151
|
Kuhnert S, Mansouri S, Rieger MA, Savai R, Avci E, Díaz-Piña G, Padmasekar M, Looso M, Hadzic S, Acker T, Klatt S, Wilhelm J, Fleming I, Sommer N, Weissmann N, Vogelmeier C, Bals R, Zeiher A, Dimmeler S, Seeger W, Pullamsetti SS. Association of Clonal Hematopoiesis of Indeterminate Potential with Inflammatory Gene Expression in Patients with COPD. Cells 2022; 11:cells11132121. [PMID: 35805204 PMCID: PMC9265467 DOI: 10.3390/cells11132121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a disease with an inflammatory phenotype with increasing prevalence in the elderly. Expanded population of mutant blood cells carrying somatic mutations is termed clonal hematopoiesis of indeterminate potential (CHIP). The association between CHIP and COPD and its relevant effects on DNA methylation in aging are mainly unknown. Analyzing the deep-targeted amplicon sequencing from 125 COPD patients, we found enhanced incidence of CHIP mutations (~20%) with a predominance of DNMT3A CHIP-mediated hypomethylation of Phospholipase D Family Member 5 (PLD5), which in turn is positively correlated with increased levels of glycerol phosphocholine, pro-inflammatory cytokines, and deteriorating lung function.
Collapse
Affiliation(s)
- Stefan Kuhnert
- University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus Liebig University, 35392 Giessen, Germany; (S.K.); (R.S.); (S.H.); (J.W.); (N.S.); (N.W.); (W.S.)
| | - Siavash Mansouri
- Max Planck Institute for Heart and Lung Research, DZL, CPI, 61231 Bad Nauheim, Germany; (S.M.); (E.A.); (G.D.-P.); (M.P.); (M.L.)
| | - Michael A. Rieger
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, CPI, Goethe University, 60596 Frankfurt am Main, Germany;
- Frankfurt Cancer Institute (FCI), CPI, Goethe University, 60596 Frankfurt am Main, Germany
| | - Rajkumar Savai
- University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus Liebig University, 35392 Giessen, Germany; (S.K.); (R.S.); (S.H.); (J.W.); (N.S.); (N.W.); (W.S.)
- Max Planck Institute for Heart and Lung Research, DZL, CPI, 61231 Bad Nauheim, Germany; (S.M.); (E.A.); (G.D.-P.); (M.P.); (M.L.)
- Frankfurt Cancer Institute (FCI), CPI, Goethe University, 60596 Frankfurt am Main, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
| | - Edibe Avci
- Max Planck Institute for Heart and Lung Research, DZL, CPI, 61231 Bad Nauheim, Germany; (S.M.); (E.A.); (G.D.-P.); (M.P.); (M.L.)
| | - Gabriela Díaz-Piña
- Max Planck Institute for Heart and Lung Research, DZL, CPI, 61231 Bad Nauheim, Germany; (S.M.); (E.A.); (G.D.-P.); (M.P.); (M.L.)
| | - Manju Padmasekar
- Max Planck Institute for Heart and Lung Research, DZL, CPI, 61231 Bad Nauheim, Germany; (S.M.); (E.A.); (G.D.-P.); (M.P.); (M.L.)
| | - Mario Looso
- Max Planck Institute for Heart and Lung Research, DZL, CPI, 61231 Bad Nauheim, Germany; (S.M.); (E.A.); (G.D.-P.); (M.P.); (M.L.)
| | - Stefan Hadzic
- University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus Liebig University, 35392 Giessen, Germany; (S.K.); (R.S.); (S.H.); (J.W.); (N.S.); (N.W.); (W.S.)
| | - Till Acker
- Institute for Neuropathology, CPI, Justus Liebig University, 35392 Giessen, Germany;
| | - Stephan Klatt
- Institute of Vascular Signalling, Department of Molecular Medicine, CPI, Goethe University, 60596 Frankfurt am Main, Germany; (S.K.); (I.F.)
| | - Jochen Wilhelm
- University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus Liebig University, 35392 Giessen, Germany; (S.K.); (R.S.); (S.H.); (J.W.); (N.S.); (N.W.); (W.S.)
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
| | - Ingrid Fleming
- Institute of Vascular Signalling, Department of Molecular Medicine, CPI, Goethe University, 60596 Frankfurt am Main, Germany; (S.K.); (I.F.)
| | - Natascha Sommer
- University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus Liebig University, 35392 Giessen, Germany; (S.K.); (R.S.); (S.H.); (J.W.); (N.S.); (N.W.); (W.S.)
| | - Norbert Weissmann
- University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus Liebig University, 35392 Giessen, Germany; (S.K.); (R.S.); (S.H.); (J.W.); (N.S.); (N.W.); (W.S.)
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
| | - Claus Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, Philipps University of Marburg, DZL, 35043 Marburg, Germany;
| | - Robert Bals
- Department of Internal Medicine V-Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421 Homburg, Germany;
| | - Andreas Zeiher
- Department of Medicine, Cardiology, CPI, Goethe University Hospital, 60596 Frankfurt am Main, Germany;
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, CPI, Goethe University, 60596 Frankfurt am Main, Germany;
| | - Werner Seeger
- University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus Liebig University, 35392 Giessen, Germany; (S.K.); (R.S.); (S.H.); (J.W.); (N.S.); (N.W.); (W.S.)
- Max Planck Institute for Heart and Lung Research, DZL, CPI, 61231 Bad Nauheim, Germany; (S.M.); (E.A.); (G.D.-P.); (M.P.); (M.L.)
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
| | - Soni S. Pullamsetti
- University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus Liebig University, 35392 Giessen, Germany; (S.K.); (R.S.); (S.H.); (J.W.); (N.S.); (N.W.); (W.S.)
- Max Planck Institute for Heart and Lung Research, DZL, CPI, 61231 Bad Nauheim, Germany; (S.M.); (E.A.); (G.D.-P.); (M.P.); (M.L.)
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
- Correspondence:
| |
Collapse
|
152
|
Hoermann G. Clinical Significance of Clonal Hematopoiesis of Indeterminate Potential in Hematology and Cardiovascular Disease. Diagnostics (Basel) 2022; 12:1613. [PMID: 35885518 PMCID: PMC9317488 DOI: 10.3390/diagnostics12071613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 01/15/2023] Open
Abstract
Liquid profiling uses circulating tumor DNA (ctDNA) for minimal invasive tumor mutational profiling from peripheral blood. The presence of somatic mutations in peripheral blood cells without further evidence of a hematologic neoplasm defines clonal hematopoiesis of indeterminate potential (CHIP). CHIP-mutations can be found in the cell-free DNA (cfDNA) of plasma, are a potential cause of false positive results in liquid profiling, and thus limit its usage in screening settings. Various strategies are in place to mitigate the effect of CHIP on the performance of ctDNA assays, but the detection of CHIP also represents a clinically significant incidental finding. The sequelae of CHIP comprise the risk of progression to a hematologic neoplasm including therapy-related myeloid neoplasms. While the hematological risk increases with the co-occurrence of unexplained blood count abnormalities, a number of non-hematologic diseases have independently been associated with CHIP. In particular, CHIP represents a major risk factor for cardiovascular disease such as atherosclerosis or heart failure. The management of CHIP requires an interdisciplinary setting and represents a new topic in the field of cardio-oncology. In the future, the information on CHIP may be taken into account for personalized therapy of cancer patients.
Collapse
|
153
|
Yura Y, Cochran JD, Walsh K. Therapy-Related Clonal Hematopoiesis: A New Link Between Cancer and Cardiovascular Disease. Heart Fail Clin 2022; 18:349-359. [PMID: 35718411 DOI: 10.1016/j.hfc.2022.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Clonal hematopoiesis is a precancerous state that is recognized as a new causal risk factor for cardiovascular disease. Therapy-related clonal hematopoiesis is a condition that is often found in cancer survivors. These clonal expansions are caused by mutations in DNA damage-response pathway genes that allow hematopoietic stem cells to undergo positive selection in response to the genotoxic stress. These mutant cells increasingly give rise to progeny leukocytes that display enhanced proinflammatory properties. Recent experimental studies suggest that therapy-related clonal hematopoiesis may contribute to the medium- to long-term risk of genotoxic therapies on the cardiovascular system.
Collapse
Affiliation(s)
- Yoshimitsu Yura
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, 415 Lane Road, PO Box 801394, Suite 1010, Charlottesville, VA 22908, USA; Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Jesse D Cochran
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, 415 Lane Road, PO Box 801394, Suite 1010, Charlottesville, VA 22908, USA
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, 415 Lane Road, PO Box 801394, Suite 1010, Charlottesville, VA 22908, USA.
| |
Collapse
|
154
|
Rizvi AA, Popovic DS, Papanas N, Pantea Stoian A, Al Mahmeed W, Sahebkar A, Janez A, Rizzo M. Current and emerging drugs for the treatment of atherosclerosis: the evidence to date. Expert Rev Cardiovasc Ther 2022; 20:515-527. [PMID: 35786159 DOI: 10.1080/14779072.2022.2094771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Atherosclerosis can be considered a chronic inflammatory process that stands out as a dominant cause of cardiovascular disease (CVD). Since blood lipids are the leading risk factor for atherosclerosis development, lowering low-density lipoprotein cholesterol (LDL-C) and other apolipoprotein B-containing lipoproteins reduces the risk of future cardiovascular events. However, there has been significant progress in developing lipid-lowering drugs for aggressive management of dyslipidemia, the rates of CVD events remain unacceptably high, so there is great need to identify novel therapeutic pathways targeting the atherosclerosis process. AREAS COVERED We discussed the current guidelines on CVD prevention, the role of novel lipid-lowering drugs, as well as emerging drugs for atherosclerosis, emphasizing the current data on compounds targeting inflammatory and oxidant pathways. EXPERT OPINION Although novel lipid-lowering drugs all showed their therapeutic efficacy in LDL-C lowering, data regarding their impact on cardiovascular outcomes is still inconclusive. On the other hand, some of the agents targeting inflammatory pathways, especially colchicine, showed promising results in terms of reducing CVD events. In contrast, those pointed at oxidant pathways failed to do so. Finally, exploring ways of targeting new therapeutic venues, such as adaptive immunity and clonal hematopoiesis, is a goal in the future.
Collapse
Affiliation(s)
- Ali A Rizvi
- Department of Medicine, University of Central Florida College of Medicine, Orlando, FL, USA
- Division of Endocrinology, Diabetes, and Metabolism, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Djordje S Popovic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Vojvodina, and Medical Faculty, University of Novi Sad, Novi Sad, Serbia
| | - Nikolaos Papanas
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Anca Pantea Stoian
- Faculty of Medicine, Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Wael Al Mahmeed
- Cleveland Clinic, Heart and Vascular Institute, Abu Dhabi, United Arab Emirates
| | - Amirhossein Sahebkar
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Andrej Janez
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Manfredi Rizzo
- Division of Endocrinology, Diabetes, and Metabolism, School of Medicine, University of South Carolina, Columbia, SC, USA
- Faculty of Medicine, Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and 9 Medical Specialties (Promise), University of Palermo, Palermo, Italy
| |
Collapse
|
155
|
Díez-Díez M, Amorós-Pérez M, de la Barrera J, Vázquez E, Quintas A, Pascual-Figal DA, Dopazo A, Sánchez-Cabo F, Kleinman ME, Gordon LB, Fuster V, Andrés V, Fuster JJ. Clonal hematopoiesis is not prevalent in Hutchinson-Gilford progeria syndrome. GeroScience 2022; 45:1231-1236. [PMID: 35752705 PMCID: PMC9886702 DOI: 10.1007/s11357-022-00607-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/13/2022] [Indexed: 02/03/2023] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP), defined as the presence of somatic mutations in cancer-related genes in blood cells in the absence of hematological cancer, has recently emerged as an important risk factor for several age-related conditions, especially cardiovascular disease. CHIP is strongly associated with normal aging, but its role in premature aging syndromes is unknown. Hutchinson-Gilford progeria syndrome (HGPS) is an ultra-rare genetic condition driven by the accumulation of a truncated form of the lamin A protein called progerin. HGPS patients exhibit several features of accelerated aging and typically die from cardiovascular complications in their early teens. Previous studies have shown normal hematological parameters in HGPS patients, except for elevated platelets, and low levels of lamin A expression in hematopoietic cells relative to other cell types in solid tissues, but the prevalence of CHIP in HGPS remains unexplored. To investigate the potential role of CHIP in HGPS, we performed high-sensitivity targeted sequencing of CHIP-related genes in blood DNA samples from a cohort of 47 HGPS patients. As a control, the same sequencing strategy was applied to blood DNA samples from middle-aged and elderly individuals, expected to exhibit a biological age and cardiovascular risk profile similar to HGPS patients. We found that CHIP is not prevalent in HGPS patients, in marked contrast to our observations in individuals who age normally. Thus, our study unveils a major difference between HGPS and normal aging and provides conclusive evidence that CHIP is not frequent in HGPS and, therefore, is unlikely to contribute to the pathophysiology of this accelerated aging syndrome.
