARalpha and PPARgamma1 without/with their specific ligands did not have significant effect as well. In contrast, expression of PPARbeta/delta (PPARdelta markedly increased the 5' -promoter activity of SIRT1 gene, which was further amplified by the addition of GW501516, a selective PPARdelta agonist. Deletion/mutation mapping analyses failed to identify PPAR binding element but revealed the presence of canonical Sp1 binding site, which was conserved among species. The Sp1 site is functional, because Sp1 overexpresson significantly enhanced SIRT1 promoter activity, and the binding of Sp1 to the element was confirmed by EMSA and ChIP assays. Interestingly, specific Sp1 antagonist mithramycin completely abolished the PPARdelta-mediated induction of SIRT1 gene transcription. Altogether, our data suggest the predominant role of PPARdelta in the transcriptional regulation of SIRT1 gene. Furthermore, the effects of PPARdelta seem to be mediated by Sp1. We assume that, in vivo, starvation increases lipolysis-derived free fatty acid and activates PPARdelta and the resultant increase in SIRT1 expression, in addition to the activation by NAD and AMPK, facilitates the deacetylation of a variety of proteins involved in mitochondrial beta-oxidation pathway and cell survival.
Collapse
Affiliation(s)
- Mizuho Okazaki
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Nankoku, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
1606
|
Abstract
PURPOSE OF REVIEW The role of calorie restriction in humans is controversial. Recently, new data in monkeys and humans have provided new insights into the potential role of calorie restriction in longevity. RECENT FINDINGS A study in rhesus monkeys showed a reduction in aging-associated mortality. A number of controlled studies have suggested a variety of beneficial effects during studies of 6-12 months in humans. Major negative effects in humans were loss of muscle mass, muscle strength and loss of bone. SUMMARY Dietary restriction in rodents has not been shown to be effective when started in older rodents. Weight loss in humans over 60 years of age is associated with increased mortality, hip fracture and increased institutionalization. Calorie restriction in older persons should be considered experimental and potentially dangerous. Exercise at present appears to be a preferable treatment for older persons.
Collapse
|
1607
|
Sasaki T, Sato KI, Umeda I, Tahara S, Kaneko T. Effects of aging and every-other-day feeding on the levels of oxygen radicals in rat brain slices. Neurosci Lett 2010; 469:84-7. [DOI: 10.1016/j.neulet.2009.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 11/16/2009] [Accepted: 11/18/2009] [Indexed: 10/20/2022]
|
1608
|
|
1609
|
Safdie FM, Dorff T, Quinn D, Fontana L, Wei M, Lee C, Cohen P, Longo VD. Fasting and cancer treatment in humans: A case series report. Aging (Albany NY) 2009; 1:988-1007. [PMID: 20157582 PMCID: PMC2815756 DOI: 10.18632/aging.100114] [Citation(s) in RCA: 260] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 12/30/2009] [Indexed: 04/12/2023]
Abstract
Short-term fasting (48 hours) was shown to be effective in protecting normal cells and mice but not cancer cells against high dose chemotherapy, termed Differential Stress Resistance (DSR), but the feasibility and effect of fasting in cancer patients undergoing chemotherapy is unknown. Here we describe 10 cases in which patients diagnosed with a variety of malignancies had voluntarily fasted prior to (48-140 hours) and/or following (5-56 hours) chemotherapy. None of these patients, who received an average of 4 cycles of various chemotherapy drugs in combination with fasting, reported significant side effects caused by the fasting itself other than hunger and lightheadedness. Chemotherapy associated toxicity was graded according to the Common Terminology Criteria for Adverse Events (CTCAE) of the National Cancer Institute (NCI). The six patients who underwent chemotherapy with or without fasting reported a reduction in fatigue, weakness, and gastrointestinal side effects while fasting. In those patients whose cancer progression could be assessed, fasting did not prevent the chemotherapy-induced reduction of tumor volume or tumor markers. Although the 10 cases presented here suggest that fasting in combination with chemotherapy is feasible, safe, and has the potential to ameliorate side effects caused by chemotherapies, they are not meant to establish practice guidelines for patients undergoing chemotherapy. Only controlled-randomized clinical trials will determine the effect of fasting on clinical outcomes including quality of life and therapeutic index.
