1851
|
Tulstrup MVL, Christensen EG, Carvalho V, Linninge C, Ahrné S, Højberg O, Licht TR, Bahl MI. Antibiotic Treatment Affects Intestinal Permeability and Gut Microbial Composition in Wistar Rats Dependent on Antibiotic Class. PLoS One 2015; 10:e0144854. [PMID: 26691591 PMCID: PMC4686753 DOI: 10.1371/journal.pone.0144854] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/24/2015] [Indexed: 01/25/2023] Open
Abstract
Antibiotics are frequently administered orally to treat bacterial infections not necessarily related to the gastrointestinal system. This has adverse effects on the commensal gut microbial community, as it disrupts the intricate balance between specific bacterial groups within this ecosystem, potentially leading to dysbiosis. We hypothesized that modulation of community composition and function induced by antibiotics affects intestinal integrity depending on the antibiotic administered. To address this a total of 60 Wistar rats (housed in pairs with 6 cages per group) were dosed by oral gavage with either amoxicillin (AMX), cefotaxime (CTX), vancomycin (VAN), metronidazole (MTZ), or water (CON) daily for 10-11 days. Bacterial composition, alpha diversity and caecum short chain fatty acid levels were significantly affected by AMX, CTX and VAN, and varied among antibiotic treatments. A general decrease in diversity and an increase in the relative abundance of Proteobacteria was observed for all three antibiotics. Additionally, the relative abundance of Bifidobacteriaceae was increased in the CTX group and both Lactobacillaceae and Verrucomicrobiaceae were increased in the VAN group compared to the CON group. No changes in microbiota composition or function were observed following MTZ treatment. Intestinal permeability to 4 kDa FITC-dextran decreased after CTX and VAN treatment and increased following MTZ treatment. Plasma haptoglobin levels were increased by both AMX and CTX but no changes in expression of host tight junction genes were found in any treatment group. A strong correlation between the level of caecal succinate, the relative abundance of Clostridiaceae 1 family in the caecum, and the level of acute phase protein haptoglobin in blood plasma was observed. In conclusion, antibiotic-induced changes in microbiota may be linked to alterations in intestinal permeability, although the specific interactions remain to be elucidated as changes in permeability did not always result from major changes in microbiota and vice versa.
Collapse
Affiliation(s)
- Monica Vera-Lise Tulstrup
- Division of Diet, Disease prevention and Toxicology, National Food Institute, Technical University of Denmark, Søborg, Denmark
| | - Ellen Gerd Christensen
- Division of Diet, Disease prevention and Toxicology, National Food Institute, Technical University of Denmark, Søborg, Denmark
| | - Vera Carvalho
- Division of Diet, Disease prevention and Toxicology, National Food Institute, Technical University of Denmark, Søborg, Denmark
| | - Caroline Linninge
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Siv Ahrné
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Ole Højberg
- Department of Animal Science, Aarhus University, Tjele, Denmark
| | - Tine Rask Licht
- Division of Diet, Disease prevention and Toxicology, National Food Institute, Technical University of Denmark, Søborg, Denmark
| | - Martin Iain Bahl
- Division of Diet, Disease prevention and Toxicology, National Food Institute, Technical University of Denmark, Søborg, Denmark
- * E-mail:
| |
Collapse
|
1852
|
Abstract
G protein-coupled receptors (GPCRs) remain a major domain of pharmaceutical discovery. The identification of GPCR lead compounds and their optimization are now structure-based, thanks to advances in X-ray crystallography, molecular modeling, protein engineering and biophysical techniques. In silico screening provides useful hit molecules. New pharmacological approaches to tuning the pleotropic action of GPCRs include: allosteric modulators, biased ligands, GPCR heterodimer-targeted compounds, manipulation of polypharmacology, receptor antibodies and tailoring of drug molecules to fit GPCR pharmacogenomics. Measurements of kinetics and drug efficacy are factors influencing clinical success. With the exception of inhibitors of GPCR kinases, targeting of intracellular GPCR signaling or receptor cycling for therapeutic purposes remains a futuristic concept. New assay approaches are more efficient and multidimensional: cell-based, label-free, fluorescence-based assays, and biosensors. Tailoring GPCR drugs to a patient's genetic background is now being considered. Chemoinformatic tools can predict ADME-tox properties. New imaging technology visualizes drug action in vivo. Thus, there is reason to be optimistic that new technology for GPCR ligand discovery will help reverse the current narrowing of the pharmaceutical pipeline.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8A, Rm. B1A-19, Bethesda, Maryland 20892, USA.
| |
Collapse
|
1853
|
Coyte KZ, Schluter J, Foster KR. The ecology of the microbiome: Networks, competition, and stability. Science 2015; 350:663-6. [PMID: 26542567 DOI: 10.1126/science.aad2602] [Citation(s) in RCA: 1332] [Impact Index Per Article: 133.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The human gut harbors a large and complex community of beneficial microbes that remain stable over long periods. This stability is considered critical for good health but is poorly understood. Here we develop a body of ecological theory to help us understand microbiome stability. Although cooperating networks of microbes can be efficient, we find that they are often unstable. Counterintuitively, this finding indicates that hosts can benefit from microbial competition when this competition dampens cooperative networks and increases stability. More generally, stability is promoted by limiting positive feedbacks and weakening ecological interactions. We have analyzed host mechanisms for maintaining stability-including immune suppression, spatial structuring, and feeding of community members-and support our key predictions with recent data.
Collapse
Affiliation(s)
- Katharine Z Coyte
- Department of Zoology, University of Oxford, Oxford, UK. Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, UK
| | - Jonas Schluter
- Department of Zoology, University of Oxford, Oxford, UK. Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, UK. The Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan.
| | - Kevin R Foster
- Department of Zoology, University of Oxford, Oxford, UK. Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, UK.
| |
Collapse
|
1854
|
Production of butyrate from lysine and the Amadori product fructoselysine by a human gut commensal. Nat Commun 2015; 6:10062. [PMID: 26620920 PMCID: PMC4697335 DOI: 10.1038/ncomms10062] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 10/29/2015] [Indexed: 12/18/2022] Open
Abstract
Human intestinal bacteria produce butyrate, which has signalling properties and can be used as energy source by enterocytes thus influencing colonic health. However, the pathways and the identity of bacteria involved in this process remain unclear. Here we describe the isolation from the human intestine of Intestinimonas strain AF211, a bacterium that can convert lysine stoichiometrically into butyrate and acetate when grown in a synthetic medium. Intestinimonas AF211 also converts the Amadori product fructoselysine, which is abundantly formed in heated foods via the Maillard reaction, into butyrate. The butyrogenic pathway includes a specific CoA transferase that is overproduced during growth on lysine. Bacteria related to Intestinimonas AF211 as well as the genetic coding capacity for fructoselysine conversion are abundantly present in colonic samples from some healthy human subjects. Our results indicate that protein can serve as a source of butyrate in the human colon, and its conversion by Intestinimonas AF211 and related butyrogens may protect the host from the undesired side effects of Amadori reaction products. Bacterial production of butyrate in the gut is associated with a healthy colon. Here the authors isolate an Intestinimonas strain from the human gut that can produce butyrate from lysine and fructoselysine, a potentially harmful compound formed in heated foods.
Collapse
|
1855
|
Ma D, Yang F, Fang J, Wang SL, Li ZS, Bai Y. Role of intestinal flora and defensins in colorectal carcinogenesis. Shijie Huaren Xiaohua Zazhi 2015; 23:5275-5281. [DOI: 10.11569/wcjd.v23.i33.5275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is a common malignant tumor of the digestive system. In recent years, the morbidity and mortality of colorectal cancer in China have been rising continuously, causing heavy medical burden; however, the exact etiology is still unknown. Therefore, there is an urgent need to elucidate the etiology and pathogenesis of colorectal cancer to promote early prevention, effective screening and targeted therapy. At present, the research on the correlation between intestinal flora and colorectal cancer is being deepened constantly. Defensins, mediating interaction between intestinal flora and the intestinal mucosa, have attracted more and more attention because of their potential role in the development of colorectal cancer. Here we briefly introduce human intestinal flora and defensins, review new advances in our understanding of their role in colorectal carcinogenesis and the possible mechanism, and preliminarily explore their mutual interaction.
Collapse
|
1856
|
Bindels LB, Neyrinck AM, Claus SP, Le Roy CI, Grangette C, Pot B, Martinez I, Walter J, Cani PD, Delzenne NM. Synbiotic approach restores intestinal homeostasis and prolongs survival in leukaemic mice with cachexia. ISME JOURNAL 2015; 10:1456-70. [PMID: 26613342 PMCID: PMC5029183 DOI: 10.1038/ismej.2015.209] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/20/2015] [Accepted: 10/02/2015] [Indexed: 02/07/2023]
Abstract
Cancer cachexia is a multifactorial syndrome that includes muscle wasting and inflammation. As gut microbes influence host immunity and metabolism, we investigated the role of the gut microbiota in the therapeutic management of cancer and associated cachexia. A community-wide analysis of the caecal microbiome in two mouse models of cancer cachexia (acute leukaemia or subcutaneous transplantation of colon cancer cells) identified common microbial signatures, including decreased Lactobacillus spp. and increased Enterobacteriaceae and Parabacteroides goldsteinii/ASF 519. Building on this information, we administered a synbiotic containing inulin-type fructans and live Lactobacillus reuteri 100-23 to leukaemic mice. This treatment restored the Lactobacillus population and reduced the Enterobacteriaceae levels. It also reduced hepatic cancer cell proliferation, muscle wasting and morbidity, and prolonged survival. Administration of the synbiotic was associated with restoration of the expression of antimicrobial proteins controlling intestinal barrier function and gut immunity markers, but did not impact the portal metabolomics imprinting of energy demand. In summary, this study provided evidence that the development of cancer outside the gut can impact intestinal homeostasis and the gut microbial ecosystem and that a synbiotic intervention, by targeting some alterations of the gut microbiota, confers benefits to the host, prolonging survival and reducing cancer proliferation and cachexia.
