151
|
Liu Q, Zhang H, Han B, Jiang H, Chung KF, Li F. Interstitial lung abnormalities: What do we know and how do we manage? Expert Rev Respir Med 2021; 15:1551-1561. [PMID: 34689661 DOI: 10.1080/17476348.2021.1997598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Interstitial lung abnormalities (ILAs), which refer to mild or subtle nongravity-dependent interstitial changes, may be neglected by some clinicians due to many reasons, such as lack of diagnostic criteria for ILAs and absence of available treatments and surveillance strategies. However, without intervention, some ILAs may progress to interstitial lung disease (ILD). This review summarizes our current knowledge of this condition and ways of diagnosing it together with current management. We hope that this will lead to better recognition of ILAs. AREAS COVERED We reviewed the literature on PubMed between 2008 and 2020 focusing on prevalence, etiology, symptoms, diagnostic biomarkers, clinical associations, and management of ILAs. EXPERT OPINION Timely diagnosis with close monitoring of ILAs and appropriate intervention should be recognized as the management approach to ILAs. Research into ILAs should continue to improve its management.
Collapse
Affiliation(s)
- Qi Liu
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai JiaoTong University, Shanghai, P.R. China
| | - Hai Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai JiaoTong University, Shanghai, P.R. China
| | - Baohui Han
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai JiaoTong University, Shanghai, P.R. China
| | - Handong Jiang
- Department of Respiratory and Critical Care Medicine, Shanghai Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, P.R. China
| | - Kian Fan Chung
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, UK
| | - Feng Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai JiaoTong University, Shanghai, P.R. China
| |
Collapse
|
152
|
Renzoni EA, Poletti V, Mackintosh JA. Disease pathology in fibrotic interstitial lung disease: is it all about usual interstitial pneumonia? Lancet 2021; 398:1437-1449. [PMID: 34499865 DOI: 10.1016/s0140-6736(21)01961-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/11/2022]
Abstract
The interstitial pneumonias comprise a diverse group of diseases that are typically defined by their cause (either idiopathic or non-idiopathic) and their distinct histopathological features, for which radiology, in the form of high-resolution CT, is often used as a surrogate. One trend, fuelled by the failure of conventional therapies in a subset of patients and the broad-spectrum use of antifibrotic therapies, has been the focus on the progressive fibrosing phenotype of interstitial lung disease. The histological pattern, known as usual interstitial pneumonia, is the archetype of progressive fibrosis. However, it is clear that progressive fibrosis is not exclusive to this histological entity. Techniques including immunohistochemistry and single-cell RNA sequencing are providing pathogenetic insights and, if integrated with traditional histopathology, are likely to have an effect on the pathological classification of interstitial lung disease. This review, which focuses on the histopathology of interstitial lung disease and its relationship with progressive fibrosis, asks the question: is it all about usual interstitial pneumonia?
Collapse
Affiliation(s)
- Elisabetta A Renzoni
- Interstitial Lung Disease Unit, Royal Brompton and Harefield Clinical Group, Guy's and St Thomas' NHS Foundation Trust, London, UK; Margaret Turner Warwick Centre for Fibrosing Lung Diseases, National Heart and Lung Institute, Imperial College London, London, UK
| | - Venerino Poletti
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark; Thoracic Diseases Department, GB Morgagni Hospital/University of Bologna, Forlì, Italy
| | - John A Mackintosh
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Queensland, Australia.
| |
Collapse
|
153
|
Liu S, Lv X, Wei X, Liu C, Li Q, Min J, Hua F, Zhang X, Li K, Li P, Xiao Y, Hu Z, Cui B. TRIB3‒GSK-3 β interaction promotes lung fibrosis and serves as a potential therapeutic target. Acta Pharm Sin B 2021; 11:3105-3119. [PMID: 34729304 PMCID: PMC8546892 DOI: 10.1016/j.apsb.2021.06.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 11/15/2022] Open
Abstract
Pulmonary fibrosis (PF) is a chronic, progressive, fatal interstitial lung disease with limited available therapeutic strategies. We recently reported that the protein kinase glycogen synthase kinase-3β (GSK-3β) interacts with and inactivates the ubiquitin-editing enzyme A20 to suppress the degradation of the transcription factor CCAAT/enhancer-binding protein beta (C/EBPβ) in alveolar macrophages (AMs), resulting in a profibrotic phenotype of AMs and promoting the development of PF. Here, we showed that chronic lung injury upregulated the stress response protein tribbles homolog 3 (TRIB3), which interacted with GSK-3β and stabilized GSK-3β from ubiquitination and degradation. Elevated GSK-3β expression phosphorylated A20 to inhibit its ubiquitin-editing activity, causing the accumulation of C/EBPβ and the production of several profibrotic factors in AMs and promoting PF development. Activated C/EBPβ, in turn, increased the transcription of TRIB3 and GSK-3β, thereby establishing a positive feedback loop in AMs. The knockdown of TRIB3 expression or the pharmacologic disruption of the TRIB3‒GSK-3β interaction was an effective PF treatment. Our study reveals an intact profibrotic axis of TRIB3‒GSK-3β‒A20‒C/EBPβ in AMs, which represents a target that may provide a promising treatment strategy for PF.
Collapse
|
154
|
Cheng SL, Lin CH, Chu KA, Chiu KL, Lin SH, Lin HC, Ko HK, Chen YC, Chen CH, Sheu CC, Huang WC, Yang TM, Wei YF, Chien JY, Wang HC, Lin MC. Update on guidelines for the treatment of COPD in Taiwan using evidence and GRADE system-based recommendations. J Formos Med Assoc 2021; 120:1821-1844. [PMID: 34210585 DOI: 10.1016/j.jfma.2021.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 05/14/2021] [Accepted: 06/11/2021] [Indexed: 12/20/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) has significant contributions to morbidity and mortality world-wide. Early symptoms of COPD are not readily distinguishable, resulting in a low rate of diagnosis and intervention. Different guidelines and recommendatations for the diagnosis and treatment of COPD exist globally. The first edition of clinical practice guidelines for COPD was published in 2016 by the Ministry of Health and Welfare in Taiwan in collaboration with the Taiwan evidence-based medicine association and Cochrane Taiwan, and was revised in 2019 in order to update recent diagnostic and therapeutic modalities for COPD and its acute exacerbation. This revised guideline covered a range of topics highlighted in the Global Initiative for Chronic Obstructive Lung Disease (GOLD) report, including strategies for the diagnosis, assessment, monitoring, and management of stable COPD and exacerbations, with particular focus on evidence from Taiwan. The recommendations included in the revised guideline were formed based on a comprehensive systematic review or meta-analysis of specific clinical issues identified by an expert panel that surveyed relevant scientific evidence in the literature and guidelines published by the clinical communities and organizations nationally and internationally. The guidelines and recommendations are applicable to the clinical settings in Taiwan. We expect this revised guideline to facilitate the diagnosis, treatment and management of patients with COPD by physicians and health care professionals in Taiwan. Adaptations of the materials included herein for educational and training purposes is encouraged.
Collapse
Affiliation(s)
- Shih-Lung Cheng
- Department of Internal Medicine, Far Eastern Memorial Hospital, Taipei, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Zhongli City, Taoyuan County, Taiwan
| | - Ching-Hsiung Lin
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan; Department of Respiratory Care, College of Health Sciences, Chang Jung Christian University, Tainan, Taiwan
| | - Kuo-An Chu
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Kuo-Liang Chiu
- Division of Chest Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan; School of Post-baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Sheng-Hao Lin
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan; Department of Respiratory Care, College of Health Sciences, Chang Jung Christian University, Tainan, Taiwan
| | - Horng-Chyuan Lin
- Lin-Kou Medical Center of Chang Gung Memorial Hospital, Kwei-San, Tao-Yan, Taiwan
| | - Hsin-Kuo Ko
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yung-Che Chen
- Kaohsiung Chang Gung MemoriaI Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Hung Chen
- Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chau-Chyun Sheu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Chang Huang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Tsung-Ming Yang
- Division of Pulmonary and Critical Care Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yu-Feng Wei
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan; Division of Chest Medicine, Department of Internal Medicine, E-Da Hospital, Kaohsiung, Taiwan
| | - Jung-Yien Chien
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hao-Chien Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Meng-Chih Lin
- Kaohsiung Chang Gung MemoriaI Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
155
|
Konigsberg IR, Borie R, Walts AD, Cardwell J, Rojas M, Metzger F, Hauck SM, Fingerlin TE, Yang IV, Schwartz DA. Molecular Signatures of Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2021; 65:430-441. [PMID: 34038697 PMCID: PMC8525208 DOI: 10.1165/rcmb.2020-0546oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/24/2021] [Indexed: 11/24/2022] Open
Abstract
Molecular patterns and pathways in idiopathic pulmonary fibrosis (IPF) have been extensively investigated, but few studies have assimilated multiomic platforms to provide an integrative understanding of molecular patterns that are relevant in IPF. Herein, we combine the coding and noncoding transcriptomes, DNA methylomes, and proteomes from IPF and healthy lung tissue to identify molecules and pathways associated with this disease. RNA sequencing, Illumina MethylationEPIC array, and liquid chromatography-mass spectrometry proteomic data were collected on lung tissue from 24 subjects with IPF and 14 control subjects. Significant differential features were identified by using linear models adjusting for age and sex, inflation, and bias when appropriate. Data Integration Analysis for Biomarker Discovery Using a Latent Component Method for Omics Studies was used for integrative multiomic analysis. We identified 4,643 differentially expressed transcripts aligning to 3,439 genes, 998 differentially abundant proteins, 2,500 differentially methylated regions, and 1,269 differentially expressed long noncoding RNAs (lncRNAs) that were significant after correcting for multiple tests (false discovery rate < 0.05). Unsupervised hierarchical clustering using 20 coding mRNA, protein, methylation, and lncRNA features with the highest loadings on the top latent variable from the four data sets demonstrates perfect separation of IPF and control lungs. Our analysis confirmed previously validated molecules and pathways known to be dysregulated in disease and implicated novel molecular features as potential drivers and modifiers of disease. For example, 4 proteins, 18 differentially methylated regions, and 10 lncRNAs were found to have strong correlations (|r| > 0.8) with MMP7 (matrix metalloproteinase 7). Therefore, by using a system biology approach, we have identified novel molecular relationships in IPF.
Collapse
Affiliation(s)
- Iain R. Konigsberg
- Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Raphael Borie
- Department of Medicine, Bichat Hospital, Paris, France
| | - Avram D. Walts
- Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Jonathan Cardwell
- Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Mauricio Rojas
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Fabian Metzger
- Research Unit for Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; and
| | - Stefanie M. Hauck
- Research Unit for Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; and
| | - Tasha E. Fingerlin
- Department of Immunology and Genomic Medicine and Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado
| | - Ivana V. Yang
- Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - David A. Schwartz
- Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| |
Collapse
|
156
|
Si Y, Shao J, Hu C. Association between lymphocyte count in bronchoalveolar lavage fluid and mortality. J Intensive Care 2021; 9:57. [PMID: 34526142 PMCID: PMC8441032 DOI: 10.1186/s40560-021-00568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/13/2021] [Indexed: 11/10/2022] Open
Abstract
This is a comment on the paper by Dr. Hirasawa et al. on the predictive value of lymphocyte counts in bronchoalveolar lavage fluid in patients with acute respiratory failure.
Collapse
Affiliation(s)
- Yifu Si
- Department of Internal Medicine, Pinghu First People's Hospital, 500#, Sangang-Road, Pinghu, Zhejiang, China
| | - Juqin Shao
- Department of Intensive Care, Zhejiang Hospital, 1220#, Gudun-RoadZhejiang, Hangzhou, 310030, China
| | - Caibao Hu
- Department of Intensive Care, Zhejiang Hospital, 1220#, Gudun-RoadZhejiang, Hangzhou, 310030, China.
| |
Collapse
|
157
|
Hirasawa Y, Nakada TA, Terada J. Response to commentary. J Intensive Care 2021; 9:56. [PMID: 34526154 PMCID: PMC8442314 DOI: 10.1186/s40560-021-00572-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 11/23/2022] Open
Abstract
This is a response to the issues raised in the commentary by Dr. Yifu Si et al.
Collapse
Affiliation(s)
- Yasutaka Hirasawa
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Taka-Aki Nakada
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| | - Jiro Terada
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| |
Collapse
|
158
|
The chemokine CCL1 triggers an AMFR-SPRY1 pathway that promotes differentiation of lung fibroblasts into myofibroblasts and drives pulmonary fibrosis. Immunity 2021; 54:2042-2056.e8. [PMID: 34407391 DOI: 10.1016/j.immuni.2021.06.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/20/2021] [Accepted: 06/11/2021] [Indexed: 12/28/2022]
Abstract
Recruitment of immune cells to the site of inflammation by the chemokine CCL1 is important in the pathology of inflammatory diseases. Here, we examined the role of CCL1 in pulmonary fibrosis (PF). Bronchoalveolar lavage fluid from PF mouse models contained high amounts of CCL1, as did lung biopsies from PF patients. Immunofluorescence analyses revealed that alveolar macrophages and CD4+ T cells were major producers of CCL1 and targeted deletion of Ccl1 in these cells blunted pathology. Deletion of the CCL1 receptor Ccr8 in fibroblasts limited migration, but not activation, in response to CCL1. Mass spectrometry analyses of CCL1 complexes identified AMFR as a CCL1 receptor, and deletion of Amfr impaired fibroblast activation. Mechanistically, CCL1 binding triggered ubiquitination of the ERK inhibitor Spry1 by AMFR, thus activating Ras-mediated profibrotic protein synthesis. Antibody blockade of CCL1 ameliorated PF pathology, supporting the therapeutic potential of targeting this pathway for treating fibroproliferative lung diseases.