Collapse
Affiliation(s)
- Fernando M Safdie
- Andrus Gerontology Center and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | | | | | |
Collapse
|
1610
|
Grandison RC, Piper MDW, Partridge L. Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature 2009; 462:1061-4. [PMID: 19956092 PMCID: PMC2798000 DOI: 10.1038/nature08619] [Citation(s) in RCA: 589] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 10/29/2009] [Indexed: 12/28/2022]
Abstract
Dietary restriction extends healthy lifespan in diverse organisms and reduces fecundity. It is widely assumed to induce adaptive reallocation of nutrients from reproduction to somatic maintenance, aiding survival of food shortages in nature. If this were the case, long life under dietary restriction and high fecundity under full feeding would be mutually exclusive, through competition for the same limiting nutrients. Here we report a test of this idea in which we identified the nutrients producing the responses of lifespan and fecundity to dietary restriction in Drosophila. Adding essential amino acids to the dietary restriction condition increased fecundity and decreased lifespan, similar to the effects of full feeding, with other nutrients having little or no effect. However, methionine alone was necessary and sufficient to increase fecundity as much as did full feeding, but without reducing lifespan. Reallocation of nutrients therefore does not explain the responses to dietary restriction. Lifespan was decreased by the addition of amino acids, with an interaction between methionine and other essential amino acids having a key role. Hence, an imbalance in dietary amino acids away from the ratio optimal for reproduction shortens lifespan during full feeding and limits fecundity during dietary restriction. Reduced activity of the insulin/insulin-like growth factor signalling pathway extends lifespan in diverse organisms, and we find that it also protects against the shortening of lifespan with full feeding. In other organisms, including mammals, it may be possible to obtain the benefits to lifespan of dietary restriction without incurring a reduction in fecundity, through a suitable balance of nutrients in the diet.
Collapse
Affiliation(s)
- Richard C Grandison
- Institute of Healthy Ageing, Department of Genetics Evolution and Environment, University College London, UK
| | | | | |
Collapse
|
1611
|
Morselli E, Galluzzi L, Kepp O, Criollo A, Maiuri MC, Tavernarakis N, Madeo F, Kroemer G. Autophagy mediates pharmacological lifespan extension by spermidine and resveratrol. Aging (Albany NY) 2009; 1:961-70. [PMID: 20157579 PMCID: PMC2815753 DOI: 10.18632/aging.100110] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 12/22/2009] [Indexed: 12/22/2022]
Abstract
Although
autophagy has widely been conceived as a self-destructive mechanism that
causes cell death, accumulating evidence suggests that autophagy usually
mediates cytoprotection, thereby avoiding the apoptotic or necrotic demise
of stressed cells. Recent evidence produced by our groups demonstrates that
autophagy is also involved in pharmacological manipulations that increase
longevity. Exogenous supply of the polyamine spermidine can prolong the
lifespan of (while inducing autophagy in) yeast, nematodes and flies.
Similarly, resveratrol can trigger autophagy in cells from different
organisms, extend lifespan in nematodes, and ameliorate the fitness of
human cells undergoing metabolic stress. These beneficial effects are lost
when essential autophagy modulators are genetically or pharmacologically
inactivated, indicating that autophagy is required for the cytoprotective
and/or anti-aging effects of spermidine and resveratrol. Genetic and
functional studies indicate that spermidine inhibits histone acetylases,
while resveratrol activates the histone deacetylase Sirtuin 1 to confer
cytoprotection/longevity. Although it remains elusive whether the same
histones (or perhaps other nuclear or cytoplasmic proteins) act as the downstream
targets of spermidine and resveratrol, these results point to an essential
role of protein hypoacetylation in autophagy control and in the regulation
of longevity.
Collapse
|
1612
|
Hursting SD, Smith SM, Lashinger LM, Harvey AE, Perkins SN. Calories and carcinogenesis: lessons learned from 30 years of calorie restriction research. Carcinogenesis 2009; 31:83-9. [PMID: 19969554 DOI: 10.1093/carcin/bgp280] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Calorie restriction (CR) is arguably the most potent, broadly acting dietary regimen for suppressing the carcinogenesis process, and many of the key studies in this field have been published in Carcinogenesis. Translation of the knowledge gained from CR research in animal models to cancer prevention strategies in humans is urgently needed given the worldwide obesity epidemic and the established link between obesity and increased risk of many cancers. This review synthesizes the evidence on key biological mechanisms underlying many of the beneficial effects of CR, with particular emphasis on the impact of CR on growth factor signaling pathways and inflammatory processes and on the emerging development of pharmacological mimetics of CR. These approaches will facilitate the translation of CR research into effective strategies for cancer prevention in humans.
