151
|
Zhu DD, Zheng LW, Duong PK, Cheah RH, Liu XY, Wong JR, Wang WJ, Tien Guan ST, Zheng XT, Chen P. Colorimetric microneedle patches for multiplexed transdermal detection of metabolites. Biosens Bioelectron 2022; 212:114412. [PMID: 35623253 DOI: 10.1016/j.bios.2022.114412] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/09/2022] [Accepted: 05/18/2022] [Indexed: 01/27/2023]
Abstract
Skin Interstitial Fluid (ISF) is an alternative source for biomarkers. Herein, a highly swellable microneedle patch (MNP) to rapidly extract ISF painlessly and bloodlessly is presented. The MNP is made of crosslinked methacrylated hyaluronic acid (MeHA) and dissolvable hyaluronic acid (HA) with the optimal balance of mechanical strength (0.6 N/MN) and absorption capability (16.22 μL in 20 min). Incorporated with wax-patterned and sensing-reagent-decorated test paper (TP) for multiplexed colorimetric detection of metabolites (glucose, lactate, cholesterol, and pH), this TP-MNP biosensor gives rapid color change in biomarker concentration-dependent manner based on specific enzymatic reactions, whereby allowing diagnosis by the naked eye or quantitative RGB analysis. Both the in vitro and in vivo experiments demonstrate the feasibility of TP-MNPs to detect multiple biomarkers in skin interstitial fluid within minutes. Such convenient and self-administrable profiling of metabolites shall be instrumental for home-based long-term monitoring and management of metabolic diseases.
Collapse
Affiliation(s)
- Dan Dan Zhu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457, Singapore
| | - Le Wen Zheng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457, Singapore
| | - Phan Khanh Duong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457, Singapore
| | - Reanne Hui Cheah
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457, Singapore
| | - Xin Yi Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457, Singapore
| | - Jun Ren Wong
- Singapore Institute of Technology, 138683, Singapore
| | - Wen Jun Wang
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng, 252059, PR China
| | | | - Xin Ting Zheng
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 138634, Singapore.
| | - Peng Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457, Singapore; Skin Research Institute of Singapore, 308232, Singapore; Lee Kong Chian School of Medicine, Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 636921, Singapore.
| |
Collapse
|
152
|
Kulkarni D, Damiri F, Rojekar S, Zehravi M, Ramproshad S, Dhoke D, Musale S, Mulani AA, Modak P, Paradhi R, Vitore J, Rahman MH, Berrada M, Giram PS, Cavalu S. Recent Advancements in Microneedle Technology for Multifaceted Biomedical Applications. Pharmaceutics 2022; 14:1097. [PMID: 35631683 PMCID: PMC9144002 DOI: 10.3390/pharmaceutics14051097] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/07/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Microneedle (MNs) technology is a recent advancement in biomedical science across the globe. The current limitations of drug delivery, like poor absorption, low bioavailability, inadequate skin permeation, and poor biodistribution, can be overcome by MN-based drug delivery. Nanotechnology made significant changes in fabrication techniques for microneedles (MNs) and design shifted from conventional to novel, using various types of natural and synthetic materials and their combinations. Nowadays, MNs technology has gained popularity worldwide in biomedical research and drug delivery technology due to its multifaceted and broad-spectrum applications. This review broadly discusses MN's types, fabrication methods, composition, characterization, applications, recent advancements, and global intellectual scenarios.
Collapse
Affiliation(s)
- Deepak Kulkarni
- Department of Pharmaceutics, Srinath College of Pharmacy, Bajajnagar, Aurangabad 431136, India;
| | - Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco; (F.D.); (M.B.)
| | - Satish Rojekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India;
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Alkharj 11942, Saudi Arabia;
| | - Sarker Ramproshad
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh;
| | - Dipali Dhoke
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India;
| | - Shubham Musale
- Department of Pharmaceutics, Dr. DY Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India; (S.M.); (A.A.M.); (P.M.); (R.P.)
| | - Ashiya A. Mulani
- Department of Pharmaceutics, Dr. DY Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India; (S.M.); (A.A.M.); (P.M.); (R.P.)
| | - Pranav Modak
- Department of Pharmaceutics, Dr. DY Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India; (S.M.); (A.A.M.); (P.M.); (R.P.)
| | - Roshani Paradhi
- Department of Pharmaceutics, Dr. DY Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India; (S.M.); (A.A.M.); (P.M.); (R.P.)
| | - Jyotsna Vitore
- National Institute of Pharmaceutical Education and Research, Ahmedabad 160062, India;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco; (F.D.); (M.B.)
| | - Prabhanjan S. Giram
- Department of Pharmaceutics, Dr. DY Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India; (S.M.); (A.A.M.); (P.M.); (R.P.)
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
153
|
Detamornrat U, McAlister E, Hutton ARJ, Larrañeta E, Donnelly RF. The Role of 3D Printing Technology in Microengineering of Microneedles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106392. [PMID: 35362226 DOI: 10.1002/smll.202106392] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Microneedles (MNs) are minimally invasive devices, which have gained extensive interest over the past decades in various fields including drug delivery, disease diagnosis, monitoring, and cosmetics. MN geometry and shape are key parameters that dictate performance and therapeutic efficacy, however, traditional fabrication methods, such as molding, may not be able to offer rapid design modifications. In this regard, the fabrication of MNs using 3D printing technology enables the rapid creation of complex MN prototypes with high accuracy and offers customizable MN devices with a desired shape and dimension. Moreover, 3D printing shows great potential in producing advanced transdermal drug delivery systems and medical devices by integrating MNs with a variety of technologies. This review aims to demonstrate the advantages of exploiting 3D printing technology as a new tool to microengineer MNs. Various 3D printing methods are introduced, and representative MNs manufactured by such approaches are highlighted in detail. The development of advanced MN devices is also included. Finally, clinical translation and future perspectives for the development of MNs using 3D printing are discussed.
Collapse
Affiliation(s)
- Usanee Detamornrat
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Emma McAlister
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Aaron R J Hutton
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| |
Collapse
|
154
|
Yang J, Yang J, Gong X, Zheng Y, Yi S, Cheng Y, Li Y, Liu B, Xie X, Yi C, Jiang L. Recent Progress in Microneedles-Mediated Diagnosis, Therapy, and Theranostic Systems. Adv Healthc Mater 2022; 11:e2102547. [PMID: 35034429 DOI: 10.1002/adhm.202102547] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/04/2022] [Indexed: 02/06/2023]
Abstract
Theranostic system combined diagnostic and therapeutic modalities is critical for the real-time monitoring of disease-related biomarkers and personalized therapy. Microneedles, as a multifunctional platform, are promising for transdermal diagnostics and drug delivery. They have shown attractive properties including painless skin penetration, easy self-administration, prominent therapeutic effects, and good biosafety. Herein, an overview of the microneedles-based diagnosis, therapies, and theranostic systems is given. Four microneedles-based detection methods are concluded based on the sensing mechanism: i) electrochemistry, ii) fluorometric, iii) colorimetric, and iv) Raman methods. Additionally, robust microneedles are suitable for implantable drug delivery. Microneedles-assisted transdermal drug delivery can be primarily classified as passive, active, and responsive drug release, based on the release mechanisms. Microneedles-assisted oral and implantable drug delivery mechanisms are also presented in this review. Furthermore, the key frontier developments in microneedles-mediated theranostic systems as the major selling points are emphasized in this review. These systems are classified into open-loop and closed-loop theranostic systems based on the indirectness and directness of feedback between the transdermal diagnosis and therapy, respectively. Finally, conclusions and future perspectives for next-generation microneedles-mediated theranostic systems are also discussed. Taken together, microneedle-based systems are promising as the new avenue for diagnosis, therapy, and disease-specific closed-loop theranostic applications.
Collapse
Affiliation(s)
- Jian Yang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Jingbo Yang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Xia Gong
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Ying Zheng
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Shengzhu Yi
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Yanxiang Cheng
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Yanjun Li
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Bin Liu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies School of Electronics and Information Technology Sun Yat‐Sen University Guangzhou 510006 P. R. China
| | - Changqing Yi
- Research Institute of Sun Yat‐Sen University in Shenzhen Shenzhen 518057 P. R. China
| | - Lelun Jiang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| |
Collapse
|
155
|
|
156
|
Lu H, Zada S, Yang L, Dong H. Microneedle-Based Device for Biological Analysis. Front Bioeng Biotechnol 2022; 10:851134. [PMID: 35528208 PMCID: PMC9068878 DOI: 10.3389/fbioe.2022.851134] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/11/2022] [Indexed: 12/14/2022] Open
Abstract
The collection and analysis of biological samples are an effective means of disease diagnosis and treatment. Blood sampling is a traditional approach in biological analysis. However, the blood sampling approach inevitably relies on invasive techniques and is usually performed by a professional. The microneedle (MN)-based devices have gained increasing attention due to their noninvasive manner compared to the traditional blood-based analysis method. In the present review, we introduce the materials for fabrication of MNs. We categorize MN-based devices based on four classes: MNs for transdermal sampling, biomarker capture, detecting or monitoring analytes, and bio-signal recording. Their design strategies and corresponding application are highlighted and discussed in detail. Finally, future perspectives of MN-based devices are discussed.
Collapse
Affiliation(s)
- Huiting Lu
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, Beijing, China
| | - Shah Zada
- Marshall Laboratory of Biomedical Engineering Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Lingzhi Yang
- Marshall Laboratory of Biomedical Engineering Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Haifeng Dong
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, Beijing, China
- Marshall Laboratory of Biomedical Engineering Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
157
|
Xu N, Zhang M, Xu W, Ling G, Yu J, Zhang P. Swellable PVA/PVP hydrogel microneedle patches for the extraction of interstitial skin fluid toward minimally invasive monitoring of blood glucose level. Analyst 2022; 147:1478-1491. [PMID: 35285841 DOI: 10.1039/d1an02288a] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Interstitial skin fluid (ISF) is an emerging alternative source of blood samples that has attracted great interest from researchers. It is a very promising way to use microneedle patches for extracting ISF. However, the recovery of ISF still faces great challenges, such as long extraction time and low extraction volume, which may affect the analysis of biomarkers. Traditional centrifugation methods cannot completely recover ISF, which leads to inaccuracy in ISF detection. In this paper, the prepared polyvinyl alcohol/polyvinylpyrrolidone (PVA/PVP) microneedle patches had the ability to insert into the skin in a dry state; at the same time, the microneedle patches had good swelling properties and could extract ISF in a short time without any additional devices. Due to the thermal degradation of PVA, the way of gentle heating was used to recover ISF, which could greatly improve the accuracy of detection. By comparing the D-glucose content assay kit with the blood glucose concentration of rats detected using a commercial glucometer, the detection accuracy of the microneedle patches was verified. The microneedle patches can be used to sample ISF and analyze the level of biomarkers in ISF, and are expected to provide a basis for the prevention and diagnosis of clinical diseases in the future.