Collapse
|
159
|
Zou RH, Bon J. Reduced Dlco in GOLD I COPD: Moving Towards a Multidimensional Approach to Risk Stratification. Chest 2021; 160:791-792. [PMID: 34488950 DOI: 10.1016/j.chest.2021.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Richard H Zou
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Jessica Bon
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA; Veteran Affairs Pittsburgh Healthcare System, Pittsburgh, PA.
| |
Collapse
|
160
|
Yao L, Zhou Y, Li J, Wickens L, Conforti F, Rattu A, Ibrahim FM, Alzetani A, Marshall BG, Fletcher SV, Hancock D, Wallis T, Downward J, Ewing RM, Richeldi L, Skipp P, Davies DE, Jones MG, Wang Y. Bidirectional epithelial-mesenchymal crosstalk provides self-sustaining profibrotic signals in pulmonary fibrosis. J Biol Chem 2021; 297:101096. [PMID: 34418430 PMCID: PMC8435701 DOI: 10.1016/j.jbc.2021.101096] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 11/11/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the prototypic progressive fibrotic lung disease with a median survival of 2 to 4 years. Injury to and/or dysfunction of the alveolar epithelium is strongly implicated in IPF disease initiation, but the factors that determine whether fibrosis progresses rather than normal tissue repair occurs remain poorly understood. We previously demonstrated that zinc finger E-box-binding homeobox 1-mediated epithelial-mesenchymal transition in human alveolar epithelial type II (ATII) cells augments transforming growth factor-β-induced profibrogenic responses in underlying lung fibroblasts via paracrine signaling. Here, we investigated bidirectional epithelial-mesenchymal crosstalk and its potential to drive fibrosis progression. RNA-Seq of lung fibroblasts exposed to conditioned media from ATII cells undergoing RAS-induced epithelial-mesenchymal transition identified many differentially expressed genes including those involved in cell migration and extracellular matrix regulation. We confirmed that paracrine signaling between RAS-activated ATII cells and fibroblasts augmented fibroblast recruitment and demonstrated that this involved a zinc finger E-box-binding homeobox 1-tissue plasminogen activator axis. In a reciprocal fashion, paracrine signaling from transforming growth factor-β-activated lung fibroblasts or IPF fibroblasts induced RAS activation in ATII cells, at least partially through the secreted protein acidic and rich in cysteine, which may signal via the epithelial growth factor receptor via epithelial growth factor-like repeats. Together, these data identify that aberrant bidirectional epithelial-mesenchymal crosstalk in IPF drives a chronic feedback loop that maintains a wound-healing phenotype and provides self-sustaining profibrotic signals.
Collapse
Affiliation(s)
- Liudi Yao
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Yilu Zhou
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Juanjuan Li
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Leanne Wickens
- Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Franco Conforti
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Anna Rattu
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Fathima Maneesha Ibrahim
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Aiman Alzetani
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom; University Hospital Southampton, Southampton, United Kingdom
| | - Ben G Marshall
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom; University Hospital Southampton, Southampton, United Kingdom
| | - Sophie V Fletcher
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom; University Hospital Southampton, Southampton, United Kingdom
| | - David Hancock
- Oncogene Biology, The Francis Crick Institute, London, United Kingdom
| | - Tim Wallis
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom; University Hospital Southampton, Southampton, United Kingdom
| | - Julian Downward
- Oncogene Biology, The Francis Crick Institute, London, United Kingdom
| | - Rob M Ewing
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Luca Richeldi
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom; Unità Operativa Complessa di Pneumologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli, Rome, Italy
| | - Paul Skipp
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Donna E Davies
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Mark G Jones
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom.
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom.
| |
Collapse
|
161
|
Beghé B, Cerri S, Fabbri LM, Marchioni A. COPD, Pulmonary Fibrosis and ILAs in Aging Smokers: The Paradox of Striking Different Responses to the Major Risk Factors. Int J Mol Sci 2021; 22:ijms22179292. [PMID: 34502194 PMCID: PMC8430914 DOI: 10.3390/ijms22179292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 01/19/2023] Open
Abstract
Aging and smoking are associated with the progressive development of three main pulmonary diseases: chronic obstructive pulmonary disease (COPD), interstitial lung abnormalities (ILAs), and idiopathic pulmonary fibrosis (IPF). All three manifest mainly after the age of 60 years, but with different natural histories and prevalence: COPD prevalence increases with age to >40%, ILA prevalence is 8%, and IPF, a rare disease, is 0.0005–0.002%. While COPD and ILAs may be associated with gradual progression and mortality, the natural history of IPF remains obscure, with a worse prognosis and life expectancy of 2–5 years from diagnosis. Acute exacerbations are significant events in both COPD and IPF, with a much worse prognosis in IPF. This perspective discusses the paradox of the striking pathological and pathophysiologic responses on the background of the same main risk factors, aging and smoking, suggesting two distinct pathophysiologic processes for COPD and ILAs on one side and IPF on the other side. Pathologically, COPD is characterized by small airways fibrosis and remodeling, with the destruction of the lung parenchyma. By contrast, IPF almost exclusively affects the lung parenchyma and interstitium. ILAs are a heterogenous group of diseases, a minority of which present with the alveolar and interstitial abnormalities of interstitial lung disease.
Collapse
Affiliation(s)
- Bianca Beghé
- Respiratory Diseases Unit, University Hospital of Modena, 41124 Modena, Italy; (S.C.); (A.M.)
- Correspondence:
| | - Stefania Cerri
- Respiratory Diseases Unit, University Hospital of Modena, 41124 Modena, Italy; (S.C.); (A.M.)
| | - Leonardo M. Fabbri
- Department of Translational Medicine and Romagna, University of Ferrara, 44121 Ferrara, Italy;
| | - Alessandro Marchioni
- Respiratory Diseases Unit, University Hospital of Modena, 41124 Modena, Italy; (S.C.); (A.M.)
| |
Collapse
|
162
|
Hata A, Schiebler ML, Lynch DA, Hatabu H. Interstitial Lung Abnormalities: State of the Art. Radiology 2021; 301:19-34. [PMID: 34374589 DOI: 10.1148/radiol.2021204367] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The clinical importance of interstitial lung abnormality (ILA) is increasingly recognized. In July 2020, the Fleischner Society published a position paper about ILA. The purposes of this article are to summarize the definition, existing evidence, clinical management, and unresolved issues for ILA from a radiologic standpoint and to provide a practical guide for radiologists. ILA is a common incidental finding at CT and is often progressive and associated with worsened clinical outcomes. The hazard ratios for mortality range from 1.3 to 2.7 in large cohorts. Risk factors for ILA include age, smoking status, other inhalational exposures, and genetic factors (eg, gene encoding mucin 5B variant). Radiologists should systematically record the presence, morphologic characteristics, distribution, and subcategories of ILA (ie, nonsubpleural, subpleural nonfibrotic, and subpleural fibrotic), as these are informative for predicting progression and mortality. Clinically significant interstitial lung disease should not be considered ILA. Individuals with ILA are triaged into higher- and lower-risk groups depending on their risk factors for progression, and systematic follow-up, including CT, should be considered for the higher-risk group. Artificial intelligence-based automated analysis for ILA may be helpful, but further validation and improvement are needed. Radiologists have a central role in clinical management and research on ILA.
Collapse
Affiliation(s)
- Akinori Hata
- From the Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (A.H., H.H.); Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka, Japan (A.H.); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - Mark L Schiebler
- From the Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (A.H., H.H.); Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka, Japan (A.H.); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - David A Lynch
- From the Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (A.H., H.H.); Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka, Japan (A.H.); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - Hiroto Hatabu
- From the Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (A.H., H.H.); Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka, Japan (A.H.); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| |
Collapse
|
163
|
Podolanczuk AJ, Wong AW, Saito S, Lasky JA, Ryerson CJ, Eickelberg O. Update in Interstitial Lung Disease 2020. Am J Respir Crit Care Med 2021; 203:1343-1352. [PMID: 33835899 DOI: 10.1164/rccm.202103-0559up] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Anna J Podolanczuk
- Division of Pulmonary and Critical Care, Department of Medicine, Weill Cornell Medical College, Cornell University, New York, New York
| | - Alyson W Wong
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Shigeki Saito
- Section of Pulmonary Disease, Critical Care and Environmental Medicine, Department of Medicine, Tulane University, New Orleans, Louisiana; and
| | - Joseph A Lasky
- Section of Pulmonary Disease, Critical Care and Environmental Medicine, Department of Medicine, Tulane University, New Orleans, Louisiana; and
| | - Christopher J Ryerson
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Oliver Eickelberg
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
164
|
Spagnolo P, Ryerson CJ, Putman R, Oldham J, Salisbury M, Sverzellati N, Valenzuela C, Guler S, Jones S, Wijsenbeek M, Cottin V. Early diagnosis of fibrotic interstitial lung disease: challenges and opportunities. THE LANCET RESPIRATORY MEDICINE 2021; 9:1065-1076. [PMID: 34331867 DOI: 10.1016/s2213-2600(21)00017-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022]
Abstract
Many patients with interstitial lung disease (ILD) develop pulmonary fibrosis, which can lead to reduced quality of life and early mortality. Patients with fibrotic ILD often have considerable diagnostic delay, and are exposed to unnecessary and costly diagnostic procedures, and ineffective and potentially harmful treatments. Non-specific and insidious presenting symptoms, along with scarce knowledge of fibrotic ILD among primary care physicians and non-ILD experts, are some of the main causes of diagnostic delay. Here, we outline and discuss the challenges facing both patients and physicians in making an early diagnosis of fibrotic ILD, and explore strategies to facilitate early identification of patients with fibrotic ILD, both in the general population and among individuals at highest risk of developing the disease. Finally, we discuss controversies and key uncertainties in screening programmes for fibrotic ILD. Timely identification and accurate diagnosis of patients with fibrotic ILD poses several substantial clinical challenges, but could potentially improve outcomes through early initiation of appropriate management.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Respiratory Disease Unit, University of Padova, Padova, Italy.
| | - Christopher J Ryerson
- Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Rachel Putman
- Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Justin Oldham
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of California at Davis, Davis, CA, USA
| | - Margaret Salisbury
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicola Sverzellati
- Department of Surgery, Section of Diagnostic Imaging, University of Parma, Parma, Italy
| | - Claudia Valenzuela
- Instituto de Investigación Princesa, Hospital Universitario de La Princesa, Madrid, Spain
| | - Sabina Guler
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Steve Jones
- Action for Pulmonary Fibrosis, Peterborough, UK
| | - Marlies Wijsenbeek
- Department of Respiratory Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Vincent Cottin
- Department of Respiratory Medicine, National Reference Coordinating Centre for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, Lyon, France; Department of Respiratory Medicine, Université de Lyon, Université Claude Bernard Lyon 1, UMR754, IVPC, Lyon, France
| |
Collapse
|
165
|
Boundary Restored Network for Subpleural Pulmonary Lesion Segmentation on Ultrasound Images at Local and Global Scales. J Digit Imaging 2021; 33:1155-1166. [PMID: 32556913 DOI: 10.1007/s10278-020-00356-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To evaluate the application of machine learning for the detection of subpleural pulmonary lesions (SPLs) in ultrasound (US) scans, we propose a novel boundary-restored network (BRN) for automated SPL segmentation to avoid issues associated with manual SPL segmentation (subjectivity, manual segmentation errors, and high time consumption). In total, 1612 ultrasound slices from 255 patients in which SPLs were visually present were exported. The segmentation performance of the neural network based on the Dice similarity coefficient (DSC), Matthews correlation coefficient (MCC), Jaccard similarity metric (Jaccard), Average Symmetric Surface Distance (ASSD), and Maximum symmetric surface distance (MSSD) was assessed. Our dual-stage boundary-restored network (BRN) outperformed existing segmentation methods (U-Net and a fully convolutional network (FCN)) for the segmentation accuracy parameters including DSC (83.45 ± 16.60%), MCC (0.8330 ± 0.1626), Jaccard (0.7391 ± 0.1770), ASSD (5.68 ± 2.70 mm), and MSSD (15.61 ± 6.07 mm). It also outperformed the original BRN in terms of the DSC by almost 5%. Our results suggest that deep learning algorithms aid fully automated SPL segmentation in patients with SPLs. Further improvement of this technology might improve the specificity of lung cancer screening efforts and could lead to new applications of lung US imaging.
Collapse
|
166
|
Oldham JM. Interstitial Lung Abnormalities and Aging Biomarkers: A Mediation. Am J Respir Crit Care Med 2021; 203:1058-1060. [PMID: 33227215 PMCID: PMC8314893 DOI: 10.1164/rccm.202011-4046ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Justin M Oldham
- Division of Pulmonary Critical Care and Sleep Medicine University of California at Davis Sacramento, California
| |
Collapse
|
167
|
Laurent F, Benlala I, Dournes G, Gramond C, Thaon I, Clin B, Brochard P, Gislard A, Andujar P, Chammings S, Gallet J, Lacourt A, Delva F, Paris C, Ferretti G, Pairon JC. Interstitial Lung Abnormalities Detected by CT in Asbestos-Exposed Subjects Are More Likely Associated to Age. J Clin Med 2021; 10:jcm10143130. [PMID: 34300298 PMCID: PMC8307087 DOI: 10.3390/jcm10143130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
Objective: the aim of this study was to evaluate the association between interstitial lung abnormalities, asbestos exposure and age in a population of retired workers previously occupationally exposed to asbestos. Methods: previously occupationally exposed former workers to asbestos eligible for a survey conducted between 2003 and 2005 in four regions of France, underwent chest CT examinations and pulmonary function testing. Industrial hygienists evaluated asbestos exposure and calculated for each subject a cumulative exposure index (CEI) to asbestos. Smoking status information was also collected in this second round of screening. Expert radiologists performed blinded independent double reading of chest CT-scans and classified interstitial lung abnormalities into: no abnormality, minor interstitial findings, interstitial findings inconsistent with UIP, possible or definite UIP. In addition, emphysema was assessed visually (none, minor: emphysema <25%, moderate: between 25 and 50% and severe: >50% of the lung). Logistic regression models adjusted for age and smoking were used to assess the relationship between interstitial lung abnormalities and occupational asbestos exposure. Results: the study population consisted of 2157 male subjects. Interstitial lung abnormalities were present in 365 (16.7%) and emphysema in 444 (20.4%). Significant positive association was found between definite or possible UIP pattern and age (OR adjusted =1.08 (95% CI: 1.02–1.13)). No association was found between interstitial abnormalities and CEI or the level of asbestos exposure. Conclusion: presence of interstitial abnormalities at HRCT was associated to aging but not to cumulative exposure index in this cohort of former workers previously occupationally exposed to asbestos.