Collapse
Affiliation(s)
- Miriam Díez-Díez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3., 28029 Madrid, Spain
| | - Marta Amorós-Pérez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3., 28029 Madrid, Spain
| | - Jorge de la Barrera
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3., 28029 Madrid, Spain
| | - Enrique Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3., 28029 Madrid, Spain
| | - Ana Quintas
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3., 28029 Madrid, Spain
| | - Domingo A. Pascual-Figal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3., 28029 Madrid, Spain ,Centro de Investigacion Biomedica en Red de Enfermedades Cardiovasculares, (CIBERCV) 28029 Madrid, Spain ,Hospital Virgen de La Arrixaca, Universidad de Murcia, 30120 Murcia, Spain
| | - Ana Dopazo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3., 28029 Madrid, Spain
| | - Fátima Sánchez-Cabo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3., 28029 Madrid, Spain
| | - Monica E. Kleinman
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Leslie B. Gordon
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115 USA ,Department of Pediatrics, Division of Genetics, Hasbro Children’s Hospital and Warren Alpert Medical School of Brown University, Providence, RI 02903 USA ,The Progeria Research Foundation, Peabody, MA 01960 USA
| | - Valentín Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3., 28029 Madrid, Spain ,Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3., 28029, Madrid, Spain. .,Centro de Investigacion Biomedica en Red de Enfermedades Cardiovasculares, (CIBERCV), 28029, Madrid, Spain.
| | - José J. Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3., 28029 Madrid, Spain ,Centro de Investigacion Biomedica en Red de Enfermedades Cardiovasculares, (CIBERCV) 28029 Madrid, Spain
| |
Collapse
|
156
|
Game of clones: Diverse implications for clonal hematopoiesis in lymphoma and multiple myeloma. Blood Rev 2022; 56:100986. [PMID: 35753868 DOI: 10.1016/j.blre.2022.100986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/23/2022]
Abstract
Clonal hematopoiesis (CH) refers to the disproportionate expansion of hematopoietic stem cell clones and their corresponding progeny following the acquisition of somatic mutations. CH is common at the time of diagnosis in patients with blood cancers, including multiple myeloma (MM) and lymphoma. The presence of CH mutations correlates with IL-6 mediated inflammation and may result in lymphoma or MM modulation through microenvironment effects or by manifestations of the mutations themselves within the founding tumor clone. As might be expected with a variety of mutations and multiple potential mechanisms, CH exerts context-dependent effects, being protective in some settings and harmful in others. Though CH is very common in patients with hematologic malignancies, how it intersects with therapy and the natural disease course of these cancers are active areas of investigation. In lymphomas and MM specifically, patients have high rates of CH at diagnosis and are subsequently exposed to therapies, such as cytotoxic chemotherapy, that can cause CH progression to overt hematologic malignancy. The expanding diversity of treatment modalities for these cancers also increases the opportunities for CH to impact clinical outcome and modulate clinical responses. Here we review the basic biology and known health effects of CH, and we focus on the clinical relevance of CH in lymphoma and MM.
Collapse
|
157
|
Scolari FL, Abelson S, Brahmbhatt DH, Medeiros JJF, Fan CPS, Fung NL, Mihajlovic V, Anker MS, Otsuki M, Lawler PR, Ross HJ, Luk AC, Anker S, Dick JE, Billia F. Clonal haematopoiesis is associated with higher mortality in patients with cardiogenic shock. Eur J Heart Fail 2022; 24:1573-1582. [PMID: 35729851 DOI: 10.1002/ejhf.2588] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/27/2022] [Accepted: 06/19/2022] [Indexed: 11/05/2022] Open
Abstract
AIMS Cardiogenic shock (CS) with variable systemic inflammation may be responsible for the patient heterogeneity and the exceedingly high mortality rate. Cardiovascular events have been associated with clonal haematopoiesis (CH) where specific gene mutations in hematopoietic stem cells lead to clonal expansion and the development of inflammation. This study aims to assess the prevalence of CH and its association with survival in a population of CS patients in a quaternary center. METHODS We compared the frequency of CH mutations among 341 CS patients and 345 ambulatory heart failure (HF) matched for age, sex, ejection fraction, and HF aetiology. The association of CH with survival and levels of circulating inflammatory cytokines was analysed. RESULTS We detected 266 CH mutations in 149 of 686 (22%) patients. CS patients had a higher prevalence of CH-related mutations than HF patients (OR 1.5; 95% CI 1.0-2.1, P=0.02) and was associated with decreased survival (30-days: HR 2.7; 95% CI 1.3-5.7, P=0.006; 90-days: HR 2.2; 95% CI 1.3-3.9, P=0.003; and 3-years: HR 1.7; 95% CI 1.1-2.8, P=0.01). TET2 or ASXL1 mutations were associated with lower survival in CS patients at all-time points (P≤0.03). CS patients with TET2 mutations had higher circulating levels of SCD40L, IFNγ, IL-4, and TNFα (P≤0.04), while those with ASXL1 mutations had decreased levels of CCL7 (P=0.03). CONCLUSIONS CS patients have high frequency of CH, notably mutations in TET2 and ASXL1. This was associated with reduced survival and dysregulation of circulating inflammatory cytokines in those CS patients with CH. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Fernando L Scolari
- Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada.,Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Sagi Abelson
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Darshan H Brahmbhatt
- Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada.,Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,National Heart and Lung Institute, Imperial College London, London, UK
| | - Jessie J F Medeiros
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Chun-Po S Fan
- Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nicole L Fung
- Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| | - Vesna Mihajlovic
- Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada.,Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Markus S Anker
- Department of Cardiology (CBF), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Madison Otsuki
- Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| | - Patrick R Lawler
- Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada.,Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Heather J Ross
- Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada.,Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Adriana C Luk
- Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| | - Stefan Anker
- Department of Cardiology (CBF), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - John E Dick
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Filio Billia
- Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada.,Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
158
|
Jiang Z, Li Y, Yan C, Zhang X, Zhang Q, Li J, Tian X, Qiu M, Liang Z, Ma S, Na K, Li Z, Chen S, Zhao Y, Qi Z, Liu X, Han Y. Clonal hematopoiesis of indeterminate potential in patients with acute coronary syndrome undergoing percutaneous coronary intervention in the absence of traditional risk factors. Clin Res Cardiol 2022; 112:506-517. [PMID: 35704087 DOI: 10.1007/s00392-022-02039-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022]
Abstract
AIMS To investigate the frequency of clonal hematopoiesis of indeterminate potential (CHIP) and evaluate its impacts on outcomes in patients with acute coronary syndrome (ACS) undergoing percutaneous coronary intervention (PCI) in the absence of traditional cardiovascular risk factors (CVRFs). METHODS Whole-exome sequencing was performed to detect the presence of CHIP in 183 patients underwent PCI for the treatment of ACS. The association between CHIP-related mutations and major adverse cardiac or cerebral events (MACCEs, a composite of all-cause mortality, coronary revascularization, myocardial infarction, or stroke) was analyzed in such cohort. RESULTS Of 179 patients [median age, 65 years; 84 female (46.9%)] included in this analysis, CHIP-related mutations were detected in 36 (20.1%) patients. The somatic mutations most frequently occurred in the genes DNMT3A (17 mutations), TET2 (6 mutations), and ASXL1 (4 mutations). Clinical outcomes at median 635 follow-up days showed that DNMT3A/TET2/ASXL1-CHIP mutations were associated with significantly higher risk of MACCEs, compared with non-CHIP carriers in the CVRFs-absent ACS cohort (26.1% vs. 4.2%, log-rank P = 0.001). Multivariable regression showed that DNMT3A/TET2/ASXL1-CHIP driver mutations (HR 4.015; 95% CI 1.236-13.046; P = 0.021) were independent predictors of adverse clinical outcomes. CONCLUSION The most frequent CHIP-related mutations, DNMT3A, TET2, and ASXL1 are significantly associated with increased risk of recurrent cardiovascular events. Our study may be valuable target to reduce residual risk in patients with ACS carrying specific mutations.
Collapse
Affiliation(s)
- Zaixin Jiang
- The Department of Cardiology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110016, Liaoning Province, China.,The Department of Cardiology, Naval Medical University Changhai Hospital, Shanghai, China
| | - Yi Li
- The Department of Cardiology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Chenghui Yan
- The Department of Cardiology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Xiaolin Zhang
- The Department of Cardiology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Quanyu Zhang
- The Department of Cardiology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Jing Li
- The Department of Cardiology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Xiaoxiang Tian
- The Department of Cardiology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Miaohan Qiu
- The Department of Cardiology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Zhenyang Liang
- The Department of Cardiology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Sichong Ma
- The Department of Cardiology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Kun Na
- The Department of Cardiology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Ziqi Li
- The Department of Cardiology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Sanbao Chen
- The Department of Cardiology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Yu Zhao
- The Department of Cardiology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Zizhao Qi
- The Department of Cardiology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Xiying Liu
- The Department of Cardiology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110016, Liaoning Province, China
| | - Yaling Han
- The Department of Cardiology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110016, Liaoning Province, China.
| |
Collapse
|
159
|
Haring B, Wissel S, Manson JE. Somatic Mutations and Clonal Hematopoiesis as Drivers of Age-Related Cardiovascular Risk. Curr Cardiol Rep 2022; 24:1049-1058. [PMID: 35657494 PMCID: PMC9329391 DOI: 10.1007/s11886-022-01724-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 12/01/2022]
Abstract
Purpose of Review Clonal hematopoiesis of indeterminate potential (CHIP) has been identified as a novel cardiovascular risk factor. Here we review the relationship of lifestyle and environmental risk factors predisposing to somatic mutations and CHIP and provide an overview on age-related cardiovascular outcomes. Recent Findings CHIP has been associated with accelerated atherosclerosis and cardiovascular disease in both epidemiological and experimental studies. The most commonly mutated candidate driver genes are DNMT3A, TET2, JAK2, and ASXL1. The underlying mechanisms appear predominantly related to inflammatory pathways. Although age is the dominant risk factor for developing CHIP, emerging evidence suggests that other factors such as smoking, obesity/type 2 diabetes, or an unhealthy diet play a role in the occurrence of somatic mutations. Summary Evidence suggests a strong link between vascular risk factors, somatic hematopoietic mutations, and age-related cardiovascular disease. Further studies on CHIP biology are required to identify targeted interventions for risk reduction in patients with CHIP and inform the utility of screening strategies.
Collapse
Affiliation(s)
- Bernhard Haring
- Department of Medicine III, Saarland University Hospital, Homburg, Saarland, Germany. .,Department of Medicine I, University of Würzburg, Würzburg, Bavaria, Germany. .,Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Stephanie Wissel
- Department of Medicine I, University of Würzburg, Würzburg, Bavaria, Germany
| | - JoAnn E Manson
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
160
|
Florez MA, Tran BT, Wathan TK, DeGregori J, Pietras EM, King KY. Clonal hematopoiesis: Mutation-specific adaptation to environmental change. Cell Stem Cell 2022; 29:882-904. [PMID: 35659875 PMCID: PMC9202417 DOI: 10.1016/j.stem.2022.05.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) describes a widespread expansion of genetically variant hematopoietic cells that increases exponentially with age and is associated with increased risks of cancers, cardiovascular disease, and other maladies. Here, we discuss how environmental contexts associated with CHIP, such as old age, infections, chemotherapy, or cigarette smoking, alter tissue microenvironments to facilitate the selection and expansion of specific CHIP mutant clones. Further, we consider major remaining gaps in knowledge, including intrinsic effects, clone size thresholds, and factors affecting clonal competition, that will determine future application of this field in transplant and preventive medicine.
Collapse
Affiliation(s)
- Marcus A Florez
- Medical Scientist Training Program and Program in Translational Biology and Molecular Medicine, Graduate School of Biomedical Sciences, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA; Division of Infectious Disease, Department of Pediatrics, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA
| | - Brandon T Tran
- Graduate School of Biomedical Sciences, Program in Cancer and Cell Biology, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA; Division of Infectious Disease, Department of Pediatrics, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA
| | - Trisha K Wathan
- Division of Infectious Disease, Department of Pediatrics, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Eric M Pietras
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katherine Y King
- Medical Scientist Training Program and Program in Translational Biology and Molecular Medicine, Graduate School of Biomedical Sciences, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, Program in Cancer and Cell Biology, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA; Division of Infectious Disease, Department of Pediatrics, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA.
| |
Collapse
|
161
|
Truslow JG, Goto S, Homilius M, Mow C, Higgins JM, MacRae CA, Deo RC. Cardiovascular Risk Assessment Using Artificial Intelligence-Enabled Event Adjudication and Hematologic Predictors. Circ Cardiovasc Qual Outcomes 2022; 15:e008007. [PMID: 35477255 PMCID: PMC9208816 DOI: 10.1161/circoutcomes.121.008007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Researchers routinely evaluate novel biomarkers for incorporation into clinical risk models, weighing tradeoffs between cost, availability, and ease of deployment. For risk assessment in population health initiatives, ideal inputs would be those already available for most patients. We hypothesized that common hematologic markers (eg, hematocrit), available in an outpatient complete blood count without differential, would be useful to develop risk models for cardiovascular events. METHODS We developed Cox proportional hazards models for predicting heart attack, ischemic stroke, heart failure hospitalization, revascularization, and all-cause mortality. For predictors, we used 10 hematologic indices (eg, hematocrit) from routine laboratory measurements, collected March 2016 to May 2017 along with demographic data and diagnostic codes. As outcomes, we used neural network-based automated event adjudication of 1 028 294 discharge summaries. We trained models on 23 238 patients from one hospital in Boston and evaluated them on 29 671 patients from a second one. We assessed calibration using Brier score and discrimination using Harrell's concordance index. In addition, to determine the utility of high-dimensional interactions, we compared our proportional hazards models to random survival forest models. RESULTS Event rates in our cohort ranged from 0.0067 to 0.075 per person-year. Models using only hematology indices had concordance index ranging from 0.60 to 0.80 on an external validation set and showed the best discrimination when predicting heart failure (0.80 [95% CI, 0.79-0.82]) and all-cause mortality (0.78 [0.77-0.80]). Compared with models trained only on demographic data and diagnostic codes, models that also used hematology indices had better discrimination and calibration. The concordance index of the resulting models ranged from 0.75 to 0.85 and the improvement in concordance index ranged up to 0.072. Random survival forests had minimal improvement over proportional hazards models. CONCLUSIONS We conclude that low-cost, ubiquitous inputs, if biologically informative, can provide population-level readouts of risk.