Collapse
Affiliation(s)
- Na Xu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Manyue Zhang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Wenxin Xu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Guixia Ling
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Jia Yu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
158
|
Rajput A, Kulkarni M, Deshmukh P, Pingale P, Garkal A, Gandhi S, Butani S. A Key Role by Polymers in Microneedle Technology: A New Era. Drug Dev Ind Pharm 2022; 47:1713-1732. [PMID: 35332822 DOI: 10.1080/03639045.2022.2058531] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The skin serves as the major organ in the targeted transdermal drug delivery system for many compounds. The microneedle acts as a novel technique to deliver drugs across the different layers of the skin, including the major barrier stratum corneum, in an effective manner. A microneedle array patch comprises dozens to hundreds of micron-sized needles with numerous structures and advantages resulting from their special and smart designs. Microneedle approach is much more advanced than conventional transdermal delivery pathways due to several benefits like minimally invasive, painless, self-administrable, and enhanced patient compliance. The microneedles are classified into hollow, solid, coated, dissolving, and hydrogel. Several polymers are used to fabricate microneedle, such as natural, semi-synthetic, synthetic, biodegradable, and swellable polymers. Researchers in the preparation of microneedles also explored the combinations of polymers. The safety of the polymer used in microneedle is a crucial aspect to prevent toxicity in vivo. Thus, this review aims to provide a detailed review of microneedles and mainly focus on the various polymers used in the fabrication of microneedles.
Collapse
Affiliation(s)
- Amarjitsing Rajput
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth Deemed to Be University, Paud Road, Erandwane, Pune-411038, Maharashtra, India.,Department of Pharmaceutics and Pharmaceutical Technology, Institute Pharmacy, Nirma University, S.G. Highway, Ahmedabad-382481, Gujarat, India
| | - Madhur Kulkarni
- SCES's Indira College of Pharmacy, New Pune Mumbai Highway, Tathwade-411033, Pune, Maharashtra, India
| | - Prashant Deshmukh
- Dr. Rajendra Gode College of Pharmacy, Malkapur, Buldana- 443101, Maharashtra, India
| | - Prashant Pingale
- Department of Pharmaceutics, GES's Sir Dr. M. S. Gosavi College of Pharmaceutical Education and Research, Nashik-422005, Maharashtra, India
| | - Atul Garkal
- Department of Pharmaceutics and Pharmaceutical Technology, Institute Pharmacy, Nirma University, S.G. Highway, Ahmedabad-382481, Gujarat, India
| | - Sahil Gandhi
- Department of Pharmaceutics, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| | - Shital Butani
- Department of Pharmaceutics and Pharmaceutical Technology, Institute Pharmacy, Nirma University, S.G. Highway, Ahmedabad-382481, Gujarat, India
| |
Collapse
|
159
|
Qiao Y, Du J, Ge R, Lu H, Wu C, Li J, Yang S, Zada S, Dong H, Zhang X. A Sample and Detection Microneedle Patch for Psoriasis MicroRNA Biomarker Analysis in Interstitial Fluid. Anal Chem 2022; 94:5538-5545. [PMID: 35315641 DOI: 10.1021/acs.analchem.1c04401] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Skin interstitial fluid (ISF) containing a great variety of molecular biomarkers derived from cells and subcutaneous blood capillaries has recently emerged as a clinically potential component for early diagnosis of a wide range of diseases; however, the minimally invasive sampling and detection of cell-free biomarkers in ISF is still a key challenge. Herein, we developed microneedles (MNs) that consist of gelatin methacryloyl (GelMA) and graphene oxide (GO) for the enrichment and sensitive detection of multiple microRNA (miRNA) biomarkers from skin ISF. The GO-GelMA MNs exhibited robust mechanical properties, fast sampling kinetics, and large swelling capacity, which enabled collecting ISF volume high to 21.34 μL in 30 min, facilitating effective miRNA analysis. It preliminarily realized the sensitive detection of three types of psoriasis-related miRNAs biomarkers either on the patch itself or in solution after release from the hydrogel by combining catalytic hairpin assembly signal amplification reaction. The automated and minimally invasive ISF miRNA detection technology of GO-GelMA MNs has great potential to monitor cell-free clinically informative biomarkers for personalized diagnosis and prognosis.
Collapse
Affiliation(s)
- Yuchun Qiao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Jinya Du
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Rujiao Ge
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Huiting Lu
- Department of Chemistry, School of Chemistry and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Chaoxiong Wu
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, China
| | - Jinze Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Shuangshuang Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Shah Zada
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China.,Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, China
| | - Xueji Zhang
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, China
| |
Collapse
|
160
|
Babity S, Couture F, Campos EVR, Hedtrich S, Hagen R, Fehr D, Bonmarin M, Brambilla D. A Naked Eye-Invisible Ratiometric Fluorescent Microneedle Tattoo for Real-Time Monitoring of Inflammatory Skin Conditions. Adv Healthc Mater 2022; 11:e2102070. [PMID: 34921529 DOI: 10.1002/adhm.202102070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/13/2021] [Indexed: 01/05/2023]
Abstract
The field of portable healthcare monitoring devices has an urgent need for the development of real-time, noninvasive sensing and detection methods for various physiological analytes. Currently, transdermal sensing techniques are severely limited in scope (i.e., measurement of heart rate or sweat composition), or else tend to be invasive, often needing to be performed in a clinical setting. This study proposes a minimally invasive alternative strategy, consisting of using dissolving polymeric microneedles to deliver naked eye-invisible functional fluorescent ratiometric microneedle tattoos directly to the skin for real-time monitoring and quantification of physiological and pathological parameters. Reactive oxygen species are overexpressed in the skin in association with various pathological conditions. Here, one demonstrates for the first time the microneedle-based delivery to the skin of active fluorescent sensors in the form of an invisible, ratiometric microneedle tattoo capable of sensing reactive oxygen species in a reconstructed human-based skin disease model, as well as an in vivo model of UV-induced dermal inflammation. One also elaborates a universal ratiometric quantification concept coupled with a custom-built, multiwavelength portable fluorescence detection system. Fully realized, this approach presents an opportunity for the minimally invasive monitoring of a broad range of physiological parameters through the skin.
Collapse
Affiliation(s)
- Samuel Babity
- Faculté de Pharmacie Université de Montréal C.P. 6128, Succursale Centre‐ville, Montréal Québec H3C 3J7 Canada
| | - Frédéric Couture
- TransBIOTech 201 Monseigneur‐Bourget Lévis Québec G6V 6Z9 Canada
- Nutraceuticals and Functional Foods Institute (INAF) Université Laval, Québec Québec G1K 7P4 Canada
- Centre intégré de santé et de services sociaux de Chaudière‐Appalaches Lévis Québec G6E 3E2 Canada
| | - Estefânia V. R. Campos
- Faculty of Pharmaceutical Sciences University of British Columbia 2405 Wesbrook Mall Vancouver British Columbia V6T 1Z3 Canada
- Human and Natural Sciences Center Federal University of ABC Santo Andre SP 09210‐580 Brazil
| | - Sarah Hedtrich
- Faculty of Pharmaceutical Sciences University of British Columbia 2405 Wesbrook Mall Vancouver British Columbia V6T 1Z3 Canada
| | - Raphael Hagen
- School of Engineering Zurich University of Applied Sciences Technikumstrasse 9 Winterthur 8400 Switzerland
| | - Daniel Fehr
- School of Engineering Zurich University of Applied Sciences Technikumstrasse 9 Winterthur 8400 Switzerland
| | - Mathias Bonmarin
- School of Engineering Zurich University of Applied Sciences Technikumstrasse 9 Winterthur 8400 Switzerland
| | - Davide Brambilla
- Faculté de Pharmacie Université de Montréal C.P. 6128, Succursale Centre‐ville, Montréal Québec H3C 3J7 Canada
| |
Collapse
|
161
|
Ma CJ, He Y, Jin X, Zhang Y, Zhang X, Li Y, Xu M, Liu K, Yao Y, Lu F. Light-regulated nitric oxide release from hydrogel-forming microneedles integrated with graphene oxide for biofilm-infected-wound healing. BIOMATERIALS ADVANCES 2022; 134:112555. [PMID: 35523645 DOI: 10.1016/j.msec.2021.112555] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/03/2021] [Accepted: 11/13/2021] [Indexed: 06/14/2023]
Abstract
Nitric oxide (NO) is an antimicrobial agent that possesses tissue-regenerating ability. However, it also has a short half-life and storage difficulties as disadvantages to its application. To overcome these limitations, a new type of hydrogel-forming microneedle (HFMN) is proposed that can be fabricated by integrating polyvinyl alcohol (PVA) hydrogels (a highly biocompatible drug carrier) with S-nitrosoglutathione (GSNO, a NO releasing agent), and graphene oxide (GO) at freezing temperatures (GO-GNSO-HFMNs). Results show that GSNO-GO-HFMNs release NO gradually with increasing temperature and, more importantly, can be warmed up by mild infrared irradiation to accelerate subcutaneous release of NO from the heat-sensitive GSNO. Biofilm-infected wounds often present obstacles to drug delivery, whereas the microneedle (MN) structure disrupts the biofilm and directly releases NO into the wound. This inhibits bacterial growth and increases tissue regeneration while shortening the healing time of biofilm-infected wounds. Therefore, this type of patch can be regarded as a novel, heat-sensitive, light-regulated, NO-releasing MN patch.
Collapse
Affiliation(s)
- Chi Juan Ma
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yunfan He
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoxuan Jin
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yuchen Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiangdong Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yibao Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Mimi Xu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Kaiyang Liu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yao Yao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
162
|
Zhang W, Zhang W, Li C, Zhang J, Qin L, Lai Y. Recent Advances of Microneedles and Their Application in Disease Treatment. Int J Mol Sci 2022; 23:2401. [PMID: 35269545 PMCID: PMC8909978 DOI: 10.3390/ijms23052401] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/21/2022] Open
Abstract
For decades, scientists have been doing a lot of research and exploration to find effective long-term analgesic and/or disease-modifying treatments. Microneedles (MNs) are a simple, effective, and painless transdermal drug delivery technology that has emerged in recent years, and exhibits great promise for realizing intelligent drug delivery. With the development of materials science and fabrication technology, the MN transdermal drug delivery technology has been applied and popularized in more and more fields, including chronic illnesses such as arthritis or diabetes, cancer, dermatocosmetology, family planning, and epidemic disease prevention, and has made fruitful achievements. This paper mainly reviews the latest research status of MNs and their fabrication methodology, and summarizes the application of MNs in the treatment of various diseases, as well as the potential to use nanotechnology to develop more intelligent MNs-based drug delivery systems.