Collapse
Affiliation(s)
- François Laurent
- Faculté de Médecine, Université de Bordeaux, F-33000 Bordeaux, France; (I.B.); (G.D.); (P.B.)
- Service d’Imagerie Médicale Radiologie Diagnostique et Thérapeutique, CHU de Bordeaux, F-33000 Bordeaux, France
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, Université de Bordeaux, F-33000 Bordeaux, France
- Correspondence: ; Tel.: +33-5-2454-9136
| | - Ilyes Benlala
- Faculté de Médecine, Université de Bordeaux, F-33000 Bordeaux, France; (I.B.); (G.D.); (P.B.)
- Service d’Imagerie Médicale Radiologie Diagnostique et Thérapeutique, CHU de Bordeaux, F-33000 Bordeaux, France
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, Université de Bordeaux, F-33000 Bordeaux, France
| | - Gael Dournes
- Faculté de Médecine, Université de Bordeaux, F-33000 Bordeaux, France; (I.B.); (G.D.); (P.B.)
- Service d’Imagerie Médicale Radiologie Diagnostique et Thérapeutique, CHU de Bordeaux, F-33000 Bordeaux, France
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, Université de Bordeaux, F-33000 Bordeaux, France
| | - Celine Gramond
- Epicene Team, Bordeaux Population Health Research Center, INSERM UMR 1219, Université de Bordeaux, F-33000 Bordeaux, France; (C.G.); (J.G.); (A.L.); (F.D.)
| | - Isabelle Thaon
- Centre de Consultation de Pathologies Professionnelles, CHRU de Nancy, Université de Lorraine, F-54000 Nancy, France;
| | - Bénédicte Clin
- Service de Santé au Travail et Pathologie Professionnelle, CHU Caen, F-14000 Caen, France;
- Faculté de Médecine, Université de Caen, ANTICIPE, INSERM U1086, F-14000 Caen, France
| | - Patrick Brochard
- Faculté de Médecine, Université de Bordeaux, F-33000 Bordeaux, France; (I.B.); (G.D.); (P.B.)
- Service de Médecine du Travail et de Pathologies Professionnelles, CHU de Bordeaux, F-33000 Bordeaux, France
| | - Antoine Gislard
- Centre de Consultations de Pathologie Professionnelle, UNIROUEN, UNICAEN, ABTE, F-76000 Rouen, France;
- CHU de Rouen, Normandie Université, F-76031 Rouen, France
| | - Pascal Andujar
- Equipe GEIC20, INSERM U955, F-94000 Créteil, France; (P.A.); (J.-C.P.)
- Faculté de Santé, Université Paris-Est Créteil, F-94000 Créteil, France
- Service de Pathologies Professionnelles et de l’Environnement, Centre Hospitalier Intercommunal Créteil, Institut Santé-Travail Paris-Est, F-94000 Créteil, France
- Institut Interuniversitaire de Médecine du Travail de Paris-Ile de France, F-94000 Créteil, France;
| | - Soizick Chammings
- Institut Interuniversitaire de Médecine du Travail de Paris-Ile de France, F-94000 Créteil, France;
| | - Justine Gallet
- Epicene Team, Bordeaux Population Health Research Center, INSERM UMR 1219, Université de Bordeaux, F-33000 Bordeaux, France; (C.G.); (J.G.); (A.L.); (F.D.)
| | - Aude Lacourt
- Epicene Team, Bordeaux Population Health Research Center, INSERM UMR 1219, Université de Bordeaux, F-33000 Bordeaux, France; (C.G.); (J.G.); (A.L.); (F.D.)
| | - Fleur Delva
- Epicene Team, Bordeaux Population Health Research Center, INSERM UMR 1219, Université de Bordeaux, F-33000 Bordeaux, France; (C.G.); (J.G.); (A.L.); (F.D.)
| | - Christophe Paris
- Service de Santé au Travail et Pathologie Professionnelle, CHU Rennes, F-35000 Rennes, France;
- Institut de Recherche en Santé, Environnement et Travail, INSERM U1085, F-35000 Rennes, France
| | - Gilbert Ferretti
- INSERM U 1209 IAB, F-38700 La Tronche, France;
- Domaine de la Merci, Université Grenoble Alpes, F-38706 La Tronche, France
- Service de Radiologie Diagnostique et Interventionnelle Nord, CHU Grenoble Alpes, CS 10217, F-38043 Grenoble, France
| | - Jean-Claude Pairon
- Equipe GEIC20, INSERM U955, F-94000 Créteil, France; (P.A.); (J.-C.P.)
- Faculté de Santé, Université Paris-Est Créteil, F-94000 Créteil, France
- Service de Pathologies Professionnelles et de l’Environnement, Centre Hospitalier Intercommunal Créteil, Institut Santé-Travail Paris-Est, F-94000 Créteil, France
- Institut Interuniversitaire de Médecine du Travail de Paris-Ile de France, F-94000 Créteil, France;
| |
Collapse
|
168
|
Munden RF, Black WC, Hartman TE, MacMahon H, Ko JP, Dyer DS, Naidich D, Rossi SE, McAdams HP, Goodman EM, Brown K, Kent M, Carter BW, Chiles C, Leung AN, Boiselle PM, Kazerooni EA, Berland LL, Pandharipande PV. Managing Incidental Findings on Thoracic CT: Lung Findings. A White Paper of the ACR Incidental Findings Committee. J Am Coll Radiol 2021; 18:1267-1279. [PMID: 34246574 DOI: 10.1016/j.jacr.2021.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 12/17/2022]
Abstract
The ACR Incidental Findings Committee presents recommendations for managing incidentally detected lung findings on thoracic CT. The Chest Subcommittee is composed of thoracic radiologists who endorsed and developed the provided guidance. These recommendations represent a combination of current published evidence and expert opinion and were finalized by informal iterative consensus. The recommendations address commonly encountered incidental findings in the lungs and are not intended to be a comprehensive review of all pulmonary incidental findings. The goal is to improve the quality of care by providing guidance on management of incidentally detected thoracic findings.
Collapse
Affiliation(s)
- Reginald F Munden
- Professor, Department of Radiology and Radiological Sciences, Medical University of South Carolina, Charleston, South Carolina; Chair, Department of Radiology and Radiological Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - William C Black
- Professor of Radiology, Emeritus, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire; Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | | | - Heber MacMahon
- Professor of Radiology, Section of Thoracic Imaging, Department of Radiology, The University of Chicago, Chicago, Illinois
| | - Jane P Ko
- Professor of Radiology, Department of Radiology, NYU Langone Health, New York, New York; Fellowship Director, Cardiothoracic Imaging, Department of Radiology, NYU Langone Health, New York, New York
| | - Debra S Dyer
- Professor, Department of Radiology, National Jewish Health, Denver, Colorado; Chair, Department of Radiology, National Jewish Health, Denver, Colorado
| | - David Naidich
- Professor, Emeritus, NYU-Langone Health, New York, New York; Department of Radiology, NYU Grossman School of Medicine, New York, New York
| | - Santiago E Rossi
- Chairman, Centro Rossi, Buenos Aires, Argentina; Chest Section Head, Hospital Cetrángolo, Buenos Aires, Argentina
| | - H Page McAdams
- Professor of Radiology, Duke University Health System, Durham, North Carolina
| | - Eric M Goodman
- Assistant Professor, Department of Radiology, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York; Associate Program Director, Diagnostic Radiology, Department of Radiology, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Kathleen Brown
- Professor, Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, California; Section Chief, Thoracic Imaging, Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, California; Assistant Dean, Equity and Diversity Inclusion, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Michael Kent
- Associate Professor of Surgery, Harvard Medical School, Boston, Massachusetts; Director, Minimally Invasive Thoracic Surgery, Division of Thoracic Surgery and Interventional Pulmonology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Brett W Carter
- Associate Professor, Department of Thoracic Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas; Director of Clinical Operations, University of Texas MD Anderson Cancer Center, Houston, Texas; Chief Patient Safety and Quality Officer, Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Caroline Chiles
- Professor, Department of Radiology, Wake Forest Baptist Health, Winston Salem, North Carolina
| | - Ann N Leung
- Professor, Clinical Affairs, Stanford University Medical Center, Stanford, California; Associate Chair, Clinical Affairs, Stanford University Medical Center, Stanford, California; Department of Radiology, Stanford University Medical Center, Stanford, California
| | - Phillip M Boiselle
- Professor, Quinnipiac's Frank H. Netter MD School of Medicine, North Haven, Connecticut; Dean, Quinnipiac's Frank H. Netter MD School of Medicine, William and Barbara Weldon Dean's Chair of Medicine, North Haven, Connecticut
| | - Ella A Kazerooni
- Professor of Radiology, Division of Cardiothoracic Radiology and Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Lincoln L Berland
- Professor Emeritus, University of Alabama at Birmingham, Birmingham, Alabama
| | - Pari V Pandharipande
- Director, MGH Institute for Technology Assessment, Massachusetts General Hospital, Boston, Massachusetts; Associate Chair, Integrated Imaging & Imaging Sciences, MGH Radiology, Massachusetts General Hospital, Boston, Massachusetts; Executive Director, Clinical Enterprise Integration, Mass General Brigham (MGB) Radiology, Massachusetts General Hospital, Boston, Massachusetts; Associate Professor of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
169
|
Harris EJA, Lim KP, Moodley Y, Adler B, Sodhi‐Berry N, Reid A, Murray CP, Franklin PJ, Musk AW(B, Klerk NH, Brims FJH. Low dose CT detected interstitial lung abnormalities in a population with low asbestos exposure. Am J Ind Med 2021; 64:567-575. [PMID: 33942336 DOI: 10.1002/ajim.23251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/04/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND The use of low dose CT (LDCT) chest is becoming more widespread in occupationally exposed populations. There is a knowledge gap as to heterogeneity in severity and the natural course of asbestosis after low levels of exposure. This study reports the characteristics of LDCT-detected interstitial lung abnormalities (ILA). METHODS The Asbestos Review Program offers annual LDCT, health assessments, and pulmonary function tests to an asbestos-exposed cohort. Asbestosis was defined using the Helsinki Consensus statement and the presence of ILA defined using a protocol for occupational CT reports. At least two of three pulmonary function tests: forced expiratory volume in 1 s (FEV1 ); forced vital capacity (FVC); and diffusion capacity for carbon monoxide (DLco) were required for analysis of physiological decline. RESULTS From 1513 cases, radiological ILA was present in 485 (32%). The cohort was 83.5% male with a median age of 68.3 years and a median (IQR) asbestos exposure of 0.7 (0.09-2.32) fiber/ml-year. A mixed occupation, mixed asbestos fiber cohort comprised the majority of the cohort (65.8%). Of those with ILA, 40 (8.2%) had an FVC decline of ≥10% and 30 (6.2%) had a DLco decline of ≥15% per year. Time since first exposure, increasing tobacco exposure and reported dyspnea were independently associated with the presence of ILA. CONCLUSIONS In this population with relatively low asbestos exposure, LDCT-detected ILA that fits criteria for asbestosis is common, but physiological decline is not. This mild chronic stable phenotype of asbestos-associated ILA contrasts with the traditionally accepted views that asbestosis requires high exposures.
Collapse
Affiliation(s)
- Edward J. A. Harris
- Curtin Medical School Curtin University Perth Western Australia
- Department of Respiratory Medicine Sir Charles Gairdner Hospital Perth Washington USA
| | - Kuan P. Lim
- Department of Respiratory Medicine Sir Charles Gairdner Hospital Perth Washington USA
| | - Yuben Moodley
- Department of Respiratory Medicine Fiona Stanley Hospital Perth Washington USA
| | | | - Nita Sodhi‐Berry
- School of Population and Global Health University of Western Australia Perth Western Australia
| | - Alison Reid
- School of Public Health Curtin University Perth Western Australia
| | | | - Peter J. Franklin
- School of Population and Global Health University of Western Australia Perth Western Australia
| | - AW (Bill) Musk
- School of Population and Global Health University of Western Australia Perth Western Australia
| | - Nicholas H. Klerk
- School of Population and Global Health University of Western Australia Perth Western Australia
- Telethon Kids Institute Nedlands Western Australia Australia
| | - Fraser J. H. Brims
- Curtin Medical School Curtin University Perth Western Australia
- Department of Respiratory Medicine Sir Charles Gairdner Hospital Perth Washington USA
- National Centre for Asbestos Related Diseases Institute for Respiratory Health Perth Western Australia
| |
Collapse
|
170
|
Penha D, Pinto E, Hochhegger B, Monaghan C, Marchiori E, Taborda-Barata L, Irion K. The impact of lung parenchyma attenuation on nodule volumetry in lung cancer screening. Insights Imaging 2021; 12:84. [PMID: 34170410 PMCID: PMC8233433 DOI: 10.1186/s13244-021-01027-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/02/2021] [Indexed: 11/12/2022] Open
Abstract
Background Recent recommendations for lung nodule management include volumetric analysis using tools that present intrinsic measurement variability, with possible impacts on clinical decisions and patient safety. This study was conducted to evaluate whether changes in the attenuation of the lung parenchyma adjacent to a nodule affect the performance of nodule segmentation using computed tomography (CT) studies and volumetric tools. Methods Two radiologists retrospectively applied two commercially available volumetric tools for the assessment of lung nodules with diameters of 5–8 mm detected by low-dose chest CT during a lung cancer screening program. The radiologists recorded the success and adequacy of nodule segmentation, nodule volume, manually and automatically (or semi-automatically) obtained long- and short-axis measurements, mean attenuation of adjacent lung parenchyma, and presence of interstitial lung abnormalities or disease, emphysema, pleural plaques, and linear atelectasis. Regression analysis was performed to identify predictors of good nodule segmentation using the volumetric tools. Interobserver and intersoftware agreement on good nodule segmentation was assessed using the intraclass correlation coefficient. Results In total, data on 1265 nodules (mean patient age, 68.3 ± 5.1 years; 70.2% male) were included in the study. In the regression model, attenuation of the adjacent lung parenchyma was highly significant (odds ratio 0.987, p < 0.001), with a large effect size. Interobserver and intersoftware agreement on good segmentation was good, although one software package performed better and measurements differed consistently between software packages. Conclusion For lung nodules with diameters of 5–8 mm, the likelihood of good segmentation declines with increasing attenuation of the adjacent parenchyma.