Collapse
Affiliation(s)
- Stephen D Hursting
- Department of Nutritional Sciences, The University of Texas at Austin, 103 West 24th Street, Austin, TX 78712, USA.
| | | | | | | | | |
Collapse
|
1613
|
Lomb DJ, Laurent G, Haigis MC. Sirtuins regulate key aspects of lipid metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:1652-7. [PMID: 19962456 DOI: 10.1016/j.bbapap.2009.11.021] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 11/17/2009] [Accepted: 11/18/2009] [Indexed: 12/09/2022]
Abstract
Members of the sirtuin family of NAD(+)-dependent protein deacetylases are important regulators of longevity in yeast, worms, and flies. Mammals have seven sirtuins (SIRT1-7), each characterized by differences in subcellular localization, substrate preference, and biological function. While it is unclear whether sirtuins regulate aging in mammals, it is clear that sirtuins influence diverse aspects of their metabolism. Indeed, SIRT1 promotes oxidation of fatty acids in liver and skeletal muscle, cholesterol metabolism in liver, and lipid mobilization in white adipose tissue. Moreover, small-molecule activators of SIRT1 have recently been shown to protect mice from the negative effects of a high-fat diet. These findings suggest that sirtuins might provide important new targets for the treatment of obesity and related diseases. In this review, we discuss the major findings linking sirtuins with the regulation of lipid metabolism.
Collapse
Affiliation(s)
- David J Lomb
- Department of Pathology and Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
1614
|
Le dividende de la longévité : Pourquoi investir dans la recherche fondamentale? Can J Aging 2009. [DOI: 10.1017/s0714980809990298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
1615
|
Williams A. Parkinson's disease. Clin Med (Lond) 2009. [DOI: 10.7861/clinmedicine.9-6-628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
1616
|
|
1617
|
Schumacher B. Transcription-blocking DNA damage in aging: a mechanism for hormesis. Bioessays 2009; 31:1347-56. [DOI: 10.1002/bies.200900107] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
1618
|
|
1619
|
Notable advances. Nat Med 2009. [DOI: 10.1038/nm1209-1349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
1620
|
|
1621
|
Berryman DE, List EO, Palmer AJ, Chung MY, Wright-Piekarski J, Lubbers E, O'Connor P, Okada S, Kopchick JJ. Two-year body composition analyses of long-lived GHR null mice. J Gerontol A Biol Sci Med Sci 2009; 65:31-40. [PMID: 19901018 DOI: 10.1093/gerona/glp175] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Growth hormone receptor gene-disrupted (GHR-/-) mice exhibit increased life span and adipose tissue mass. Although this obese phenotype has been reported extensively for young adult male GHR-/- mice, data for females and for other ages in either gender are lacking. Thus, the purpose of this study was to evaluate body composition longitudinally in both male and female GHR-/- mice. Results show that GHR-/- mice have a greater percent fat mass with no significant difference in absolute fat mass throughout life. Lean mass shows an opposite trend with percent lean mass not significantly different between genotypes but absolute mass reduced in GHR-/- mice. Differences in body composition are more pronounced in male than in female mice, and both genders of GHR-/- mice show specific enlargement of the subcutaneous adipose depot. Along with previously published data, these results suggest a consistent and intriguing protective effect of excess fat mass in the subcutaneous region.
Collapse
Affiliation(s)
- Darlene E Berryman
- School of Human and Consumer Sciences, College of Health and Human Services, Ohio University, Athens, OH 45701, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
1622
|
Martinou JC, Kroemer G. Autophagy: evolutionary and pathophysiological insights. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1395-6. [PMID: 19733306 DOI: 10.1016/j.bbamcr.2009.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
1623
|
McLaren DG, Kosmatka KJ, Kastman EK, Bendlin BB, Johnson SC. Rhesus macaque brain morphometry: a methodological comparison of voxel-wise approaches. Methods 2009; 50:157-65. [PMID: 19883763 DOI: 10.1016/j.ymeth.2009.10.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 10/18/2009] [Accepted: 10/28/2009] [Indexed: 01/09/2023] Open
Abstract
Voxel-based morphometry studies have become increasingly common in human neuroimaging over the past several years; however, few studies have utilized this method to study morphometry changes in non-human primates. Here we describe the application of voxel-wise morphometry methods to the rhesus macaque (Macaca mulatta) using the 112RM-SL template and priors (McLaren et al. (2009) [42]) and as an illustrative example we describe age-associated changes in grey matter morphometry. Specifically, we evaluated the unified segmentation routine implemented using Statistical Parametric Mapping (SPM) software and the FMRIB's Automated Segmentation Tool (FAST) in the FMRIB Software Library (FSL); the effect of varying the smoothing kernel; and the effect of the normalization routine. We found that when studying non-human primates, brain images need less smoothing than in human studies, 2-4mm FWHM. Using flow field deformations (DARTEL) improved inter-subject alignment leading to results that were more likely due to morphometry differences as opposed to registration differences.