Collapse
Affiliation(s)
- James G Truslow
- One Brave Idea and Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA (J.G.T., S.G., M.H., C.A.M., R.C.D.)
| | - Shinichi Goto
- One Brave Idea and Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA (J.G.T., S.G., M.H., C.A.M., R.C.D.).,Department of Medicine (S.G., M.H., C.A.M., R.C.D.), Harvard Medical School, Boston, MA
| | - Max Homilius
- Department of Medicine (S.G., M.H., C.A.M., R.C.D.), Harvard Medical School, Boston, MA
| | - Christopher Mow
- Center for Systems Biology, Massachusetts General Hospital (C.M., J.M.H.), Harvard Medical School, Boston, MA.,Partners Healthcare Enterprise Research Information Systems, Boston, MA (C.M.)
| | - John M Higgins
- Center for Systems Biology, Massachusetts General Hospital (C.M., J.M.H.), Harvard Medical School, Boston, MA.,Department of Pathology, Massachusetts General Hospital (J.M.H.), Harvard Medical School, Boston, MA.,Department of Systems Biology (J.M.H.), Harvard Medical School, Boston, MA
| | - Calum A MacRae
- One Brave Idea and Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA (J.G.T., S.G., M.H., C.A.M., R.C.D.).,Department of Medicine (S.G., M.H., C.A.M., R.C.D.), Harvard Medical School, Boston, MA
| | - Rahul C Deo
- One Brave Idea and Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA (J.G.T., S.G., M.H., C.A.M., R.C.D.).,Department of Medicine (S.G., M.H., C.A.M., R.C.D.), Harvard Medical School, Boston, MA
| |
Collapse
|
162
|
Katra P, Björkbacka H. Atherosclerosis: cell biology and lipoproteins. Curr Opin Lipidol 2022; 33:208-210. [PMID: 35695617 DOI: 10.1097/mol.0000000000000815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Pernilla Katra
- Department of Clinical Sciences, Skåne University Hospital, Lund University, Malmö, Sweden
| | | |
Collapse
|
163
|
Leiva O, Hobbs G, Ravid K, Libby P. Cardiovascular Disease in Myeloproliferative Neoplasms: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2022; 4:166-182. [PMID: 35818539 PMCID: PMC9270630 DOI: 10.1016/j.jaccao.2022.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
Myeloproliferative neoplasms are associated with increased risk for thrombotic complications. These conditions most commonly involve somatic mutations in genes that lead to constitutive activation of the Janus-associated kinase signaling pathway (eg, Janus kinase 2, calreticulin, myeloproliferative leukemia protein). Acquired gain-of-function mutations in these genes, particularly Janus kinase 2, can cause a spectrum of disorders, ranging from clonal hematopoiesis of indeterminate potential, a recently recognized age-related promoter of cardiovascular disease, to frank hematologic malignancy. Beyond thrombosis, patients with myeloproliferative neoplasms can develop other cardiovascular conditions, including heart failure and pulmonary hypertension. The authors review the pathophysiologic mechanisms of cardiovascular complications of myeloproliferative neoplasms, which involve inflammation, prothrombotic and profibrotic factors (including transforming growth factor-beta and lysyl oxidase), and abnormal function of circulating clones of mutated leukocytes and platelets from affected individuals. Anti-inflammatory therapies may provide cardiovascular benefit in patients with myeloproliferative neoplasms, a hypothesis that requires rigorous evaluation in clinical trials.
Collapse
Key Words
- ASXL1, additional sex Combs-like 1
- CHIP, clonal hematopoiesis of indeterminate potential
- DNMT3a, DNA methyltransferase 3 alpha
- IL, interleukin
- JAK, Janus-associated kinase
- JAK2, Janus kinase 2
- LOX, lysyl oxidase
- MPL, myeloproliferative leukemia protein
- MPN, myeloproliferative neoplasm
- STAT, signal transducer and activator of transcription
- TET2, tet methylcytosine dioxygenase 2
- TGF, transforming growth factor
- atherosclerosis
- cardiovascular complications
- clonal hematopoiesis
- myeloproliferative neoplasms
- thrombosis
Collapse
Affiliation(s)
- Orly Leiva
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Gabriela Hobbs
- Division of Hematology Oncology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Katya Ravid
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
164
|
Could Clonal Hematopoiesis Explain the Link Between Increased Cancer Mortality Incidence in Heart Failure? JACC CardioOncol 2022; 4:283. [PMID: 35818557 PMCID: PMC9270618 DOI: 10.1016/j.jaccao.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
165
|
Watanabe Y, Horiuchi Y, Nakase M, Setoguchi N, Ishizawa T, Sekiguchi M, Nonaka H, Nakajima M, Asami M, Yahagi K, Komiyama K, Yuzawa H, Tanaka J, Aoki J, Tanabe K. Malnutrition, hemodynamics and inflammation in heart failure with reduced, mildly reduced and preserved ejection fraction. Heart Vessels 2022; 37:1841-1849. [PMID: 35588322 DOI: 10.1007/s00380-022-02090-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/27/2022] [Indexed: 11/30/2022]
Abstract
In patients with heart failure (HF) with reduced ejection fraction (HFrEF), malnutrition can be associated with intestinal congestion and systemic inflammation. These relationships have not been fully investigated in HF with mildly reduced EF (HFmrEF) and with preserved EF (HFpEF). We analyzed 420 patients with HF who underwent right heart catheterization. The relationships between hemodynamic parameters, C-reactive protein, and the controlling nutritional (CONUT) score were investigated in HFrEF, HFmrEF and HFpEF. The CONUT score of all patients was 2 [1, 4] (median [interquartile range]), and was not significantly different between the left ventricular EF (LVEF) categories (2 [1, 3] for HFrEF, 2 [1, 3] for HFmrEF, and 3 [1, 4] for HFpEF, p = 0.279). In multivariate linear regression analyses, there was a significant association between CRP and the CONUT score in HFmrEF and HFpEF, while brain natriuretic peptide and right atrial pressure were significantly associated with the CONUT score in HFrEF. Higher CONUT scores predicted a higher incidence of the composite endpoint of death or HF hospitalization within 12 months without an interaction with LVEF (p = 0.980). The CONUT score was an independent predictor of the composite endpoint, death, and HF hospitalization after adjustment for confounders in the multivariate analysis. In conclusion, inflammation was associated with malnutrition in HFmrEF and HFpEF, while congestion was an independent predictor of malnutrition in HFrEF. Malnutrition predicted worse outcomes regardless of LVEF.
Collapse
Affiliation(s)
- Yusuke Watanabe
- Division of Cardiology, Mitsui Memorial Hospital, Kanda-Izumi-cho 1, Chiyoda-ku, Tokyo, 101-8643, Japan
| | - Yu Horiuchi
- Division of Cardiology, Mitsui Memorial Hospital, Kanda-Izumi-cho 1, Chiyoda-ku, Tokyo, 101-8643, Japan.
| | - Masaaki Nakase
- Division of Cardiology, Mitsui Memorial Hospital, Kanda-Izumi-cho 1, Chiyoda-ku, Tokyo, 101-8643, Japan
| | - Naoto Setoguchi
- Division of Cardiology, Mitsui Memorial Hospital, Kanda-Izumi-cho 1, Chiyoda-ku, Tokyo, 101-8643, Japan
| | - Taiki Ishizawa
- Division of Cardiology, Mitsui Memorial Hospital, Kanda-Izumi-cho 1, Chiyoda-ku, Tokyo, 101-8643, Japan
| | - Masahiro Sekiguchi
- Division of Cardiology, Mitsui Memorial Hospital, Kanda-Izumi-cho 1, Chiyoda-ku, Tokyo, 101-8643, Japan
| | - Hideaki Nonaka
- Division of Cardiology, Mitsui Memorial Hospital, Kanda-Izumi-cho 1, Chiyoda-ku, Tokyo, 101-8643, Japan
| | - Momoka Nakajima
- Division of Cardiology, Mitsui Memorial Hospital, Kanda-Izumi-cho 1, Chiyoda-ku, Tokyo, 101-8643, Japan
| | - Masahiko Asami
- Division of Cardiology, Mitsui Memorial Hospital, Kanda-Izumi-cho 1, Chiyoda-ku, Tokyo, 101-8643, Japan
| | - Kazuyuki Yahagi
- Division of Cardiology, Mitsui Memorial Hospital, Kanda-Izumi-cho 1, Chiyoda-ku, Tokyo, 101-8643, Japan
| | - Kota Komiyama
- Division of Cardiology, Mitsui Memorial Hospital, Kanda-Izumi-cho 1, Chiyoda-ku, Tokyo, 101-8643, Japan
| | - Hitomi Yuzawa
- Division of Cardiology, Mitsui Memorial Hospital, Kanda-Izumi-cho 1, Chiyoda-ku, Tokyo, 101-8643, Japan
| | - Jun Tanaka
- Division of Cardiology, Mitsui Memorial Hospital, Kanda-Izumi-cho 1, Chiyoda-ku, Tokyo, 101-8643, Japan
| | - Jiro Aoki
- Division of Cardiology, Mitsui Memorial Hospital, Kanda-Izumi-cho 1, Chiyoda-ku, Tokyo, 101-8643, Japan
| | - Kengo Tanabe
- Division of Cardiology, Mitsui Memorial Hospital, Kanda-Izumi-cho 1, Chiyoda-ku, Tokyo, 101-8643, Japan
| |
Collapse
|
166
|
Anzai A, Ko S, Fukuda K. Immune and Inflammatory Networks in Myocardial Infarction: Current Research and Its Potential Implications for the Clinic. Int J Mol Sci 2022; 23:5214. [PMID: 35563605 PMCID: PMC9102812 DOI: 10.3390/ijms23095214] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 01/02/2023] Open
Abstract
Despite recent scientific and technological advances, myocardial infarction (MI) still represents a major global health problem, leading to high morbidity and mortality worldwide. During the post-MI wound healing process, dysregulated immune inflammatory pathways and failure to resolve inflammation are associated with maladaptive left ventricular remodeling, progressive heart failure, and eventually poor outcomes. Given the roles of immune cells in the host response against tissue injury, understanding the involved cellular subsets, sources, and functions is essential for discovering novel therapeutic strategies that preserve the protective immune system and promote optimal healing. This review discusses the cellular effectors and molecular signals across multi-organ systems, which regulate the inflammatory and reparative responses after MI. Additionally, we summarize the recent clinical and preclinical data that propel conceptual revolutions in cardiovascular immunotherapy.
Collapse
Affiliation(s)
- Atsushi Anzai
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| | | | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| |
Collapse
|
167
|
Vlasschaert C, McNaughton AJ, Chong M, Cook EK, Hopman W, Kestenbaum B, Robinson-Cohen C, Garland J, Moran SM, Paré G, Clase CM, Tang M, Levin A, Holden R, Rauh MJ, Lanktree MB. Association of Clonal Hematopoiesis of Indeterminate Potential with Worse Kidney Function and Anemia in Two Cohorts of Patients with Advanced Chronic Kidney Disease. J Am Soc Nephrol 2022; 33:985-995. [PMID: 35197325 PMCID: PMC9063886 DOI: 10.1681/asn.2021060774] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 02/04/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Clonal hematopoiesis of indeterminate potential (CHIP) is an inflammatory premalignant disorder resulting from acquired genetic mutations in hematopoietic stem cells. This condition is common in aging populations and associated with cardiovascular morbidity and overall mortality, but its role in CKD is unknown. METHODS We performed targeted sequencing to detect CHIP mutations in two independent cohorts of 87 and 85 adults with an eGFR<60 ml/min per 1.73m2. We also assessed kidney function, hematologic, and mineral bone disease parameters cross-sectionally at baseline, and collected creatinine measurements over the following 5-year period. RESULTS At baseline, CHIP was detected in 18 of 87 (21%) and 25 of 85 (29%) cohort participants. Participants with CHIP were at higher risk of kidney failure, as predicted by the Kidney Failure Risk Equation (KFRE), compared with those without CHIP. Individuals with CHIP manifested a 2.2-fold increased risk of a 50% decline in eGFR or ESKD over 5 years of follow-up (hazard ratio 2.2; 95% confidence interval, 1.2 to 3.8) in a Cox proportional hazard model adjusted for age, sex, and baseline eGFR. The addition of CHIP to 2-year and 5-year calibrated KFRE risk models improved ESKD predictions. Those with CHIP also had lower hemoglobin, higher ferritin, and higher red blood cell mean corpuscular volume versus those without CHIP. CONCLUSIONS In this exploratory analysis of individuals with preexisting CKD, CHIP was associated with higher baseline KFRE scores, greater progression of CKD, and anemia. Further research is needed to define the nature of the relationship between CHIP and kidney disease progression.