Collapse
Affiliation(s)
- Wenjing Zhang
- Center for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (W.Z.); (W.Z.); (C.L.); (J.Z.); (L.Q.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhang
- Center for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (W.Z.); (W.Z.); (C.L.); (J.Z.); (L.Q.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cairong Li
- Center for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (W.Z.); (W.Z.); (C.L.); (J.Z.); (L.Q.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhua Zhang
- Center for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (W.Z.); (W.Z.); (C.L.); (J.Z.); (L.Q.)
| | - Ling Qin
- Center for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (W.Z.); (W.Z.); (C.L.); (J.Z.); (L.Q.)
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong 999077, China
- CAS-HK Joint Lab of Biomaterials, Shenzhen 518055, China
| | - Yuxiao Lai
- Center for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (W.Z.); (W.Z.); (C.L.); (J.Z.); (L.Q.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS-HK Joint Lab of Biomaterials, Shenzhen 518055, China
- Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
163
|
Zhang P, Zhu J, Zhao B, Xu S, Wang L, Luo X. Wearable transdermal microneedle patch based on photonic crystal hydrogel for glucose monitoring. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
164
|
Bao L, Park J, Bonfante G, Kim B. Recent advances in porous microneedles: materials, fabrication, and transdermal applications. Drug Deliv Transl Res 2022; 12:395-414. [PMID: 34415566 PMCID: PMC8724174 DOI: 10.1007/s13346-021-01045-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2021] [Indexed: 12/20/2022]
Abstract
In the past two decades, microneedles (MNs), as a painless and simple drug delivery system, have received increasing attention for various biomedical applications such as transdermal drug delivery, interstitial fluid (ISF) extraction, and biosensing. Among the various types of MNs, porous MNs have been recently researched owing to their distinctive and unique characteristics, where porous structures inside MNs with continuous nano- or micro-sized pores can transport drugs or biofluids by capillary action. In addition, a wide range of materials, including non-polymers and polymers, were researched and used to form the porous structures of porous MNs. Adjustable porosity by different fabrication methods enables the achievement of sufficient mechanical strength by optimising fluid flows inside MNs. Moreover, biocompatible porous MNs integrated with biosensors can offer portable detection and rapid measurement of biomarkers in a minimally invasive manner. This review focuses on several aspects of current porous MN technology, including material selection, fabrication processes, biomedical applications, primarily covering transdermal drug delivery, ISF extraction, and biosensing, along with future prospects as well as challenges.
Collapse
Affiliation(s)
- Leilei Bao
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Jongho Park
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | | | - Beomjoon Kim
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
- LIMMS/CNRS-IIS UMI 2820, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
165
|
Tiwari N, Chatterjee S, Kaswan K, Chung JH, Fan KP, Lin ZH. Recent advancements in sampling, power management strategies and development in applications for non-invasive wearable electrochemical sensors. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
166
|
Shao S, Wang S, Ren L, Wang J, Chen X, Pi H, Sun Y, Dong C, Weng L, Gao Y, Wang L. Layer-by-Layer Assembly of Lipid Nanobubbles on Microneedles for Ultrasound-Assisted Transdermal Drug Delivery. ACS APPLIED BIO MATERIALS 2022; 5:562-569. [PMID: 35021618 DOI: 10.1021/acsabm.1c01049] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Microneedles as a typical device for transdermal drug delivery provide an alternative route for drug administration with minimal digestion by organs and better patient compliance. However, diffusion of passively released drug molecules within the skin tissue mainly depends on the interstitial fluid, which may be affected by different physiological conditions of individuals. Herein, we propose a nanobubble-modified microneedle patch for ultrasound-assisted drug delivery, which provides additional driving force for penetration and diffusion of the drug molecules. Layer-by-layer self-assembled drug-containing nanobubbles on the surfaces of microneedles trigger active drug release upon application of ultrasound. The concomitant microstreaming caused by cavitation effects facilitates the penetration and diffusion of drug molecules in the gelatin gel model and the ex vivo porcine skin model. The proposed drug delivery strategy holds great promise for rapid transdermal drug delivery with enhanced penetration and diffusion of the released drugs.
Collapse
Affiliation(s)
- Shengpei Shao
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Siyu Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lili Ren
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jiahui Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xinmeng Chen
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Hequn Pi
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yongjing Sun
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Chen Dong
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lixing Weng
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yu Gao
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
167
|
Chi Y, Huang Y, Kang Y, Dai G, Liu Z, Xu K, Zhong W. The effects of molecular weight of hyaluronic acid on transdermal delivery efficiencies of dissolving microneedles. Eur J Pharm Sci 2022; 168:106075. [PMID: 34813921 DOI: 10.1016/j.ejps.2021.106075] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/03/2021] [Accepted: 11/14/2021] [Indexed: 12/24/2022]
Abstract
Hyaluronic acid (HA) is widely adopted to fabricate dissolving microneedles for transdermal drug delivery applications, yet the structure-activity relationship between molecular weight of HA and transdermal delivery efficiency of microneedles (HA-MNs) has not been fully explored, particularly in the transdermal delivery of small molecule drugs. Herein, we report the fabrication of three types of HA-MNs of various molecular weights (10k, 74k and 290k Da), which incorporate rhodamine B as the model drug. We assess the influence of molecular weight of HA on the mechanical properties of HA-MNs and transdermal delivery of rhodamine B in vitro and in vivo. The mechanical strength of all types of HA-MNs exceeds the minimal force requirement for skin penetration, with the highest values of compression force found in 10k-HA-MN. Interestingly, 74k-HA-MN that owns a medium mechanical strength, exhibits the highest efficiency in transdermal delivery of rhodamine B in a porcine skin and a Franz cell transdermal model. Further in vivo fluorescence imaging of HA-MN-treated mice reveals a tunable transdermal delivery of rhodamine B, which is controllable according to the molecular weight of HA. Importantly, 74k-HA-MN treatment demonstrates the highest initial delivering amount and longest retention time of rhodamine B in mice. In addition, histological examinations of puncture sites of the skin tissues confirm the complete recovery of skin and excellent biocompatibility of HA-MNs.
Collapse
Affiliation(s)
- Yuquan Chi
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yanping Huang
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yixin Kang
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Guoru Dai
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Ziqi Liu
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Keming Xu
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China.
| | - Wenying Zhong
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
168
|
Li J, Lu H, Wang Y, Yang S, Zhang Y, Wei W, Qiao Y, Dai W, Ge R, Dong H. Interstitial Fluid Biomarkers' Minimally Invasive Monitoring Using Microneedle Sensor Arrays. Anal Chem 2021; 94:968-974. [PMID: 34935347 DOI: 10.1021/acs.analchem.1c03827] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Skin interstitial fluid (ISF) is a biofluid with information-rich biomarkers for disease diagnosis and prognosis. Microneedle (MN) integration of sampling and instant biomarker readout hold great potential in health status monitoring and point-of-care testing (POCT). The present work describes an attractive MN sensor array for minimally invasive monitoring of ISF microRNA (miRNA) and Cu2+. The MN array is made of methacrylated gelatin (GelMA) and methacrylated hyaluronic acid (MeHA), and a further divisionally encapsulated miRNA and Cu2+ detection system, and is cross-linked through blue-light irradiation. The MN patch displays good mechanical properties that enable withstanding more than 0.4 N per needle, and exhibits a high swelling ratio of 700% that facilitates timely extraction of sufficient ISF for biomarker analysis. For proof-of-concept, it realizes detection of miRNAs and Cu2+ efficiently and quantitatively in an agarose skin and fresh porcine cadaver skin model. Given the good sampling and in situ monitoring ability, the MN array holds great promise for skin ISF-based applications.
Collapse
Affiliation(s)
- Jinze Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Huiting Lu
- Department of Chemistry, School of Chemistry & Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Yeyu Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Shuangshuang Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Yufan Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Wei Wei
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - YuChun Qiao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Wenhao Dai
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Rujiao Ge
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, China.,Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University, Guangdong 518060, China
| |
Collapse
|
169
|
Liu X, Li R, Yuan X, Yang L, Luo J, Jiang X, Gou Z, Li B, Jiang X, Gou M. Fast Customization of Microneedle Arrays by Static Optical Projection Lithography. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60522-60530. [PMID: 34889089 DOI: 10.1021/acsami.1c21489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Customized microneedle arrays (CMNAs) hold great promise for precise transdermal delivery in a minimally invasive manner. Currently, the fast customization of microneedle arrays remains a great challenge. Here, we show a static optical projection lithography (SOPL) technology for fast 3D printing CMNAs. In this technology, the digital light is statically projected to induce the spatial polymerization of monomer solutions, and therefore microneedle formation can be precisely controlled by the intensity distribution of the projected light. The obtained CMNAs do not have the stair-like surface and layer-by-layer structure that are associated with the common 3D-printing technologies. This method enables fast fabrication of CMNAs with designed shape, size, and distribution in seconds without mechanical motion system. Up-conversion nanoparticles (UCNPs) were delivered into skin by the CMNAs, to form a personalized dot matrix for in vivo information storage. Under the irradiation of near-infrared (NIR) light, the UCNPs in skin displayed a visible dot matrix, presenting information encoded in the structure of CMNAs. This work demonstrates a SOPL technology for rapidly customizing high-quality microneedle arrays and a CMNA-mediated in vivo information storage strategy.