Collapse
Affiliation(s)
- Donald G McLaren
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | | | | | | | | |
Collapse
|
1624
|
Hursting SD, Forman MR. Cancer risk from extreme stressors: lessons from European Jewish survivors of World War II. J Natl Cancer Inst 2009; 101:1436-7. [PMID: 19861304 DOI: 10.1093/jnci/djp357] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
1625
|
Oien DB, Osterhaus GL, Lundquist BL, Fowler SC, Moskovitz J. Caloric restriction alleviates abnormal locomotor activity and dopamine levels in the brain of the methionine sulfoxide reductase A knockout mouse. Neurosci Lett 2009; 468:38-41. [PMID: 19854239 DOI: 10.1016/j.neulet.2009.10.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 10/02/2009] [Accepted: 10/18/2009] [Indexed: 01/06/2023]
Abstract
Oxidative stress is associated with the aging process, a risk factor for neurodegenerative diseases, and decreased by reduced energy intake. Oxidative modifications can affect protein function; the sulfur-containing amino acids, including methionine, are particularly susceptible to oxidation. A methionine sulfoxide can be enzymatically reduced by the methionine sulfoxide reductase (Msr) system. Previously, we have shown that MsrA(-/-) mice exhibit altered locomotor activity and brain dopamine levels as function of age. Previous studies have demonstrated that a caloric restriction enhances antioxidant defense and reduces the action of reactive oxygen species. Here we examine locomotor behavior and dopamine levels of MsrA(-/-) mice after caloric restriction starting at eight months of age and ending at 17 months. The MsrA(-/-) mice did not have any significant difference in spontaneous distance traveled when compared to controls at 17 months of age. In contrast, our previous report showed decreased locomotor activity in the MsrA(-/-) mice at 12 months of age and older when fed ad-libitum. After completion of the caloric restriction diet, dopamine levels were comparable to control mice. This differs from the abnormal dopamine levels previously observed in MsrA(-/-) mice fed ad-libitum. Thus, caloric restriction had a neutralization effect on MsrA ablation. In summary, it is suggested that caloric restriction alleviates abnormal locomotor activity and dopamine levels in the brain of the methionine sulfoxide reductase A knockout mouse.
Collapse
Affiliation(s)
- Derek B Oien
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, KS, USA
| | | | | | | | | |
Collapse
|
1626
|
Abstract
Dietary restriction (DR) without malnutrition is widely regarded to be a universal mechanism for prolonging lifespan. It is generally believed that the benefits of DR arise from eating fewer calories (termed caloric restriction, CR). Here we argue that, rather than calories, the key determinant of the relationship between diet and longevity is the balance of protein to non-protein energy ingested. This ratio affects not only lifespan, but also total energy intake, metabolism, immunity and the likelihood of developing obesity and associated metabolic disorders. Among various possible mechanisms linking macronutrient balance to lifespan, the nexus between the TOR and AMPK signaling pathways is emerging as a central coordinator.
Collapse
Affiliation(s)
- Stephen J Simpson
- School of Biological Sciences, The University of Sydney, NSW 2006, Australia.
| | | |
Collapse
|
1627
|
Water- and nutrient-dependent effects of dietary restriction on Drosophila lifespan. Proc Natl Acad Sci U S A 2009; 106:18633-7. [PMID: 19841272 DOI: 10.1073/pnas.0908016106] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dietary restriction (DR) is a widely conserved intervention leading to lifespan extension. Despite considerable effort, the mechanisms underlying DR remain poorly understood. In particular, it remains unclear whether DR prolongs life through conserved mechanisms in different species. Here, we show that, in the most common experimental conditions, lifespan extension by DR is abolished by providing Drosophila with ad libitum water, without altering food intake, indicating that DR, as conventionally studied in flies, is fundamentally different from the phenomenon studied in mammals. We characterize an alternative dietary paradigm that elicits robust lifespan extension irrespective of water availability, and thus likely represents a more relevant model for mammalian DR. Our results support the view that protein:carbohydrate ratio is the main dietary determinant of fly lifespan. These findings have broad implications for the study of lifespan and nutrition.