Collapse
Affiliation(s)
- Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Sandrine P Claus
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Caroline I Le Roy
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Corinne Grangette
- Lactic Acid Bacteria and Mucosal Immunity, Centre for Infection and Immunity of Lille, INSERM U1019-CNRS UMR 8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Bruno Pot
- Lactic Acid Bacteria and Mucosal Immunity, Centre for Infection and Immunity of Lille, INSERM U1019-CNRS UMR 8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Inés Martinez
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jens Walter
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium.,Walloon Excellence in Life sciences and BIOtechnology (WELBIO), Louvain Drug Research Institute, UCL, Brussels, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
1857
|
van Best N, Hornef MW, Savelkoul PHM, Penders J. On the origin of species: Factors shaping the establishment of infant's gut microbiota. ACTA ACUST UNITED AC 2015; 105:240-51. [DOI: 10.1002/bdrc.21113] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/03/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Niels van Best
- Institute of Medical Microbiology, RWTH University Hospital Aachen; Aachen Germany
- Department of Medical Microbiology; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+; Maastricht The Netherlands
| | - Mathias W. Hornef
- Institute of Medical Microbiology, RWTH University Hospital Aachen; Aachen Germany
| | - Paul H. M. Savelkoul
- Department of Medical Microbiology; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+; Maastricht The Netherlands
- Department of Medical Microbiology and Infection Control; VU University Medical Center Amsterdam; The Netherlands
- Department of Medical Microbiology; Caphri School for Public Health and Primary Care, Maastricht University Medical Centre+; Maastricht The Netherlands
| | - John Penders
- Department of Medical Microbiology; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+; Maastricht The Netherlands
- Department of Medical Microbiology; Caphri School for Public Health and Primary Care, Maastricht University Medical Centre+; Maastricht The Netherlands
| |
Collapse
|
1858
|
Ganesh BP, Versalovic J. Luminal Conversion and Immunoregulation by Probiotics. Front Pharmacol 2015; 6:269. [PMID: 26617521 PMCID: PMC4641912 DOI: 10.3389/fphar.2015.00269] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/26/2015] [Indexed: 12/16/2022] Open
Abstract
Beneficial microbes are responsible for the synthesis of nutrients and metabolites that are likely important for the maintenance of mammalian health. Many nutrients and metabolites derived from the gut microbiota by luminal conversion have been implicated in the development, homeostasis and function of innate and adaptive immunity. These factors clearly suggest that intestinal microbiota may influence host immunity via microbial metabolite-dependent mechanisms. We describe how intestinal microbes including probiotics generate microbial metabolites that modulate mucosal and systemic immunity.
Collapse
Affiliation(s)
- Bhanu Priya Ganesh
- Department of Pathology and Immunology, Baylor College of Medicine , Houston, TX, USA ; Department of Pathology, Texas Children's Hospital , Houston, TX, USA
| | - James Versalovic
- Department of Pathology and Immunology, Baylor College of Medicine , Houston, TX, USA ; Department of Pathology, Texas Children's Hospital , Houston, TX, USA
| |
Collapse
|
1859
|
Aw W, Fukuda S. An Integrated Outlook on the Metagenome and Metabolome of Intestinal Diseases. Diseases 2015; 3:341-359. [PMID: 28943629 PMCID: PMC5548254 DOI: 10.3390/diseases3040341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 01/08/2023] Open
Abstract
Recently, metagenomics and metabolomics are the two most rapidly advancing “omics” technologies. Metagenomics seeks to characterize the composition of microbial communities, their operations, and their dynamically co-evolving relationships with the habitats they occupy, whereas metabolomics studies unique chemical endpoints (metabolites) that specific cellular processes leave behind. Remarkable progress in DNA sequencing and mass spectrometry technologies has enabled the comprehensive collection of information on the gut microbiome and its metabolome in order to assess the influence of the gut microbiota on host physiology on a whole-systems level. Our gut microbiota, which consists of prokaryotic cells together with its metabolites, creates a unique gut ecosystem together with the host eukaryotic cells. In this review, we will highlight the detailed relationships between gut microbiota and its metabolites on host health and the pathogenesis of various intestinal diseases such as inflammatory bowel disease and colorectal cancer. Therapeutic interventions such as probiotic and prebiotic administrations and fecal microbiota transplantations will also be discussed. We would like to promote this unique biology-wide approach of incorporating metagenome and metabolome information as we believe that this can help us understand the intricate interplay between gut microbiota and host metabolism to a greater extent. This novel integration of microbiome, metatranscriptome, and metabolome information will help us have an improved holistic understanding of the complex mammalian superorganism, thereby allowing us to gain new and unprecedented insights to providing exciting novel therapeutic approaches for optimal intestinal health.
Collapse
Affiliation(s)
- Wanping Aw
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan.
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan.
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
1860
|
Ryan PM, Ross RP, Fitzgerald GF, Caplice NM, Stanton C. Functional food addressing heart health: do we have to target the gut microbiota? Curr Opin Clin Nutr Metab Care 2015; 18:566-71. [PMID: 26406391 DOI: 10.1097/mco.0000000000000224] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Health promoting functional food ingredients for cardiovascular health are generally aimed at modulating lipid metabolism in consumers. However, significant advances have furthered our understanding of the mechanisms involved in development, progression, and treatment of cardiovascular disease. In parallel, a central role of the gut microbiota, both in accelerating and attenuating cardiovascular disease, has emerged. RECENT FINDINGS Modulation of the gut microbiota, by use of prebiotics and probiotics, has recently shown promise in cardiovascular disease prevention. Certain prebiotics can promote a short chain fatty acid profile that alters hormone secretion and attenuates cholesterol synthesis, whereas bile salt hydrolase and exopolysaccharide-producing probiotics have been shown to actively correct hypercholesterolemia. Furthermore, specific microbial genera have been identified as potential cardiovascular disease risk factors. This effect is attributed to the ability of certain members of the gut microbiota to convert dietary quaternary amines to trimethylamine, the primary substrate of the putatively atherosclerosis-promoting compound trimethylamine-N-oxide. In this respect, current research is indicating trimethylamine-depleting Achaea - termed Archeabiotics as a potential novel dietary strategy for promoting heart health. SUMMARY The microbiota offers a modifiable target, which has the potential to progress or prevent cardiovascular disease development. Whereas host-targeted interventions remain the standard, current research implicates microbiota-mediated therapies as an effective means of modulating cardiovascular health.
Collapse
Affiliation(s)
- Paul M Ryan
- aFood Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy bSchool of Microbiology cAPC Microbiome Institute, Biosciences Institute dCollege of Science, Engineering and Food Science eCentre for Research in Vascular Biology, University College Cork, Cork, Ireland
| | | | | | | | | |
Collapse
|
1861
|
Quantification of in Vivo Colonic Short Chain Fatty Acid Production from Inulin. Nutrients 2015; 7:8916-29. [PMID: 26516911 PMCID: PMC4663568 DOI: 10.3390/nu7115440] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/16/2015] [Accepted: 10/20/2015] [Indexed: 12/12/2022] Open
Abstract
Short chain fatty acids (SCFA), including acetate, propionate, and butyrate, are produced during bacterial fermentation of undigested carbohydrates in the human colon. In this study, we applied a stable-isotope dilution method to quantify the in vivo colonic production of SCFA in healthy humans after consumption of inulin. Twelve healthy subjects performed a test day during which a primed continuous intravenous infusion with [1-13C]acetate, [1-13C]propionate and [1-13C]butyrate (12, 1.2 and 0.6 μmol·kg−1·min−1, respectively) was applied. They consumed 15 g of inulin with a standard breakfast. Breath and blood samples were collected at regular times during the day over a 12 h period. The endogenous rate of appearance of acetate, propionate, and butyrate was 13.3 ± 4.8, 0.27 ± 0.09, and 0.28 ± 0.12 μmol·kg−1·min−1, respectively. Colonic inulin fermentation was estimated to be 137 ± 75 mmol acetate, 11 ± 9 mmol propionate, and 20 ± 17 mmol butyrate over 12 h, assuming that 40%, 10%, and 5% of colonic derived acetate, propionate, and butyrate enter the systemic circulation. In conclusion, inulin is mainly fermented into acetate and, to lesser extents, into butyrate and propionate. Stable isotope technology allows quantifying the production of the three main SCFA in vivo and proved to be a practical tool to investigate the extent and pattern of SCFA production.
Collapse
|
1862
|
Thompson JA, Oliveira RA, Djukovic A, Ubeda C, Xavier KB. Manipulation of the quorum sensing signal AI-2 affects the antibiotic-treated gut microbiota. Cell Rep 2015; 10:1861-71. [PMID: 25801025 DOI: 10.1016/j.celrep.2015.02.049] [Citation(s) in RCA: 270] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/18/2015] [Accepted: 02/20/2015] [Indexed: 12/14/2022] Open
Abstract
The mammalian gut microbiota harbors a diverse ecosystem where hundreds of bacterial species interact with each other and their host. Given that bacteria use signals to communicate and regulate group behaviors (quorum sensing), we asked whether such communication between different commensal species can influence the interactions occurring in this environment. We engineered the enteric bacterium, Escherichia coli, to manipulate the levels of the interspecies quorum sensing signal, autoinducer-2 (AI-2), in the mouse intestine and investigated the effect upon antibiotic-induced gut microbiota dysbiosis. E. coli that increased intestinal AI-2 levels altered the composition of the antibiotic-treated gut microbiota, favoring the expansion of the Firmicutes phylum. This significantly increased the Firmicutes/Bacteroidetes ratio, to oppose the strong effect of the antibiotic, which had almost cleared the Firmicutes. This demonstrates that AI-2 levels influence the abundance of the major phyla of the gut microbiota, the balance of which is known to influence human health.