Collapse
Affiliation(s)
- Diana Penha
- Universidade da Beira Interior Faculdade de Ciências da Saúde, Covilha, Portugal. .,Liverpool Heart and Chest Hospital NHS Foundation Trust, Liverpool, UK.
| | - Erique Pinto
- Universidade da Beira Interior Faculdade de Ciências da Saúde, Covilha, Portugal
| | - Bruno Hochhegger
- Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Colin Monaghan
- Liverpool Heart and Chest Hospital NHS Foundation Trust, Liverpool, UK
| | - Edson Marchiori
- Universidade Federal do Rio de Janeiro Faculdade de Medicina, Rio de Janeiro, RJ, Brazil.,Universidade Federal Fluminense Faculdade de Medicina, Niterói, RJ, Brazil
| | - Luís Taborda-Barata
- Universidade da Beira Interior Faculdade de Ciências da Saúde, Covilha, Portugal
| | - Klaus Irion
- Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
171
|
Abstract
PURPOSE OF REVIEW Unclassifiable interstitial lung disease (ILD) comprises a subset of ILDs which cannot be classified according to the current diagnostic framework. This is a likely a heterogeneous group of diseases rather than a single entity and it is poorly defined and hence problematic for prognosis and therapy. RECENT FINDINGS With increased treatment options for progressive fibrosing ILD it is increasingly relevant to correctly categorise ILD. SUMMARY This review article will summarise the definition and reasons for a diagnosis of unclassifiable ILD, the current management options and possible future approaches to improve diagnosis and differentiation within this broad subset. Finally, we will describe the implications of the labelling of unclassifiable ILD in clinical practice and research and whether the term 'unclassified' should be used, implying a less definitive diagnosis.
Collapse
|
172
|
Fukui M, Takamochi K, Suzuki K, Ando K, Matsunaga T, Hattori A, Oh S, Suzuki K. Outcomes of lung cancer surgery for patients with interstitial pneumonia and coronary disease. Surg Today 2021; 52:137-143. [PMID: 34136963 DOI: 10.1007/s00595-021-02319-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE To evaluate the surgical outcomes of lung cancer patients with idiopathic interstitial pneumonia (IIP) and/or coronary artery disease (CAD). METHODS The subjects of this retrospective study were 2830 patients who underwent surgical resection for lung cancer between 2009 and 2018. Seventy-one patients (2.6%) had both IIP and CAD (FC group). The remaining patients were divided into those with IIP only (group F), those with CAD only (group C), and those without IIP or CAD (group N). We compared mortality and overall survival (OS) among the groups. RESULTS The 90-day mortality and OS were poorer in group FC than in groups C and N, but equivalent to those in group F. Multivariate analyses revealed that IIP (odds ratio [OR] 3.163; p = 0.001) and emphysema (2.588; p = 0.009) were predictors of 90-day mortality. IIP (OR 2.991, p < 0.001), diabetes (OR 1.241, p = 0.043), and a history of other cancers (OR 1.347, p = 0.011) were all predictors of OS. CONCLUSIONS Short-term and long-term mortality after lung cancer surgery were not dependent on coexistent CAD but were related to IIP. Thus, computed tomography (CT) should be done preoperatively to check for IIP, which is a risk factor for surgical mortality.
Collapse
Affiliation(s)
- Mariko Fukui
- Departments of General Thoracic Surgery, Juntendo University School of Medicine, 1-3, Hongo 3-chome, Bunkyo-ku, Tokyo, 113-8431, Japan.
| | - Kazuya Takamochi
- Departments of General Thoracic Surgery, Juntendo University School of Medicine, 1-3, Hongo 3-chome, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Kazuhiro Suzuki
- Departments of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Katsutoshi Ando
- Departments of Respiratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Takeshi Matsunaga
- Departments of General Thoracic Surgery, Juntendo University School of Medicine, 1-3, Hongo 3-chome, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Aritoshi Hattori
- Departments of General Thoracic Surgery, Juntendo University School of Medicine, 1-3, Hongo 3-chome, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Shiaki Oh
- Departments of General Thoracic Surgery, Juntendo University School of Medicine, 1-3, Hongo 3-chome, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Kenji Suzuki
- Departments of General Thoracic Surgery, Juntendo University School of Medicine, 1-3, Hongo 3-chome, Bunkyo-ku, Tokyo, 113-8431, Japan
| |
Collapse
|
173
|
Lynch DA. Interstitial Lung Abnormality Incidentally Detected on CT: An Important Prognostic Indicator. Chest 2021; 159:5-6. [PMID: 33422230 DOI: 10.1016/j.chest.2020.10.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 11/20/2022] Open
Affiliation(s)
- David A Lynch
- Department of Radiology, National Jewish Health, Denver, CO.
| |
Collapse
|
174
|
Abstract
Cellular level changes that lead to interstitial lung disease (ILD) may take years to become clinically apparent and have been termed preclinical ILD. Incidentally identified interstitial lung abnormalities (ILA) are increasingly being recognized on chest computed tomographic scans done as part of lung cancer screening and for other purposes. Many individuals found to have ILA will progress to clinically significant ILD. ILA are independently associated with greater risk of death, lung function decline, and incident lung cancer. Current management recommendations focus on identifying individuals with ILA at high risk of progression, through a combination of clinical and radiological features.
Collapse
Affiliation(s)
- Anna J Podolanczuk
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, 1305 York Avenue, Y-1053, Box 96, New York, NY 10021, USA
| | - Rachel K Putman
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Thorn 908D, Boston, MA 02115, USA.
| |
Collapse
|
175
|
McDermott GC, Doyle TJ, Sparks JA. Interstitial lung disease throughout the rheumatoid arthritis disease course. Curr Opin Rheumatol 2021; 33:284-291. [PMID: 33625044 PMCID: PMC8268047 DOI: 10.1097/bor.0000000000000787] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW To summarize the current understanding of rheumatoid arthritis-associated interstitial lung disease (RA-ILD) throughout the rheumatoid arthritis (RA) disease course from preclinical to established disease. RECENT FINDINGS ILD is a serious extra-articular manifestation of RA. Multiple studies have demonstrated a high prevalence of both subclinical and clinical ILD throughout the RA disease course. Investigations of patients without RA have demonstrated an association between RA-related autoantibodies like anticitrullinated protein antibodies (ACPA) and interstitial abnormalities on lung imaging. A significant proportion of RA-ILD patients develop ILD prior to articular manifestations, suggesting that the lung plays a central role in RA development, perhaps through ACPA production. RA-ILD also occurs in early RA, when exuberant autoantibody production and systemic inflammation may propagate pulmonary disease activity. In patients with established RA, a high burden of subclinical and clinical ILD results in significant morbidity, mortality, and healthcare expenditure. Multiple epidemiologic and genetic risk factors, as well as serum biomarkers, have been associated with RA-ILD. SUMMARY Subclinical and clinical ILD occur frequently in preclinical, early, and established RA and may play a key role in RA-related autoantibody production and disease progression. Further studies are needed to better understand the risk factors, prognosis, and potential therapies for RA-ILD.
Collapse
Affiliation(s)
- Gregory C. McDermott
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Tracy J. Doyle
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Jeffrey A. Sparks
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
176
|
Sanders JL, Putman RK, Dupuis J, Xu H, Murabito JM, Araki T, Nishino M, Benjamin EJ, Levy DL, Ramachandran VS, Washko GR, Curtis JL, Freeman CM, Bowler RP, Hatabu H, O’Connor GT, Hunninghake GM. The Association of Aging Biomarkers, Interstitial Lung Abnormalities, and Mortality. Am J Respir Crit Care Med 2021; 203:1149-1157. [PMID: 33080140 PMCID: PMC8314902 DOI: 10.1164/rccm.202007-2993oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/20/2020] [Indexed: 12/28/2022] Open
Abstract
Rationale: The association between aging and idiopathic pulmonary fibrosis has been established. The associations between aging-related biomarkers and interstitial lung abnormalities (ILA) have not been comprehensively evaluated.Objectives: To evaluate the associations among aging biomarkers, ILA, and all-cause mortality.Methods: In the FHS (Framingham Heart Study), we evaluated associations among plasma biomarkers (IL-6, CRP [C-reactive protein], TNFR [tumor necrosis factor α receptor II], GDF15 [growth differentiation factor 15], cystatin-C, HGBA1C [Hb A1C], insulin, IGF1 [insulin-like growth factor 1], and IGFBP1 [IGF binding protein 1] and IGFBP3]), ILA, and mortality. Causal inference analysis was used to determine whether biomarkers mediated age. GDF15 results were replicated in the COPDGene (Genetic Epidemiology of Chronic Obstructive Pulmonary Disease) Study.Measurements and Main Results: In the FHS, there were higher odds of ILA per increase in natural log-transformed GDF15 (odds ratio [95% confidence interval], 3.4 [1.8-6.4]; P = 0.0002), TNFR (3.1 [1.6-5.8]; P = 0.004), IL-6 (1.8 [1.4-2.4]; P < 0.0001), and CRP (1.7 [1.3-2.0]; P < 0.0001). In the FHS, after adjustment for multiple comparisons, no biomarker was associated with increased mortality, but the associations of GDF15 (hazard ratio, 2.0 [1.1-3.5]; P = 0.02), TNFR (1.8 [1.0-3.3]; P = 0.05), and IGFBP1 (1.3 [1.1-1.7]; P = 0.01) approached significance. In the COPDGene Study, higher natural log-transformed GDF15 was associated with ILA (odds ratio, 8.1 [3.1-21.4]; P < 0.0001) and mortality (hazard ratio, 1.6 [1.1-2.2]; P = 0.01). Causal inference analysis showed that the association of age with ILA was mediated by IL-6 (P < 0.0001) and TNFR (P = 0.002) and was likely mediated by GDF15 (P = 0.008) in the FHS and was mediated by GDF15 (P = 0.001) in the COPDGene Study.Conclusions: Some aging-related biomarkers are associated with ILA. GDF15, in particular, may explain some of the associations among age, ILA, and mortality.
Collapse
Affiliation(s)
| | | | - Josée Dupuis
- Department of Biostatistics, School of Public Health
| | - Hanfei Xu
- Department of Biostatistics, School of Public Health
| | - Joanne M. Murabito
- Department of Medicine, and
- Framingham Heart Study, Framingham, Massachusetts
| | - Tetsuro Araki
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Mizuki Nishino
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Emelia J. Benjamin
- Department of Medicine, and
- Framingham Heart Study, Framingham, Massachusetts
| | - Daniel L. Levy
- Department of Medicine, and
- Framingham Heart Study, Framingham, Massachusetts
| | | | | | - Jeffrey L. Curtis
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
- Medical Service and
| | - Christine M. Freeman
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - Russell P. Bowler
- Department of Medicine, National Jewish Health–Health Sciences Center, University of Colorado at Denver, Denver, Colorado
| | - Hiroto Hatabu
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
- Center for Pulmonary Functional Imaging, Brigham and Women’s Hospital–Harvard Medical School, Harvard University, Boston, Massachusetts; and
| | - George T. O’Connor
- Pulmonary Center, School of Medicine, Boston University, Boston, Massachusetts
- Division of Pulmonary, Allergy, Sleep, and Critical Care Medicine, Boston Medical Center, Boston, Massachusetts
| | - Gary M. Hunninghake
- Division of Pulmonary and Critical Care Medicine and
- Center for Pulmonary Functional Imaging, Brigham and Women’s Hospital–Harvard Medical School, Harvard University, Boston, Massachusetts; and
| |
Collapse
|
177
|
Tanaka Y, Ohno Y, Hanamatsu S, Obama Y, Ueda T, Ikeda H, Iwase A, Fukuba T, Hattori H, Murayama K, Yoshikawa T, Takenaka D, Koyama H, Toyama H. State-of-the-art MR Imaging for Thoracic Diseases. Magn Reson Med Sci 2021; 21:212-234. [PMID: 33952785 PMCID: PMC9199970 DOI: 10.2463/mrms.rev.2020-0184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Since thoracic MR imaging was first used in a clinical setting, it has been suggested that MR imaging has limited clinical utility for thoracic diseases, especially lung diseases, in comparison with x-ray CT and positron emission tomography (PET)/CT. However, in many countries and states and for specific indications, MR imaging has recently become practicable. In addition, recently developed pulmonary MR imaging with ultra-short TE (UTE) and zero TE (ZTE) has enhanced the utility of MR imaging for thoracic diseases in routine clinical practice. Furthermore, MR imaging has been introduced as being capable of assessing pulmonary function. It should be borne in mind, however, that these applications have so far been academically and clinically used only for healthy volunteers, but not for patients with various pulmonary diseases in Japan or other countries. In 2020, the Fleischner Society published a new report, which provides consensus expert opinions regarding appropriate clinical indications of pulmonary MR imaging for not only oncologic but also pulmonary diseases. This review article presents a brief history of MR imaging for thoracic diseases regarding its technical aspects and major clinical indications in Japan 1) in terms of what is currently available, 2) promising but requiring further validation or evaluation, and 3) developments warranting research investigations in preclinical or patient studies. State-of-the-art MR imaging can non-invasively visualize lung structural and functional abnormalities without ionizing radiation and thus provide an alternative to CT. MR imaging is considered as a tool for providing unique information. Moreover, prospective, randomized, and multi-center trials should be conducted to directly compare MR imaging with conventional methods to determine whether the former has equal or superior clinical relevance. The results of these trials together with continued improvements are expected to update or modify recommendations for the use of MRI in near future.