Collapse
Affiliation(s)
- Xuan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Rong Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xin Yuan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Ling Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Jing Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xuebing Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Zhiyuan Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Bo Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
170
|
Amarnani R, Shende P. Microneedles in diagnostic, treatment and theranostics: An advancement in minimally-invasive delivery system. Biomed Microdevices 2021; 24:4. [PMID: 34878589 PMCID: PMC8651504 DOI: 10.1007/s10544-021-00604-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 12/31/2022]
Abstract
Microneedle (MN) technology plays an important role in biomedical engineering for their less intrusive access to the skin due to minimally or painless penetration, enhancement of drug permeability, improvement of detectability of biomolecules in the epidermal and dermal layers with therapeutic efficacy and safety. Furthermore, MNs possess some major disadvantages like difficulty in scale-up technique, variation in drug delivery pattern with respect to external environment of skin, blockage of arrays due to dermal tissues, induction of inflammation or allergy at the site of administration and restriction of dosing range based on the size of active. Additionally, microneedle acts as a transdermal theranostic device for monitoring the physiological parameters in clinical studies. The investigation of drug transfer mechanisms through microneedles includes coat and poke, poke and flow, poke and patch and poke and release method. This review article discusses different categories of microneedles with fabrication methods such as photolithography, laser cutting, 3D printing, etc. in therapeutic applications for treating cancer, diabetes, arthritis, obesity, neurological disorders, and glaucoma. Biosensing devices based on microneedles may detect target analytes directly in the interstitial fluid by penetrating the stratum corneum of the skin and thus microneedles-based devices can be considered as a single tool in diagnostic sensing and therapeutic administration of drugs inside the body. Moreover, the clinical status and commercial availability of microneedle devices are discussed in this review article to offer new insights to researchers and scientists. Continuous monitoring particularly for the determination of blood glucose concentration is one of the most important requirements for the development of next-generation healthcare devices. The aim of this review article focuses mainly on the theranostic applications of microneedles in various medical conditions such as malaria, glaucoma, cancer, etc.
Collapse
Affiliation(s)
- Ragini Amarnani
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
171
|
Leng F, Zheng M, Xu C. 3D-printed microneedles with open groove channels for liquid extraction. EXPLORATION (BEIJING, CHINA) 2021; 1:20210109. [PMID: 37323692 PMCID: PMC10190842 DOI: 10.1002/exp.20210109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/07/2021] [Indexed: 06/17/2023]
Abstract
Microneedles (MNs) offer a simple and minimally invasive way to sample skin interstitial fluid for bioanalysis. Through the integration with portable or wearable sensing devices, it allows us to get qualitative information about some biomarkers in situ. This work is to show a MN platform with open groove channels that are manufactured using photopolymerization 3D printing. The grooves on the needle surface permit that liquid flows from the tips to the base under the influence of capillary force. The ultimate MN device can penetrate skin and tissues and sample liquid in the skin model. By taking the glucose as the model biomarker, we demonstrate that the biomarkers in the extracted liquid can be analyzed in situ by the commercial test strips attached to the back.
Collapse
Affiliation(s)
- Fang Leng
- Department of Biomedical EngineeringCity University of Hong KongKowloonHong Kong SARP. R. China
| | - Mengjia Zheng
- Department of Biomedical EngineeringCity University of Hong KongKowloonHong Kong SARP. R. China
| | - Chenjie Xu
- Department of Biomedical EngineeringCity University of Hong KongKowloonHong Kong SARP. R. China
| |
Collapse
|
172
|
He R, Liu H, Fang T, Niu Y, Zhang H, Han F, Gao B, Li F, Xu F. A Colorimetric Dermal Tattoo Biosensor Fabricated by Microneedle Patch for Multiplexed Detection of Health-Related Biomarkers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2103030. [PMID: 34719884 PMCID: PMC8693053 DOI: 10.1002/advs.202103030] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 05/21/2023]
Abstract
Detection of biomarkers associated with body conditions provides in-depth healthcare information and benefits to disease management, where the key challenge is to develop a minimally invasive platform with the ability to directly detect multiple biomarkers in body fluid. Dermal tattoo biosensor holds the potential to simultaneously detect multiple health-related biomarkers in skin interstitial fluid because of the features of minimal invasion, easy operation, and equipment-free result reading. Herein, a colorimetric dermal tattoo biosensor fabricated by a four-area segmented microneedle patch is developed for multiplexed detection of health-related biomarkers. The biosensor exhibits color changes in response to the change of biomarker concentration (i.e., pH, glucose, uric acid, and temperature), which can be directly read by naked eyes or captured by a camera for semi-quantitative measurement. It is demonstrated that the colorimetric dermal tattoo biosensor can simultaneously detect multiple biomarkers in vitro, ex vivo, and in vivo, and monitor the changes of the biomarker concentration for at least 4 days, showing its great potential for long-term health monitoring.
Collapse
Affiliation(s)
- Rongyan He
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationXi'an Jiaotong University School of Life Science and TechnologyXi'an710049China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049China
| | - Hao Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationXi'an Jiaotong University School of Life Science and TechnologyXi'an710049China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049China
| | - Tianshu Fang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationXi'an Jiaotong University School of Life Science and TechnologyXi'an710049China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049China
| | - Yan Niu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationXi'an Jiaotong University School of Life Science and TechnologyXi'an710049China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049China
| | - Huiqing Zhang
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049China
- Key Laboratory of Thermo‐Fluid Science and Engineering of Ministry of EducationSchool of Energy & Power EngineeringXi'an Jiaotong UniversityXi'an710049China
| | - Fei Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationXi'an Jiaotong University School of Life Science and TechnologyXi'an710049China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049China
| | - Bin Gao
- Department of EndocrinologyTangdu HospitalAir Force Military Medical UniversityXi'an710038China
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationXi'an Jiaotong University School of Life Science and TechnologyXi'an710049China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationXi'an Jiaotong University School of Life Science and TechnologyXi'an710049China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049China
| |
Collapse
|
173
|
Gwak MA, Hong BM, Seok JM, Park SA, Park WH. Effect of tannic acid on the mechanical and adhesive properties of catechol-modified hyaluronic acid hydrogels. Int J Biol Macromol 2021; 191:699-705. [PMID: 34582911 DOI: 10.1016/j.ijbiomac.2021.09.123] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/17/2021] [Accepted: 09/18/2021] [Indexed: 12/15/2022]
Abstract
Hyaluronic acid (HA) is applied in various fields, including pharmaceutical science, owing to its favorable biological properties such as moisture retention, non-toxicity, biodegradability, biocompatibility and biodegradability. In particular, many studies have aimed at its application in the form of a hydrogel. However, the applications of HA hydrogels are limited owing to their poor mechanical properties. In this study, an HA-catechol conjugate (HA-Cat) was synthesized by reacting the HA polymer with dopamine to improve its adhesion to various substrates. The HA-Cat hydrogel was prepared via oxidative crosslinking using a small amount of NaIO4 as the oxidant, and the hydrogel formation was investigated by rheological and mechanical studies. Further, the effect of tannic acid (TA) on the adhesive strength and compressive strength of the HA-Cat/TA hydrogels was examined according to the amount of NaIO4 used for crosslinking and the TA contents. Both the adhesive and compressive properties of the HA-Cat hydrogels were improved with the addition of TA. The HA-based hydrogels containing TA have great potential as cost-effective and biocompatible medical adhesives.
Collapse
Affiliation(s)
- Min A Gwak
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Bo Min Hong
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Ji Min Seok
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Daejeon 34103, South Korea
| | - Su A Park
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Daejeon 34103, South Korea
| | - Won Ho Park
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
174
|
Zhang XP, Zhang BL, Chen BZ, Zhao ZQ, Fei WM, Cui Y, Guo XD. Dissolving microneedle rollers for rapid transdermal drug delivery. Drug Deliv Transl Res 2021; 12:459-471. [PMID: 34743303 DOI: 10.1007/s13346-021-01048-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2021] [Indexed: 10/19/2022]
Abstract
Dissolving microneedle patch (DMNP) is a minimally invasive and painless self-administration device. However, due to skin deformation, it is difficult to apply it on the large areas of skin or curved skin as the patch size increased for DMNP. Here, we propose a polyvinyl alcohol (PVA)-based dissolving microneedle roller (DMNR) device that can be used for delivering drugs rapidly on the large surface areas or curved skin and does not need to be attached on the skin all the time during drug delivery. The hypoglycemic effect of insulin-loaded DMNRs for transdermal delivery of insulin was studied on the type 1 diabetic rat models. It was found that the insulin-loaded DMNR has an immediate and effective hypoglycemic effect that the blood glucose level reduced below to 50% of original blood glucose at 1 h after DMNRs administrated.
Collapse
Affiliation(s)
- Xiao Peng Zhang
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Bao Li Zhang
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Bo Zhi Chen
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Ze Qiang Zhao
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Wen Min Fei
- Department of Dermatology, China-Japan Friendship Hospital, East Street Cherry Park, Chaoyang District, Beijing, 100029, People's Republic of China.,Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital, East Street Cherry Park, Chaoyang District, Beijing, 100029, People's Republic of China. .,Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.
| | - Xin Dong Guo
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
175
|
Diagnostic and drug release systems based on microneedle arrays in breast cancer therapy. J Control Release 2021; 338:341-357. [PMID: 34428480 DOI: 10.1016/j.jconrel.2021.08.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/22/2022]
Abstract
Microneedle arrays have recently received much attention as cancer detection and treatment platforms, because invasive injections and detection of the biopsy are not needed, and drug metabolism by the liver, as well as adverse effects of systemic drug administration, are diminished. Microneedles have been used for diagnosis, vaccination, and in targeted drug delivery of breast cancer. In this review, we summarize the recent progress in diagnosis and targeted drug delivery for breast cancer treatment, using microneedle arrays to deliver active molecules through the skin. The results not only suggest that health and well-being of patients are improved, but also that microneedle arrays can deliver anticancer compounds in a relatively noninvasive manner, based on body weight, breast tumor size, and circulation time of the drug. Moreover, microneedles could allow simultaneous loading of multiple drugs and enable controlled release, thus effectively optimizing or preventing drug-drug interactions. This review is designed to encourage the use of microneedles for diagnosis and treatment of breast cancer, by describing general properties of microneedles, materials used for construction, mechanism of action, and principal benefits. Ongoing challenges and future perspectives for the application of microneedle array systems in breast cancer detection and treatment are highlighted.
Collapse
|
176
|
Chen J, Liu X, Liu S, He Z, Yu S, Ruan Z, Jin N. Fabrication and characterization of dissolving microneedles for transdermal drug delivery of allopurinol. Drug Dev Ind Pharm 2021; 47:1578-1586. [PMID: 35007175 DOI: 10.1080/03639045.2022.2027959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Allopurinol (AP) is the first line drug in treating hyperuricemia and gout in clinical by oral drug delivery, which is associated with severe adverse effects and the hepatic first-pass effect. Herein, we first proposed AP encapsulated dissolving microneedles (DMNs) for transdermal drug delivery to realize the sustained drug release and avoid the hepatic first-pass effect, which will help to reduce the adverse effects and improve the bioavailability of AP. DMNs were fabricated by a suspension solution casting method with precisely controlled dose. They had sufficient mechanical strength to penetrate through the skin and resulted in the formation of hundreds of micropores in skin. The results of in vitro and ex vivo release experiments demonstrated that the release profile of DMNs was independent with the dose of AP, and they indeed had much higher drug delivery efficiency (DDE) than the equal amount of AP in solutions. In vivo DDE reached to 38.9% within 1 h, and the drug residual can be served as a drug reservoir for sustained drug release. The result of pharmacodynamic study further confirmed that the sustained release and the anti-hyperuricemia effect of DMNs encapsulating AP were achieved. Moreover, transepidermal water loss significantly increased to 49.50 ± 3.82 g/m2·h after the application of DMNs and returned to normal levels (12.25 ± 0.21 g/m2·h) after 8 h, indicating that the DMNs were well tolerated. These results suggest that transdermal drug delivery of AP by using DMNs is an efficient and safe alternative to currently available routes of administration.