Collapse
|
1863
|
Athersuch T. Metabolome analyses in exposome studies: Profiling methods for a vast chemical space. Arch Biochem Biophys 2015; 589:177-86. [PMID: 26494045 DOI: 10.1016/j.abb.2015.10.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/30/2015] [Accepted: 10/09/2015] [Indexed: 12/14/2022]
Abstract
Metabolic profiling (metabonomics/metabolomics) is now used routinely as a tool to provide information-rich datasets for biomarker discovery, prompting and augmenting detailed mechanistic studies. The experimental design and focus of any individual study will be reflected in the types of biomarkers that can be detected; toxicological studies will likely focus on markers of response to insult, whereas clinical case-control studies may yield diagnostic markers of disease. Population studies can make use of omics analyses, including metabonomics, to provide mechanistically-relevant markers that link environmental exposures to chronic disease endpoints. In this article, examples of how metabolic profiling has played a key role in molecular epidemiological analyses of chronic disease are presented, and how these reflect different aspects of the causal pathway. A commentary on the nature of metabolome analysis as a complex mixture problem as opposed to a coded, sequence or template problem is provided, alongside an overview of current and future analytical platforms that are being applied to meet this analytical challenge. Epidemiological studies are an important nexus for integrating various measures of the human exposome, and the ubiquity, diversity and functions of small molecule metabolites, represent an important way to link individual exposures, genetics and phenotype.
Collapse
Affiliation(s)
- Toby Athersuch
- Section of Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; MRC-PHE Centre for Environment and Health, Imperial College London, London W2 1PG, UK.
| |
Collapse
|
1864
|
Montalban-Arques A, De Schryver P, Bossier P, Gorkiewicz G, Mulero V, Gatlin DM, Galindo-Villegas J. Selective Manipulation of the Gut Microbiota Improves Immune Status in Vertebrates. Front Immunol 2015; 6:512. [PMID: 26500650 PMCID: PMC4598590 DOI: 10.3389/fimmu.2015.00512] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/20/2015] [Indexed: 12/12/2022] Open
Abstract
All animals develop in association with complex microbial communities. It is now well established that commensal microbiota is essential for the correct functionality of each organ in the host. Particularly, the commensal gastro-intestinal microbiota (CGIM) is a key factor for development, immunity and nutrient conversion, rendering them bio-available for various uses. Thus, nutritional inputs generate a positive loop in maintaining host health and are essential in shaping the composition of the CGIM communities. Probiotics, which are live exogenous microorganisms, selectively provided to the host, are a promising concept for manipulating the microbiota and thus for increasing the host health status. Nevertheless, most mechanisms induced by probiotics to fortify the immune system are still a matter of debate. Alternatively, prebiotics, which are non-digestible food ingredients, can favor the growth of specific target groups of CGIM. Several metabolites are produced by the CGIM, one of the most important are the short-chain fatty acids (SCFAs), which emerge from the fermentation of complex carbohydrates. SCFAs have been recognized as key players in triggering beneficial effects elicited by simple diffusion and by specific receptors present, thus, far only in epithelial cells of higher vertebrates at different gastro-intestinal locations. However, both strategies have shown to provide resistance against pathogens during periods of high stress. In fish, knowledge about the action of pro- and prebiotics and SCFAs is still limited. Thus, in this review, we briefly summarize the mechanisms described on this topic for higher vertebrates and discuss why many of them may operate in the fish gut representing a model for different mucosal tissues
Collapse
Affiliation(s)
| | - Peter De Schryver
- Laboratory of Aquaculture & Artemia Reference Center, Ghent University , Ghent , Belgium
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Ghent University , Ghent , Belgium
| | | | - Victoriano Mulero
- Department of Cell Biology and Histology, Faculty of Biology, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, University of Murcia , Murcia , Spain
| | - Delbert Monroe Gatlin
- Department of Wildlife and Fisheries Sciences, College of Agriculture and Life Sciences, Texas A&M University , College Station, TX , USA
| | - Jorge Galindo-Villegas
- Department of Cell Biology and Histology, Faculty of Biology, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, University of Murcia , Murcia , Spain
| |
Collapse
|
1865
|
Winglee K, Fodor AA. Intrinsic association between diet and the gut microbiome: current evidence. NUTRITION AND DIETARY SUPPLEMENTS 2015; 7:69-76. [PMID: 28690398 DOI: 10.2147/nds.s62362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The gut microbiome performs many crucial functions for the human host, but the molecular mechanisms by which host, microbe and diet interact to mediate health and disease are only starting to be revealed. Here we review the literature on how changes in the diet affect the microbiome. A number of studies have shown that within a geographic region, different diets (such as vegan vs. omnivore) are associated with differences in a modest number of taxa but do not reliably produce radical differences within the gut microbial community. In contrast, studies that look across continents consistently find profoundly different microbial communities between Westernized and traditional populations, although it remains unclear to what extent diet or other differences in lifestyle drive these distinct microbial community structures. Furthermore, studies that place subjects on controlled short term experimental diets have found the resulting alterations to the gut microbial community to generally be small in scope, with changes that do not overcome initial individual differences in microbial community structure. These results emphasize that the human gut microbial community is relatively stable over time. In contrast, short term changes in diet can cause large changes in metabolite profiles, including metabolites processed by the gut microbial community. These results suggest that commensal gut microbes have a great deal of genetic plasticity and can activate different metabolic pathways independent of changes to microbial community composition. Thus, future studies of the how diet impacts host health via the microbiome may wish to focus on functional assays such as transcriptomics and metabolomics, in addition to 16S rRNA and whole-genome metagenome shotgun analyses of DNA. Taken together, the literature is most consistent with a model in which the composition of the adult gut microbial community undergoes modest compositional changes in response to altered diet but can nonetheless respond very rapidly to dietary changes via up- or down-regulation of metabolic pathways that can have profound and immediate consequences for host health.
Collapse
Affiliation(s)
- Kathryn Winglee
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Anthony A Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| |
Collapse
|
1866
|
Steinmeyer S, Lee K, Jayaraman A, Alaniz RC. Microbiota metabolite regulation of host immune homeostasis: a mechanistic missing link. Curr Allergy Asthma Rep 2015; 15:24. [PMID: 26139332 DOI: 10.1007/s11882-015-0524-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metazoans predominantly co-exist with symbiotic microorganisms called the microbiota. Metagenomic surveys of the microbiota reveal a diverse ecosystem of microbes particularly in the gastrointestinal (GI) tract. Perturbations in the GI microbiota in higher mammals (i.e., humans) are linked to diseases with variegated symptomology including inflammatory bowel disease, asthma, and auto-inflammatory disorders. Indeed, studies using germ-free mice (lacking a microbiota) confirm that host development and homeostasis are dependent on the microbiota. A long-known key feature of the GI tract microbiota is metabolizing host indigestible dietary matter for maximum energy extraction; however, host signaling pathways are greatly influenced by the microbiota as well. In line with these observations, recent research has revealed that metabolites produced strictly by select microbiota members are mechanistic regulators of host cell functions. In this review, we discuss two major classes of microbiota-produced metabolites: short-chain fatty acids and tryptophan metabolites. We describe the known important roles for these metabolites in shaping host immunity and comment on the current status and future directions for microbiota metabolomics research.
Collapse
Affiliation(s)
- S Steinmeyer
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX, 77843, USA,
| | | | | | | |
Collapse
|
1867
|
Zitvogel L, Galluzzi L, Viaud S, Vétizou M, Daillère R, Merad M, Kroemer G. Cancer and the gut microbiota: an unexpected link. Sci Transl Med 2015; 7:271ps1. [PMID: 25609166 DOI: 10.1126/scitranslmed.3010473] [Citation(s) in RCA: 329] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Changes in the interactions among the gut microbiota, intestinal epithelium, and host immune system are associated with many diseases, including cancer. We discuss how environmental factors infuence this cross-talk during oncogenesis and tumor progression and how manipulations of the gut microbiota might improve the clinical activity of anticancer agents.
Collapse
Affiliation(s)
- Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Center, F-94805 Villejuif, France. INSERM, U1015, CICBT507, F-94805 Villejuif, France.
| | - Lorenzo Galluzzi
- Gustave Roussy Comprehensive Cancer Center, F-94805 Villejuif, France. Equipe 11 Labellisée par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, F-75006 Paris, France. Université Paris Descartes/Paris V, Sorbonne Paris Cité, F-75006 Paris, France. INSERM, U1138, F-75006 Paris, France
| | - Sophie Viaud
- Gustave Roussy Comprehensive Cancer Center, F-94805 Villejuif, France. INSERM, U1015, CICBT507, F-94805 Villejuif, France
| | - Marie Vétizou
- Gustave Roussy Comprehensive Cancer Center, F-94805 Villejuif, France. INSERM, U1015, CICBT507, F-94805 Villejuif, France
| | - Romain Daillère
- Gustave Roussy Comprehensive Cancer Center, F-94805 Villejuif, France. INSERM, U1015, CICBT507, F-94805 Villejuif, France
| | - Miriam Merad
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Guido Kroemer
- Equipe 11 Labellisée par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, F-75006 Paris, France. Université Paris Descartes/Paris V, Sorbonne Paris Cité, F-75006 Paris, France. INSERM, U1138, F-75006 Paris, France. Pôle de Biologie, Hôpital Européen Georges Pompidou F-75015, AP-HP, Paris, France. Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Center, F-94805 Villejuif, France
| |
Collapse
|
1868
|
Robust bioengineered 3D functional human intestinal epithelium. Sci Rep 2015; 5:13708. [PMID: 26374193 PMCID: PMC4571649 DOI: 10.1038/srep13708] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 08/04/2015] [Indexed: 12/29/2022] Open
Abstract
Intestinal functions are central to human physiology, health and disease. Options to study these functions with direct relevance to the human condition remain severely limited when using conventional cell cultures, microfluidic systems, organoids, animal surrogates or human studies. To replicate in vitro the tissue architecture and microenvironments of native intestine, we developed a 3D porous protein scaffolding system, containing a geometrically-engineered hollow lumen, with adaptability to both large and small intestines. These intestinal tissues demonstrated representative human responses by permitting continuous accumulation of mucous secretions on the epithelial surface, establishing low oxygen tension in the lumen, and interacting with gut-colonizing bacteria. The newly developed 3D intestine model enabled months-long sustained access to these intestinal functions in vitro, readily integrable with a multitude of different organ mimics and will therefore ensure a reliable ex vivo tissue system for studies in a broad context of human intestinal diseases and treatments.