Collapse
Affiliation(s)
| | - Amy J.M. McNaughton
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, Ontario, Canada
| | - Michael Chong
- Population Health Research Institute (PHRI), Hamilton, Ontario, Canada
- David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences, Hamilton, Ontario, Canada
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Elina K. Cook
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, Ontario, Canada
| | - Wilma Hopman
- Department of Medicine, Queen’s University, Kingston, Ontario, Canada
| | - Bryan Kestenbaum
- Department of Medicine, University of Washington, Seattle, Washington
| | | | - Jocelyn Garland
- Department of Medicine, Queen’s University, Kingston, Ontario, Canada
| | - Sarah M. Moran
- Department of Medicine, Queen’s University, Kingston, Ontario, Canada
| | - Guillaume Paré
- Population Health Research Institute (PHRI), Hamilton, Ontario, Canada
- David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences, Hamilton, Ontario, Canada
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Catherine M. Clase
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- St. Joseph’s Healthcare Hamilton, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Mila Tang
- St. Paul’s Hospital, Vancouver, British Colombia, Canada
| | - Adeera Levin
- Division of Nephrology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rachel Holden
- Department of Medicine, Queen’s University, Kingston, Ontario, Canada
| | - Michael J. Rauh
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, Ontario, Canada
| | - Matthew B. Lanktree
- Population Health Research Institute (PHRI), Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- St. Joseph’s Healthcare Hamilton, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
168
|
Clonal hematopoiesis and cardiovascular disease in cancer patients and survivors. Thromb Res 2022; 213 Suppl 1:S107-S112. [DOI: 10.1016/j.thromres.2021.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 11/22/2022]
|
169
|
Amancherla K, Wells JA, Bick AG. Clonal hematopoiesis and vascular disease. Semin Immunopathol 2022; 44:303-308. [PMID: 35122117 PMCID: PMC9064918 DOI: 10.1007/s00281-022-00913-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/13/2022] [Indexed: 12/19/2022]
Abstract
Somatic mutations in hematopoietic stem cells are common with aging and can result in expansion of clones harboring mutations, termed clonal hematopoiesis. This results in an increased risk of blood cancers but has also been linked with chronic inflammatory disease states. In recent years, clonal hematopoiesis has been established to have a causative role in atherogenesis and cardiovascular disease. Additionally, as the effector cells have been identified to be immune cells, there is ongoing interest in assessing whether dysregulated immune function plays a role in other chronic inflammatory conditions such as rheumatologic disease. Here, we summarize current understanding of clonal hematopoiesis with a focus on cardiovascular disease and inflammation while outlining the potential, yet unexplored, relationship between clonal hematopoiesis and autoimmune disease. Hematopoietic stem cells (HSCs) continually regenerate blood cells. Acquisition of a somatic mutation that provides a selective advantage, a driver mutation, can result in clonal expansion. Clonal hematopoiesis of indeterminate potential, where somatic mutations in certain cancer-associated genes result in clonal expansion in the absence of overt malignancy, can result in atherosclerotic cardiovascular disease in multiple vascular beds, inflammation, and may also contribute to the pathogenesis of autoimmune disease. Many questions remain unanswered regarding the relationship between clonal hematopoiesis and inflammatory disorders.
Collapse
Affiliation(s)
- Kaushik Amancherla
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John A Wells
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexander G Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
170
|
Ambrosini S, Gorica E, Mohammed SA, Costantino S, Ruschitzka F, Paneni F. Epigenetic remodeling in heart failure with preserved ejection fraction. Curr Opin Cardiol 2022; 37:219-226. [PMID: 35275888 PMCID: PMC9415220 DOI: 10.1097/hco.0000000000000961] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW In this review, we critically address the role of epigenetic processing and its therapeutic modulation in heart failure with preserved ejection fraction (HFpEF). RECENT FINDINGS HFpEF associates with a poor prognosis and the identification of novel molecular targets and therapeutic approaches are in high demand. Emerging evidence indicates a key involvement of epigenetic signals in the regulation of transcriptional programs underpinning features of HFpEF. The growing understanding of chromatin dynamics has led to the development of selective epigenetic drugs able to reset transcriptional changes thus delaying or preventing the progression toward HFpEF. Epigenetic information in the setting of HFpEF can be employed to: (i) dissect novel epigenetic networks and chromatin marks contributing to HFpEF; (ii) unveil circulating and cell-specific epigenetic biomarkers; (iii) build predictive models by using computational epigenetics and deep machine learning; (iv) develop new chromatin modifying drugs for personalized management of HFpEF. SUMMARY Acquired epigenetic signatures during the lifetime can contribute to derail molecular pathways involved in HFpEF. A scrutiny investigation of the individual epigenetic landscape will offer opportunities to develop personalized epigenetic biomarkers and therapies to fight HFpEF in the decades to come.
Collapse
Affiliation(s)
- Samuele Ambrosini
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Era Gorica
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Sarah Costantino
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | | | - Francesco Paneni
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- University Heart Center, Cardiology
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
171
|
Díez-Díez M, Fuster JJ. Troublemaking mutations: Clonal hematopoiesis for the prediction of prognosis in ST-segment elevation myocardial infarction. EBioMedicine 2022; 79:104015. [PMID: 35490554 PMCID: PMC9062663 DOI: 10.1016/j.ebiom.2022.104015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- Miriam Díez-Díez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, Madrid 28029, Spain
| | - José J Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, Madrid 28029, Spain; CIBER en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain.
| |
Collapse
|
172
|
Cardio-onco-metabolism: metabolic remodelling in cardiovascular disease and cancer. Nat Rev Cardiol 2022; 19:414-425. [PMID: 35440740 PMCID: PMC10112835 DOI: 10.1038/s41569-022-00698-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2022] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease and cancer are the two leading causes of morbidity and mortality in the world. The emerging field of cardio-oncology has revealed that these seemingly disparate disease processes are intertwined, owing to the cardiovascular sequelae of anticancer therapies, shared risk factors that predispose individuals to both cardiovascular disease and cancer, as well the possible potentiation of cancer growth by cardiac dysfunction. As a result, interest has increased in understanding the fundamental biological mechanisms that are central to the relationship between cardiovascular disease and cancer. Metabolism, appropriate regulation of energy, energy substrate utilization, and macromolecular synthesis and breakdown are fundamental processes for cellular and organismal survival. In this Review, we explore the emerging data identifying metabolic dysregulation as an important theme in cardio-oncology. We discuss the growing recognition of metabolic reprogramming in cardiovascular disease and cancer and view the novel area of cardio-oncology through the lens of metabolism.
Collapse
|
173
|
Wang S, Hu S, Luo X, Bao X, Li J, Liu M, Lv Y, Zhao C, Zeng M, Chen X, Unsworth A, Jones S, Johnson TW, White SJ, Jia H, Yu B. Prevalence and prognostic significance of DNMT3A- and TET2- clonal haematopoiesis-driver mutations in patients presenting with ST-segment elevation myocardial infarction. EBioMedicine 2022; 78:103964. [PMID: 35339897 PMCID: PMC8960977 DOI: 10.1016/j.ebiom.2022.103964] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/17/2022] [Accepted: 03/09/2022] [Indexed: 11/25/2022] Open
Abstract
Background Clonal haematopoiesis driven by mutations in DNMT3A or TET2 has recently been identified as a new risk factor for cardiovascular disease. Experimental studies suggest that these mutations may enhance inflammation which accelerates the disease progression. We aim to investigate the prevalence of mutations in DNMT3A and TET2 and their association with prognosis of patients with ST-segment elevation myocardial infarction (STEMI). Methods Targeted deep sequencing for DNMT3A and TET2 and inflammatory cytokines (IL-1β, IL-6, TNF-α, INF-γ) were analyzed in 485 patients with STEMI. Major adverse cardiac events (MACE) was a composite of death, myocardial infarction, stroke, or hospitalization due to heart failure. Findings Patients carrying DNMT3A- or TET2-CH-driver mutations with a variant allele frequency (VAF) ≥2% were found in 12.4% (60 of 485) of STEMI patients and experienced an increased incidence of the death (30.9% vs 15.5%, P = 0.001) and MACE (44.5% vs 21.8%, P < 0.001) compared to those who did not, during a median follow up of 3.0 (interquartile range: 2.4–3.4) years. After adjusting for confounders, mutation remained an independent predictor of death (HR = 1.967, 95% CI 1.103–3.507, P = 0.022) and MACE (HR = 1.833, 95% CI 1.154–2.912, P = 0.010). Concentrations of plasma IL-1β (P = 0.010) and IL-6 (P = 0.011) were significantly elevated in DNMT3A/TET2 VAF≥2% group. Interpretation DNMT3A- or TET2-CH-driver mutations with a VAF≥2% were observed in over 10% STEMI patients, and were significantly associated with poorer prognosis, which might be explained by higher levels of inflammatory cytokines in mutations carriers. Funding National Natural Science Foundation of China; National Key R&D Program of China.
Collapse
|
174
|
Dong Q, Song N, Qin N, Chen C, Li Z, Sun X, Easton J, Mulder H, Plyler E, Neale G, Walker E, Li Q, Ma X, Chen X, Huang IC, Yasui Y, Ness KK, Zhang J, Hudson MM, Robison LL, Wang Z. Genome-wide association studies identify novel genetic loci for epigenetic age acceleration among survivors of childhood cancer. Genome Med 2022; 14:32. [PMID: 35313970 PMCID: PMC8939156 DOI: 10.1186/s13073-022-01038-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Background Increased epigenetic age acceleration (EAA) in survivors of childhood cancer is associated with specific treatment exposures, unfavorable health behaviors, and presence of certain chronic health conditions. To better understand inter-individual variability, we investigated the genetic basis underlying EAA. Methods Genome-wide association studies of EAA based on multiple epigenetic clocks (Hannum, Horvath, PhenoAge, and GrimAge) were performed. MethylationEPIC BeadChip array and whole-genome sequencing data were generated with blood-derived DNA from participants in the St. Jude Lifetime Cohort Study (discovery: 2138 pre-existing and 502 newly generated data, all survivors; exploratory: 282 community controls). Linear regression models were fit for each epigenetic age against the allelic dose of each genetic variant, adjusting for age at sampling, sex, and cancer treatment exposures. Fixed-effects meta-analysis was used to combine summary statistics from two discovery data sets. LD (Linkage disequilibrium) score regression was used to estimate single-nucleotide polymorphism (SNP)-based heritability. Results For EAA-Horvath, a genome-wide significant association was mapped to the SELP gene with the strongest SNP rs732314 (meta-GWAS: β=0.57, P=3.30×10-11). Moreover, the stratified analysis of the association between rs732314 and EAA-Horvath showed a substantial heterogeneity between children and adults (meta-GWAS: β=0.97 vs. 0.51, I2=73.1%) as well as between survivors with and without chest/abdominal/pelvic-RT exposure (β=0.64 vs. 0.31, I2=66.3%). For EAA-Hannum, an association was mapped to the HLA locus with the strongest SNP rs28366133 (meta-GWAS: β=0.78, P=3.78×10-11). There was no genome-wide significant hit for EAA-PhenoAge or EAA-GrimAge. Interestingly, among community controls, rs732314 was associated with EAA-Horvath (β=1.09, P=5.43×10-5), whereas rs28366133 was not associated with EAA-Hannum (β=0.21, P=0.49). The estimated heritability was 0.33 (SE=0.20) for EAA-Horvath and 0.17 (SE=0.23) for EAA-Hannum, but close to zero for EAA-PhenoAge and EAA-GrimAge. Conclusions We identified novel genetic variants in the SELP gene and HLA region associated with EAA-Horvath and EAA-Hannum, respectively, among survivors of childhood cancer. The new genetic variants in combination with other replicated known variants can facilitate the identification of survivors at higher risk in developing accelerated aging and potentially inform drug targets for future intervention strategies among vulnerable survivors. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01038-6.