Collapse
Affiliation(s)
- Jianmin Chen
- School of Pharmacy and Medical Technology, Putian University, Putian, China.,Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Putian, China
| | - Xinying Liu
- School of Pharmacy and Medical Technology, Putian University, Putian, China
| | - Siwan Liu
- School of Pharmacy and Medical Technology, Putian University, Putian, China
| | - Zemin He
- School of Pharmacy and Medical Technology, Putian University, Putian, China
| | - Sijin Yu
- School of Pharmacy and Medical Technology, Putian University, Putian, China
| | - Zhipeng Ruan
- School of Pharmacy and Medical Technology, Putian University, Putian, China.,Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Putian, China
| | - Nan Jin
- School of Pharmacy and Medical Technology, Putian University, Putian, China.,Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Putian, China
| |
Collapse
|
177
|
Tang Y, Li S, Hu L, Sun X, Zhang B, Ji W, Ma L, Qian W, Kang A, Zhu D. Hybrid Poly(AMPS-CS)-Au Microneedle Arrays to Enrich Metabolites from Skin for Early Disease Diagnosis. Adv Healthc Mater 2021; 10:e2100764. [PMID: 34028989 DOI: 10.1002/adhm.202100764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Indexed: 12/15/2022]
Abstract
Recently, some metabolites in skin interstitial fluid (SIF) have become emerging re×sources for early disease diagnosis. However, their low level in SIF and difficulty to sampling are the biggest obstacle to further potential application. Here, a swellable microneedle array patch (MNAP) with high mechanical strength is presented, and the rapid enrichment of positively charged metabolites is achieved. The MNAP is fabricated by poly (chondroitin sulfate-acrylamido-2-methylpropane sulfonic acid)-gold nanoparticles (GNPs) composites via a micro-molding. The negatively charged copolymer hydrogel not only enrich positively charged metabolites, but also provide swellable capacity. The in situ synthesis of GNPs in the process of copolymerization make the GNPs cross-link to the hydrogel, which further enhance the MNAP mechanical strength and enrichment efficiency for positively charged metabolites. By using the MNAP, around 5 mg SIF in 10 min from the high fat/cholecalciferol/methimazole-induced atherogenesis rat is extracted and 23 metabolites including 13 quaternary ammonium cationic compounds can be detected and quantified by using a LC-QTOF-MS. Dysregulated L-carnitine and choline metabolism are discovered a week earlier in the SIF than in the serum, achieving early diagnosis of the metabolism syndrome disease. This MNAP also helps users complete home sampling for early disease diagnosis and monitoring.
Collapse
Affiliation(s)
- Yuyin Tang
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 P. R. China
| | - Su Li
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 P. R. China
| | - Linyu Hu
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 P. R. China
| | - Xuetong Sun
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 P. R. China
| | - Bei Zhang
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 P. R. China
| | - Wenwen Ji
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 P. R. China
| | - Lijuan Ma
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 P. R. China
| | - Wenhui Qian
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 P. R. China
| | - An Kang
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 P. R. China
| | - Dong Zhu
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 P. R. China
| |
Collapse
|
178
|
Zhao L, Zhang C, Abu‐Ershaid JM, Li M, Li Y, Naser Y, Dai X, Abbate MTA, Donnelly RF. Smart Responsive Microarray Patches for Transdermal Drug Delivery and Biological Monitoring. Adv Healthc Mater 2021; 10:e2100996. [PMID: 34449129 DOI: 10.1002/adhm.202100996] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/15/2021] [Indexed: 12/12/2022]
Abstract
Traditional drug delivery routes possess various disadvantages which make them unsuitable for certain population groups, or indeed unsuitable for drugs with certain physicochemical properties. As a result, a variety of alternative drug delivery routes have been explored in recent decades, including transdermal drug delivery. One of the most promising novel transdermal drug delivery technologies is a microarray patch (MAP), which can bypass the outermost skin barrier and deliver drugs directly into the viable epidermis and dermis. Unlike traditional MAPs which release loaded cargo simultaneously upon insertion into the skin, stimuli responsive MAPs based on biological stimuli are able to precisely release the drug in response to the need for additional doses. Thus, smart MAPs that are only responsive to certain external stimuli are highly desirable, as they provide safer and more efficient drug delivery. In addition to drug delivery, they can also be used for biological monitoring, which further expands their applications.
Collapse
Affiliation(s)
- Li Zhao
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL UK
| | - Chunyang Zhang
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL UK
| | | | - Mingshan Li
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL UK
| | - Yaocun Li
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL UK
| | - Yara Naser
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL UK
| | - Xianbing Dai
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL UK
| | - Marco T. A. Abbate
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL UK
| | - Ryan F. Donnelly
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL UK
| |
Collapse
|
179
|
Advances of Microneedles in Biomedical Applications. Molecules 2021; 26:molecules26195912. [PMID: 34641460 PMCID: PMC8512585 DOI: 10.3390/molecules26195912] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 01/16/2023] Open
Abstract
A microneedle (MN) is a painless and minimally invasive drug delivery device initially developed in 1976. As microneedle technology evolves, microneedles with different shapes (cone and pyramid) and forms (solid, drug-coated, hollow, dissolvable and hydrogel-based microneedles) have been developed. The main objective of this review is the applications of microneedles in biomedical areas. Firstly, the classifications and manufacturing of microneedle are briefly introduced so that we can learn the advantages and fabrications of different MNs. Secondly, research of microneedles in biomedical therapy such as drug delivery systems, diagnoses of disease, as well as wound repair and cancer therapy are overviewed. Finally, the safety and the vision of the future of MNs are discussed.
Collapse
|
180
|
Cryomicroneedles for transdermal cell delivery. Nat Biomed Eng 2021; 5:1008-1018. [PMID: 33941895 DOI: 10.1038/s41551-021-00720-1] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 03/26/2021] [Indexed: 02/01/2023]
Abstract
Cell therapies for the treatment of skin disorders could benefit from simple, safe and efficient technology for the transdermal delivery of therapeutic cells. Conventional cell delivery by hypodermic-needle injection is associated with poor patient compliance, requires trained personnel, generates waste and has non-negligible risks of injury and infection. Here, we report the design and proof-of-concept application of cryogenic microneedle patches for the transdermal delivery of living cells. The microneedles are fabricated by stepwise cryogenic micromoulding of cryogenic medium with pre-suspended cells, and can be easily inserted into porcine skin and dissolve after deployment of the cells. In mice, cells delivered by the cryomicroneedles retained their viability and proliferative capability. In mice with subcutaneous melanoma tumours, the delivery of ovalbumin-pulsed dendritic cells via the cryomicroneedles elicited higher antigen-specific immune responses and led to slower tumour growth than intravenous and subcutaneous injections of the cells. Biocompatible cryomicroneedles may facilitate minimally invasive cell delivery for a range of cell therapies.
Collapse
|
181
|
Zhang J, Xu J, Lim J, Nolan JK, Lee H, Lee CH. Wearable Glucose Monitoring and Implantable Drug Delivery Systems for Diabetes Management. Adv Healthc Mater 2021; 10:e2100194. [PMID: 33930258 DOI: 10.1002/adhm.202100194] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/12/2021] [Indexed: 12/11/2022]
Abstract
The global cost of diabetes care exceeds $1 trillion each year with more than $327 billion being spent in the United States alone. Despite some of the advances in diabetes care including continuous glucose monitoring systems and insulin pumps, the technology associated with managing diabetes has largely remained unchanged over the past several decades. With the rise of wearable electronics and novel functional materials, the field is well-poised for the next generation of closed-loop diabetes care. Wearable glucose sensors implanted within diverse platforms including skin or on-tooth tattoos, skin-mounted patches, eyeglasses, contact lenses, fabrics, mouthguards, and pacifiers have enabled noninvasive, unobtrusive, and real-time analysis of glucose excursions in ambulatory care settings. These wearable glucose sensors can be integrated with implantable drug delivery systems, including an insulin pump, glucose responsive insulin release implant, and islets transplantation, to form self-regulating closed-loop systems. This review article encompasses the emerging trends and latest innovations of wearable glucose monitoring and implantable insulin delivery technologies for diabetes management with a focus on their advanced materials and construction. Perspectives on the current unmet challenges of these strategies are also discussed to motivate future technological development toward improved patient care in diabetes management.
Collapse
Affiliation(s)
- Jinyuan Zhang
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
| | - Jian Xu
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
| | - Jongcheon Lim
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
| | - James K. Nolan
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
| | - Hyowon Lee
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
- School of Mechanical Engineering School of Materials Engineering Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
182
|
Teymourian H, Tehrani F, Mahato K, Wang J. Lab under the Skin: Microneedle Based Wearable Devices. Adv Healthc Mater 2021; 10:e2002255. [PMID: 33646612 DOI: 10.1002/adhm.202002255] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/31/2021] [Indexed: 12/12/2022]
Abstract
While the current smartwatches and cellphones can readily track mobility and vital signs, a new generation of wearable devices is rapidly developing to enable users to monitor their health parameters at the molecular level. Within this emerging class of wearables, microneedle-based transdermal sensors are in a prime position to play a key role in synergizing the significant advantages of dermal interstitial fluid (ISF) as a rich source of clinical indicators and painless skin pricking to allow the collection of real-time diagnostic information. While initial efforts of microneedle sensing focused on ISF extraction coupled with either on-chip analysis or off-chip instrumentation, the latest trend has been oriented toward assembling electrochemical biosensors on the tip of microneedles to allow direct continuous chemical measurements. In this context, significant advances have recently been made in exploiting microneedle-based devices for real-time monitoring of various metabolites, electrolytes, and therapeutics and toward the simultaneous multiplexed detection of key chemical markers; yet, there are several grand challenges that still exist. In this review, we outline current progress, recent trends, and new capabilities of microneedle-empowered sensors, along with the current unmet challenges and a future roadmap toward transforming the latest innovations in the field to commercial products.