Collapse
|
1869
|
West NR, McCuaig S, Franchini F, Powrie F. Emerging cytokine networks in colorectal cancer. Nat Rev Immunol 2015; 15:615-29. [PMID: 26358393 DOI: 10.1038/nri3896] [Citation(s) in RCA: 275] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytokine networks are crucial aspects of tumour immunology, particularly for colorectal cancer (CRC), in which inflammation and antitumour immunity are key determinants of disease progression. In this Review, we highlight new insights into the functions of well-known cytokines in CRC, describe recently discovered roles for a growing number of novel players, and emphasize the complexity and therapeutic implications of the cytokine milieu. We also discuss how cancer mutations and epigenetic adaptations influence the oncogenic potential of cytokines, a relatively unexplored area that could yield crucial insights into tumour immunology and facilitate the effective application of cytokine-modulatory therapies for CRC.
Collapse
Affiliation(s)
- Nathan R West
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7LF, UK.,Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Sarah McCuaig
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7LF, UK.,Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Fanny Franchini
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7LF, UK.,Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Fiona Powrie
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7LF, UK.,Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
1870
|
Abstract
Investigations focused on the interplay between the human microbiome and cancer development, herein termed the 'oncobiome', have been growing at a rapid rate. However, these studies to date have primarily demonstrated associative relationships rather than causative ones. We pose the question of whether this emerging field of research is a 'mirage' without a clear picture, or truly represents a paradigm shift for cancer research. We propose the necessary steps needed to answer crucial questions and push the field forward to bring the mirage into a tangible reality.
Collapse
Affiliation(s)
- Ryan M Thomas
- Department of Surgery, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA ; Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Christian Jobin
- Department of Medicine and Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
1871
|
Toxic Markers of Matrine Determined Using (1) H-NMR-Based Metabolomics in Cultured Cells In Vitro and Rats In Vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:598412. [PMID: 26413125 PMCID: PMC4568042 DOI: 10.1155/2015/598412] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 08/09/2015] [Indexed: 12/19/2022]
Abstract
Matrine is one of the main bioactive alkaloids of Sophora flavescens Aiton, which has been widely used to treat various diseases in China. These diseases include viral hepatitis, liver fibrosis, cardiac arrhythmia, skin diseases, and tumors. However, matrine is also the main toxic compound of this herb, and the available biomarkers are not reliable in detecting or quantifying matrine risk. Metabolomics is a powerful tool used to identify early toxicity biomarkers that are specific indicators of damage to biosystems. This study aimed to find the potential biomarkers of the matrine-induced toxic effects in rats and HepG2 cells. The toxicological effects of rats induced by matrine could be derived from the elevated taurine and trimethylamine N-oxide levels and the depletion in hippurate and tricarboxylic acid cycle intermediates, such as 2-oxoglutarate, citrate, and succinate in the urine. Cell metabolomics revealed that the levels of alanine, choline, glutathione, lactate, phosphocholine, and cholesterol showed dose-dependent decreases, whereas the levels of taurine, fatty acid, and unsaturated fatty acid showed dose-dependent increases. Overall, a significant perturbation of metabolites in response to high dose of matrine was observed both in vivo and in vitro, and the selected metabolites particularly represent an attractive marker for matrine-induced toxicity.
Collapse
|
1872
|
Mutual Cross-Feeding Interactions between Bifidobacterium longum subsp. longum NCC2705 and Eubacterium rectale ATCC 33656 Explain the Bifidogenic and Butyrogenic Effects of Arabinoxylan Oligosaccharides. Appl Environ Microbiol 2015; 81:7767-81. [PMID: 26319874 DOI: 10.1128/aem.02089-15] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/25/2015] [Indexed: 02/07/2023] Open
Abstract
Arabinoxylan oligosaccharides (AXOS) are a promising class of prebiotics that have the potential to stimulate the growth of bifidobacteria and the production of butyrate in the human colon, known as the bifidogenic and butyrogenic effects, respectively. Although these dual effects of AXOS are considered beneficial for human health, their underlying mechanisms are still far from being understood. Therefore, this study investigated the metabolic interactions between Bifidobacterium longum subsp. longum NCC2705 (B. longum NCC2705), an acetate producer and arabinose substituent degrader of AXOS, and Eubacterium rectale ATCC 33656, an acetate-converting butyrate producer. Both strains belong to prevalent species of the human colon microbiota. The strains were grown on AXOS during mono- and coculture fermentations, and their growth, AXOS consumption, metabolite production, and expression of key genes were monitored. The results showed that the growth of both strains and gene expression in both strains were affected by cocultivation and that these effects could be linked to changes in carbohydrate consumption and concomitant metabolite production. The consumption of the arabinose substituents of AXOS by B. longum NCC2705 with the concomitant production of acetate allowed E. rectale ATCC 33656 to produce butyrate (by means of a butyryl coenzyme A [CoA]:acetate CoA-transferase), explaining the butyrogenic effect of AXOS. Eubacterium rectale ATCC 33656 released xylose from the AXOS substrate, which favored the B. longum NCC2705 production of acetate, explaining the bifidogenic effect of AXOS. Hence, those interactions represent mutual cross-feeding mechanisms that favor the coexistence of bifidobacterial strains and butyrate producers in the same ecological niche. In conclusion, this study provides new insights into the bifidogenic and butyrogenic effects of AXOS.
Collapse
|
1873
|
Sialic acid catabolism drives intestinal inflammation and microbial dysbiosis in mice. Nat Commun 2015; 6:8141. [PMID: 26303108 PMCID: PMC4560832 DOI: 10.1038/ncomms9141] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 07/22/2015] [Indexed: 12/22/2022] Open
Abstract
Rapid shifts in microbial composition frequently occur during intestinal inflammation, but the mechanisms underlying such changes remain elusive. Here we demonstrate that an increased caecal sialidase activity is critical in conferring a growth advantage for some bacteria including Escherichia coli (E. coli) during intestinal inflammation in mice. This sialidase activity originates among others from Bacteroides vulgatus, whose intestinal levels expand after dextran sulphate sodium administration. Increased sialidase activity mediates the release of sialic acid from intestinal tissue, which promotes the outgrowth of E. coli during inflammation. The outburst of E. coli likely exacerbates the inflammatory response by stimulating the production of pro-inflammatory cytokines by intestinal dendritic cells. Oral administration of a sialidase inhibitor and low levels of intestinal α2,3-linked sialic acid decrease E. coli outgrowth and the severity of colitis in mice. Regulation of sialic acid catabolism opens new perspectives for the treatment of intestinal inflammation as manifested by E. coli dysbiosis. Intestinal inflammation is often associated with a shift in microbiota composition but the mechanisms are unclear. Here the authors show that an increase in caecal sialidase activity occurring during intestinal inflammation promotes the expansion of Enterobacteriaceae, which can lead to exacerbated inflammatory response.
Collapse
|
1874
|
Wei X, Song M, Yin X, Schuschke DA, Koo I, McClain CJ, Zhang X. Effects of Dietary Different Doses of Copper and High Fructose Feeding on Rat Fecal Metabolome. J Proteome Res 2015. [PMID: 26216400 DOI: 10.1021/acs.jproteome.5b00596] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The gut microbiota plays a critical role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Increased fructose consumption and inadequate copper intake are two critical risk factors in the development of NAFLD. To gain insight into the role of gut microbiota, fecal metabolites, obtained from rats exposed to different dietary levels of copper with and without high fructose intake for 4 weeks, were analyzed by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOF MS). In parallel, liver tissues were assessed by histology and triglyceride assay. Our data showed that high fructose feeding led to obvious hepatic steatosis in both marginal copper deficient rats and copper supplementation rats. Among the 38 metabolites detected with significant abundance alteration between groups, short chain fatty acids were markedly decreased with excessive fructose intake irrespective of copper levels. C15:0 and C17:0 long chain fatty acids, produced only by bacteria, were increased by either high copper level or high fructose intake. In addition, increased fecal urea and malic acid paralleled the increased hepatic fat accumulation. Collectively, GC × GC-TOF MS analysis of rat fecal samples revealed distinct fecal metabolome profiles associated with the dietary high fructose and copper level, with some metabolites possibly serving as potential noninvasive biomarkers of fructose induced-NAFLD.
Collapse
Affiliation(s)
| | | | | | | | | | - Craig J McClain
- Robley Rex Louisville VAMC, Louisville, Kentucky 40292, United States
| | | |
Collapse
|
1875
|
Hamm AK, Weir TL. Editorial on "Cancer and the microbiota" published in Science. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:175. [PMID: 26366392 PMCID: PMC4543330 DOI: 10.3978/j.issn.2305-5839.2015.07.16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 07/19/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Alison K Hamm
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523-1571, USA
| | - Tiffany L Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523-1571, USA
| |
Collapse
|
1876
|
|
1877
|
Andriamihaja M, Lan A, Beaumont M, Audebert M, Wong X, Yamada K, Yin Y, Tomé D, Carrasco-Pozo C, Gotteland M, Kong X, Blachier F. The deleterious metabolic and genotoxic effects of the bacterial metabolite p-cresol on colonic epithelial cells. Free Radic Biol Med 2015; 85:219-27. [PMID: 25881551 DOI: 10.1016/j.freeradbiomed.2015.04.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/20/2015] [Accepted: 04/06/2015] [Indexed: 11/21/2022]
Abstract
p-Cresol that is produced by the intestinal microbiota from the amino acid tyrosine is found at millimolar concentrations in the human feces. The effects of this metabolite on colonic epithelial cells were tested in this study. Using the human colonic epithelial HT-29 Glc(-/+) cell line, we found that 0.8mM p-cresol inhibits cell proliferation, an effect concomitant with an accumulation of the cells in the S phase and with a slight increase of cell detachment without necrotic effect. At this concentration, p-cresol inhibited oxygen consumption in HT-29 Glc(-/+) cells. In rat normal colonocytes, p-cresol also inhibited respiration. Pretreatment of HT-29 Glc(-/+) cells with 0.8mM p-cresol for 1 day resulted in an increase of the state 3 oxygen consumption and of the cell maximal respiratory capacity with concomitant increased anion superoxide production. At higher concentrations (1.6 and 3.2mM), p-cresol showed similar effects but additionally increased after 1 day the proton leak through the inner mitochondrial membrane, decreasing the mitochondrial bioenergetic activity. At these concentrations, p-cresol was found to be genotoxic toward HT-29 Glc(-/+) and also LS-174T intestinal cells. Lastly, a decreased ATP intracellular content was observed after 3 days treatment. p-Cresol at 0.8mM concentration inhibits colonocyte respiration and proliferation. In response, cells can mobilize their "respiratory reserve." At higher concentrations, p-cresol pretreatment uncouples cell respiration and ATP synthesis, increases DNA damage, and finally decreases the ATP cell content. Thus, we have identified p-cresol as a metabolic troublemaker and as a genotoxic agent toward colonocytes.