Collapse
Affiliation(s)
- Qian Dong
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 735, Memphis, TN, 38105, USA
| | - Nan Song
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 735, Memphis, TN, 38105, USA.,College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Na Qin
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 735, Memphis, TN, 38105, USA.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cheng Chen
- School of Public Health, Shanghai Jiaotong University, Shanghai, China
| | - Zhenghong Li
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 735, Memphis, TN, 38105, USA
| | - Xiaojun Sun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Heather Mulder
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Emily Plyler
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Geoffrey Neale
- Hartwell Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Emily Walker
- Hartwell Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qian Li
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - I-Chan Huang
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 735, Memphis, TN, 38105, USA
| | - Yutaka Yasui
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 735, Memphis, TN, 38105, USA
| | - Kirsten K Ness
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 735, Memphis, TN, 38105, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Melissa M Hudson
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 735, Memphis, TN, 38105, USA.,Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Leslie L Robison
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 735, Memphis, TN, 38105, USA
| | - Zhaoming Wang
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 735, Memphis, TN, 38105, USA. .,Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
175
|
Hsu YC, Huang SM, Chang LC, Chen YM, Chang YH, Lin JW, Lin CC, Chen CW, Chen HY, Chiu HM, Yu SL. Screening of early-staged colorectal neoplasia by clonal hematopoiesis-based liquid biopsy and machine-learning. Am J Cancer Res 2022; 12:1088-1101. [PMID: 35411222 PMCID: PMC8984904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023] Open
Abstract
Liquid biopsy test has a better uptake for colorectal cancer (CRC) screening. However, suboptimal detection of early-staged colorectal neoplasia (CRN) limits its application. Here, we established an early-staged CRN blood test using error-corrected sequencing by comparing clonal hematopoiesis (CH) of 63 CRN patients and that of 32 controls. We identified 1,446 variants and classified the uniqueness in CRN patients. There was no significance difference in the amount of variant between CRNs and controls, but the uniqueness of variants with defective DNA mismatch repair-related mutational signature was addressed from peripheral blood in early-staged CRN patients. By machine learning approach, the early-staged CRNs was discriminated from controls with an AUC of 0.959 and an accuracy of 0.937 (95% CI, 0.863 to 0.968). The CRN predictive model was further validated by additional 20 CRNs and 10 controls and showed the accuracy, sensitivity, specificity, positive prediction value (PPV) and negative prediction value (NPV) of 0.933 (95% CI: 0.779 to 0.992), 0.95, 0.90, 0.95 and 0.90, respectively. In summary, we develop a CH-based liquid biopsy test with machine learning approach, which not only increase screening uptake but also improve the detection rate of early-staged CRN.
Collapse
Affiliation(s)
- Yin-Chen Hsu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Sin-Ming Huang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Li-Chun Chang
- Department of Internal Medicine, National Taiwan University HospitalTaipei, Taiwan
- Health Management Center, National Taiwan University HospitalTaipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Yan-Ming Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Ya-Hsuan Chang
- Institute of Statistical Science, Academia SinicaTaipei, Taiwan
| | - Jing-Wei Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Chien-Chia Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Ching-Wen Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Hsuan-Yu Chen
- Institute of Statistical Science, Academia SinicaTaipei, Taiwan
| | - Han-Mo Chiu
- Department of Internal Medicine, National Taiwan University HospitalTaipei, Taiwan
- Health Management Center, National Taiwan University HospitalTaipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan UniversityTaipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan UniversityTaipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University HospitalTaipei, Taiwan
- Graduate Institute of Pathology, College of Medicine, National Taiwan UniversityTaipei, Taiwan
- Institute of Medical Device and Imaging, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| |
Collapse
|
176
|
Menendez-Gonzalez JB, Rodrigues NP. Exploring the Associations Between Clonal Hematopoiesis of Indeterminate Potential, Myeloid Malignancy, and Atherosclerosis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2419:73-88. [PMID: 35237959 DOI: 10.1007/978-1-0716-1924-7_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Outgrowth of a mutated hematopoietic stem/progenitor clone and its descendants, also known as clonal hematopoiesis, has long been considered as either a potential forerunner to hematologic malignancy or as a clinically silent phase in leukemia that antedates symptomatic disease. That definition of clonal hematopoiesis has now been expanded to encompass patients who harbor specific genetic/epigenetic mutations that lead to clonal hematopoiesis of indeterminate potential (CHIP) and, with it, a relatively heightened risk for both myeloid malignancy and atherosclerosis during aging. In this review, we provide contemporary insights into the cellular and molecular basis for CHIP and explore the relationship of CHIP to myeloid malignancy and atherosclerosis. We also discuss emerging strategies to explore CHIP biology and clinical targeting of CHIP related malignancy and cardiovascular disease.
Collapse
Affiliation(s)
- Juan Bautista Menendez-Gonzalez
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Neil P Rodrigues
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
177
|
Hajishengallis G, Li X, Divaris K, Chavakis T. Maladaptive trained immunity and clonal hematopoiesis as potential mechanistic links between periodontitis and inflammatory comorbidities. Periodontol 2000 2022; 89:215-230. [PMID: 35244943 DOI: 10.1111/prd.12421] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Periodontitis is bidirectionally associated with systemic inflammatory disorders. The prevalence and severity of this oral disease and linked comorbidities increases with aging. Here, we review two newly emerged concepts, trained innate immunity (TII) and clonal hematopoiesis of indeterminate potential (CHIP), which together support a potential hypothesis on how periodontitis affects and is affected by comorbidities and why the susceptibility to periodontitis and comorbidities increases with aging. Given that chronic diseases are largely triggered by the action of inflammatory immune cells, modulation of their bone marrow precursors, the hematopoietic stem and progenitor cells (HSPCs), may affect multiple disorders that emerge as comorbidities. Such alterations in HSPCs can be mediated by TII and/or CHIP, two non-mutually exclusive processes sharing a bias for enhanced myelopoiesis and production of innate immune cells with heightened proinflammatory potential. TII is a state of elevated immune responsiveness based on innate immune (epigenetic) memory. Systemic inflammation can initiate TII in the bone marrow via sustained rewiring of HSPCs, which thereby display a skewing toward the myeloid lineage, resulting in generation of hyper-reactive or "trained" myeloid cells. CHIP arises from aging-related somatic mutations in HSPCs, which confer a survival and proliferation advantage to the mutant HSPCs and give rise to an outsized fraction of hyper-inflammatory mutant myeloid cells in the circulation and tissues. This review discusses emerging evidence that supports the notion that TII and CHIP may underlie a causal and age-related association between periodontitis and comorbidities. A holistic mechanistic understanding of the periodontitis-systemic disease connection may offer novel diagnostic and therapeutic targets for treating inflammatory comorbidities.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaofei Li
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kimon Divaris
- Division of Pediatrics and Public Health, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA.,Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
178
|
Dahdah A, Johnson J, Gopalkrishna S, Jaggers RM, Webb D, Murphy AJ, Hanssen NMJ, Hanaoka BY, Nagareddy PR. Neutrophil Migratory Patterns: Implications for Cardiovascular Disease. Front Cell Dev Biol 2022; 10:795784. [PMID: 35309915 PMCID: PMC8924299 DOI: 10.3389/fcell.2022.795784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/18/2022] [Indexed: 12/31/2022] Open
Abstract
The body's inflammatory response involves a series of processes that are necessary for the immune system to mitigate threats from invading pathogens. Leukocyte migration is a crucial process in both homeostatic and inflammatory states. The mechanisms involved in immune cell recruitment to the site of inflammation are numerous and require several cascades and cues of activation. Immune cells have multiple origins and can be recruited from primary and secondary lymphoid, as well as reservoir organs within the body to generate an immune response to certain stimuli. However, no matter the origin, an important aspect of any inflammatory response is the web of networks that facilitates immune cell trafficking. The vasculature is an important organ for this trafficking, especially during an inflammatory response, mainly because it allows cells to migrate towards the source of insult/injury and serves as a reservoir for leukocytes and granulocytes under steady state conditions. One of the most active and vital leukocytes in the immune system's arsenal are neutrophils. Neutrophils exist under two forms in the vasculature: a marginated pool that is attached to the vessel walls, and a demarginated pool that freely circulates within the blood stream. In this review, we seek to present the current consensus on the mechanisms involved in leukocyte margination and demargination, with a focus on the role of neutrophil migration patterns during physio-pathological conditions, in particular diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- Albert Dahdah
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jillian Johnson
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Sreejit Gopalkrishna
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Robert M. Jaggers
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Darren Webb
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Andrew J. Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Nordin M. J. Hanssen
- Amsterdam Diabetes Centrum, Internal and Vascular Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Beatriz Y. Hanaoka
- Department of Internal Medicine, Division of Rheumatology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Prabhakara R. Nagareddy
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
179
|
Liberale L, Badimon L, Montecucco F, Lüscher TF, Libby P, Camici GG. Inflammation, Aging, and Cardiovascular Disease: JACC Review Topic of the Week. J Am Coll Cardiol 2022; 79:837-847. [PMID: 35210039 PMCID: PMC8881676 DOI: 10.1016/j.jacc.2021.12.017] [Citation(s) in RCA: 208] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/08/2021] [Indexed: 01/19/2023]
Abstract
Aging and inflammation both contribute pivotally to cardiovascular (CV) and cerebrovascular disease, the leading causes of death and disability worldwide. The concept of inflamm-aging recognizes that low-grade inflammatory pathways observed in the elderly contribute to CV risk. Understanding the mechanisms that link inflammation and aging could reveal new therapeutic targets and offer options to cope with the growing aging population worldwide. This review reports recent scientific advances in the pathways through which inflamm-aging mediates age-dependent decline in CV function and disease onset and considers critically the translational potential of such concepts into everyday clinical practice.
Collapse
Affiliation(s)
- Luca Liberale
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy. https://twitter.com/liberale_luca
| | - Lina Badimon
- Cardiovascular Research Program ICCC, IR-IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, CiberCV-Institute Carlos III, Barcelona, Spain. https://twitter.com/lbadimon
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; Royal Brompton and Harefield Hospitals and Imperial College, London, United Kingdom. https://twitter.com/TomLuscher
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; University Heart Center, Department of Cardiology, University Hospital Zurich, Zurich, Switzerland; Department of Research and Education, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
180
|
Calvillo-Argüelles O, Schoffel A, Capo-Chichi JM, Abdel-Qadir H, Schuh A, Carrillo-Estrada M, Liu S, Gupta V, Schimmer AD, Yee K, Shlush LI, Natarajan P, Thavendiranathan P. Cardiovascular Disease Among Patients With AML and CHIP-Related Mutations. JACC CardioOncol 2022; 4:38-49. [PMID: 35492819 PMCID: PMC9040128 DOI: 10.1016/j.jaccao.2021.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/28/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2022] Open
Abstract
Background Clonal hematopoiesis of indeterminate potential (CHIP) is a novel cardiovascular disease (CVD) risk factor in individuals without acute myeloid leukemia (AML). Objectives The aim of this study was to examine the association between mutations associated with CHIP (CHIP-related mutations) identified in patients at AML diagnosis and the risk for cardiovascular events (CVEs). Methods This was a retrospective cohort study of 623 patients with AML treated between 2015 and 2018 who underwent DNA analysis. Cause-specific hazard regression models were used to study the associations between pathogenic mutations in common CHIP-related genes (DNMT3A, TET2, ASXL1, JAK2, TP53, SRSF2, and SF3B1) and the rate of CVEs (heart failure hospitalization, acute coronary syndrome, coronary artery revascularization, ischemic stroke, venous thromboembolism, and CVD death) and between CVE development and all-cause mortality. Results Patients were 64.6 ± 15.3 years of age, 265 (42.5%) were women, and 63% had at least 1 CHIP-related mutation. Those with CHIP-related mutations were older (69.2 ± 12.3 vs 56.6 ± 16.6 years; P < 0.001) and had a greater prevalence of CVD risk factors and CVD history. In adjusted analysis, the presence of any CHIP-related mutation was associated with a higher rate of CVEs (HR: 1.74; 95% CI: 1.03-2.93; P = 0.037) among intensively treated patients (anthracycline based) but not the whole cohort (HR: 1.26; 95% CI: 0.81-1.97; P = 0.31). TP53 (HR: 4.18; 95% CI: 2.07-8.47; P < 0.001) and ASXL1 (HR: 2.37; 95% CI: 1.21-4.63; P = 0.012) mutations were associated with CVEs among intensively treated patients. Interval development of CVEs was associated with all-cause mortality (HR: 1.99; 95% CI: 1.45-2.73; P < 0.001). Conclusions Among patients with AML treated with intensive chemotherapy, mutations in CHIP-related genes were associated with an increased risk for developing incident CVEs after AML diagnosis.