Collapse
Affiliation(s)
- Yumi Tanaka
- Department of Radiology, Fujita Health University School of Medicine
| | - Yoshiharu Ohno
- Department of Radiology, Fujita Health University School of Medicine.,Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine
| | - Satomu Hanamatsu
- Department of Radiology, Fujita Health University School of Medicine
| | - Yuki Obama
- Department of Radiology, Fujita Health University School of Medicine
| | - Takahiro Ueda
- Department of Radiology, Fujita Health University School of Medicine
| | - Hirotaka Ikeda
- Department of Radiology, Fujita Health University School of Medicine
| | - Akiyoshi Iwase
- Department of Radiology, Fujita Health University Hospital
| | - Takashi Fukuba
- Department of Radiology, Fujita Health University Hospital
| | - Hidekazu Hattori
- Department of Radiology, Fujita Health University School of Medicine
| | - Kazuhiro Murayama
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine
| | | | | | | | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine
| |
Collapse
|
178
|
Teoh AKY, Corte TJ. Contemporary Concise Review 2020: Interstitial lung disease. Respirology 2021; 26:604-611. [PMID: 33913200 DOI: 10.1111/resp.14063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 01/08/2023]
Abstract
The year 2020 was one like no other, as we witnessed the far-reaching impact of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) global pandemic. Yet despite an unprecedented and challenging year, global research in interstitial lung disease (ILD) continued to break new grounds. Research progress has led to an improved understanding in new diagnostic tools and potential biomarkers for ILD. Studies on the role of antifibrotic therapies, newer therapeutic agents, supportive care strategies and the impact of coronavirus disease 2019 (COVID-19) continue to reshape the management landscape of ILD. In this concise review, we aim to summarize the key studies published in 2020, highlighting their impact on the various aspects of ILD.
Collapse
Affiliation(s)
- Alan K Y Teoh
- Department of Respiratory Medicine, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.,School of Medicine, The University of Sydney, Camperdown, New South Wales, Australia.,Centre of Research Excellence in Pulmonary Fibrosis, Sydney, New South Wales, Australia
| | - Tamera J Corte
- Department of Respiratory Medicine, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.,School of Medicine, The University of Sydney, Camperdown, New South Wales, Australia.,Centre of Research Excellence in Pulmonary Fibrosis, Sydney, New South Wales, Australia
| |
Collapse
|
179
|
Liu GY, Kalhan R. Impaired Respiratory Health and Life Course Transitions From Health to Chronic Lung Disease. Chest 2021; 160:879-889. [PMID: 33865834 DOI: 10.1016/j.chest.2021.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/06/2021] [Accepted: 04/11/2021] [Indexed: 12/21/2022] Open
Abstract
Primary prevention and interception of chronic lung disease are essential in the effort to reduce the morbidity and mortality caused by respiratory conditions. In this review, we apply a life course approach that examines exposures across the life span to identify risk factors that are associated with not only chronic lung disease but also an intermediate phenotype between ideal lung health and lung disease, termed "impaired respiratory health." Notably, risk factors such as exposure to tobacco smoke and air pollution, as well as obesity and physical fitness, affect respiratory health across the life course by being associated with both abnormal lung growth and lung function decline. We then discuss the importance of disease interception and identifying those at highest risk of developing chronic lung disease. This work begins with understanding and detecting impaired respiratory health, and we review several promising molecular biomarkers, predictive symptoms, and early imaging findings that may lead to a better understanding of this intermediate phenotype.
Collapse
Affiliation(s)
- Gabrielle Y Liu
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Preventative Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL.
| | - Ravi Kalhan
- Department of Preventative Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
180
|
Anderson MR, Kim JS, Allison M, Giles JT, Hoffman EA, Ding J, Barr RG, Podolanczuk A. Adiposity and Interstitial Lung Abnormalities in Community-Dwelling Adults: The MESA Cohort Study. Chest 2021; 160:582-594. [PMID: 33844978 DOI: 10.1016/j.chest.2021.03.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/13/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Obesity is associated with restrictive ventilatory defects and a faster rate of decline in FVC. This association is not exclusively mediated by mechanical factors and may reflect direct pulmonary injury by adipose-derived mediators. RESEARCH QUESTION Is adipose tissue involved in the pathogenesis of interstitial lung disease (ILD)? STUDY DESIGN AND METHODS We evaluated the association of CT measures of pericardial, abdominal visceral, and abdominal subcutaneous adipose tissue with high-attenuation areas (HAAs) and interstitial lung abnormalities (ILAs) in a large multicenter cohort study of community-dwelling adults, using multivariable-adjusted models. We secondarily evaluated the association of adipose depot size with FVC and biomarkers of obesity and inflammation. RESULTS In fully adjusted models, every doubling in pericardial adipose tissue volume was associated with a 63.4-unit increase in HAA (95% CI, 55.5-71.3), 20% increased odds of ILA (95% CI, -2% to 50%), and a 5.5% decrease in percent predicted FVC (95% CI, -6.8% to -4.3%). IL-6 levels accounted for 8% of the association between pericardial adipose tissue and HAA. Every doubling in visceral adipose tissue area was associated with a 41.5-unit increase in HAA (95% CI, 28.3-54.7), 30% increased odds of ILA (95% CI, -10% to 80%), and a 5.4% decrease in percent predicted FVC (95% CI, -6.6% to -4.3%). IL-6 and leptin accounted for 17% and 18%, respectively, of the association between visceral adipose tissue and HAA. INTERPRETATION Greater amounts of pericardial and abdominal visceral adipose tissue were associated with CT measures of early lung injury and lower FVC in a cohort of community-dwelling adults. Adipose tissue may represent a modifiable risk factor for ILD.
Collapse
Affiliation(s)
| | - John S Kim
- Department of Medicine, University of Virginia, Charlottesville, VA
| | - Matthew Allison
- Department of Preventive Medicine, University of California San Diego, San Diego, CA
| | - Jon T Giles
- Department of Medicine, Columbia University Medical Center, New York, NY
| | - Eric A Hoffman
- Department of Radiology, University of Iowa, Des Moines, IA
| | - Jingzhong Ding
- Department of Epidemiology and Prevention, Wake Forest University, Winston-Salem, NC; Department of Gerontology and Geriatric Science, Wake Forest University, Winston-Salem, NC
| | - R Graham Barr
- Department of Medicine, Columbia University Medical Center, New York, NY; Department of Epidemiology, Columbia University Medical Center, New York, NY
| | - Anna Podolanczuk
- Department of Medicine, Weill Cornell Medical College, New York, NY
| |
Collapse
|
181
|
Bermudo G, Suarez-Cuartin G, Rivera-Ortega P, Rodriguez-Portal JA, Sauleda J, Nuñez B, Castillo D, Aburto M, Portillo K, Balcells E, Badenes-Bonet D, Valenzuela C, Fernandez-Fabrellas E, González-Budiño T, Cano E, Acosta O, Leiro-Fernández V, Romero A, Planas-Cerezales L, Villar A, Moreno A, Laporta R, Vicens-Zygmunt V, Shull J, Franquet T, Luburich P, Molina-Molina M. Different Faces of Idiopathic Pulmonary Fibrosis With Preserved Forced Vital Capacity. Arch Bronconeumol 2021; 58:135-141. [PMID: 33895005 DOI: 10.1016/j.arbres.2021.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/25/2021] [Accepted: 03/14/2021] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is progressive and irreversible. Some discrepancies about IPF staging exists, especially in mild phases. Forced vital capacity (FVC) higher than 80% has been considered early or mild IPF even for the design of clinical trials. METHODS Spanish multicentre, observational, retrospective study of IPF patients diagnosed between 2012 and 2016, based on the ATS/ERS criteria, which presented FVC greater or equal 80% at diagnosis. Clinical and demographic characteristics, lung function, radiological pattern, treatment, and follow-up were analyzed. RESULTS 225 IPF patients were included, 72.9% were men. The mean age was 69.5 years. The predominant high-resolution computed tomography (HRCT) pattern was consistent usual interstitial pneumonia (UIP) (51.6%). 84.7% of patients presented respiratory symptoms (exertional dyspnea and/or cough) and 33.33% showed oxygen desaturation below 90% in the 6min walking test (6MWT). Anti-fibrotic treatment was initiated at diagnosis in 55.11% of patients. Median FVC was 89.6% (IQR 17) and 58.7% of patients had a decrease of diffusion lung capacity for carbon monoxide (DLCO) below 60% of theoretical value; most of them presented functional progression (61.4%) and higher mortality at 3 years (20.45%). A statistically significant correlation with the 3-years mortality was observed between DLCO <60% and consistent UIP radiological pattern. CONCLUSIONS Patients with preserved FVC but presenting UIP radiological pattern and moderate-severe DLCO decrease at diagnosis associate an increased risk of progression, death or lung transplantation. Therefore, in these cases, preserved FVC would not be representative of early or mild IPF.
Collapse
Affiliation(s)
- Guadalupe Bermudo
- ILD Unit, Respiratory Department, University Hospital of Bellvitge, IDIBELL, University of Barcelona, Spain
| | - Guillermo Suarez-Cuartin
- ILD Unit, Respiratory Department, University Hospital of Bellvitge, IDIBELL, University of Barcelona, Spain
| | - Pilar Rivera-Ortega
- ILD Unit, Respiratory Department, University Hospital of Bellvitge, IDIBELL, University of Barcelona, Spain; ILD Unit, Respiratory Department, Wythenshawe Hospital, Manchester University NHS Foundation Trust, UK
| | | | - Jaume Sauleda
- Respiratory Department, University Hospital Son Espases, Mallorca, Spain
| | - Belen Nuñez
- Respiratory Department, University Hospital Son Espases, Mallorca, Spain
| | - Diego Castillo
- Respiratory Department, University Hospital De la Santa Creu i Sant Pau, Barcelona, Spain
| | - Myriam Aburto
- Respiratory Department, Hospital de Galdakao, Bizkaia, Spain
| | - Karina Portillo
- Respiratory Department, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Eva Balcells
- Respiratory Department, University Hospital del Mar, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Diana Badenes-Bonet
- Respiratory Department, University Hospital del Mar, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Claudia Valenzuela
- Respiratory Department, University Hospital de la Princesa, Madrid, Spain
| | | | | | - Esteban Cano
- Respiratory Department, University Hospital Lucus Agusti, Lugo, Spain
| | - Orlando Acosta
- Respiratory Department, University Hospital of Canarias, Santa Cruz de Tenerife, Spain
| | | | - Ana Romero
- Respiratory Department, University Hospital Virgen de las Nieves, Granada, Spain
| | - Lurdes Planas-Cerezales
- ILD Unit, Respiratory Department, University Hospital of Bellvitge, IDIBELL, University of Barcelona, Spain; Respiratory Department, Hospital de Viladecans, Barcelona, Spain
| | - Ana Villar
- Respiratory Department, University Hospital Vall d'Hebrón, Barcelona, Spain
| | - Amalia Moreno
- Respiratory Department, University Hospital Parc Taulí, Sabadell, Spain
| | - Rosalia Laporta
- Respiratory Department, University Hospital Puerta del Hierro, Majadahonda, Spain
| | - Vanesa Vicens-Zygmunt
- ILD Unit, Respiratory Department, University Hospital of Bellvitge, IDIBELL, University of Barcelona, Spain
| | - Jessica Shull
- ILD Unit, Respiratory Department, University Hospital of Bellvitge, IDIBELL, University of Barcelona, Spain
| | - Tomàs Franquet
- Respiratory Department, University Hospital De la Santa Creu i Sant Pau, Barcelona, Spain
| | - Patricio Luburich
- ILD Unit. Radiology Department. University Hospital of Bellvitge, Barcelona, Spain
| | - Maria Molina-Molina
- ILD Unit, Respiratory Department, University Hospital of Bellvitge, IDIBELL, University of Barcelona, Spain; CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain.
| |
Collapse
|
182
|
Kobayashi H, Wakuda K, Naito T, Mamesaya N, Omori S, Ono A, Kenmotsu H, Murakami H, Endo M, Harada H, Gon Y, Takahashi T. Chemoradiotherapy for limited-stage small-cell lung cancer and interstitial lung abnormalities. Radiat Oncol 2021; 16:52. [PMID: 33731123 PMCID: PMC7972232 DOI: 10.1186/s13014-021-01780-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 03/10/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Patients with lung cancer and interstitial lung disease treated with radiotherapy are at risk of developing radiation pneumonitis. However, the association between interstitial lung abnormalities (ILAs) and radiation pneumonitis in patients with limited-stage small-cell lung cancer (LS-SCLC) remains unclear. Furthermore, the prognosis is uncertain for patients with SCLC and ILAs treated with chemoradiotherapy. We investigated the impact of ILAs on radiation pneumonitis and assessed the prognosis of patients with LS-SCLC and ILAs treated with chemoradiotherapy. METHODS We retrospectively reviewed the medical records of 149 patients with LS-SCLC who received first-line treatment between January 2009 and December 2016. RESULTS In the univariate analysis, the patients with ILAs showed a higher incidence rate of radiation pneumonitis compared with those without ILAs (64% vs. 10%, P < 0.001). Multivariate analysis confirmed that ILAs were significantly associated with the incidence of radiation pneumonitis. In the univariate analysis, patients with ILAs showed poorer overall survival than those without ILAs (median, 18.9 vs. 67.9 months, P = 0.0338). Multivariate analysis showed that ILAs were a significant independent negative prognostic factor. However, the 2-year and 5-year survival rates for the patients with ILAs treated with chemoradiotherapy were 36% and 26%, respectively, and 8% and 0%, respectively, for those treated with chemotherapy alone. CONCLUSIONS ILAs were found to be a predictive factor for radiation pneumonitis in patients with LS-SCLC treated with chemoradiotherapy. Patients with LS-SCLC and ILAs who were treated with chemoradiotherapy had both the possibility of long-term survival and risk of radiation pneumonitis.