Collapse
Affiliation(s)
- Hazhir Teymourian
- Department of Nanoengineering University of California San Diego La Jolla CA 92093 USA
| | - Farshad Tehrani
- Department of Nanoengineering University of California San Diego La Jolla CA 92093 USA
| | - Kuldeep Mahato
- Department of Nanoengineering University of California San Diego La Jolla CA 92093 USA
| | - Joseph Wang
- Department of Nanoengineering University of California San Diego La Jolla CA 92093 USA
| |
Collapse
|
183
|
Erdem Ö, Eş I, Akceoglu GA, Saylan Y, Inci F. Recent Advances in Microneedle-Based Sensors for Sampling, Diagnosis and Monitoring of Chronic Diseases. BIOSENSORS 2021; 11:296. [PMID: 34562886 PMCID: PMC8470661 DOI: 10.3390/bios11090296] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022]
Abstract
Chronic diseases (CDs) are noncommunicable illnesses with long-term symptoms accounting for ~70% of all deaths worldwide. For the diagnosis and prognosis of CDs, accurate biomarker detection is essential. Currently, the detection of CD-associated biomarkers is employed through complex platforms with certain limitations in their applicability and performance. There is hence unmet need to present innovative strategies that are applicable to the point-of-care (PoC) settings, and also, provide the precise detection of biomarkers. On the other hand, especially at PoC settings, microneedle (MN) technology, which comprises micron-size needles arranged on a miniature patch, has risen as a revolutionary approach in biosensing strategies, opening novel horizons to improve the existing PoC devices. Various MN-based platforms have been manufactured for distinctive purposes employing several techniques and materials. The development of MN-based biosensors for real-time monitoring of CD-associated biomarkers has garnered huge attention in recent years. Herein, we summarize basic concepts of MNs, including microfabrication techniques, design parameters, and their mechanism of action as a biosensing platform for CD diagnosis. Moreover, recent advances in the use of MNs for CD diagnosis are introduced and finally relevant clinical trials carried out using MNs as biosensing devices are highlighted. This review aims to address the potential use of MNs in CD diagnosis.
Collapse
Affiliation(s)
- Özgecan Erdem
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey; (Ö.E.); (I.E.); (G.A.A.)
| | - Ismail Eş
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey; (Ö.E.); (I.E.); (G.A.A.)
| | - Garbis Atam Akceoglu
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey; (Ö.E.); (I.E.); (G.A.A.)
| | - Yeşeren Saylan
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey;
| | - Fatih Inci
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey; (Ö.E.); (I.E.); (G.A.A.)
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
184
|
Aldawood FK, Andar A, Desai S. A Comprehensive Review of Microneedles: Types, Materials, Processes, Characterizations and Applications. Polymers (Basel) 2021; 13:2815. [PMID: 34451353 PMCID: PMC8400269 DOI: 10.3390/polym13162815] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Drug delivery through the skin offers many advantages such as avoidance of hepatic first-pass metabolism, maintenance of steady plasma concentration, safety, and compliance over oral or parenteral pathways. However, the biggest challenge for transdermal delivery is that only a limited number of potent drugs with ideal physicochemical properties can passively diffuse and intercellularly permeate through skin barriers and achieve therapeutic concentration by this route. Significant efforts have been made toward the development of approaches to enhance transdermal permeation of the drugs. Among them, microneedles represent one of the microscale physical enhancement methods that greatly expand the spectrum of drugs for transdermal and intradermal delivery. Microneedles typically measure 0.1-1 mm in length. In this review, microneedle materials, fabrication routes, characterization techniques, and applications for transdermal delivery are discussed. A variety of materials such as silicon, stainless steel, and polymers have been used to fabricate solid, coated, hollow, or dissolvable microneedles. Their implications for transdermal drug delivery have been discussed extensively. However, there remain challenges with sustained delivery, efficacy, cost-effective fabrication, and large-scale manufacturing. This review discusses different modes of characterization and the gaps in manufacturing technologies associated with microneedles. This review also discusses their potential impact on drug delivery, vaccine delivery, disease diagnostic, and cosmetics applications.
Collapse
Affiliation(s)
- Faisal Khaled Aldawood
- Industrial Engineering Department, College of Engineering, University of Bisha, Bisha 67714, Saudi Arabia;
| | - Abhay Andar
- Potomac Photonics, Inc., Halethorpe, MD 21227, USA;
| | - Salil Desai
- Center for Excellence in Product Design and Advanced Manufacturing, North Carolina A & T State University, Greensboro, NC 27411, USA
| |
Collapse
|
185
|
Kang NW, Kim S, Lee JY, Kim KT, Choi Y, Oh Y, Kim J, Kim DD, Park JH. Microneedles for drug delivery: recent advances in materials and geometry for preclinical and clinical studies. Expert Opin Drug Deliv 2021; 18:929-947. [PMID: 32975144 DOI: 10.1080/17425247.2021.1828860] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION A microneedle array patch (MAP) has been studied as a means for delivering drugs or vaccines and has shown superior delivery efficiency compared to the conventional transdermal drug delivery system (TDD). This paper reviews recent advancements in the development of MAPs, with a focus on their size, shapes, and materials in preclinical and clinical studies for pharmaceutics. AREA COVERED We classified MAPs for drug delivery into four types: coated, dissolving, separable, and swellable. We covered their recent developments in materials and geometry in preclinical and clinical studies. EXPERT OPINION The design of MAPs needs to be determined based on what properties would be effective for the target diseases and purposes. In addition, in preclinical studies, it is necessary to consider not only the novelty of the formulations but also the feasibility of clinical application. Currently, clinical studies of microneedles loaded with various drugs and vaccines are in progress. When the regulation of pharmaceutical microneedles is established and more clinical studies are published, more drugs will be developed as microneedle products and clinical research will proceed. With these considerations, the microneedle array patch will be a better option for drug delivery.
Collapse
Affiliation(s)
- Nae-Won Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sungho Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jae-Young Lee
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Ki-Taek Kim
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Yuji Choi
- Department of BioNano Technology and Gachon BioNano Research Institute, Gachon University, Seongnam, Republic of Korea
| | - Yujeong Oh
- Department of BioNano Technology and Gachon BioNano Research Institute, Gachon University, Seongnam, Republic of Korea
| | - Jongchan Kim
- Department of BioNano Technology and Gachon BioNano Research Institute, Gachon University, Seongnam, Republic of Korea
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jung-Hwan Park
- Department of BioNano Technology and Gachon BioNano Research Institute, Gachon University, Seongnam, Republic of Korea
| |
Collapse
|
186
|
Dixon RV, Skaria E, Lau WM, Manning P, Birch-Machin MA, Moghimi SM, Ng KW. Microneedle-based devices for point-of-care infectious disease diagnostics. Acta Pharm Sin B 2021; 11:2344-2361. [PMID: 34150486 PMCID: PMC8206489 DOI: 10.1016/j.apsb.2021.02.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 01/28/2021] [Indexed: 02/08/2023] Open
Abstract
Recent infectious disease outbreaks, such as COVID-19 and Ebola, have highlighted the need for rapid and accurate diagnosis to initiate treatment and curb transmission. Successful diagnostic strategies critically depend on the efficiency of biological sampling and timely analysis. However, current diagnostic techniques are invasive/intrusive and present a severe bottleneck by requiring specialist equipment and trained personnel. Moreover, centralised test facilities are poorly accessible and the requirement to travel may increase disease transmission. Self-administrable, point-of-care (PoC) microneedle diagnostic devices could provide a viable solution to these problems. These miniature needle arrays can detect biomarkers in/from the skin in a minimally invasive manner to provide (near-) real-time diagnosis. Few microneedle devices have been developed specifically for infectious disease diagnosis, though similar technologies are well established in other fields and generally adaptable for infectious disease diagnosis. These include microneedles for biofluid extraction, microneedle sensors and analyte-capturing microneedles, or combinations thereof. Analyte sampling/detection from both blood and dermal interstitial fluid is possible. These technologies are in their early stages of development for infectious disease diagnostics, and there is a vast scope for further development. In this review, we discuss the utility and future outlook of these microneedle technologies in infectious disease diagnosis.
Collapse
Key Words
- AC, alternating current
- APCs, antigen-presenting cells
- ASSURED, affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free and deliverable to end-users
- Biomarker detection
- Biosensor
- CMOS, complementary metal-oxide semiconductor
- COVID, coronavirus disease
- COVID-19
- CSF, cerebrospinal fluid
- CT, computerised tomography
- CV, cyclic voltammetry
- DC, direct current
- DNA, deoxyribonucleic acid
- DPV, differential pulse voltammetry
- EBV, Epstein–Barr virus
- EDC/NHS, 1-ethyl-3-(3-dimethylaminoproply) carbodiimide/N-hydroxysuccinimide
- ELISA, enzyme-linked immunosorbent assay
- GOx, glucose oxidase
- HIV, human immunodeficiency virus
- HPLC, high performance liquid chromatography
- HRP, horseradish peroxidase
- IP, iontophoresis
- ISF, interstitial fluid
- IgG, immunoglobulin G
- Infectious disease
- JEV, Japanese encephalitis virus
- MN, microneedle
- Microneedle
- NA, nucleic acid
- OBMT, one-touch-activated blood multidiagnostic tool
- OPD, o-phenylenediamine
- PCB, printed circuit board
- PCR, polymerase chain reaction
- PDMS, polydimethylsiloxane
- PEDOT, poly(3,4-ethylenedioxythiophene)
- PNA, peptide nucleic acid
- PP, polyphenol
- PPD, poly(o-phenylenediamine)
- PoC, point-of-care
- Point-of-care diagnostics (PoC)
- SALT, skin-associated lymphoid tissue
- SAM, self-assembled monolayer
- SEM, scanning electron microscope
- SERS, surface-enhanced Raman spectroscopy
- SWV, square wave voltammetry
- Skin
- TB, tuberculosis
- UV, ultraviolet
- VEGF, vascular endothelial growth factor
- WHO, World Health Organisation
- cfDNA, cell-free deoxyribonucleic acid
Collapse
Affiliation(s)
- Rachael V. Dixon
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Eldhose Skaria
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Wing Man Lau
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Philip Manning
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Mark A. Birch-Machin
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - S. Moein Moghimi
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Keng Wooi Ng
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| |
Collapse
|
187
|
Bhadale RS, Londhe VY. A systematic review of carbohydrate-based microneedles: current status and future prospects. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:89. [PMID: 34331594 PMCID: PMC8325649 DOI: 10.1007/s10856-021-06559-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 07/07/2021] [Indexed: 06/01/2023]
Abstract
Microneedles (MNs) are minimally invasive tridimensional biomedical devices that bypass the skin barrier resulting in systemic and localized pharmacological effects. Historically, biomaterials such as carbohydrates, due to their physicochemical properties, have been used widely to fabricate MNs. Owing to their broad spectrum of functional groups, carbohydrates permit designing and engineering with tunable properties and functionalities. This has led the carbohydrate-based microarrays possessing the great potential to take a futuristic step in detecting, drug delivery, and retorting to biologicals. In this review, the crucial and extensive summary of carbohydrates such as hyaluronic acid, chitin, chitosan, chondroitin sulfate, cellulose, and starch has been discussed systematically, using PRISMA guidelines. It also discusses different approaches for drug delivery and the mechanical properties of biomaterial-based MNs, till date, progress has been achieved in clinical translation of carbohydrate-based MNs, and regulatory requirements for their commercialization. In conclusion, it describes a brief perspective on the future prospects of carbohydrate-based MNs referred to as the new class of topical drug delivery systems.