Collapse
Key Words
- ACS, acute coronary syndrome
- AML, acute myeloid leukemia
- CHIP, clonal hematopoiesis of indeterminate potential
- CVD, cardiovascular disease
- CVE, cardiovascular event
- CVRF, cardiovascular risk factor
- HF, heart failure
- LVEF, left ventricular ejection fraction
- MACCE, major adverse cardiovascular and cerebrovascular event(s)
- NGS, next-generation sequencing
- VAF, variant allele frequency
- acute myeloid leukemia
- allo-HCT, allogeneic hematopoietic cell transplantation
- cardiovascular diseases
- clonal hematopoiesis
- clonal hematopoiesis of indeterminate potential
Collapse
Affiliation(s)
- Oscar Calvillo-Argüelles
- Ted Rogers Program in Cardiotoxicity Prevention, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada.,Department of Cardiology, Department of Medical Oncology, Health Sciences North, Sudbury, Ontario, Canada.,Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| | - Alice Schoffel
- Ted Rogers Program in Cardiotoxicity Prevention, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - José-Mario Capo-Chichi
- Department of Clinical Laboratory Genetics, Genome Diagnostics Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Husam Abdel-Qadir
- Ted Rogers Program in Cardiotoxicity Prevention, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada.,Women's College Hospital, Toronto, Ontario, Canada
| | - Andre Schuh
- Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Montserrat Carrillo-Estrada
- Ted Rogers Program in Cardiotoxicity Prevention, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Shiying Liu
- Ted Rogers Program in Cardiotoxicity Prevention, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Vikas Gupta
- Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Aaron D Schimmer
- Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Karen Yee
- Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Liran I Shlush
- Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Pradeep Natarajan
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts.,Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Paaladinesh Thavendiranathan
- Ted Rogers Program in Cardiotoxicity Prevention, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
181
|
Abstract
Contrary to earlier beliefs, every cell in the individual is genetically different due to somatic mutations. Consequently, tissues become a mixture of cells with distinct genomes, a phenomenon termed somatic mosaicism. Recent advances in genome sequencing technology have unveiled possible causes of mutations and how they shape the unique mutational landscape of the tissues. Moreover, the analysis of sequencing data in combination with clinical information has revealed the impacts of somatic mosaicism on disease processes. In this review, we discuss somatic mosaicism in various tissues and its clinical implications for human disease.
Collapse
Affiliation(s)
- Hayato Ogawa
- Department of Cardiology, Meijo Hospital, Nagoya, Japan
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keita Horitani
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Medicine II, Kansai Medical University, Hirakata, Japan
| | - Yasuhiro Izumiya
- Department of Cardiovascular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan;
| | - Soichi Sano
- Department of Cardiovascular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan;
| |
Collapse
|
182
|
Denicolò S, Vogi V, Keller F, Thöni S, Eder S, Heerspink HJL, Rosivall L, Wiecek A, Mark PB, Perco P, Leierer J, Kronbichler A, Steger M, Schwendinger S, Zschocke J, Mayer G, Jukic E. Clonal hematopoiesis of indeterminate potential and diabetic kidney disease: a nested case-control study. Kidney Int Rep 2022; 7:876-888. [PMID: 35497780 PMCID: PMC9039487 DOI: 10.1016/j.ekir.2022.01.1064] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/24/2022] [Indexed: 11/22/2022] Open
Abstract
Introduction The disease trajectory of diabetic kidney disease (DKD) shows a high interindividual variability not sufficiently explained by conventional risk factors. Clonal hematopoiesis of indeterminate potential (CHIP) is a proposed novel cardiovascular risk factor. Increased kidney fibrosis and glomerulosclerosis were described in mouse models of CHIP. Here, we aim to analyze whether CHIP affects the incidence or progression of DKD. Methods A total of 1419 eligible participants of the PROVALID Study were the basis for a nested case-control (NCC) design. A total of 64 participants who reached a prespecified composite endpoint within the observation period (initiation of kidney replacement therapy, death from kidney failure, sustained 40% decline in estimated glomerular filtration rate or sustained progression to macroalbuminuria) were identified and matched to 4 controls resulting in an NCC sample of 294 individuals. CHIP was assessed via targeted amplicon sequencing of 46 genes in peripheral blood. Furthermore, inflammatory cytokines were analyzed in plasma via a multiplex assay. Results The estimated prevalence of CHIP was 28.91% (95% CI 22.91%–34.91%). In contrast to other known risk factors (albuminuria, hemoglobin A1c, heart failure, and smoking) and elevated microinflammation, CHIP was not associated with incident or progressive DKD (hazard ratio [HR] 1.06 [95% CI 0.57–1.96]). Conclusions In this NCC study, common risk factors as well as elevated microinflammation but not CHIP were associated with kidney function decline in type 2 diabetes mellitus.
Collapse
|
183
|
Tall AR, Fuster JJ. Clonal hematopoiesis in cardiovascular disease and therapeutic implications. NATURE CARDIOVASCULAR RESEARCH 2022; 1:116-124. [PMID: 36337911 PMCID: PMC9631799 DOI: 10.1038/s44161-021-00015-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/21/2021] [Indexed: 05/25/2023]
Abstract
Clonal hematopoiesis arises from somatic mutations that provide a fitness advantage to hematopoietic stem cells and the outgrowth of clones of blood cells. Clonal hematopoiesis commonly involves mutations in genes that are involved in epigenetic modifications, signaling and DNA damage repair. Clonal hematopoiesis has emerged as a major independent risk factor in atherosclerotic cardiovascular disease, thrombosis and heart failure. Studies in mouse models of clonal hematopoiesis have shown an increase in atherosclerosis, thrombosis and heart failure, involving increased myeloid cell inflammatory responses and inflammasome activation. Although increased inflammatory responses have emerged as a common underlying principle, some recent studies indicate mutation-specific effects. The discovery of the association of clonal hematopoiesis with cardiovascular disease and the recent demonstration of benefit of anti-inflammatory treatments in human cardiovascular disease converge to suggest that anti-inflammatory treatments should be directed to individuals with clonal hematopoiesis. Such treatments could target specific inflammasomes, common downstream mediators such as IL-1β and IL-6, or mutations linked to clonal hematopoiesis.
Collapse
Affiliation(s)
- Alan R. Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY, USA
| | - Jose J. Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| |
Collapse
|
184
|
Majeti R, Jamieson C, Pang WW, Jaiswal S, Leeper NJ, Wernig G, Weissman IL. Clonal Expansion of Stem/Progenitor Cells in Cancer, Fibrotic Diseases, and Atherosclerosis, and CD47 Protection of Pathogenic Cells. Annu Rev Med 2022; 73:307-320. [PMID: 35084991 DOI: 10.1146/annurev-med-042420-104436] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We proposed and demonstrated that myelogenous leukemia has a preleukemic phase. In the premalignant phase, normal hematopoietic stem cells (HSCs) gradually accumulate mutations leading to HSC clonal expansion, resulting in the emergence of leukemic stem cells (LSCs). Here, we show that preleukemic HSCs are the basis of clonal hematopoiesis, as well as late-onset blood diseases (chronic-phase chronic myeloid leukemia, myeloproliferative neoplasms, and myelodysplastic disease). The clones at some point each trigger surface expression of "eat me" signals for macrophages, and in the clones and their LSC progeny, this is countered by upregulation of "don't eat me" signals for macrophages such as CD47,opening the possibility of CD47-based therapies. We include evidence that similar processes result in fibroblast expansion in a variety of fibrotic diseases, and arterial smooth muscle clonal expansion is a basis of atherosclerosis, including upregulation of both "eat me" and "don't eat me" molecules on the pathogenic cells.
Collapse
Affiliation(s)
- R Majeti
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University Medical Center, Stanford, California 94305, USA;
| | - C Jamieson
- Sanford Stem Cell Clinical Center, University of California, San Diego, La Jolla, California 92093, USA
| | - W W Pang
- Jasper Therapeutics, Redwood City, California 94065, USA
| | - S Jaiswal
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - N J Leeper
- Department of Surgery, Stanford University School of Medicine, Stanford, California 94305, USA
| | - G Wernig
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University Medical Center, Stanford, California 94305, USA;
| | - I L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University Medical Center, Stanford, California 94305, USA;
| |
Collapse
|
185
|
Abstract
Advances in population-scale genomic sequencing have greatly expanded the understanding of the inherited basis of cardiovascular disease (CVD). Reanalysis of these genomic datasets identified an unexpected risk factor for CVD, somatically acquired DNA mutations. In this review, we provide an overview of somatic mutations and their contributions to CVD. We focus on the most common and well-described manifestation, clonal hematopoiesis of indeterminate potential. We also review the currently available data regarding how somatic mutations lead to tissue mosaicism in various forms of CVD, including atrial fibrillation and aortic aneurism associated with Marfan Syndrome. Finally, we highlight future research directions given current knowledge gaps and consider how technological advances will enhance the discovery of somatic mutations in CVD and management of patients with somatic mutations.
Collapse
Affiliation(s)
- J. Brett Heimlich
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center
| | - Alexander G. Bick
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center
| |
Collapse
|
186
|
Kusne Y, Xie Z, Patnaik MM. Clonal Hematopoiesis: Molecular and Clinical Implications. Leuk Res 2022; 113:106787. [DOI: 10.1016/j.leukres.2022.106787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/31/2021] [Accepted: 01/07/2022] [Indexed: 11/16/2022]
|
187
|
[Influence of clonal hematopoiesis on non-hematological diseases and aging processes]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2022; 63:1115-1125. [PMID: 36214849 PMCID: PMC9549812 DOI: 10.1007/s00108-022-01409-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/02/2022] [Indexed: 01/05/2023]
Abstract
The occurrence of clonal hematopoiesis, caused by acquired somatic mutations of leukemia-associated genes in blood stem cells is very common in the population and increases with age. Besides an increased risk of developing myeloid neoplasms, an unexpected causal relationship between clonal hematopoiesis and cardiovascular diseases was recently discovered. Clonal hematopoiesis presents as a new independent and strong risk factor for cardiovascular diseases, such as atherosclerosis, coronary heart disease, heart failure, aortic valve stenosis and stroke, which from a medical perspective should no longer be ignored. Worldwide intensive research for associations of clonal hematopoiesis with other age-related and infectious diseases identifies increasingly more illnesses that are influenced by the presence of mutated blood cells. Current data describe a fatal vicious circle, initiated by somatic blood cell mutations, which accelerate the progression of associated diseases in a proinflammatory way and feed-back to hematopoiesis leading to a further enlargement of the mutated blood cell clone. First experimental treatment approaches to break this vicious circle are discussed here. The causal relationship and the underlying pathomechanisms are now at the center of research interest in order to rapidly establish risk stratification and therapeutic measures for the benefit of patients in the near future.
Collapse
|
188
|
DeStefano CB, Gibson SJ, Sperling AS, Richardson PG, Ghobrial I, Mo CC. The emerging importance and evolving understanding of clonal hematopoiesis in multiple myeloma. Semin Oncol 2022; 49:19-26. [DOI: 10.1053/j.seminoncol.2022.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/09/2022] [Indexed: 12/19/2022]
|
189
|
Cobo I, Tanaka T, Glass CK, Yeang C. Clonal hematopoiesis driven by DNMT3A and TET2 mutations: role in monocyte and macrophage biology and atherosclerotic cardiovascular disease. Curr Opin Hematol 2022; 29:1-7. [PMID: 34654019 PMCID: PMC8639635 DOI: 10.1097/moh.0000000000000688] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Clonal hematopoiesis of indeterminate potential (CHIP), defined by the presence of somatic mutations in hematopoietic cells, is associated with advanced age and increased mortality due to cardiovascular disease. Gene mutations in DNMT3A and TET2 are the most frequently identified variants among patients with CHIP and provide selective advantage that spurs clonal expansion and myeloid skewing. Although DNMT3A and TET2 appear to have opposing enzymatic influence on DNA methylation, mounting data has characterized convergent inflammatory pathways, providing insights to how CHIP may mediate atherosclerotic cardiovascular disease (ASCVD). RECENT FINDINGS We review a multitude of studies that characterize aberrant inflammatory signaling as result of DNMT3A and TET2 deficiency in monocytes and macrophages, immune cells with prominent roles in atherosclerosis. Although specific DNA methylation signatures associated with these known epigenetic regulators have been identified, many studies have also characterized diverse modulatory functions of DNTM3A and TET2 that urge cell and context-specific experimental studies to further define how DNMT3A and TET2 may nonenzymatically activate inflammatory pathways with clinically meaningful consequences. SUMMARY CHIP, common in elderly individuals, provides an opportunity understand and potentially modify age-related chronic inflammatory ASCVD risk.
Collapse
Affiliation(s)
- Isidoro Cobo
- Department of Cellular and Molecular Medicine, University of California San Diego
| | - Tiffany Tanaka
- University of California San Diego, Moores Cancer Center
| | - Christopher K. Glass
- Department of Cellular and Molecular Medicine, University of California San Diego
| | - Calvin Yeang
- Sulpizio Cardiovascular Center, Division of Cardiology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
190
|
Stein A, Metzeler K, Kubasch AS, Rommel KP, Desch S, Buettner P, Rosolowski M, Cross M, Platzbecker U, Thiele H. Clonal hematopoiesis and cardiovascular disease: deciphering interconnections. Basic Res Cardiol 2022; 117:55. [PMID: 36355225 PMCID: PMC9649510 DOI: 10.1007/s00395-022-00969-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Cardiovascular and oncological diseases represent the global major causes of death. For both, a novel and far-reaching risk factor has been identified: clonal hematopoiesis (CH). CH is defined as clonal expansion of peripheral blood cells on the basis of somatic mutations, without overt hematological malignancy. The most commonly affected genes are TET2, DNMT3A, ASXL1 and JAK2. By the age of 70, at least 20-50% of all individuals carry a CH clone, conveying a striking clinical impact by increasing all-cause mortality by 40%. This is due predominantly to a nearly two-fold increase of cardiovascular risk, but also to an elevated risk of malignant transformation. Individuals with CH show not only increased risk for, but also worse outcomes after arteriosclerotic events, such as stroke or myocardial infarction, decompensated heart failure and cardiogenic shock. Elevated cytokine levels, dysfunctional macrophage activity and activation of the inflammasome suggest that a vicious cycle of chronic inflammation and clonal expansion represents the major functional link. Despite the apparently high impact of this entity, awareness, functional understanding and especially clinical implications still require further research. This review provides an overview of the current knowledge of CH and its relation to cardiovascular and hematological diseases. It focuses on the basic functional mechanisms in the interplay between atherosclerosis, inflammation and CH, identifies issues for further research and considers potential clinical implications.