Collapse
Affiliation(s)
- Haruki Kobayashi
- Division of Thoracic Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan.
- Division of Respiratory Medicine, Nihon University School of Medicine, Tokyo, Japan.
| | - Kazushige Wakuda
- Division of Thoracic Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Tateaki Naito
- Division of Thoracic Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Nobuaki Mamesaya
- Division of Thoracic Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Shota Omori
- Division of Thoracic Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Akira Ono
- Division of Thoracic Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Hirotsugu Kenmotsu
- Division of Thoracic Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Haruyasu Murakami
- Division of Thoracic Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Masahiro Endo
- Division of Diagnostic Radiology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Hideyuki Harada
- Division of Radiation and Proton Therapy, Shizuoka Cancer Center, Shizuoka, Japan
| | - Yasuhiro Gon
- Division of Respiratory Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Toshiaki Takahashi
- Division of Thoracic Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| |
Collapse
|
183
|
Hino T, Lee KS, Yoo H, Han J, Franks TJ, Hatabu H. Interstitial lung abnormality (ILA) and nonspecific interstitial pneumonia (NSIP). Eur J Radiol Open 2021; 8:100336. [PMID: 33796637 PMCID: PMC7995484 DOI: 10.1016/j.ejro.2021.100336] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
This review article aims to address mysteries existing between Interstitial Lung Abnormality (ILA) and Nonspecific Interstitial Pneumonia (NSIP). The concept and definition of ILA are based upon CT scans from multiple large-scale cohort studies, whereas the concept and definition of NSIP originally derived from pathology with evolution to multi-disciplinary diagnosis. NSIP is the diagnosis as Interstitial Lung Disease (ILD) with clinical significance, whereas only a part of subjects with ILA have clinically significant ILD. Eventually, both ILA and NSIP must be understood in the context of chronic fibrosing ILD and progressive ILD, which remains to be further investigated.
Collapse
Key Words
- AIP, acute interstitial pneumonia
- ATS/ERS, American Thoracic Society/European Respiratory Society
- BIP, bronchiolitis obliterans with interstitial pneumonia
- BOOP, bronchiolitis obliterans organizing pneumonia
- CT
- CTD, connective tissue disease
- Connective tissue disease (CTD)
- DIP, desquamative interstitial pneumonia
- GGO, ground-glass opacities
- GIP, giant cell interstitial pneumonia
- HRCT
- HRCT, high-resolution CT
- IIP, idiopathic interstitial pneumonia
- ILA, interstitial lung abnormality
- ILD, interstitial lung disease
- Interstitial lung abnormality (ILA)
- Interstitial lung disease (ILD)
- LIP, lymphoid interstitial pneumonia
- NSIP, nonspecific interstitial pneumonia
- Nonspecific interstitial pneumonia (NSIP)
- Pulmonary fibrosis
- RB-ILD, respiratory bronchiolitis-associated interstitial lung disease
- UIP, usual interstitial pneumonia
- fNSIP, fibrosing nonspecific interstitial pneumonia
Collapse
Affiliation(s)
- Takuya Hino
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 8128582, Japan
| | - Kyung Soo Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Republic of Korea
| | - Hongseok Yoo
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Republic of Korea
| | - Joungho Han
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Republic of Korea
| | - Teri J Franks
- Pulmonary & Mediastinal Pathology, Department of Defense, The Joint Pathology Center, Silver Spring, MD, USA
| | - Hiroto Hatabu
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
184
|
Hino T, Hida T, Nishino M, Lu J, Putman RK, Gudmundsson EF, Hata A, Araki T, Valtchinov VI, Honda O, Yanagawa M, Yamada Y, Kamitani T, Jinzaki M, Tomiyama N, Ishigami K, Honda H, San Jose Estepar R, Washko GR, Johkoh T, Christiani DC, Lynch DA, Gudnason V, Gudmundsson G, Hunninghake GM, Hatabu H. Progression of traction bronchiectasis/bronchiolectasis in interstitial lung abnormalities is associated with increased all-cause mortality: Age Gene/Environment Susceptibility-Reykjavik Study. Eur J Radiol Open 2021; 8:100334. [PMID: 33748349 PMCID: PMC7960545 DOI: 10.1016/j.ejro.2021.100334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 01/16/2023] Open
Abstract
PURPOSE The aim of this study is to assess the role of traction bronchiectasis/bronchiolectasis and its progression as a predictor for early fibrosis in interstitial lung abnormalities (ILA). METHODS Three hundred twenty-seven ILA participants out of 5764 in the Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study who had undergone chest CT twice with an interval of approximately five-years were enrolled in this study. Traction bronchiectasis/bronchiolectasis index (TBI) was classified on a four-point scale: 0, ILA without traction bronchiectasis/bronchiolectasis; 1, ILA with bronchiolectasis but without bronchiectasis or architectural distortion; 2, ILA with mild to moderate traction bronchiectasis; 3, ILA and severe traction bronchiectasis and/or honeycombing. Traction bronchiectasis (TB) progression was classified on a five-point scale: 1, Improved; 2, Probably improved; 3, No change; 4, Probably progressed; 5, Progressed. Overall survival (OS) among participants with different TB Progression Score and between the TB progression group and No TB progression group was also investigated. Hazard radio (HR) was estimated with Cox proportional hazards model. RESULTS The higher the TBI at baseline, the higher TB Progression Score (P < 0.001). All five participants with TBI = 3 at baseline progressed; 46 (90 %) of 51 participants with TBI = 2 progressed. TB progression was also associated with shorter OS with statistically significant difference (adjusted HR = 1.68, P < 0.001). CONCLUSION TB progression was visualized on chest CT frequently and clearly. It has the potential to be the predictor for poorer prognosis of ILA.
Collapse
Affiliation(s)
- Takuya Hino
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA,Corresponding author.
| | - Tomoyuki Hida
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA,Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 8128582, Japan
| | - Mizuki Nishino
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Junwei Lu
- Department of Biostatistics, Harvard TH Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Rachel K. Putman
- Pulmonary and Critical Care Division, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | | | - Akinori Hata
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA,Department of Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Tetsuro Araki
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Vladimir I. Valtchinov
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Osamu Honda
- Department of Radiology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 5731010, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Yoshitake Yamada
- Department of Diagnostic Radiology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo, 1608582, Japan
| | - Takeshi Kamitani
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 8128582, Japan
| | - Masahiro Jinzaki
- Department of Diagnostic Radiology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo, 1608582, Japan
| | - Noriyuki Tomiyama
- Department of Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Kousei Ishigami
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 8128582, Japan
| | - Hiroshi Honda
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 8128582, Japan
| | - Raul San Jose Estepar
- Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - George R. Washko
- Pulmonary and Critical Care Division, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Takeshi Johkoh
- Department of Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan,Department of Radiology, Kansai Rosai Hospital, 3-1-69 Inabaso, Amagasaki, Hyogo, 6608511, Japan
| | - David C. Christiani
- Department of Environmental Health, Harvard TH Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - David A. Lynch
- Department of Radiology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Hjartavernd, Holtasmári 1, 201, Kópavogur, Iceland,University of Iceland, Faculty of Medicine, Vatnsmyrarvegur 16, 101, Reykjavík, Iceland
| | - Gunnar Gudmundsson
- University of Iceland, Faculty of Medicine, Vatnsmyrarvegur 16, 101, Reykjavík, Iceland,Department of Respiratory Medicine, Landspitali University Hospital, Fossvogur 108, Reykjavík, Iceland
| | - Gary M. Hunninghake
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA,Pulmonary and Critical Care Division, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Hiroto Hatabu
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| |
Collapse
|
185
|
Newton CA. Pulmonary fibrosis screening: quantifying the psychological impact. Thorax 2021; 76:532-533. [PMID: 33622980 DOI: 10.1136/thoraxjnl-2021-216863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2021] [Indexed: 11/04/2022]
Affiliation(s)
- Chad A Newton
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| |
Collapse
|
186
|
Synn AJ, Li W, Hunninghake GM, Washko GR, San José Estépar R, O'Connor GT, Kholdani CA, Hallowell RW, Bankier AA, Mittleman MA, Rice MB. Vascular Pruning on CT and Interstitial Lung Abnormalities in the Framingham Heart Study. Chest 2021; 159:663-672. [PMID: 32798523 PMCID: PMC7856535 DOI: 10.1016/j.chest.2020.07.082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/17/2020] [Accepted: 07/31/2020] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Pulmonary vascular disease is associated with poor outcomes in individuals affected by interstitial lung disease. The pulmonary vessels can be quantified with noninvasive imaging, but whether radiographic indicators of vasculopathy are associated with early interstitial changes is not known. RESEARCH QUESTION Are pulmonary vascular volumes, quantified from CT scans, associated with interstitial lung abnormalities (ILA) in a community-based sample with a low burden of lung disease? STUDY DESIGN AND METHODS In 2,386 participants of the Framingham Heart Study, we used CT imaging to calculate pulmonary vascular volumes, including the small vessel fraction (a surrogate of vascular pruning). We constructed multivariable logistic regression models to investigate associations of vascular volumes with ILA, progression of ILA, and restrictive pattern on spirometry. In secondary analyses, we additionally adjusted for diffusing capacity and emphysema, and performed a sensitivity analysis restricted to participants with normal FVC and diffusing capacity. RESULTS In adjusted models, we found that lower pulmonary vascular volumes on CT were associated with greater odds of ILA, antecedent ILA progression, and restrictive pattern on spirometry. For example, each SD lower small vessel fraction was associated with 1.81-fold greater odds of ILA (95% CI, 1.41-2.31; P < .0001), and 1.63-fold greater odds of restriction on spirometry (95% CI, 1.18-2.24; P = .003). Similar patterns were seen after adjustment for diffusing capacity for carbon monoxide, emphysema, and among participants with normal lung function. INTERPRETATION In this cohort of community-dwelling adults not selected on the basis of lung disease, more severe vascular pruning on CT was associated with greater odds of ILA, ILA progression, and restrictive pattern on spirometry. Pruning on CT may be an indicator of early pulmonary vasculopathy associated with interstitial lung disease.
Collapse
Affiliation(s)
- Andrew J Synn
- Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| | - Wenyuan Li
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Gary M Hunninghake
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - George R Washko
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; The NHLBI's Framingham Heart Study, Framingham, MA
| | - Raúl San José Estépar
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - George T O'Connor
- The NHLBI's Framingham Heart Study, Framingham, MA; Pulmonary Center, Boston University School of Medicine, Boston, MA
| | - Cyrus A Kholdani
- Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Robert W Hallowell
- Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Alexander A Bankier
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Murray A Mittleman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Mary B Rice
- Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
187
|
Billatos E, Ash SY, Duan F, Xu K, Romanoff J, Marques H, Moses E, Han MK, Regan EA, Bowler RP, Mason SE, Doyle TJ, San José Estépar R, Rosas IO, Ross JC, Xiao X, Liu H, Liu G, Sukumar G, Wilkerson M, Dalgard C, Stevenson C, Whitney D, Aberle D, Spira A, San José Estépar R, Lenburg ME, Washko GR. Distinguishing Smoking-Related Lung Disease Phenotypes Via Imaging and Molecular Features. Chest 2021; 159:549-563. [PMID: 32946850 PMCID: PMC8039011 DOI: 10.1016/j.chest.2020.08.2115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Chronic tobacco smoke exposure results in a broad range of lung pathologies including emphysema, airway disease and parenchymal fibrosis as well as a multitude of extra-pulmonary comorbidities. Prior work using CT imaging has identified several clinically relevant subgroups of smoking related lung disease, but these investigations have generally lacked organ specific molecular correlates. RESEARCH QUESTION Can CT imaging be used to identify clinical phenotypes of smoking related lung disease that have specific bronchial epithelial gene expression patterns to better understand disease pathogenesis? STUDY DESIGN AND METHODS Using K-means clustering, we clustered participants from the COPDGene study (n = 5,273) based on CT imaging characteristics and then evaluated their clinical phenotypes. These clusters were replicated in the Detection of Early Lung Cancer Among Military Personnel (DECAMP) cohort (n = 360), and were further characterized using bronchial epithelial gene expression. RESULTS Three clusters (preserved, interstitial predominant and emphysema predominant) were identified. Compared to the preserved cluster, the interstitial and emphysema clusters had worse lung function, exercise capacity and quality of life. In longitudinal follow-up, individuals from the emphysema group had greater declines in exercise capacity and lung function, more emphysema, more exacerbations, and higher mortality. Similarly, genes involved in inflammatory pathways (tumor necrosis factor-α, interferon-β) are more highly expressed in bronchial epithelial cells from individuals in the emphysema cluster, while genes associated with T-cell related biology are decreased in these samples. Samples from individuals in the interstitial cluster generally had intermediate levels of expression of these genes. INTERPRETATION Using quantitative CT imaging, we identified three groups of individuals in older ever-smokers that replicate in two cohorts. Airway gene expression differences between the three groups suggests increased levels of inflammation in the most severe clinical phenotype, possibly mediated by the tumor necrosis factor-α and interferon-β pathways. CLINICAL TRIAL REGISTRATION COPDGene (NCT00608764), DECAMP-1 (NCT01785342), DECAMP-2 (NCT02504697).