Collapse
|
1628
|
Abstract
Hormesis is a phenomenon in which adaptive responses to low doses of otherwise harmful factors (also called mild stressors) make cells and organisms more robust. Aging is a complex and poorly understood process. This review explores the positive effects of hormesis on aging in animal models and human cell cultures, and discusses whether it might apply to humans. As an example, repeated mild heat stress confers anti-aging benefits to normal human cells in culture. Calorie restriction and xenohormetic compounds such as resveratrol, in large part via activation of sirtuins, decrease risk of common age-related conditions, such as cancer, cardiovascular disease, type 2 diabetes, and neurological diseases, so lengthening lifespan. Mild stressors and xenohormetic dietary components have diverse molecular targets and affect many pathways. Despite experimental advances in aging research, findings in humans are still quite limited. Moderate-intensity exercise, weight management and healthy diet ameliorate diseases of aging to increase lifespan and this could involve hormesis.
Collapse
Affiliation(s)
- Francine Z Marques
- Basic & Clinical Genomics Laboratory, School of Medical Sciences and Bosch Institute, The University of Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
1629
|
Affiliation(s)
- Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
1630
|
Joseph J, Cole G, Head E, Ingram D. Nutrition, brain aging, and neurodegeneration. J Neurosci 2009; 29:12795-801. [PMID: 19828791 PMCID: PMC6665319 DOI: 10.1523/jneurosci.3520-09.2009] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 07/28/2009] [Accepted: 08/04/2009] [Indexed: 01/20/2023] Open
Abstract
The onset of age-related neurodegenerative diseases superimposed on a declining nervous system could enhance the motor and cognitive behavioral deficits that normally occur in senescence. It is likely that, in cases of severe deficits in memory or motor function, hospitalization and/or custodial care would be a likely outcome. This means that unless some way is found to reduce these age-related decrements in neuronal function, health care costs will continue to rise exponentially. Applying molecular biological approaches to slow aging in the human condition may be years away. So, it is important to determine what methods can be used today to increase healthy aging, forestall the onset of these diseases, and create conditions favorable to obtaining a "longevity dividend" in both financial and human terms. Recent studies suggest that consumption of diets rich in antioxidants and anti-inflammatory components such as those found in fruits, nuts, vegetables, and spices, or even reduced caloric intake, may lower age-related cognitive declines and the risk of developing neurodegenerative disease.
Collapse
Affiliation(s)
- James Joseph
- USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts 02111, USA.
| | | | | | | |
Collapse
|
1631
|
Affiliation(s)
- Jan H J Hoeijmakers
- Department of Genetics, Cancer Genomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
1632
|
Geissler EK. Rapamycin enhances lifespan: at last, an advantage for transplant recipients? Nephrol Dial Transplant 2009; 24:3623-5. [PMID: 19773418 DOI: 10.1093/ndt/gfp496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Edward K Geissler
- Department of Surgery, University Hospital Regensburg, University of Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg 93053, Germany.
| |
Collapse
|
1633
|
Harrison C. Secrets of a long life. Nat Rev Drug Discov 2009. [DOI: 10.1038/nrd2976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
1634
|
Cox LS, Mattison JA. Increasing longevity through caloric restriction or rapamycin feeding in mammals: common mechanisms for common outcomes? Aging Cell 2009; 8:607-13. [PMID: 19678809 DOI: 10.1111/j.1474-9726.2009.00509.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Significant extension of lifespan in important mammalian species is bound to attract the attention not only of the aging research community, but also the media and the wider public. Two recent papers published by Harrison et al. (2009) in Nature and by Colman et al. (2009) in Science report increased longevity of mice fed with rapamycin and of rhesus monkeys undergoing caloric restriction, respectively. These papers have generated considerable debate in the aging community. Here we assess what is new about these findings, how they fit with our knowledge of lifespan extension from other studies and what prospects this new work holds out for improvements in human longevity and human health span.
Collapse
Affiliation(s)
- Lynne S Cox
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| | | |
Collapse
|
1635
|
Affiliation(s)
- Lynne S. Cox
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|