Collapse
Affiliation(s)
- Anna Stein
- Medical Clinic and Policlinic 1, Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Liebigstr. 20, 04103 Leipzig, Germany
| | - Klaus Metzeler
- Medical Clinic and Policlinic 1, Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Liebigstr. 20, 04103 Leipzig, Germany
| | - Anne Sophie Kubasch
- Medical Clinic and Policlinic 1, Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Liebigstr. 20, 04103 Leipzig, Germany
| | - Karl-Philipp Rommel
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at the University of Leipzig and Leipzig Heart Institute, Strümpellstr. 39, 04289 Leipzig, Germany
| | - Steffen Desch
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at the University of Leipzig and Leipzig Heart Institute, Strümpellstr. 39, 04289 Leipzig, Germany
| | - Petra Buettner
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at the University of Leipzig and Leipzig Heart Institute, Strümpellstr. 39, 04289 Leipzig, Germany
| | - Maciej Rosolowski
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Michael Cross
- Medical Clinic and Policlinic 1, Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Liebigstr. 20, 04103 Leipzig, Germany
| | - Uwe Platzbecker
- Medical Clinic and Policlinic 1, Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Liebigstr. 20, 04103 Leipzig, Germany
| | - Holger Thiele
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at the University of Leipzig and Leipzig Heart Institute, Strümpellstr. 39, 04289 Leipzig, Germany
| |
Collapse
|
191
|
Ehlert CA, Hilgendorf I. A Vicious Circle of Clonal Haematopoiesis of Indeterminate Potential and Cardiovascular Disease. Hamostaseologie 2021; 41:443-446. [PMID: 34942657 DOI: 10.1055/a-1576-4059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Clonal haematopoiesis of indeterminate potential (CHIP) represents a recently identified overlap between cancer and cardiovascular disease (CVD). CHIP develops as a result of certain acquired somatic mutations that predispose to leukaemia, but clinically even more prevalent, associate with increased risk for CVD and CVD-related death. Experimental studies suggest a causal role for CHIP aggravating inflammatory processes in CVD, and recent epidemiologic and genetic studies indicate that classical CVD risk factors may increase the risk of acquiring CHIP driver mutations, thus fuelling a vicious circle. The potential mechanism underlying the associative link between CHIP and CVD and mortality has been the focus of a few recent excellent experimental and observational studies which are summarized and discussed in this concise non-systematic review article. These data support a pathomechanistic view of a spiralling vicious circle in which CHIP aggravates the inflammatory immune response in CVD, and CVD-driven elevated haematopoietic activity promotes CHIP development.
Collapse
Affiliation(s)
- Carolin A Ehlert
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ingo Hilgendorf
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen and Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
192
|
Marnell CS, Bick A, Natarajan P. Clonal hematopoiesis of indeterminate potential (CHIP): Linking somatic mutations, hematopoiesis, chronic inflammation and cardiovascular disease. J Mol Cell Cardiol 2021; 161:98-105. [PMID: 34298011 PMCID: PMC8629838 DOI: 10.1016/j.yjmcc.2021.07.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/10/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is the presence of a clonally expanded hematopoietic stem cell caused by a leukemogenic mutation in individuals without evidence of hematologic malignancy, dysplasia, or cytopenia. CHIP is associated with a 0.5-1.0% risk per year of leukemia. Remarkably, it confers a two-fold increase in cardiovascular risk independent of traditional risk factors. Roughly 80% of patients with CHIP have mutations in epigenetic regulators DNMT3A, TET2, ASXL1, DNA damage repair genes PPM1D, TP53, the regulatory tyrosine kinase JAK2, or mRNA spliceosome components SF3B1, and SRSF2. CHIP is associated with a pro-inflammatory state that has been linked to coronary artery disease, myocardial infarction, and venous thromboembolic disease, as well as prognosis among those with aortic stenosis and heart failure. Heritable and acquired risk factors are associated with increased CHIP prevalence, including germline variation, age, unhealthy lifestyle behaviors (i.e. smoking, obesity), inflammatory conditions, premature menopause, HIV and exposure to cancer therapies. This review aims to summarize emerging research on CHIP, the mechanisms underlying its important role in propagating inflammation and accelerating cardiovascular disease, and new studies detailing the role of associated risk factors and co-morbidities that increase CHIP prevalence.
Collapse
Affiliation(s)
- Christopher S Marnell
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America; Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States of America; Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, United States of America
| | - Alexander Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Pradeep Natarajan
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America; Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States of America; Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, United States of America.
| |
Collapse
|
193
|
Salybekov AA, Wolfien M, Kobayashi S, Steinhoff G, Asahara T. Personalized Cell Therapy for Patients with Peripheral Arterial Diseases in the Context of Genetic Alterations: Artificial Intelligence-Based Responder and Non-Responder Prediction. Cells 2021; 10:3266. [PMID: 34943774 PMCID: PMC8699290 DOI: 10.3390/cells10123266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 01/14/2023] Open
Abstract
Stem/progenitor cell transplantation is a potential novel therapeutic strategy to induce angiogenesis in ischemic tissue, which can prevent major amputation in patients with advanced peripheral artery disease (PAD). Thus, clinicians can use cell therapies worldwide to treat PAD. However, some cell therapy studies did not report beneficial outcomes. Clinical researchers have suggested that classical risk factors and comorbidities may adversely affect the efficacy of cell therapy. Some studies have indicated that the response to stem cell therapy varies among patients, even in those harboring limited risk factors. This suggests the role of undetermined risk factors, including genetic alterations, somatic mutations, and clonal hematopoiesis. Personalized stem cell-based therapy can be developed by analyzing individual risk factors. These approaches must consider several clinical biomarkers and perform studies (such as genome-wide association studies (GWAS)) on disease-related genetic traits and integrate the findings with those of transcriptome-wide association studies (TWAS) and whole-genome sequencing in PAD. Additional unbiased analyses with state-of-the-art computational methods, such as machine learning-based patient stratification, are suited for predictions in clinical investigations. The integration of these complex approaches into a unified analysis procedure for the identification of responders and non-responders before stem cell therapy, which can decrease treatment expenditure, is a major challenge for increasing the efficacy of therapies.
Collapse
Affiliation(s)
- Amankeldi A. Salybekov
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, 1-1370 Okamoto, Kamakura 2478533, Japan;
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, 1-1370 Okamoto, Kamakura 2478533, Japan
| | - Markus Wolfien
- Department of Systems Biology and Bioinformatics, University of Rostock, Ulmenstrasse 69, 18057 Rostock, Germany;
| | - Shuzo Kobayashi
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, 1-1370 Okamoto, Kamakura 2478533, Japan;
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, 1-1370 Okamoto, Kamakura 2478533, Japan
| | - Gustav Steinhoff
- Department of Cardiac Surgery, Rostock University Medical Center, 18059 Rostock, Germany;
- Department Life, Light & Matter, University of Rostock, 18057 Rostock, Germany
| | - Takayuki Asahara
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, 1-1370 Okamoto, Kamakura 2478533, Japan
| |
Collapse
|
194
|
Persistent inflammatory residual risk despite aggressive cholesterol-lowering therapy: what is next? Curr Opin Cardiol 2021; 36:776-783. [PMID: 34475328 DOI: 10.1097/hco.0000000000000909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To briefly summarize recently published evidence on the possible therapeutic modulation of inflammatory processes in atherosclerotic cardiovascular disease (ASCVD), focusing on the rationale for an additional randomized clinical trial, targeting both persistently elevated cholesterol and inflammatory residual risk and critically discuss still open issues and future perspectives with regard to treatment allocation. RECENT FINDINGS Several large-scale clinical trials over the past few years have advanced our understanding of the role of inflammation in atherosclerosis, demonstrating that targeting the NLRP3 inflammasome and the IL-1β pathway indeed represent a new avenue to reduce residual risk in patients with ASCVD. However, despite optimal lipid-lowering therapy and novel options to modulate residual inflammatory risk, there are still a large number of individuals, being at high risk for recurrent ASCVD events. SUMMARY The integration of a dual target strategy aimed at lowering the inflammatory burden in combination with aggressive lipid-modifying for those at high/very high ASCVD risk may hold potential to significantly improve patient care. However, a number of questions related to the design of such 2 × 2 factorial trial still needs to be answered.
Collapse
|
195
|
Goel H, Rahul E, Gupta I, Chopra A, Ranjan A, Gupta AK, Meena JP, Viswanathan GK, Bakhshi S, Misra A, Hussain S, Kumar R, Singh A, Rath GK, Sharma A, Mittan S, Tanwar P. Molecular and genomic landscapes in secondary & therapy related acute myeloid leukemia. AMERICAN JOURNAL OF BLOOD RESEARCH 2021; 11:472-497. [PMID: 34824881 PMCID: PMC8610791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Acute myeloid leukemia (AML) is a complex, aggressive myeloid neoplasm characterized by frequent somatic mutations that influence different functional categories' genes, resulting in maturational arrest and clonal expansion. AML can arise de novo (dn-AML) or can be secondary AML (s-AML) refers to a leukemic process which may arise from an antecedent hematologic disorder (AHD-AML), mostly from a myelodysplastic syndrome (MDS) or myeloproliferative neoplasm (MPN) or can be the result of an antecedent cytotoxic chemotherapy or radiation therapy (therapy-related AML, t-AML). Clinical and biological features in secondary and therapy-related AML are distinct from de novo AML. Secondary and therapy-related AML occurs mainly in the elderly population and responds worse to therapy with higher relapse rates due to resistance to cytotoxic chemotherapy. Over the last decade, advances in molecular genetics have disclosed the sub-clonal architecture of secondary and therapy-related AML. Recent investigations have revealed that cytogenetic abnormalities and underlying genetic aberrations (mutations) are likely to be significant factors dictating prognosis and critical impacts on treatment outcome. Secondary and therapy-related AML have a poorer outcome with adverse cytogenetic abnormalities and higher recurrences of unfavorable mutations compared to de novo AML. In this review, we present an overview of the clinical features of secondary and therapy-related AML and address the function of genetic mutations implicated in the pathogenesis of secondary leukemia. Detailed knowledge of the pathogenetic mechanisms gives an overview of new prognostic markers, including targetable mutations that will presumably lead to the designing and developing novel molecular targeted therapies for secondary and therapy-related AML. Despite significant advances in knowing the genetic aspect of secondary and therapy-related AML, its influence on the disease's pathophysiology, standard treatment prospects have not significantly evolved during the past three decades. Thus, we conclude this review by summarizing the modern and developing treatment strategies in secondary and therapy-related acute myeloid leukemia.