Collapse
Affiliation(s)
- Ehab Billatos
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, Boston University, Boston, MA; Department of Medicine, Section of Computational Biomedicine, Boston University, Boston, MA.
| | - Samuel Y Ash
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA; Applied Chest Imaging Laboratory, Brigham and Women's Hospital, Boston, MA
| | - Fenghai Duan
- Department of Biostatistics and Center for Statistical Sciences, Brown University School of Public Health, Providence, RI
| | - Ke Xu
- Department of Medicine, Section of Computational Biomedicine, Boston University, Boston, MA; Bioinformatics Program, Boston University College of Engineering, Boston, MA
| | - Justin Romanoff
- Department of Biostatistics and Center for Statistical Sciences, Brown University School of Public Health, Providence, RI
| | - Helga Marques
- Department of Biostatistics and Center for Statistical Sciences, Brown University School of Public Health, Providence, RI
| | - Elizabeth Moses
- Department of Medicine, Section of Computational Biomedicine, Boston University, Boston, MA
| | - MeiLan K Han
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI
| | - Elizabeth A Regan
- Department of Medicine, Division of Rheumatology, National Jewish Health, Denver, CO
| | - Russell P Bowler
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO
| | - Stefanie E Mason
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA; Applied Chest Imaging Laboratory, Brigham and Women's Hospital, Boston, MA
| | - Tracy J Doyle
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA
| | - Rubén San José Estépar
- Applied Chest Imaging Laboratory, Brigham and Women's Hospital, Boston, MA; Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | - Ivan O Rosas
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA
| | - James C Ross
- Applied Chest Imaging Laboratory, Brigham and Women's Hospital, Boston, MA
| | - Xiaohui Xiao
- Department of Medicine, Section of Computational Biomedicine, Boston University, Boston, MA
| | - Hanqiao Liu
- Department of Medicine, Section of Computational Biomedicine, Boston University, Boston, MA
| | - Gang Liu
- Department of Medicine, Section of Computational Biomedicine, Boston University, Boston, MA
| | - Gauthaman Sukumar
- Department of Anatomy, Physiology & Genetics, The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
| | - Matthew Wilkerson
- Department of Anatomy, Physiology & Genetics, The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
| | - Clifton Dalgard
- Department of Anatomy, Physiology & Genetics, The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD
| | | | - Duncan Whitney
- Lung Cancer Initiative at Johnson & Johnson, New Brunswick, NJ
| | - Denise Aberle
- Department of Radiology, University of California at Los Angeles, Los Angeles, CA
| | - Avrum Spira
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, Boston University, Boston, MA; Department of Medicine, Section of Computational Biomedicine, Boston University, Boston, MA; Lung Cancer Initiative at Johnson & Johnson, New Brunswick, NJ
| | - Raúl San José Estépar
- Applied Chest Imaging Laboratory, Brigham and Women's Hospital, Boston, MA; Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | - Marc E Lenburg
- Department of Medicine, Section of Computational Biomedicine, Boston University, Boston, MA; Bioinformatics Program, Boston University College of Engineering, Boston, MA
| | - George R Washko
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA; Applied Chest Imaging Laboratory, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
188
|
Wells AU, Devaraj A, Desai SR. Interstitial Lung Disease after COVID-19 Infection: A Catalog of Uncertainties. Radiology 2021; 299:E216-E218. [PMID: 33502279 PMCID: PMC7841875 DOI: 10.1148/radiol.2021204482] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Athol U Wells
- From the Interstitial Lung Disease Unit (A.U.W.) and Department of Radiology (A.D., S.R.D.), Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London SW3 6NP, England; and the National Heart and Lung Institute, Imperial College London, London, England (A.U.W., A.D., S.R.D.)
| | - Anand Devaraj
- From the Interstitial Lung Disease Unit (A.U.W.) and Department of Radiology (A.D., S.R.D.), Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London SW3 6NP, England; and the National Heart and Lung Institute, Imperial College London, London, England (A.U.W., A.D., S.R.D.)
| | - Sujal R Desai
- From the Interstitial Lung Disease Unit (A.U.W.) and Department of Radiology (A.D., S.R.D.), Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London SW3 6NP, England; and the National Heart and Lung Institute, Imperial College London, London, England (A.U.W., A.D., S.R.D.)
| |
Collapse
|
189
|
Mathai SK, Cardwell J, Metzger F, Powers J, Walts AD, Kropski JA, Eickelberg O, Hauck SM, Yang IV, Schwartz DA. Preclinical Pulmonary Fibrosis Circulating Protein Biomarkers. Am J Respir Crit Care Med 2021; 202:1720-1724. [PMID: 32755483 PMCID: PMC7737579 DOI: 10.1164/rccm.202003-0724le] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Susan K Mathai
- University of Colorado School of Medicine Aurora, Colorado.,Baylor University Medical Center at Dallas Dallas, Texas
| | | | | | - Julia Powers
- University of Colorado School of Medicine Aurora, Colorado
| | - Avram D Walts
- University of Colorado School of Medicine Aurora, Colorado
| | | | | | | | - Ivana V Yang
- University of Colorado School of Medicine Aurora, Colorado
| | | |
Collapse
|
190
|
Hida T, Hata A, Lu J, Valtchinov VI, Hino T, Nishino M, Honda H, Tomiyama N, Christiani DC, Hatabu H. Interstitial lung abnormalities in patients with stage I non-small cell lung cancer are associated with shorter overall survival: the Boston lung cancer study. Cancer Imaging 2021; 21:14. [PMID: 33468255 PMCID: PMC7816399 DOI: 10.1186/s40644-021-00383-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 01/08/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Interstitial lung abnormalities (ILA) can be detected on computed tomography (CT) in lung cancer patients and have an association with mortality in advanced non-small cell lung cancer (NSCLC) patients. The aim of this study is to demonstrate the significance of ILA for mortality in patients with stage I NSCLC using Boston Lung Cancer Study cohort. METHODS Two hundred and thirty-one patients with stage I NSCLC from 2000 to 2011 were investigated in this retrospective study (median age, 69 years; 93 males, 138 females). ILA was scored on baseline CT scans prior to treatment using a 3-point scale (0 = no evidence of ILA, 1 = equivocal for ILA, 2 = ILA) by a sequential reading method. ILA score 2 was considered the presence of ILA. The difference of overall survival (OS) for patients with different ILA scores were tested via log-rank test and multivariate Cox proportional hazards models were used to estimate hazard ratios (HRs) including ILA score, age, sex, smoking status, and treatment as the confounding variables. RESULTS ILA was present in 22 out of 231 patients (9.5%) with stage I NSCLC. The presence of ILA was associated with shorter OS (patients with ILA score 2, median 3.85 years [95% confidence interval (CI): 3.36 - not reached (NR)]; patients with ILA score 0 or 1, median 10.16 years [95%CI: 8.65 - NR]; P < 0.0001). In a Cox proportional hazards model, the presence of ILA remained significant for increased risk for death (HR = 2.88, P = 0.005) after adjusting for age, sex, smoking and treatment. CONCLUSIONS ILA was detected on CT in 9.5% of patients with stage I NSCLC. The presence of ILA was significantly associated with a shorter OS and could be an imaging marker of shorter survival in stage I NSCLC.
Collapse
Affiliation(s)
- Tomoyuki Hida
- grid.62560.370000 0004 0378 8294Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 USA ,grid.177174.30000 0001 2242 4849Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akinori Hata
- grid.62560.370000 0004 0378 8294Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 USA ,grid.136593.b0000 0004 0373 3971Department of Future Diagnostic Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Junwei Lu
- grid.38142.3c000000041936754XDepartment of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA USA
| | - Vladimir I. Valtchinov
- grid.62560.370000 0004 0378 8294Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 USA
| | - Takuya Hino
- grid.62560.370000 0004 0378 8294Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 USA ,grid.177174.30000 0001 2242 4849Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mizuki Nishino
- grid.62560.370000 0004 0378 8294Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 USA ,grid.65499.370000 0001 2106 9910Department of Imaging, Dana Farber Cancer Institute, Boston, MA USA
| | - Hiroshi Honda
- grid.177174.30000 0001 2242 4849Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriyuki Tomiyama
- grid.136593.b0000 0004 0373 3971Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - David C. Christiani
- grid.38142.3c000000041936754XDepartment of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA USA ,Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA USA
| | - Hiroto Hatabu
- grid.62560.370000 0004 0378 8294Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 USA
| |
Collapse
|
191
|
Buendía-Roldán I, Fernandez R, Mejía M, Juarez F, Ramirez-Martinez G, Montes E, Pruneda AKS, Martinez-Espinosa K, Alarcon-Dionet A, Herrera I, Becerril C, Chavez-Galan L, Preciado M, Pardo A, Selman M. Risk factors associated with the development of interstitial lung abnormalities. Eur Respir J 2021; 58:13993003.03005-2020. [PMID: 33446609 DOI: 10.1183/13993003.03005-2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 12/22/2020] [Indexed: 11/05/2022]
Abstract
BACKGROUND Around 8-10% of individuals over 50 years of age present interstitial lung abnormalities (ILAs), but their risk factors are uncertain. METHODS From 817 individuals recruited in our lung ageing programme at the Mexican National Institute of Respiratory Diseases, 80 (9.7%) showed ILAs and were compared with 564 individuals of the same cohort with normal high-resolution computed tomography to evaluate demographic and functional differences, and with 80 individuals randomly selected from the same cohort for biomarkers. We evaluated MUC5B variant rs35705950, telomere length, and serum levels of matrix metalloproteinase (MMP)-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-12, MMP-13, interleukin (IL)-6, surfactant protein (SP)-D, α-Klotho and resistin. RESULTS Individuals with ILAs were usually males (p<0.005), older than controls (p<0.0001), smokers (p=0.01), with a greater frequency of MUC5B rs35705950 (OR 3.5, 95% CI 1.3-9.4; p=0.01), and reduced diffusing capacity of the lung for carbon monoxide and oxygen saturation. Resistin, IL-6, SP-D, MMP-1, MMP-7 and MMP-13 were significantly increased in individuals with ILAs. Resistin (12±5 versus 9±4 ng·mL-1; p=0.0005) and MMP-13 (357±143 versus 298±116 pg·mL-1; p=0.004) were the most increased biomarkers. On follow-up (24±18 months), 18 individuals showed progression which was associated with gastro-oesophageal reflux disease (OR 4.1, 95% CI 1.2-12.9; p=0.02) and in females with diabetes mellitus (OR 5.3, 95% CI 1.0-27.4; p=0.01). CONCLUSIONS Around 10% of respiratory asymptomatic individuals enrolled in our lung ageing programme show ILAs. Increased serum concentrations of pro-inflammatory molecules and MMPs are associated with ILAs.
Collapse
Affiliation(s)
- Ivette Buendía-Roldán
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico.,These two authors contributed equally to this article as lead authors and supervised the work
| | - Rosario Fernandez
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Mayra Mejía
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Fortunato Juarez
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | | | - Eduardo Montes
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Ana Karem S Pruneda
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Karen Martinez-Espinosa
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Aime Alarcon-Dionet
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Iliana Herrera
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Carina Becerril
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Leslie Chavez-Galan
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Mario Preciado
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico.,These two authors contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
192
|
Kim JS, Steffen BT, Podolanczuk AJ, Kawut SM, Noth I, Raghu G, Michos ED, Hoffman EA, Axelsson GT, Gudmundsson G, Gudnason V, Gudmundsson EF, Murphy RA, Dupuis J, Xu H, Vasan RS, O'Connor GT, Harris WS, Hunninghake GM, Barr RG, Tsai MY, Lederer DJ. Associations of ω-3 Fatty Acids With Interstitial Lung Disease and Lung Imaging Abnormalities Among Adults. Am J Epidemiol 2021; 190:95-108. [PMID: 32803215 DOI: 10.1093/aje/kwaa168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Docosahexaenoic acid (DHA), an ω-3 polyunsaturated fatty acid, attenuates interstitial lung disease (ILD) in experimental models, but human studies are lacking. We examined associations of circulating levels of DHA and other polyunsaturated fatty acids with hospitalization and death due to ILD over 12 years in the Multi-Ethnic Study of Atherosclerosis (MESA; n = 6,573). We examined cross-sectional associations with CT lung abnormalities in MESA (2000-2012; n = 6,541), the Framingham Heart Study (2005-2011; n = 3,917), and the Age, Gene/Environment Susceptibility-Reykjavik Study (AGES-Reykjavik) (2002-2006; n = 1,106). Polyunsaturated fatty acid levels were determined from fasting blood samples and extracted from plasma phospholipids (MESA and AGES-Reykjavik) or red blood cell membranes (Framingham Heart Study). Higher DHA levels were associated with a lower risk of hospitalization due to ILD (per standard-deviation increment, adjusted rate ratio = 0.69, 95% confidence interval (CI): 0.48, 0.99) and a lower rate of death due to ILD (per standard-deviation increment, adjusted hazard ratio = 0.68, 95% CI: 0.47, 0.98). Higher DHA was associated with fewer interstitial lung abnormalities on computed tomography (per natural log increment, pooled adjusted odds ratio = 0.65, 95% CI: 0.46, 0.91). Higher DHA levels were associated with a lower risk of hospitalization and death due to ILD and fewer lung abnormalities on computed tomography in a meta-analysis of data from population-based cohort studies.