Collapse
Affiliation(s)
- Rupali S Bhadale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Vile Parle [W], Mumbai, 400056, Maharashtra, India
| | - Vaishali Y Londhe
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Vile Parle [W], Mumbai, 400056, Maharashtra, India.
| |
Collapse
|
188
|
Kim S, Lee MS, Yang HS, Jung JH. Enhanced extraction of skin interstitial fluid using a 3D printed device enabling tilted microneedle penetration. Sci Rep 2021; 11:14018. [PMID: 34234204 PMCID: PMC8263571 DOI: 10.1038/s41598-021-93235-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/09/2021] [Indexed: 12/23/2022] Open
Abstract
Interstitial fluid (ISF) is a body fluid that fills, surrounds cells and contains various biomarkers, but it has been challenging to extract ISF in a reliable and sufficient amount with high speed. To address the issues, we developed the tilted microneedle ISF collecting system (TMICS) fabricated by 3D printing. In this system, the microneedle (MN) was inserted at 66° to the skin by TMICS so that the MN length could be extended within a safe range of skin penetration. Moreover, TMICS incorporating three MN patches created reliable ISF collecting conditions by penetrating the skin at consistent angle and force, 4.9 N. Due to the MN length increase and the patch number expansion, the surface area of the penetrated tissue was increased, thereby confirming that ISF extraction efficiency was improved. Skin ISF was collected into the paper reservoir on the patch, and the absorbed area was converted into a volume. ISF extraction from the rat skin in vivo by TMICS was well tolerated, and the 2.9 μL of ISF was obtained within 30 s. Therefore, TMICS is promising to apply in the diagnosis of multiple biomarkers in ISF with high speed and stability.
Collapse
Affiliation(s)
- Sanha Kim
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 31116, Republic of Korea
| | - Min Suk Lee
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hee Seok Yang
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Center for Bio-Medical Engineering Core-Facility, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jae Hwan Jung
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
189
|
Li H, Feng J, Wang Y, Liu G, Chen X, Fu L. Instant and Multiple DNA Extraction Method by Microneedle Patch for Rapid and on-Site Detection of Food Allergen-Encoding Genes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6879-6887. [PMID: 34105975 DOI: 10.1021/acs.jafc.1c01077] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
DNA-based detection methods are highly promising for risk assessment in the food sector, such as tracing the existence of food allergens. However, due to the complexity of food matrices, cumbersome protocols are often needed to isolate the DNA components, which hinder the achievement of rapid and on-site detection. Herein, an instant and multiple DNA extraction method was developed based on the poly(vinyl alcohol) microneedle (MN) patch. With simple press and peel-off operations within 1 min, samples suitable for DNA-based analysis such as polymerase chain reaction (PCR) could be collected. By further combining with the recombinase polymerase amplification assay, rapid screening of the allergenic risks in complex samples such as shrimp ball and cheesecake could be achieved within 30 min. The MN-based DNA extraction method not only was a potential alternative to the traditional DNA extraction method but provided a transformative approach in realizing rapid, on-site detection of foodborne hazards in collaborating with fast DNA-based assays.
Collapse
Affiliation(s)
- Huan Li
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, P. R. China
| | - Jiesi Feng
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, P. R. China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, P. R. China
| | - Guangming Liu
- College of Food and Biological Engineering, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen 361021, P. R. China
| | - Xiaojing Chen
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, P. R. China
| |
Collapse
|
190
|
Zeng Z, Jiang G, Liu T, Song G, Sun Y, Zhang X, Jing Y, Feng M, Shi Y. Fabrication of gelatin methacryloyl hydrogel microneedles for transdermal delivery of metformin in diabetic rats. Biodes Manuf 2021. [DOI: 10.1007/s42242-021-00140-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
191
|
Abstract
The application of microneedles (MNs) for minimally invasive biological fluid sampling is rapidly emerging, offering a user-friendly approach with decreased insertion pain and less harm to the tissues compared to conventional needles. Here, a finger-powered microneedle array (MNA) integrated with a microfluidic chip was conceptualized to extract body fluid samples. Actuated by finger pressure, the microfluidic device enables an efficient approach for the user to collect their own body fluids in a simple and fast manner without the requirement for a healthcare worker. The processes for extracting human blood and interstitial fluid (ISF) from the body and the flow across the device, estimating the amount of the extracted fluid, were simulated. The design in this work can be utilized for the minimally invasive personalized medical equipment offering a simple usage procedure.
Collapse
|
192
|
Sung WH, Tsao YT, Shen CJ, Tsai CY, Cheng CM. Small-volume detection: platform developments for clinically-relevant applications. J Nanobiotechnology 2021; 19:114. [PMID: 33882955 PMCID: PMC8058587 DOI: 10.1186/s12951-021-00852-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022] Open
Abstract
Biochemical analysis of human body fluids is a frequent and fruitful strategy for disease diagnosis. Point-of-care (POC) diagnostics offers the tantalizing possibility of providing rapid diagnostic results in non-laboratory settings. Successful diagnostic testing using body fluids has been reported on in the literature; however, small-volume detection devices, which offer remarkable advantages such as portability, inexpensiveness, capacity for mass production, and tiny sample volume requirements have not been thoroughly discussed. Here, we review progress in this research field, with a focus on developments since 2015. In this review article, we provide a summary of articles that have detailed the development of small-volume detection strategies using clinical samples over the course of the last 5 years. Topics covered include small-volume detection strategies in ophthalmology, dermatology or plastic surgery, otolaryngology, and cerebrospinal fluid analysis. In ophthalmology, advances in technology could be applied to examine tear or anterior chamber (AC) fluid for glucose, lactoferrin, interferon, or VEGF. These approaches could impact detection and care for diseases including diabetic mellitus, dry-eye disease, and age-related maculopathy. Early detection and easy monitoring are critical approaches for improving overall care and outcome. In dermatology or plastic surgery, small-volume detection strategies have been applied for passive or interactive wound dressing, wound healing monitoring, and blister fluid analysis for autoimmune disease diagnosis. In otolaryngology, the analysis of nasal secretions and mucosa could be used to differentiate between allergic responses and infectious diseases. Cerebrospinal fluid analysis could be applied in neurodegenerative diseases, central neural system infection and tumor diagnosis. Other small-volume fluids that have been analyzed for diagnostic and monitoring purposes include semen and cervico-vaginal fluids. We include more details regarding each of these fluids, associated collection and detection devices, and approaches in our review.
Collapse
Affiliation(s)
- Wei-Hsuan Sung
- Chang Gung Memorial Hospital, Linkou Medical Center and Chang Gung Medical College and Chang Gung University, Taoyuan, Taiwan
| | - Yu-Ting Tsao
- Chang Gung Memorial Hospital, Linkou Medical Center and Chang Gung Medical College and Chang Gung University, Taoyuan, Taiwan
| | - Ching-Ju Shen
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chia-Ying Tsai
- Department of Ophthalmology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan.
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
193
|
Wang R, Bian Q, Xu Y, Xu D, Gao J. Recent advances in mechanical force-assisted transdermal delivery of macromolecular drugs. Int J Pharm 2021; 602:120598. [PMID: 33862129 DOI: 10.1016/j.ijpharm.2021.120598] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/30/2021] [Accepted: 04/08/2021] [Indexed: 11/29/2022]
Abstract
The transdermal delivery of macromolecular drugs has become one of the focused topics in pharmaceutical research since it enables highly specific and effective delivery, while avoiding the pain and needle phobia associated with injection, or incidences like drug degradation and low bioavailability of oral administration. However, the passive absorption of macromolecular drugs via skin is highly restricted by the stratum corneum owing to high molecular weight. Therefore, various strategies have been extensively developed and conducted to facilitate the transdermal delivery of macromolecular drugs, among which, mechanical force-assisted techniques occupy dominant positions. Such techniques include ultrasound, needle-free jet injection, temporary pressure and microneedles. In this review, we focus on recent transdermal enhancing strategies utilizing mechanical force, and summarize their mechanisms, advantages, limitations and clinical applications respectively.
Collapse
Affiliation(s)
- Ruxuan Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiong Bian
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yihua Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Donghang Xu
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Jiangsu Engineering Research Center for New-type External and Transdermal Preparations, Changzhou 213149, China.
| |
Collapse
|
194
|
Abstract
Dermal interstitial fluid (ISF) is a novel source of biomarkers that can be considered as an alternative to blood sampling for disease diagnosis and treatment. Nevertheless, in vivo extraction and analysis of ISF are challenging. On the other hand, microneedle (MN) technology can address most of the challenges associated with dermal ISF extraction and is well suited for long-term, continuous ISF monitoring as well as in situ detection. In this review, we first briefly summarise the different dermal ISF collection methods and compare them with MN methods. Next, we elaborate on the design considerations and biocompatibility of MNs. Subsequently, the fabrication technologies of various MNs used for dermal ISF extraction, including solid MNs, hollow MNs, porous MNs, and hydrogel MNs, are thoroughly explained. In addition, different sensing mechanisms of ISF detection are discussed in detail. Subsequently, we identify the challenges and propose the possible solutions associated with ISF extraction. A detailed investigation is provided for the transport and sampling mechanism of ISF in vivo. Also, the current in vitro skin model integrated with the MN arrays is discussed. Finally, future directions to develop a point-of-care (POC) device to sample ISF are proposed.