Collapse
Affiliation(s)
- Harsh Goel
- Laboratory Oncology Unit, Dr.B.R.A. Institute Rotary Cancer Hospital All India Institute of Medical SciencesNew Delhi 110029, India
| | - Ekta Rahul
- Laboratory Oncology Unit, Dr.B.R.A. Institute Rotary Cancer Hospital All India Institute of Medical SciencesNew Delhi 110029, India
| | - Ishan Gupta
- All India Institute of Medical SciencesNew Delhi 110029, India
| | - Anita Chopra
- Laboratory Oncology Unit, Dr.B.R.A. Institute Rotary Cancer Hospital All India Institute of Medical SciencesNew Delhi 110029, India
| | - Amar Ranjan
- Laboratory Oncology Unit, Dr.B.R.A. Institute Rotary Cancer Hospital All India Institute of Medical SciencesNew Delhi 110029, India
| | - Aditya Kumar Gupta
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences New DelhiNew Delhi 110029, India
| | - Jagdish Prasad Meena
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences New DelhiNew Delhi 110029, India
| | - Ganesh Kumar Viswanathan
- Department of Hematology, All India Institute of Medical Sciences New DelhiNew Delhi 110029, India
| | - Sameer Bakhshi
- Department of Medical Oncology, Dr.B.R.A. Institute Rotary Cancer Hospital All India Institute of Medical Sciences New DelhiNew Delhi 110029, India
| | - Aroonima Misra
- National Institute of Pathology, ICMRNew Delhi 110029, India
| | - Showket Hussain
- Division Of Molecular Oncology, National Institute of Cancer Prevention & Research I-7, Sector-39Noida 201301, India
| | - Ritesh Kumar
- Department of Radiation Oncology, Rudgers Cancer Institute of New JerseyNJ 07103, United States
| | - Archana Singh
- Department of Pathology, College of Medical Sciences, Rajasthan University of Health SciencesJaipur 302033, India
| | - GK Rath
- Department of Radiotherapy, Dr.B.R.A. Institute Rotary Cancer Hospital All India Institute of Medical Sciences New DelhiNew Delhi 110029, India
| | - Ashok Sharma
- Department of Biochemistry, All India Institute of Medical Sciences New DelhiNew Delhi 110029, India
| | - Sandeep Mittan
- Department of Cardiology, Ichan School of Medicine, Mount Sinai Hospital1468 Madison Avenue, New York 10028, United States
| | - Pranay Tanwar
- Laboratory Oncology Unit, Dr.B.R.A. Institute Rotary Cancer Hospital All India Institute of Medical SciencesNew Delhi 110029, India
| |
Collapse
|
196
|
Chavakis T, Wielockx B, Hajishengallis G. Inflammatory Modulation of Hematopoiesis: Linking Trained Immunity and Clonal Hematopoiesis with Chronic Disorders. Annu Rev Physiol 2021; 84:183-207. [PMID: 34614373 DOI: 10.1146/annurev-physiol-052521-013627] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inflammation-adapted hematopoietic stem and progenitor cells (HSPCs) have long been appreciated as key drivers of emergency myelopoiesis, thereby enabling the bone marrow to meet the elevated demand for myeloid cell generation under various stress conditions, such as systemic infection, inflammation, or myelosuppressive insults. In recent years, HSPC adaptations were associated with potential involvement in the induction of long-lived trained immunity and the emergence of clonal hematopoiesis of indeterminate potential (CHIP). Whereas trained immunity has context-dependent effects, protective in infections and tumors but potentially detrimental in chronic inflammatory diseases, CHIP increases the risk for hematological neoplastic disorders and cardiometabolic pathologies. This review focuses on the inflammatory regulation of HSPCs in the aforementioned processes and discusses how modulation of HSPC function could lead to novel therapeutic interventions. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic, Technische Universität Dresden, 01307 Dresden, Germany; ,
| | - Ben Wielockx
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic, Technische Universität Dresden, 01307 Dresden, Germany; ,
| | - George Hajishengallis
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6030, USA;
| |
Collapse
|
197
|
von Bonin M, Jambor HK, Teipel R, Stölzel F, Thiede C, Damm F, Kroschinsky F, Schetelig J, Chavakis T, Bornhäuser M. Clonal hematopoiesis and its emerging effects on cellular therapies. Leukemia 2021; 35:2752-2758. [PMID: 34215849 PMCID: PMC8249428 DOI: 10.1038/s41375-021-01337-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
The accumulation of somatic mutations in hematopoietic stem cells during aging, leading to clonal expansion, is linked to a higher risk of cardiovascular mortality and hematologic malignancies. Clinically, clonal hematopoiesis is associated with a pro-inflammatory phenotype of hematopoietic cells and their progeny, inflammatory conditions and a poor outcome for patients with hematologic neoplasms and solid tumors. Here, we review the relevance and complications of clonal hematopoiesis for the treatment of hematologic malignancies with cell therapeutic approaches. In autologous and allogeneic hematopoietic stem cell transplantation native hematopoietic and immune effector cells of clonal origin are transferred, which may affect outcome of the procedure. In chimeric antigen receptor modified T-cell therapy, the effectiveness may be altered by preexisting somatic mutations in genetically modified effector cells or by unmodified bystander cells harboring clonal hematopoiesis. Registry studies and carefully designed prospective trials will be required to assess the relative roles of donor- and recipient-derived individual clonal events for autologous and allogeneic cell therapies and to incorporate novel insights into therapeutic strategies.
Collapse
Affiliation(s)
- Malte von Bonin
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus an der TU Dresden, Dresden, Germany
| | - Helena Klara Jambor
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus an der TU Dresden, Dresden, Germany
| | - Raphael Teipel
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus an der TU Dresden, Dresden, Germany
| | - Friedrich Stölzel
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus an der TU Dresden, Dresden, Germany
| | - Christian Thiede
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus an der TU Dresden, Dresden, Germany
- AgenDix, Angewandte molekulare Diagnostik mbH, Dresden, Germany
| | - Frederik Damm
- Department of Hematology, Oncology, and Tumor Immunology, Charitè-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Frank Kroschinsky
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus an der TU Dresden, Dresden, Germany
| | - Johannes Schetelig
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus an der TU Dresden, Dresden, Germany
- DKMS Clinical Trials Unit, Dresden, Germany
| | - Triantafyllos Chavakis
- Institut für Klinische Chemie und Laboratoriumsmedizin, Universitätsklinikum Carl Gustav Carus an der TU Dresden, Dresden, Germany
| | - Martin Bornhäuser
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus an der TU Dresden, Dresden, Germany.
- Nationales Centrum für Tumorerkrankungen (NCT), Partnerstandort Dresden, Dresden, Germany.
| |
Collapse
|
198
|
Febbraio M, Roy CB, Levin L. Is There a Causal Link Between Periodontitis and Cardiovascular Disease? A Concise Review of Recent Findings. Int Dent J 2021; 72:37-51. [PMID: 34565546 PMCID: PMC9275186 DOI: 10.1016/j.identj.2021.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/19/2021] [Accepted: 07/23/2021] [Indexed: 01/08/2023] Open
Abstract
There is substantial evidence in support of an association between periodontitis and cardiovascular disease. The most important open question related to this association is causality. This article revisits the question of causality by reviewing intervention studies and systematic reviews and meta analyses published in the last 3 years. Where are we now in answering this question? Whilst systematic reviews and epidemiological studies continue to support an association between the diseases, intervention studies fall short in determining causality. There is a dearth of good-quality, blinded randomised control trials with cardiovascular disease outcomes. Most studies use surrogate markers/biomarkers for endpoints, and this is problematic as they may not be reflective of cardiovascular disease status. This review further highlights another issue with surrogate markers/biomarkers: the potential for collider bias. Ethical considerations surrounding nontreatment have led to calls for a well-annotated database containing in-depth dental health data. Finally, a relatively new and important risk factor for cardiovascular disease, clonal haematopoiesis of indeterminate potential, is discussed. Clonal haematopoiesis of indeterminate potential increases cardiovascular risk by more than 40%, and inflammation is a contributing factor. The impact of periodontal disease on this emerging risk factor has yet to be explored. Although the question of causality in the association between periodontal disease and cardiovascular disease remains unanswered, the importance of good oral health in maintaining good heart health is reiterated.
Collapse
Affiliation(s)
- Maria Febbraio
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | | | - Liran Levin
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
199
|
Huang YC, Wang CY. Telomere Attrition and Clonal Hematopoiesis of Indeterminate Potential in Cardiovascular Disease. Int J Mol Sci 2021; 22:9867. [PMID: 34576030 PMCID: PMC8467562 DOI: 10.3390/ijms22189867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 12/22/2022] Open
Abstract
Clinical evidence suggests that conventional cardiovascular disease (CVD) risk factors cannot explain all CVD incidences. Recent studies have shown that telomere attrition, clonal hematopoiesis of indeterminate potential (CHIP), and atherosclerosis (telomere-CHIP-atherosclerosis, TCA) evolve to play a crucial role in CVD. Telomere dynamics and telomerase have an important relationship with age-related CVD. Telomere attrition is associated with CHIP. CHIP is commonly observed in elderly patients. It is characterized by an increase in blood cell clones with somatic mutations, resulting in an increased risk of hematological cancer and atherosclerotic CVD. The most common gene mutations are DNA methyltransferase 3 alpha (DNMT3A), Tet methylcytosine dioxygenase 2 (TET2), and additional sex combs-like 1 (ASXL1). Telomeres, CHIP, and atherosclerosis increase chronic inflammation and proinflammatory cytokine expression. Currently, their epidemiology and detailed mechanisms related to the TCA axis remain incompletely understood. In this article, we reviewed recent research results regarding the development of telomeres and CHIP and their relationship with atherosclerotic CVD.
Collapse
Affiliation(s)
- Yi-Chun Huang
- Division of Cardiology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City 33305, Taiwan;
| | - Chao-Yung Wang
- Division of Cardiology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City 33305, Taiwan;
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 35053, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
200
|
Yura Y, Miura-Yura E, Katanasaka Y, Min KD, Chavkin N, Polizio AH, Ogawa H, Horitani K, Doviak H, Evans MA, Sano M, Wang Y, Boroviak K, Philippos G, Domingues AF, Vassiliou G, Sano S, Walsh K. The Cancer Therapy-Related Clonal Hematopoiesis Driver Gene Ppm1d Promotes Inflammation and Non-Ischemic Heart Failure in Mice. Circ Res 2021; 129:684-698. [PMID: 34315245 PMCID: PMC8409899 DOI: 10.1161/circresaha.121.319314] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yoshimitsu Yura
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA (Y.Y., E.M.-Y., K.-D.M., N.C., A.H.P., H.O., K.H., H.D., M.A.E., M.S., Y.W., S.S., K.W.)
| | - Emiri Miura-Yura
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA (Y.Y., E.M.-Y., K.-D.M., N.C., A.H.P., H.O., K.H., H.D., M.A.E., M.S., Y.W., S.S., K.W.)
| | - Yasufumi Katanasaka
- Now with Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Yada, Japan (Y.K.)
| | - Kyung-Duk Min
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA (Y.Y., E.M.-Y., K.-D.M., N.C., A.H.P., H.O., K.H., H.D., M.A.E., M.S., Y.W., S.S., K.W.)
| | - Nicholas Chavkin
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA (Y.Y., E.M.-Y., K.-D.M., N.C., A.H.P., H.O., K.H., H.D., M.A.E., M.S., Y.W., S.S., K.W.)
| | - Ariel H. Polizio
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA (Y.Y., E.M.-Y., K.-D.M., N.C., A.H.P., H.O., K.H., H.D., M.A.E., M.S., Y.W., S.S., K.W.)
| | - Hayato Ogawa
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA (Y.Y., E.M.-Y., K.-D.M., N.C., A.H.P., H.O., K.H., H.D., M.A.E., M.S., Y.W., S.S., K.W.)
| | - Keita Horitani
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA (Y.Y., E.M.-Y., K.-D.M., N.C., A.H.P., H.O., K.H., H.D., M.A.E., M.S., Y.W., S.S., K.W.)
| | - Heather Doviak
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA (Y.Y., E.M.-Y., K.-D.M., N.C., A.H.P., H.O., K.H., H.D., M.A.E., M.S., Y.W., S.S., K.W.)
| | - Megan A. Evans
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA (Y.Y., E.M.-Y., K.-D.M., N.C., A.H.P., H.O., K.H., H.D., M.A.E., M.S., Y.W., S.S., K.W.)
| | - Miho Sano
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA (Y.Y., E.M.-Y., K.-D.M., N.C., A.H.P., H.O., K.H., H.D., M.A.E., M.S., Y.W., S.S., K.W.)
| | - Ying Wang
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA (Y.Y., E.M.-Y., K.-D.M., N.C., A.H.P., H.O., K.H., H.D., M.A.E., M.S., Y.W., S.S., K.W.)
- Department of Cardiology, Xinqiao Hospital, Army Medical University, Chongqing, China (Y.W.)
| | - Katharina Boroviak
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom (K.B., G.P., G.V., A.F.D.)
| | - George Philippos
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom (K.B., G.P., G.V., A.F.D.)
- Interfaculty Institute of Cell Biology, Eberhard Karls University of Tübingen, Germany (G.P.)
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge, United Kingdom (A.F.D., G.V., G.P.)
- Now with German Cancer Research Center (DKFZ), Heidelberg, Germany and Ruprecht Karl University of Heidelberg, Heidelberg, Germany (G.P.)
| | - Ana Filipa Domingues
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom (K.B., G.P., G.V., A.F.D.)
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge, United Kingdom (A.F.D., G.V., G.P.)
| | - George Vassiliou
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom (K.B., G.P., G.V., A.F.D.)
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge, United Kingdom (A.F.D., G.V., G.P.)
| | - Soichi Sano
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA (Y.Y., E.M.-Y., K.-D.M., N.C., A.H.P., H.O., K.H., H.D., M.A.E., M.S., Y.W., S.S., K.W.)
- Now with Department of Cardiology, Osaka City University Graduate School of Medicine, Japan (S.S.)
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA (Y.Y., E.M.-Y., K.-D.M., N.C., A.H.P., H.O., K.H., H.D., M.A.E., M.S., Y.W., S.S., K.W.)
- Now with Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Yada, Japan (Y.K.)
- Department of Cardiology, Xinqiao Hospital, Army Medical University, Chongqing, China (Y.W.)
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom (K.B., G.P., G.V., A.F.D.)
- Interfaculty Institute of Cell Biology, Eberhard Karls University of Tübingen, Germany (G.P.)
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge, United Kingdom (A.F.D., G.V., G.P.)
- Now with Department of Cardiology, Osaka City University Graduate School of Medicine, Japan (S.S.)
- Now with German Cancer Research Center (DKFZ), Heidelberg, Germany and Ruprecht Karl University of Heidelberg, Heidelberg, Germany (G.P.)
| |
Collapse
|