Collapse
Affiliation(s)
- Mireille Andriamihaja
- UMR 914 INRA/AgroParisTech, Nutrition Physiology and Ingestive Behavior, Paris, France
| | - Annaïg Lan
- UMR 914 INRA/AgroParisTech, Nutrition Physiology and Ingestive Behavior, Paris, France
| | - Martin Beaumont
- UMR 914 INRA/AgroParisTech, Nutrition Physiology and Ingestive Behavior, Paris, France
| | - Marc Audebert
- INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, F-31027 Toulouse, France
| | - Ximena Wong
- Department of Nutrition, Faculty of Medicine University of Chile, Santiago, Chile
| | - Kana Yamada
- UMR 914 INRA/AgroParisTech, Nutrition Physiology and Ingestive Behavior, Paris, France
| | - Yulong Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Daniel Tomé
- UMR 914 INRA/AgroParisTech, Nutrition Physiology and Ingestive Behavior, Paris, France
| | | | - Martin Gotteland
- Department of Nutrition, Faculty of Medicine University of Chile, Santiago, Chile; Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Xiangfeng Kong
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - François Blachier
- UMR 914 INRA/AgroParisTech, Nutrition Physiology and Ingestive Behavior, Paris, France.
| |
Collapse
|
1878
|
Xie G, Raufman JP. Role of the Aryl Hydrocarbon Receptor in Colon Neoplasia. Cancers (Basel) 2015; 7:1436-46. [PMID: 26264025 PMCID: PMC4586780 DOI: 10.3390/cancers7030847] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 12/27/2022] Open
Abstract
For both men and women, colorectal cancer (CRC) is the second leading cause of cancer death in the United States, primarily as a consequence of limited therapies for metastatic disease. The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor with diverse functions in detoxification of xenobiotics, inflammatory responses, and tissue homeostasis. Emerging evidence indicates that AhR also plays an important role in regulating intestinal cell proliferation and tumorigenesis. Here, we review both the pro- and anti-carcinogenic properties of AhR signaling and its potential role as a therapeutic target in CRC.
Collapse
Affiliation(s)
- Guofeng Xie
- Division of Gastroenterology and Hepatology, Veterans Administration Maryland Health Care System, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Jean-Pierre Raufman
- Division of Gastroenterology and Hepatology, Veterans Administration Maryland Health Care System, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
1879
|
Raufman JP, Dawson PA, Rao A, Drachenberg CB, Heath J, Shang AC, Hu S, Zhan M, Polli JE, Cheng K. Slc10a2-null mice uncover colon cancer-promoting actions of endogenous fecal bile acids. Carcinogenesis 2015. [PMID: 26210740 DOI: 10.1093/carcin/bgv107] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although epidemiological evidence in humans and bile acid feeding studies in rodents implicate bile acids as tumor promoters, the role of endogenous bile acids in colon carcinogenesis remains unclear. In this study, we exploited mice deficient in the ileal apical sodium-dependent bile acid transporter (ASBT, encoded by SLC10A2) in whom fecal bile acid excretion is augmented more than 10-fold. Wild-type and Asbt-deficient (Slc10a2 (-/-) ) male mice were treated with azoxymethane (AOM) alone to examine the development of aberrant crypt foci, the earliest histological marker of colon neoplasia and a combination of AOM and dextran sulfate sodium to induce colon tumor formation. Asbt-deficient mice exhibited a 54% increase in aberrant crypt foci, and 70 and 59% increases in colon tumor number and size, respectively. Compared to littermate controls, Asbt-deficient mice had a striking, 2-fold increase in the number of colon adenocarcinomas. Consistent with previous studies demonstrating a role for muscarinic and epidermal growth factor receptor signaling in bile acid-induced colon neoplasia, increasing bile acid malabsorption was associated with M3 muscarinic and epidermal growth factor receptor expression, and activation of extracellular signal-related kinase, a key post-receptor signaling molecule.
Collapse
Affiliation(s)
| | - Paul A Dawson
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anuradha Rao
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | - Min Zhan
- Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA and
| | - James E Polli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | | |
Collapse
|
1880
|
Garcia-Anguita A, Kakourou A, Tsilidis KK. Biomarkers of Inflammation and Immune Function and Risk of Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2015; 11:250-258. [PMID: 26321888 PMCID: PMC4550652 DOI: 10.1007/s11888-015-0282-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A substantial number of prospective epidemiological studies have been conducted to investigate the association between biomarkers of inflammation and immune function and risk of colorectal cancer. Although pre-diagnostic concentrations of these biomarkers, especially C-reactive protein, have been associated with a higher risk of colorectal cancer in some studies, this association does not seem to have a robust support without hints of bias. Future prospective studies should evaluate multiple inflammatory biomarkers with longitudinal measures over the follow-up taking advantage of new multiplex cytokine quantification arrays and use more sophisticated joint or biomarker pattern statistical approaches to capture the complex and dynamic interplay between biomarkers and risk of colorectal cancer. Large collaborative consortia and Mendelian randomization studies should be encouraged to diminish the threat of biases and improve the reliability of this literature.
Collapse
Affiliation(s)
- Alicia Garcia-Anguita
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Stavros Niarchos Av., University Campus, Ioannina, Greece
| | - Artemisia Kakourou
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Stavros Niarchos Av., University Campus, Ioannina, Greece
| | - Konstantinos K Tsilidis
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Stavros Niarchos Av., University Campus, Ioannina, Greece ; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
1881
|
Sasada T, Hinoi T, Saito Y, Adachi T, Takakura Y, Kawaguchi Y, Sotomaru Y, Sentani K, Oue N, Yasui W, Ohdan H. Chlorinated Water Modulates the Development of Colorectal Tumors with Chromosomal Instability and Gut Microbiota in Apc-Deficient Mice. PLoS One 2015; 10:e0132435. [PMID: 26186212 PMCID: PMC4505894 DOI: 10.1371/journal.pone.0132435] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 06/16/2015] [Indexed: 01/28/2023] Open
Abstract
The gastrointestinal tract is continuously exposed to a variety of chemicals and commensal bacteria. Recent studies have shown that changes in gut microbial populations caused by chlorine or other chemicals in the drinking water influence the development of human colorectal cancer, although the mechanism of tumorigenesis in the gut epithelium is obfuscated by the diversity of microflora and complexity of the tumor microenvironment. In this regard, mouse models that recapitulate human colorectal cancer are an invaluable tool. In this study, we used two conditional adenomatous polyposis coli (Apc) knockout mouse models to investigate the effect of chlorinated water on tumorigenesis in the digestive tract. Mice with colon-specific carcinoma--caused by either chromosomal (CDX2P 9.5-NLS Cre;Apc(+/flox), abbreviated to CPC;Apc) or microsatellite (CDX2P9.5-G19Cre;Apc(flox/flox) and CDX2P9.5-G22Cre;Apc(flox/flox)) instability, respectively--were administered chlorinated (10.0 mg/L chlorine) or tap (0.7 mg/L chlorine) water and evaluated for colon polyp formation. In CPC;Apc mice given chlorinated drinking water, tumors tended to develop in the colon, whereas in those that drank tap water, tumors were mostly observed in the small intestine. There was no difference in the rate of tumor formation of CDX2P9.5-G19Cre;Apc(flox/flox) and CDX2P9.5-G22Cre;Apc(flox/flox) mice consuming chlorinated as compared to tap water, suggesting that microsatellite instability in the Apc gene does not significantly affect tumorigenesis. Chlorinated water altered the enteric environment by reducing the fecal populations of the obligatory anaerobes Clostridium perfringens and C. difficile, as well as species belonging to the Atopobium cluster, including Enterobacteriaceae and Staphylococcus sp., which was associated with colon tumorigenesis in CPC;Apc mice. These results suggest that differences in tumorigenesis among CPC;Apc mice consuming chlorinated versus tap water may be due to differences in gastrointestinal commensal populations.
Collapse
Affiliation(s)
- Tatsunari Sasada
- Department of Gastroenterological and Transplant Surgery, Applied Life Science, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takao Hinoi
- Department of Gastroenterological and Transplant Surgery, Applied Life Science, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasufumi Saito
- Department of Gastroenterological and Transplant Surgery, Applied Life Science, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomohiro Adachi
- Department of Gastroenterological and Transplant Surgery, Applied Life Science, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuji Takakura
- Department of Gastroenterological and Transplant Surgery, Applied Life Science, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasuo Kawaguchi
- Department of Gastroenterological and Transplant Surgery, Applied Life Science, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yusuke Sotomaru
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Naohide Oue
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Applied Life Science, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
1882
|
Keshavarzian A, Green SJ, Engen PA, Voigt RM, Naqib A, Forsyth CB, Mutlu E, Shannon KM. Colonic bacterial composition in Parkinson's disease. Mov Disord 2015; 30:1351-60. [PMID: 26179554 DOI: 10.1002/mds.26307] [Citation(s) in RCA: 873] [Impact Index Per Article: 87.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION We showed that Parkinson's disease (PD) patients have alpha-synuclein (α-Syn) aggregation in their colon with evidence of colonic inflammation. If PD patients have altered colonic microbiota, dysbiosis might be the mechanism of neuroinflammation that leads to α-Syn misfolding and PD pathology. METHODS Sixty-six sigmoid mucosal biopsies and 65 fecal samples were collected from 38 PD patients and 34 healthy controls. Mucosal-associated and feces microbiota compositions were characterized using high-throughput ribosomal RNA gene amplicon sequencing. Data were correlated with clinical measures of PD, and a predictive assessment of microbial community functional potential was used to identify microbial functions. RESULTS The mucosal and fecal microbial community of PD patients was significantly different than control subjects, with the fecal samples showing more marked differences than the sigmoid mucosa. At the taxonomic level of genus, putative, "anti-inflammatory" butyrate-producing bacteria from the genera Blautia, Coprococcus, and Roseburia were significantly more abundant in feces of controls than PD patients. Bacteria from the genus Faecalibacterium were significantly more abundant in the mucosa of controls than PD. Putative, "proinflammatory" Proteobacteria of the genus Ralstonia were significantly more abundant in mucosa of PD than controls. Predictive metagenomics indicated that a large number of genes involved in metabolism were significantly lower in the PD fecal microbiome, whereas genes involved in lipopolysaccharide biosynthesis and type III bacterial secretion systems were significantly higher in PD patients. CONCLUSION This report provides evidence that proinflammatory dysbiosis is present in PD patients and could trigger inflammation-induced misfolding of α-Syn and development of PD pathology.