Collapse
|
195
|
Liu P, Du H, Chen Y, Wang H, Mao J, Zhang L, Tao J, Zhu J. Polymer microneedles with interconnected porous structures via a phase inversion route for transdermal medical applications. J Mater Chem B 2021; 8:2032-2039. [PMID: 32049084 DOI: 10.1039/c9tb02837d] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Porous polymer microneedles (MNs) have great potential in transdermal medical applications due to their three-dimensional (3D) porous structures and high porosity. However, existing approaches for the fabrication of such porous polymer MNs are complicated and only applicable to limited types of polymers. Here, we describe a facile yet effective phase inversion route to prepare polymer MNs with highly porous and interconnected pore structures. The fabrication process is simple and mild without involving high temperatures or irradiation, and can be applied to a broad spectrum of commonly used polymers (e.g., cellulose acetate (CA), polysulfone (PSF), polyethersulfone (PES), polylactic acid (PLA), etc.). Thanks to the capillary effect and large cavity given by highly porous and interconnected structures, the resulting porous polymer MNs show the capability of rapidly extracting dermal interstitial fluid (ISF) and efficiently loading/releasing drug compounds. As a proof of concept, we demonstrate the use of these porous CA MNs in the highly efficient extraction of ISF for glucose level detection and administration of insulin for hyperglycemia. Given the recent trend of painless techniques in diagnosis and treatment, the current study provides a new opportunity for the fabrication of MN-based devices for transdermal ISF extraction and drug delivery.
Collapse
Affiliation(s)
- Pei Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), and State Key Laboratory of Materials Processing and Mold Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Hongyao Du
- Department of Dermatology, Union Hospital, Tongji Medical College, HUST, Wuhan 430022, China
| | - Yu Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), and State Key Laboratory of Materials Processing and Mold Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Hua Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), and State Key Laboratory of Materials Processing and Mold Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Jinzhu Mao
- Department of Dermatology, Union Hospital, Tongji Medical College, HUST, Wuhan 430022, China
| | - Lianbin Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), and State Key Laboratory of Materials Processing and Mold Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, HUST, Wuhan 430022, China
| | - Jintao Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), and State Key Laboratory of Materials Processing and Mold Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| |
Collapse
|
196
|
Temporal dynamics of intradermal cytokine response to tuberculin in Mycobacterium bovis BCG-vaccinated cattle using sampling microneedles. Sci Rep 2021; 11:7074. [PMID: 33782422 PMCID: PMC8007627 DOI: 10.1038/s41598-021-86398-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/15/2021] [Indexed: 11/08/2022] Open
Abstract
Bovine tuberculosis (bTB) is a disease of livestock with severe and worldwide economic, animal welfare and zoonotic consequences. Application of test-and-slaughter-based control polices reliant on tuberculin skin testing has been the mainstay of bTB control in cattle. However, little is known about the temporal development of the bovine tuberculin skin test response at the dermal sites of antigen injection. To fill this knowledge gap, we applied minimally-invasive sampling microneedles (SMNs) for intradermal sampling of interstitial fluid at the tuberculin skin test sites in Mycobacterium bovis BCG-vaccinated calves and determined the temporal dynamics of a panel of 15 cytokines and chemokines in situ and in the peripheral blood. The results reveal an orchestrated and coordinated cytokine and local chemokine response, identified IL-1RA as a potential soluble biomarker of a positive tuberculin skin response, and confirmed the utility of IFN-γ and IP-10 for bTB detection in blood-based assays. Together, the results highlight the utility of SMNs to identify novel biomarkers and provide mechanistic insights on the intradermal cytokine and chemokine responses associated with the tuberculin skin test in BCG-sensitized cattle.
Collapse
|
197
|
Yang X, Dargaville BL, Hutmacher DW. Elucidating the Molecular Mechanisms for the Interaction of Water with Polyethylene Glycol-Based Hydrogels: Influence of Ionic Strength and Gel Network Structure. Polymers (Basel) 2021; 13:845. [PMID: 33801863 PMCID: PMC8000404 DOI: 10.3390/polym13060845] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
The interaction of water within synthetic and natural hydrogel systems is of fundamental importance in biomaterial science. A systematic study is presented on the swelling behavior and states of water for a polyethylene glycol-diacrylate (PEGDA)-based model neutral hydrogel system that goes beyond previous studies reported in the literature. Hydrogels with different network structures are crosslinked and swollen in different combinations of water and phosphate-buffered saline (PBS). Network variables, polyethylene glycol (PEG) molecular weight (MW), and weight fraction are positively correlated with swelling ratio, while "non-freezable bound water" content decreases with PEG MW. The presence of ions has the greatest influence on equilibrium water and "freezable" and "non-freezable" water, with all hydrogel formulations showing a decreased swelling ratio and increased bound water as ionic strength increases. Similarly, the number of "non-freezable bound water" molecules, calculated from DSC data, is greatest-up to six molecules per PEG repeat unit-for gels swollen in PBS. Fundamentally, the balance of osmotic pressure and non-covalent bonding is a major factor within the molecular structure of the hydrogel system. The proposed model explains the dynamic interaction of water within hydrogels in an osmotic environment. This study will point toward a better understanding of the molecular nature of the water interface in hydrogels.
Collapse
Affiliation(s)
| | | | - Dietmar W. Hutmacher
- Centre for Transformative Biomimetics in Bioengineering, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia; (X.Y.); (B.L.D.)
| |
Collapse
|
198
|
GhavamiNejad A, Lu B, Samarikhalaj M, Liu JF, Mirzaie S, Pereira S, Zhou L, Giacca A, Wu XY. Transdermal delivery of a somatostatin receptor type 2 antagonist using microneedle patch technology for hypoglycemia prevention. Drug Deliv Transl Res 2021; 12:792-804. [PMID: 33683625 DOI: 10.1007/s13346-021-00944-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 12/19/2022]
Abstract
Hypoglycemia is a serious and potentially fatal complication experienced by people with insulin-dependent diabetes. The complication is usually caused by insulin overdose, skipping meals, and/or excessive physical activities. In type 1 diabetes (T1D), on top of impaired pancreatic α-cells, excessive levels of somatostatin from δ-cells further inhibit glucagon secretion to counteract overdosed insulin. Herein, we aimed to develop a microneedle (MN) patch for transdermal delivery of a peptide (PRL-2903) that antagonizes somatostatin receptor type 2 (SSTR2) in α-cells. First, we investigated the efficacy of subcutaneously administered PRL-2903 and identified the optimal dose (i.e., the minimum effective dose) and treatment scheduling (i.e., the best administration time for hypoglycemia prevention) in a T1D rat model. We then designed an MN patch using a hyaluronic acid (HA)-based polymer. The possible effect of the polymer on stabilizing the native structure of PRL-2903 was studied by molecular dynamics (MD) simulations. The results showed that the HA-based polymer could stabilize the PRL-2903 structure by restricting water molecules, promoting intra-molecular H-bonding, and constraining torsional angles of important bonds. In vivo studies with an overdose insulin challenge revealed that the PRL-2903-loaded MN patch effectively increased the plasma glucagon level, restored the counter-regulation of blood glucose concentration, and prevented hypoglycemia. The proposed MN patch is the first demonstration of a transdermal microneedle patch designed to deliver an SSTR2 antagonist for the prevention of hypoglycemia. This counter-regulatory peptide delivery system may be applied alongside with insulin delivery systems to provide a more effective and safer treatment for people with insulin-dependent diabetes.
Collapse
Affiliation(s)
- Amin GhavamiNejad
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Brian Lu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Melisa Samarikhalaj
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jackie Fule Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Sako Mirzaie
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Sandra Pereira
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Liwei Zhou
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Adria Giacca
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
199
|
Transdermal electroosmotic flow generated by a porous microneedle array patch. Nat Commun 2021; 12:658. [PMID: 33510169 PMCID: PMC7843990 DOI: 10.1038/s41467-021-20948-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 12/22/2020] [Indexed: 01/22/2023] Open
Abstract
A microneedle array is an attractive option for a minimally invasive means to break through the skin barrier for efficient transdermal drug delivery. Here, we report the applications of solid polymer-based ion-conductive porous microneedles (PMN) containing interconnected micropores for improving iontophoresis, which is a technique of enhancing transdermal molecular transport by a direct current through the skin. The PMN modified with a charged hydrogel brings three innovative advantages in iontophoresis at once: (1) lowering the transdermal resistance by low-invasive puncture of the highly resistive stratum corneum, (2) transporting of larger molecules through the interconnected micropores, and (3) generating electroosmotic flow (EOF). In particular, the PMN-generated EOF greatly enhances the transdermal molecular penetration or extraction, similarly to the flow induced by external pressure. The enhanced efficiencies of the EOF-assisted delivery of a model drug (dextran) and of the extraction of glucose are demonstrated using a pig skin sample. Furthermore, the powering of the PMN-based transdermal EOF system by a built-in enzymatic biobattery (fructose / O2 battery) is also demonstrated as a possible totally organic iontophoresis patch.
Collapse
|
200
|
Dabbagh SR, Sarabi MR, Rahbarghazi R, Sokullu E, Yetisen AK, Tasoglu S. 3D-printed microneedles in biomedical applications. iScience 2021; 24:102012. [PMID: 33506186 PMCID: PMC7814162 DOI: 10.1016/j.isci.2020.102012] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Conventional needle technologies can be advanced with emerging nano- and micro-fabrication methods to fabricate microneedles. Nano-/micro-fabricated microneedles seek to mitigate penetration pain and tissue damage, as well as providing accurately controlled robust channels for administrating bioagents and collecting body fluids. Here, design and 3D printing strategies of microneedles are discussed with emerging applications in biomedical devices and healthcare technologies. 3D printing offers customization, cost-efficiency, a rapid turnaround time between design iterations, and enhanced accessibility. Increasing the printing resolution, the accuracy of the features, and the accessibility of low-cost raw printing materials have empowered 3D printing to be utilized for the fabrication of microneedle platforms. The development of 3D-printed microneedles has enabled the evolution of pain-free controlled release drug delivery systems, devices for extracting fluids from the cutaneous tissue, biosignal acquisition, and point-of-care diagnostic devices in personalized medicine.
Collapse
Affiliation(s)
- Sajjad Rahmani Dabbagh
- Department of Mechanical Engineering, Koç University, Sariyer, Istanbul 34450, Turkey
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, Istanbul 34450, Turkey
| | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran
| | - Emel Sokullu
- Koc University School of Medicine, Koç University, Sariyer, Istanbul 34450, Turkey
| | - Ali K. Yetisen
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Savas Tasoglu
- Department of Mechanical Engineering, Koç University, Sariyer, Istanbul 34450, Turkey
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, Istanbul 34450, Turkey
- Koc University Research Center for Translational Medicine, Koç University, Sariyer, Istanbul 34450, Turkey
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Çengelköy, Istanbul 34684, Turkey
| |
Collapse
|