Collapse
|
193
|
Mori Y, Kondoh Y. What parameters can be used to identify early idiopathic pulmonary fibrosis? Respir Investig 2021; 59:53-65. [PMID: 33277230 DOI: 10.1016/j.resinv.2020.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 06/12/2023]
Abstract
Elucidating the disease process of early idiopathic pulmonary fibrosis (IPF) will help clinicians in addressing the contentious issues of when and in which patients, therapeutic intervention should be initiated. Here, we discuss several possible parameters for diagnosing early IPF and their clinical impacts. Physiologically, early IPF can be considered as IPF with normal or mild impairment in pulmonary function. Radiologically, early IPF can be considered as IPF with a small extent and/or early features of fibrosis. Symptomatically, early IPF can be considered as asymptomatic or less symptomatic IPF. IPF at Gender-Age-Physiology index stage I can be considered early IPF. Interstitial lung abnormalities are defined as parenchymal abnormalities in more than 5% of the lung in patients with no prior history of interstitial lung disease, and in some cases, this seems to be equivalent to early IPF. Previous clinical trials showed the effect of antifibrotic therapies in early IPF, but the effects of therapy are uncertain in early IPF outside of clinical trials, such as in cases of IPF with normal pulmonary function, IPF without honeycombing or traction bronchiectasis, and asymptomatic IPF. Moreover, little has been reported on disease progression in such conditions. Because the conceptual framework of early IPF may vary depending on its definition, not only is a diagnosis of early IPF important but prediction of disease progression is also crucial. Further investigations are needed to identify biomarkers that can detect patients who may experience greater degrees of disease progression and require treatment even with those forms of early IPF.
Collapse
Affiliation(s)
- Yuta Mori
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, 160 Nishioiwake-cho, Seto, Aichi, 489-8642, Japan; Department of Respiratory Medicine, Ogaki Municipal Hospital, Ogaki, Japan
| | - Yasuhiro Kondoh
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, 160 Nishioiwake-cho, Seto, Aichi, 489-8642, Japan.
| |
Collapse
|
194
|
Nam BD, Hwang JH. Update in Diagnosis of Idiopathic Pulmonary Fibrosis and Interstitial Lung Abnormality. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2021; 82:770-790. [PMID: 36238071 PMCID: PMC9514410 DOI: 10.3348/jksr.2021.0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 11/15/2022]
Abstract
최신 국제 임상진료지침을 기반으로 한 특발폐섬유증의 진단은 부합하는 임상 소견과 함께 고해상 CT에서 전형적인 상용간질폐렴 소견을 보일 때 조직학적 폐 생검 없이 진단 가능하다. 영상 검사는 특발폐섬유증의 평가 및 진단에 중추적인 역할을 하며, 정확한 진단을 위하여 임상적, 영상의학적 및 병리학적 소견에 대한 다학제 검토의 중요성이 강조된다. 간질성 폐이상(interstitial lung abnormality)은 우연히 발견된 영상의학적 이상 소견을 지칭하며, 간질성폐이상과 임상적으로 의미 있는 간질폐질환에 대한 구분은 적절한 임상 평가를 기반으로 이루어져야 한다. 저자들은 이번 종설을 통하여 특발폐섬유증 진단의 최신 지견 및 간질성폐이상에 대한 이해를 도움으로써 미만성 간질폐섬유증 환자의 정확한 진단과 치료 및 예후 증진에 도움이 되고자 한다.
Collapse
Affiliation(s)
- Bo Da Nam
- Department of Radiology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Jung Hwa Hwang
- Department of Radiology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| |
Collapse
|
195
|
Collagen Structure-Function Mapping Informs Applications for Regenerative Medicine. Bioengineering (Basel) 2020; 8:bioengineering8010003. [PMID: 33383610 PMCID: PMC7824244 DOI: 10.3390/bioengineering8010003] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/21/2022] Open
Abstract
Type I collagen, the predominant protein of vertebrates, assembles into fibrils that orchestrate the form and function of bone, tendon, skin, and other tissues. Collagen plays roles in hemostasis, wound healing, angiogenesis, and biomineralization, and its dysfunction contributes to fibrosis, atherosclerosis, cancer metastasis, and brittle bone disease. To elucidate the type I collagen structure-function relationship, we constructed a type I collagen fibril interactome, including its functional sites and disease-associated mutations. When projected onto an X-ray diffraction model of the native collagen microfibril, data revealed a matrix interaction domain that assumes structural roles including collagen assembly, crosslinking, proteoglycan (PG) binding, and mineralization, and the cell interaction domain supporting dynamic aspects of collagen biology such as hemostasis, tissue remodeling, and cell adhesion. Our type III collagen interactome corroborates this model. We propose that in quiescent tissues, the fibril projects a structural face; however, tissue injury releases blood into the collagenous stroma, triggering exposure of the fibrils' cell and ligand binding sites crucial for tissue remodeling and regeneration. Applications of our research include discovery of anti-fibrotic antibodies and elucidating their interactions with collagen, and using insights from our angiogenesis studies and collagen structure-function model to inform the design of super-angiogenic collagens and collagen mimetics.
Collapse
|
196
|
Hino T, Lee KS, Han J, Hata A, Ishigami K, Hatabu H. Spectrum of Pulmonary Fibrosis from Interstitial Lung Abnormality to Usual Interstitial Pneumonia: Importance of Identification and Quantification of Traction Bronchiectasis in Patient Management. Korean J Radiol 2020; 22:811-828. [PMID: 33543848 PMCID: PMC8076826 DOI: 10.3348/kjr.2020.1132] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 01/18/2023] Open
Abstract
Following the introduction of a novel pathological concept of usual interstitial pneumonia (UIP) by Liebow and Carrington in 1969, diffuse interstitial pneumonia has evolved into UIP, nonspecific interstitial pneumonia (NSIP), and interstitial lung abnormality (ILA); the histopathological and CT findings of these conditions reflect the required multidisciplinary team approach, involving pulmonologists, radiologists, and pathologists, for their diagnosis and management. Concomitantly, traction bronchiectasis and bronchiolectasis have been recognized as the most persistent and important indices of the severity and prognosis of fibrotic lung diseases. The traction bronchiectasis index (TBI) can stratify the prognoses of patients with ILAs. In this review, the evolutionary concepts of UIP, NSIP, and ILAs are summarized in tables and figures, with a demonstration of the correlation between CT findings and pathologic evaluation. The CT-based UIP score is being proposed to facilitate a better understanding of the spectrum of pulmonary fibrosis, from ILAs to UIP, with emphasis on traction bronchiectasis/bronchiolectasis.
Collapse
Affiliation(s)
- Takuya Hino
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kyung Soo Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea
| | - Joungho Han
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea
| | - Akinori Hata
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kousei Ishigami
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroto Hatabu
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
197
|
Axelsson GT, Putman RK, Aspelund T, Gudmundsson EF, Hida T, Araki T, Nishino M, Hatabu H, Gudnason V, Hunninghake GM, Gudmundsson G. The associations of interstitial lung abnormalities with cancer diagnoses and mortality. Eur Respir J 2020; 56:13993003.02154-2019. [PMID: 32646918 DOI: 10.1183/13993003.02154-2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
An increased incidence of lung cancer is well known among patients with idiopathic pulmonary fibrosis. It is not known whether interstitial lung abnormalities, i.e. early fibrotic changes of the lung, are a risk factor for lung cancer in the general population.The study's objective was to assess whether interstitial lung abnormalities were associated with diagnoses of, and mortality from, lung cancer and other cancers. Data from the AGES-Reykjavik study, a cohort of 5764 older Icelandic adults, were used. Outcome data were ascertained from electronic medical records. Gray's tests, Cox proportional hazards models and proportional subdistribution hazards models were used to analyse associations of interstitial lung abnormalities with lung cancer diagnoses and lung cancer mortality as well as diagnoses and mortality from all cancers.There was a greater cumulative incidence of lung cancer diagnoses (p<0.001) and lung cancer mortality (p<0.001) in participants with interstitial lung abnormalities than in others. Interstitial lung abnormalities were associated with an increased hazard of lung cancer diagnosis (hazard ratio 2.77) and lung cancer mortality (hazard ratio 2.89) in adjusted Cox models. Associations of interstitial lung abnormalities with all cancers were found in models including lung cancers but not in models excluding lung cancers.People with interstitial lung abnormalities are at increased risk of lung cancer and lung cancer mortality, but not of other cancers. This implies that an association between fibrotic and neoplastic diseases of the lung exists from the early stages of lung fibrosis and suggests that interstitial lung abnormalities could be considered as a risk factor in lung cancer screening efforts.
Collapse
Affiliation(s)
| | - Rachel K Putman
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Thor Aspelund
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Icelandic Heart Association, Kopavogur, Iceland
| | | | - Tomayuki Hida
- Dept of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Center for Pulmonary Functional Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tetsuro Araki
- Dept of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Center for Pulmonary Functional Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mizuki Nishino
- Dept of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Center for Pulmonary Functional Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hiroto Hatabu
- Dept of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Center for Pulmonary Functional Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vilmundur Gudnason
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Icelandic Heart Association, Kopavogur, Iceland
| | - Gary M Hunninghake
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Center for Pulmonary Functional Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gunnar Gudmundsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Dept of Respiratory Medicine, Landspitali University Hospital, Reykjavik, Iceland
| |
Collapse
|
198
|
Machahua C, Buendia-Roldan I, Ocaña-Guzman R, Molina-Molina M, Pardo A, Chavez-Galan L, Selman M. CD4+T cells in ageing-associated interstitial lung abnormalities show evidence of pro-inflammatory phenotypic and functional profile. Thorax 2020; 76:152-160. [PMID: 33298584 PMCID: PMC7815886 DOI: 10.1136/thoraxjnl-2020-215520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022]
Abstract
Background Interstitial lung abnormalities (ILA) occur in around 10% of subjects over 60 years, and are associated with a higher rate of all-cause mortality. The pathogenic mechanisms are unclear, and the putative contribution of alterations in the immune response has not been explored. Normal ageing is associated with immune deficiencies, including Naïve T-cell decrease and greater expression of the proliferative-limiting, co-inhibitory receptor killer-cell lectin-like receptor G1 (KLRG1). Objective To evaluate the frequency and activation state of different T-cell subpopulations in ILA subjects. Methods Peripheral blood mononuclear cells were obtained from 15 individuals with ILA, 21 age-matched controls and 28 healthy young subjects. T-cells phenotype was characterised by flow cytometry, and proliferation and activation by stimulation with anti-CD3/anti-CD28 or phorbol myristate acetate/ionomycin; KLRG1 isoforms were evaluated by western blot and cytokines were quantified by ELISA and Multiplex. Results A significant increase of Naïve CD4+T cells together with a decrease of central and effector memory CD4+T cells was observed in ILA compared with age-matched controls. CD4+T cells from ILA subjects exhibited greater basal proliferation, which raised after anti-CD3/anti-CD28 stimulation. Additionally, a significant increase in the levels of interleukin-6 and interferon gamma was observed in isolated CD4+T cells and plasma of ILA subjects. They also displayed fewer KLRG1+/CD4+T cells with an increase of circulating E-cadherin, the ligand of KLRG1+. No changes were observed with CD8+T cell subsets. Conclusion CD4+T cells from ILA subjects are highly proliferative and show an excessive functional activity, likely related to the loss of KLRG1 expression, which may contribute to an inflammatory state and the development of ILA.
Collapse
Affiliation(s)
- Carlos Machahua
- Servei de Pneumologia, Grup de Recerca Pneumològic, Institut d'Investigacions Biomèdiques de Bellvitge (IDIBELL), Hospital Universitari de Bellvitge, Hospital de Llobregat, Barcelona, Spain
| | - Ivette Buendia-Roldan
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Ranferi Ocaña-Guzman
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - María Molina-Molina
- Servei de Pneumologia, Grup de Recerca Pneumològic, Institut d'Investigacions Biomèdiques de Bellvitge (IDIBELL), Hospital Universitari de Bellvitge, Hospital de Llobregat, Barcelona, Spain
| | - Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Leslie Chavez-Galan
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Moises Selman
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| |
Collapse
|
199
|
Wilsher ML, Beckert L. Bring out the stethoscope. Respirology 2020; 25:1227-1228. [DOI: 10.1111/resp.13906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 06/17/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Margaret L. Wilsher
- Respiratory Medicine Auckland District Health Board, Auckland City Hospital Auckland New Zealand
- Faculty of Medical and Health Sciences, School of Medicine University of Auckland Auckland New Zealand
| | - Lutz Beckert
- Respiratory Medicine Christchurch Hospital Christchurch New Zealand
- Department of Medicine University of Otago Christchurch New Zealand
| |
Collapse
|
200
|
George PM, Hida T, Putman RK, Hino T, Desai SR, Devaraj A, Kumar S, Mackintosh JA, Gudnason V, Hatabu H, Gudmundsson G, Hunninghake GM. Hiatus hernia and interstitial lung abnormalities. Eur Respir J 2020; 56:13993003.01679-2020. [PMID: 32527737 DOI: 10.1183/13993003.01679-2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/27/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Peter M George
- The Royal Brompton and Harefield NHS Foundation Trust, London, UK .,National Heart and Lung Institute, Imperial College London, London, UK
| | | | | | - Takuya Hino
- Brigham and Women's Hospital, Boston, MA, USA
| | - Sujal R Desai
- The Royal Brompton and Harefield NHS Foundation Trust, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| | - Anand Devaraj
- The Royal Brompton and Harefield NHS Foundation Trust, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| | - Sacheen Kumar
- The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | | | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Gunnar Gudmundsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,National University Hospital of Iceland, Reykjavik, Iceland
| | | |
Collapse
|