Collapse
Affiliation(s)
- Ali Keshavarzian
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois, USA.,Department of Pharmacology, Rush University Medical Center, Chicago, Illinois, USA.,Department of Physiology, Rush University Medical Center, Chicago, Illinois, USA.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Stefan J Green
- DNA Services Facility, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Phillip A Engen
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois, USA
| | - Robin M Voigt
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois, USA
| | - Ankur Naqib
- DNA Services Facility, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Christopher B Forsyth
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois, USA.,Department of Biochemistry, Rush University Medical Center, Chicago, Illinois, USA
| | - Ece Mutlu
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois, USA
| | - Kathleen M Shannon
- Department of Neurology, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
1883
|
Kell D, Potgieter M, Pretorius E. Individuality, phenotypic differentiation, dormancy and 'persistence' in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology. F1000Res 2015; 4:179. [PMID: 26629334 PMCID: PMC4642849 DOI: 10.12688/f1000research.6709.2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2015] [Indexed: 01/28/2023] Open
Abstract
For bacteria, replication mainly involves growth by binary fission. However, in a very great many natural environments there are examples of phenotypically dormant, non-growing cells that do not replicate immediately and that are phenotypically 'nonculturable' on media that normally admit their growth. They thereby evade detection by conventional culture-based methods. Such dormant cells may also be observed in laboratory cultures and in clinical microbiology. They are usually more tolerant to stresses such as antibiotics, and in clinical microbiology they are typically referred to as 'persisters'. Bacterial cultures necessarily share a great deal of relatedness, and inclusive fitness theory implies that there are conceptual evolutionary advantages in trading a variation in growth rate against its mean, equivalent to hedging one's bets. There is much evidence that bacteria exploit this strategy widely. We here bring together data that show the commonality of these phenomena across environmental, laboratory and clinical microbiology. Considerable evidence, using methods similar to those common in environmental microbiology, now suggests that many supposedly non-communicable, chronic and inflammatory diseases are exacerbated (if not indeed largely caused) by the presence of dormant or persistent bacteria (the ability of whose components to cause inflammation is well known). This dormancy (and resuscitation therefrom) often reflects the extent of the availability of free iron. Together, these phenomena can provide a ready explanation for the continuing inflammation common to such chronic diseases and its correlation with iron dysregulation. This implies that measures designed to assess and to inhibit or remove such organisms (or their access to iron) might be of much therapeutic benefit.
Collapse
Affiliation(s)
- Douglas Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester, Lancashire, M1 7DN, UK
| | - Marnie Potgieter
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| |
Collapse
|
1884
|
Kell D, Potgieter M, Pretorius E. Individuality, phenotypic differentiation, dormancy and 'persistence' in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology. F1000Res 2015; 4:179. [PMID: 26629334 DOI: 10.12688/f1000research.6709.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2015] [Indexed: 01/28/2023] Open
Abstract
For bacteria, replication mainly involves growth by binary fission. However, in a very great many natural environments there are examples of phenotypically dormant, non-growing cells that do not replicate immediately and that are phenotypically 'nonculturable' on media that normally admit their growth. They thereby evade detection by conventional culture-based methods. Such dormant cells may also be observed in laboratory cultures and in clinical microbiology. They are usually more tolerant to stresses such as antibiotics, and in clinical microbiology they are typically referred to as 'persisters'. Bacterial cultures necessarily share a great deal of relatedness, and inclusive fitness theory implies that there are conceptual evolutionary advantages in trading a variation in growth rate against its mean, equivalent to hedging one's bets. There is much evidence that bacteria exploit this strategy widely. We here bring together data that show the commonality of these phenomena across environmental, laboratory and clinical microbiology. Considerable evidence, using methods similar to those common in environmental microbiology, now suggests that many supposedly non-communicable, chronic and inflammatory diseases are exacerbated (if not indeed largely caused) by the presence of dormant or persistent bacteria (the ability of whose components to cause inflammation is well known). This dormancy (and resuscitation therefrom) often reflects the extent of the availability of free iron. Together, these phenomena can provide a ready explanation for the continuing inflammation common to such chronic diseases and its correlation with iron dysregulation. This implies that measures designed to assess and to inhibit or remove such organisms (or their access to iron) might be of much therapeutic benefit.
Collapse
Affiliation(s)
- Douglas Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester, Lancashire, M1 7DN, UK
| | - Marnie Potgieter
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| |
Collapse
|
1885
|
Liang L, Ai L, Qian J, Fang JY, Xu J. Long noncoding RNA expression profiles in gut tissues constitute molecular signatures that reflect the types of microbes. Sci Rep 2015; 5:11763. [PMID: 26123364 PMCID: PMC4485256 DOI: 10.1038/srep11763] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/03/2015] [Indexed: 12/26/2022] Open
Abstract
The gut microbiota is commonly referred to as a hidden organ due to its pivotal effects on host physiology, metabolism, nutrition and immunity. The gut microbes may be shaped by environmental and host genetic factors, and previous studies have focused on the roles of protein-coding genes. Here we show a link between long non-coding RNA (lncRNA) expression and gut microbes. By repurposing exon microarrays and comparing the lncRNA expression profiles between germ-free, conventional and different gnotobiotic mice, we revealed subgroups of lncRNAs that were specifically enriched in each condition. A nearest shrunken centroid methodology was applied to obtain lncRNA-based signatures to identify mice in different conditions. The lncRNA-based prediction model successfully identified different gnotobiotic mice from conventional and germ-free mice, and also discriminated mice harboring transplanted microbes from fecal samples of mice or zebra fishes. To achieve optimal prediction accuracy, fewer lncRNAs were required in the prediction model than protein-coding genes. Taken together, our study demonstrated the effecacy of lncRNA expression profiles in discriminating the types of microbes in the gut. These results also provide a resource of gut microbe-associated lncRNAs for the development of lncRNA biomarkers and the identification of functional lncRNAs in host-microbes interactions.
Collapse
Affiliation(s)
- Lunxi Liang
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
- Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, 145 Middle Shandong Rd, Shanghai 200001, China
| | - Luoyan Ai
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
- Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, 145 Middle Shandong Rd, Shanghai 200001, China
| | - Jin Qian
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
- Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, 145 Middle Shandong Rd, Shanghai 200001, China
| | - Jing-Yuan Fang
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
- Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, 145 Middle Shandong Rd, Shanghai 200001, China
| | - Jie Xu
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
- Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, 145 Middle Shandong Rd, Shanghai 200001, China
| |
Collapse
|
1886
|
Lamprecht S, Fich A. The cancer cells-of-origin in the gastrointestinal tract: progenitors revisited. Carcinogenesis 2015; 36:811-6. [PMID: 26116624 DOI: 10.1093/carcin/bgv095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/20/2015] [Indexed: 01/01/2023] Open
Abstract
A prominent model of tumor progression posits that normal self-renewing and multipotent stem cells(SCs) are the initial target of transformation. This view has been robustly challenged by the recurring observation that transit-amplifying cells and differentiated progenitors can initiate neoplasia outside the SC zone thus qualifying as cancer cells-of-origin. The emerging concept is that a cancer SC and a cancer cell-of-origin are not necessarily the same cell. Importantly, progenitor cells were shown to possess remarkable plasticity and to revert, on demand, to a SC-like state. The present review revisits our early hypothesis that colonic progenitors acquiring a mutant adenomatous polyposis coli gene after exiting the stem zone may serve as genuine cancer cells-of-origin. New findings consonant with this view are examined, and tenable molecular and cellular mechanisms underpinning the plasticity of progenitor cells in the gastrointestinal tract and in other tissues are discussed. The translational impact of cell plasticity is addressed, and recommendations for future research are advanced.
Collapse
Affiliation(s)
- Sergio Lamprecht
- Department of Clinical Biochemistry and Pharmacology and Institute of Gastroenterology and Hepatology, Faculty of Health Sciences, Ben Gurion University of the Negev, Soroka University Medical Center, Beersheva, Israel
| | - Alexander Fich
- Institute of Gastroenterology and Hepatology, Faculty of Health Sciences, Ben Gurion University of the Negev, Soroka University Medical Center, Beersheva, Israel
| |
Collapse
|
1887
|
Vorobyeva AG, Stanton M, Godinat A, Lund KB, Karateev GG, Francis KP, Allen E, Gelovani JG, McCormack E, Tangney M, Dubikovskaya EA. Development of a Bioluminescent Nitroreductase Probe for Preclinical Imaging. PLoS One 2015; 10:e0131037. [PMID: 26110789 PMCID: PMC4482324 DOI: 10.1371/journal.pone.0131037] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/28/2015] [Indexed: 12/14/2022] Open
Abstract
Bacterial nitroreductases (NTRs) have been widely utilized in the development of novel antibiotics, degradation of pollutants, and gene-directed enzyme prodrug therapy (GDEPT) of cancer that reached clinical trials. In case of GDEPT, since NTR is not naturally present in mammalian cells, the prodrug is activated selectively in NTR-transformed cancer cells, allowing high efficiency treatment of tumors. Currently, no bioluminescent probes exist for sensitive, non-invasive imaging of NTR expression. We therefore developed a "NTR caged luciferin" (NCL) probe that is selectively reduced by NTR, producing light proportional to the NTR activity. Here we report successful application of this probe for imaging of NTR in vitro, in bacteria and cancer cells, as well as in vivo in mouse models of bacterial infection and NTR-expressing tumor xenografts. This novel tool should significantly accelerate the development of cancer therapy approaches based on GDEPT and other fields where NTR expression is important.
Collapse
Affiliation(s)
- Anzhelika G. Vorobyeva
- School of Basic Sciences, Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology of Lausanne, Lausanne, Switzerland
| | - Michael Stanton
- Cork Cancer Research Centre, University College Cork, Cork, Ireland
| | - Aurélien Godinat
- School of Basic Sciences, Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology of Lausanne, Lausanne, Switzerland
| | - Kjetil B. Lund
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| | - Grigory G. Karateev
- School of Basic Sciences, Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology of Lausanne, Lausanne, Switzerland
| | | | - Elizabeth Allen
- School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Swiss Federal Institute of Technology of Lausanne, Lausanne, Switzerland
| | - Juri G. Gelovani
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, Michigan, United States of America
| | - Emmet McCormack
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| | - Mark Tangney
- Cork Cancer Research Centre, University College Cork, Cork, Ireland
| | - Elena A. Dubikovskaya
- School of Basic Sciences, Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
1888
|
Manzat-Saplacan RM, Mircea PA, Balacescu L, Chira RI, Berindan-Neagoe I, Balacescu O. Can we change our microbiome to prevent colorectal cancer development? Acta Oncol 2015; 54:1085-95. [PMID: 26073561 DOI: 10.3109/0284186x.2015.1054949] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Colorectal cancer represents an important disease as one of the major causes of death worldwide. Although a lot of genetic and epigenetic research has been conducted, all the pieces of the puzzle of colorectal cancer carcinogenesis have not yet been identified. New recent data has highlighted that gut microbiota could have an influence on colorectal carcinogenesis. Gut microbiota represents the microbe population living in the human intestine and contains tens of trillions of microorganisms. MATERIAL AND METHODS A systematic search in Medline and PubMed for studies reporting the influence of gut microbiota and inflammation on patients with colorectal cancer was made. RESULTS In this review we discuss many of the specific bacteria, as well as their metabolites which may have an important role in development of colorectal cancer. Furthermore, we emphasize the molecular mechanisms modulated by gut microbiota, which promote inflammation, toxic metabolites, DNA damaging and pro-carcinogenic compounds, as support for colorectal carcinogenesis. The interrelation between microbiota and inflammation is complex because bacteria and inflammation could mutually impact upon each other. In this context, both endogenous and exogenous miRNAs may have an important role to modulate tumor-related inflammation in colorectal cancer. CONCLUSIONS Better understanding of the role of gut microbiota in colorectal carcinogenesis could provide promising new directions to improve both prevention and treatment of colorectal cancer. Moreover, the discovery of novel biomarkers in the gut microbiome in order to detect colorectal cancer in an early stage or even in a precancerous stage is of outmost importance.
Collapse
Affiliation(s)
- Roberta M Manzat-Saplacan
- a University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj-Napoca, 1st Medical Clinic , Cluj-Napoca , Romania
| | | | | | | | | | | |
Collapse
|
1889
|
Women with preterm birth have a distinct cervicovaginal metabolome. Am J Obstet Gynecol 2015; 212:776.e1-776.e12. [PMID: 25827503 DOI: 10.1016/j.ajog.2015.03.052] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/16/2015] [Accepted: 03/26/2015] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Metabolomics has the potential to reveal novel pathways involved in the pathogenesis of preterm birth (PTB). The objective of this study was to investigate whether the cervicovaginal (CV) metabolome was different in asymptomatic women destined to have a PTB compared with term birth. STUDY DESIGN A nested case-control study was performed using CV fluid collected from a larger prospective cohort. The CV fluid was collected between 20-24 weeks (V1) and 24-28 weeks (V2). The metabolome was compared between women with a spontaneous PTB (n = 10) to women who delivered at term (n = 10). Samples were extracted and prepared for analysis using a standard extraction solvent method. Global biochemical profiles were determined using gas chromatography/mass spectrometry and ultra-performance liquid chromatography/tandem mass spectrometry. An ANOVA was used to detect differences in biochemical compounds between the groups. A false discovery rate was estimated to account for multiple comparisons. RESULTS A total of 313 biochemicals were identified in CV fluid. Eighty-two biochemicals were different in the CV fluid at V1 in those destined to have a PTB compared with term birth, whereas 48 were different at V2. Amino acid, carbohydrate, and peptide metabolites were distinct between women with and without PTB. CONCLUSION These data suggest that the CV space is metabolically active during pregnancy. Changes in the CV metabolome may be observed weeks, if not months, prior to any clinical symptoms. Understanding the CV metabolome may hold promise for unraveling the pathogenesis of PTB and may provide novel biomarkers to identify women most at risk.
Collapse
|
1890
|
Druart C, Bindels LB, Schmaltz R, Neyrinck AM, Cani PD, Walter J, Ramer-Tait AE, Delzenne NM. Ability of the gut microbiota to produce PUFA-derived bacterial metabolites: Proof of concept in germ-free versus conventionalized mice. Mol Nutr Food Res 2015; 59:1603-13. [PMID: 25820326 DOI: 10.1002/mnfr.201500014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 11/10/2022]
Abstract
SCOPE The gut microbiota is able to modulate host physiology through the production of bioactive metabolites. Our recent studies suggest that changes in gut microbiota composition upon prebiotics supplementation alter tissue levels of PUFA-derived metabolites in mice. However, in vivo evidence that gut microbes produces PUFA-derived metabolites is lacking. This study aimed to decipher the contribution of gut microbes versus that of the host in PUFA-derived metabolite production. METHODS AND RESULTS To achieve this goal, we compared the proportion of PUFA-derived metabolites and the expression of fatty acid desaturases in germ-free (GF) and conventionalized (CONV) mice fed either a low fat or Western diet. Higher concentrations of PUFA-derived metabolites were found in the colonic contents of conventionalized mice (CONV) mice compared to GF mice. The abundance of these metabolites in host tissues was modulated by dietary treatments but not by microbial status. Although microbial status did significantly influence desaturase expression, no correlations between host enzymes and tissue PUFA-derived metabolite levels were observed. CONCLUSION Together, these results highlight the ability of the gut microbiota to produce PUFA-derived metabolites from dietary PUFA. However, microbial production of these metabolites in colonic contents is not necessarily associated with modifications of their concentration in host tissues.
Collapse
Affiliation(s)
- Céline Druart
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Laure B Bindels
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Robert Schmaltz
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Jens Walter
- Nutrition, Microbes, and Gastrointestinal Health, Department of Agricultural, Food & Nutritional Science, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Amanda E Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
1891
|
Chemical communication in the gut: Effects of microbiota-generated metabolites on gastrointestinal bacterial pathogens. Anaerobe 2015; 34:106-15. [PMID: 25958185 DOI: 10.1016/j.anaerobe.2015.05.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/24/2015] [Accepted: 05/04/2015] [Indexed: 01/27/2023]
Abstract
Gastrointestinal pathogens must overcome many obstacles in order to successfully colonize a host, not the least of which is the presence of the gut microbiota, the trillions of commensal microorganisms inhabiting mammals' digestive tracts, and their products. It is well established that a healthy gut microbiota provides its host with protection from numerous pathogens, including Salmonella species, Clostridium difficile, diarrheagenic Escherichia coli, and Vibrio cholerae. Conversely, pathogenic bacteria have evolved mechanisms to establish an infection and thrive in the face of fierce competition from the microbiota for space and nutrients. Here, we review the evidence that gut microbiota-generated metabolites play a key role in determining the outcome of infection by bacterial pathogens. By consuming and transforming dietary and host-produced metabolites, as well as secreting primary and secondary metabolites of their own, the microbiota define the chemical environment of the gut and often determine specific host responses. Although most gut microbiota-produced metabolites are currently uncharacterized, several well-studied molecules made or modified by the microbiota are known to affect the growth and virulence of pathogens, including short-chain fatty acids, succinate, mucin O-glycans, molecular hydrogen, secondary bile acids, and the AI-2 quorum sensing autoinducer. We also discuss challenges and possible approaches to further study of the chemical interplay between microbiota and gastrointestinal pathogens.
Collapse
|
1892
|
Song M, Garrett WS, Chan AT. Nutrients, foods, and colorectal cancer prevention. Gastroenterology 2015; 148:1244-60.e16. [PMID: 25575572 PMCID: PMC4409470 DOI: 10.1053/j.gastro.2014.12.035] [Citation(s) in RCA: 456] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 02/07/2023]
Abstract
Diet has an important role in the development of colorectal cancer. In the past few decades, findings from extensive epidemiologic and experimental investigations have linked consumption of several foods and nutrients to the risk of colorectal neoplasia. Calcium, fiber, milk, and whole grains have been associated with a lower risk of colorectal cancer, and red meat and processed meat have been associated with an increased risk. There is substantial evidence for the potential chemopreventive effects of vitamin D, folate, fruits, and vegetables. Nutrients and foods also may interact, as a dietary pattern, to influence colorectal cancer risk. Diet likely influences colorectal carcinogenesis through several interacting mechanisms. These include the direct effects on immune responsiveness and inflammation, and the indirect effects of overnutrition and obesity-risk factors for colorectal cancer. Emerging evidence also implicates the gut microbiota as an important effector in the relationship between diet and cancer. Dietary modification therefore has the promise of reducing colorectal cancer incidence.
Collapse
Affiliation(s)
- Mingyang Song
- Department of Nutrition, Harvard School of Public Health, Boston, MA,Department of Epidemiology, Harvard School of Public Health, Boston, MA
| | - Wendy S. Garrett
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA,Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA,Department of Medicine, Harvard Medical School, Boston, MA,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Andrew T. Chan
- Department of Medicine, Harvard Medical School, Boston, MA,Channing Division of Network Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
1893
|
Abstract
The essential role of the gut microbiota for health has generated tremendous interest in modulating its composition and metabolic function. One of these strategies is prebiotics, which typically refer to selectively fermented nondigestible food ingredients or substances that specifically support the growth and/or activity of health-promoting bacteria that colonize the gastrointestinal tract. In this Perspective, we argue that advances in our understanding of diet-microbiome-host interactions challenge important aspects of the current concept of prebiotics, and especially the requirement for effects to be 'selective' or 'specific'. We propose to revise this concept in an effort to shift the focus towards ecological and functional features of the microbiota more likely to be relevant for host physiology. This revision would provide a more rational basis for the identification of prebiotic compounds, and a framework by which the therapeutic potential of modulating the gut microbiota could be more fully materialized.
Collapse
|
1894
|
Wang Y, Shou JW, Jiang JD. Metabolism of Chinese Materia Medica in Gut Microbiota and Its Biological Effects. CHINESE HERBAL MEDICINES 2015. [DOI: 10.1016/s1674-6384(15)60027-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
1895
|
Heinken A, Thiele I. Systems biology of host-microbe metabolomics. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 7:195-219. [PMID: 25929487 PMCID: PMC5029777 DOI: 10.1002/wsbm.1301] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/25/2015] [Accepted: 04/01/2015] [Indexed: 12/15/2022]
Abstract
The human gut microbiota performs essential functions for host and well‐being, but has also been linked to a variety of disease states, e.g., obesity and type 2 diabetes. The mammalian body fluid and tissue metabolomes are greatly influenced by the microbiota, with many health‐relevant metabolites being considered ‘mammalian–microbial co‐metabolites’. To systematically investigate this complex host–microbial co‐metabolism, a systems biology approach integrating high‐throughput data and computational network models is required. Here, we review established top‐down and bottom‐up systems biology approaches that have successfully elucidated relationships between gut microbiota‐derived metabolites and host health and disease. We focus particularly on the constraint‐based modeling and analysis approach, which enables the prediction of mechanisms behind metabolic host–microbe interactions on the molecular level. We illustrate that constraint‐based models are a useful tool for the contextualization of metabolomic measurements and can further our insight into host–microbe interactions, yielding, e.g., in potential novel drugs and biomarkers. WIREs Syst Biol Med 2015, 7:195–219. doi: 10.1002/wsbm.1301 For further resources related to this article, please visit the WIREs website. Conflict of interest: The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Almut Heinken
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
| | - Ines Thiele
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
| |
Collapse
|
1896
|
Jin H, Li XJ, Park MH, Kim SM. FOXM1-mediated downregulation of uPA and MMP9 by 3,3'-diindolylmethane inhibits migration and invasion of human colorectal cancer cells. Oncol Rep 2015; 33:3171-7. [PMID: 25962429 DOI: 10.3892/or.2015.3938] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/16/2015] [Indexed: 11/06/2022] Open
Abstract
Although 3,3'-diindolylmethane (DIM) has been suggested to reduce the risk of colorectal cancer, the underlying biological mechanism is not clearly understood. In the present study, we investigated the effect of DIM on the migratory and invasive activities of the human colorectal cancer cell lines DLD-1 and HCT116. DIM significantly inhibited the migration and invasion of colorectal cancer cells as assessed by wound healing and Matrigel invasion assays. The migratory ability of the DLD-1 and HCT116 cells was significantly reduced by DIM at 24 and 48 h. DIM also significantly inhibited the invasion rate of the DLD-1 and HCT116 cells in a dose-dependent manner. The mRNA expression levels of urokinase type plasminogen activator (uPA) and matrix metalloprotease 9 (MMP9) were significantly attenuated, whereas expression of E-cadherin mRNA was significantly enhanced, following DIM treatment. DIM also decreased the protein levels of uPA and MMP9, yet significantly increased E-cadherin protein expression. In addition, DIM significantly reduced the mRNA and protein levels of FOXM1 in the DLD-1 and HCT116 cells. Our results suggest that DIM can influence the cell migratory and invasive properties of human colorectal cancer cells and may decrease the invasive capacity of colorectal cancer through downregulation of uPA and MMP9 mediated by suppression of the transcription factor FOXM1.
Collapse
Affiliation(s)
- Hua Jin
- Department of Physiology, Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Xiu Juan Li
- Department of Physiology, Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Man Hee Park
- Catholic University of Pusan, Busan, Republic of Korea
| | - Soo Mi Kim
- Department of Physiology, Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju, Republic of Korea
| |
Collapse
|
1897
|
Ito N, Ohta K. Reprogramming of human somatic cells by bacteria. Dev Growth Differ 2015; 57:305-12. [PMID: 25866152 DOI: 10.1111/dgd.12209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 12/14/2022]
Abstract
In general, it had been believed that the cell fate restriction of terminally differentiated somatic cells was irreversible. In 1952, somatic cell nuclear transfer (SCNT) was introduced to study early embryonic development in frogs. So far, various mammalian species have been successfully cloned using the SCNT technique, though its efficiency is very low. Embryonic stem (ES) cells were the first pluripotent cells to be isolated from an embryo and have a powerful potential to differentiate into more than 260 types of cells. The generation of induced pluripotent stem (iPS) cells was a breakthrough in stem cell research, and the use of these iPS cells has solved problems such as low efficiency and cell fate restriction. These cells have since been used for clinical application, disease investigation, and drug selection. As it is widely accepted that the endosymbiosis of Archaea into eukaryotic ancestors resulted in the generation of eukaryotic cells, we examined whether bacterial infection could alter host cell fate. We previously showed that when human dermal fibroblast (HDF) cells were incorporated with lactic acid bacteria (LAB), the LAB-incorporated HDF cells formed clusters and expressed a subset of common pluripotent markers. Moreover, LAB-incorporated cell clusters could differentiate into cells derived from each of the three germinal layers both in vivo and in vitro, indicating successful reprogramming of host HDF cells by LAB. In the current review, we introduce the existing examples of cellular reprogramming by bacteria and discuss their nuclear reprogramming mechanisms.
Collapse
Affiliation(s)
- Naofumi Ito
- Division of Developmental Neurobiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kunimasa Ohta
- Division of Developmental Neurobiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| |
Collapse
|
1898
|
Abstract
A host's microbiota may increase, diminish, or have no effect at all on cancer susceptibility. Assigning causal roles in cancer to specific microbes and microbiotas, unraveling host-microbiota interactions with environmental factors in carcinogenesis, and exploiting such knowledge for cancer diagnosis and treatment are areas of intensive interest. This Review considers how microbes and the microbiota may amplify or mitigate carcinogenesis, responsiveness to cancer therapeutics, and cancer-associated complications.
Collapse
Affiliation(s)
- Wendy S Garrett
- Department of Immunology and Infectious Diseases and Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA. Department of Medicine, Harvard Medical School, Boston, MA 02115, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
1899
|
Tanca A, Palomba A, Pisanu S, Addis MF, Uzzau S. Enrichment or depletion? The impact of stool pretreatment on metaproteomic characterization of the human gut microbiota. Proteomics 2015; 15:3474-85. [PMID: 25677681 DOI: 10.1002/pmic.201400573] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/15/2015] [Accepted: 02/05/2015] [Indexed: 02/03/2023]
Abstract
To date, most metaproteomic studies of the gut microbiota employ stool sample pretreatment methods to enrich for microbial components. However, a specific investigation aimed at assessing if, how, and to what extent this may impact on the final taxonomic and functional results is still lacking. Here, stool replicates were either pretreated by differential centrifugation (DC) or not centrifuged. Protein extracts were then processed by filter-aided sample preparation, single-run LC, and high-resolution MS, and the metaproteomic data were compared by spectral counting. DC led to a higher number of identifications, a significantly richer microbial diversity, as well as to reduced information on the nonmicrobial components (host and food) when compared to not centrifuged. Nevertheless, dramatic differences in the relative abundance of several gut microbial taxa were also observed, including a significant change in the Firmicutes/Bacteroidetes ratio. Furthermore, some important microbial functional categories, including cell surface enzymes, membrane-associated proteins, extracellular proteins, and flagella, were significantly reduced after DC. In conclusion, this work underlines that a critical evaluation is needed when selecting the appropriate stool sample processing protocol in the context of a metaproteomic study, depending on the specific target to which the research is aimed. All MS data have been deposited in the ProteomeXchange with identifier PXD001573 (http://proteomecentral.proteomexchange.org/dataset/PXD001573).
Collapse
Affiliation(s)
| | | | | | | | - Sergio Uzzau
- Porto Conte Ricerche, Tramariglio, Alghero, Italy.,Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy
| |
Collapse
|
1900
|
Dietert RR, Dietert JM. The Microbiome and Sustainable Healthcare. Healthcare (Basel) 2015; 3:100-29. [PMID: 27417751 PMCID: PMC4934527 DOI: 10.3390/healthcare3010100] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/09/2015] [Accepted: 02/16/2015] [Indexed: 12/19/2022] Open
Abstract
Increasing prevalences, morbidity, premature mortality and medical needs associated with non-communicable diseases and conditions (NCDs) have reached epidemic proportions and placed a major drain on healthcare systems and global economies. Added to this are the challenges presented by overuse of antibiotics and increased antibiotic resistance. Solutions are needed that can address the challenges of NCDs and increasing antibiotic resistance, maximize preventative measures, and balance healthcare needs with available services and economic realities. Microbiome management including microbiota seeding, feeding, and rebiosis appears likely to be a core component of a path toward sustainable healthcare. Recent findings indicate that: (1) humans are mostly microbial (in terms of numbers of cells and genes); (2) immune dysfunction and misregulated inflammation are pivotal in the majority of NCDs; (3) microbiome status affects early immune education and risk of NCDs, and (4) microbiome status affects the risk of certain infections. Management of the microbiome to reduce later-life health risk and/or to treat emerging NCDs, to spare antibiotic use and to reduce the risk of recurrent infections may provide a more effective healthcare strategy across the life course particularly when a personalized medicine approach is considered. This review will examine the potential for microbiome management to contribute to sustainable healthcare.
Collapse
Affiliation(s)
- Rodney R Dietert
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|