151
|
Zhang H, Zhao Z, Turley AT, Wang L, McGonigal PR, Tu Y, Li Y, Wang Z, Kwok RTK, Lam JWY, Tang BZ. Aggregate Science: From Structures to Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001457. [PMID: 32734656 DOI: 10.1002/adma.202001457] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/15/2020] [Indexed: 05/05/2023]
Abstract
Molecular science entails the study of structures and properties of materials at the level of single molecules or small interacting complexes of molecules. Moving beyond single molecules and well-defined complexes, aggregates (i.e., irregular clusters of many molecules) serve as a particularly useful form of materials that often display modified or wholly new properties compared to their molecular components. Some unique structures and phenomena such as polymorphic aggregates, aggregation-induced symmetry breaking, and cluster excitons are only identified in aggregates, as a few examples of their exotic features. Here, by virtue of the flourishing research on aggregation-induced emission, the concept of "aggregate science" is put forward to fill the gaps between molecules and aggregates. Structures and properties on the aggregate scale are also systematically summarized. The structure-property relationships established for aggregates are expected to contribute to new materials and technological development. Ultimately, aggregate science may become an interdisciplinary research field and serves as a general platform for academic research.
Collapse
Affiliation(s)
- Haoke Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Zheng Zhao
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Andrew T Turley
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, DH1 3LE, UK
| | - Lin Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, 999077, China
| | - Paul R McGonigal
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, DH1 3LE, UK
| | - Yujie Tu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Yuanyuan Li
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Zhaoyu Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
- Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, South China University of Technology, Tianhe Qu, Guangzhou, 510640, China
| |
Collapse
|
152
|
Zhang Z, Xu W, Kang M, Wen H, Guo H, Zhang P, Xi L, Li K, Wang L, Wang D, Tang BZ. An All-Round Athlete on the Track of Phototheranostics: Subtly Regulating the Balance between Radiative and Nonradiative Decays for Multimodal Imaging-Guided Synergistic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003210. [PMID: 32696561 DOI: 10.1002/adma.202003210] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/08/2020] [Indexed: 05/24/2023]
Abstract
Aiming to achieve versatile phototheranostics with the integrated functionalities of multiple diagnostic imaging and synergistic therapy, the optimum use of dissipated energy through both radiative and nonradiative pathways is definitely appealing, yet a significantly challenging task. To the best of the knowledge, there have been no previous reports on a single molecular species effective at affording all phototheranostic modalities including fluorescence imaging (FLI), photoacoustic imaging (PAI), photothermal imaging (PTI), photodynamic therapy (PDT), and photothermal therapy (PTT). Herein, a simple and highly powerful one-for-all phototheranostics based on aggregation-induced emission (AIE)-active fluorophores is tactfully designed and constructed. Thanks to its strong electron donor-acceptor interaction and finely modulated intramolecular motion, the AIE fluorophore-based nanoparticles simultaneously exhibit bright near-infrared II (NIR-II) fluorescence emission, efficient reactive oxygen species generation, and high photothermal conversion efficiency upon NIR irradiation, indicating the actualization of a balance between radiative and nonradiative energy dissipations. Furthermore, the unprecedented performance on NIR-II FLI-PAI-PTI trimodal-imaging-guided PDT-PTT synergistic therapy is demonstrated by the precise tumor diagnosis and complete tumor elimination outcomes. This study thus brings a new insight into the development of superior versatile phototheranostics for practical cancer theranostics.
Collapse
Affiliation(s)
- Zhijun Zhang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wenhan Xu
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Miaomiao Kang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Haifei Wen
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Heng Guo
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Pengfei Zhang
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kai Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lei Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ben Zhong Tang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
153
|
Huang J, He B, Zhang Z, Li Y, Kang M, Wang Y, Li K, Wang D, Tang BZ. Aggregation-Induced Emission Luminogens Married to 2D Black Phosphorus Nanosheets for Highly Efficient Multimodal Theranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003382. [PMID: 32761671 DOI: 10.1002/adma.202003382] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/18/2020] [Indexed: 05/28/2023]
Abstract
Inspired by the respective advantages of aggregation-induced emission (AIE)-active photosensitizers and black phosphorus nanomaterials in cancer treatment, the facile construction of novel AIE photosensitizers married to 2D black phosphorus nanosheets and their application for multimodal theranostics are demonstrated. The developed nanomaterial simultaneously possesses distinctive properties and multiple functions including excellent stability, good biocompatibility, intensive fluorescence emission in the NIR region, high-performance reactive oxygen species generation, good photothermal conversion efficiency, outstanding cellular uptake, and effective accumulation at the tumor site. Both in vitro and in vivo evaluation show that the presented nanotheranostic system is an excellent candidate for NIR fluorescence-photothermal dual imaging-guided synergistic photodynamic-photothermal therapies. This study thus not only extends the applications scope of AIE and black phosphorus materials, but also offers useful insights into designing a new generation of cancer theranostic protocol for potential clinical applications.
Collapse
Affiliation(s)
- Jiachang Huang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Benzhao He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Zhijun Zhang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Youmei Li
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Miaomiao Kang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuanwei Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Kai Li
- Department of Biomedical Engineering, SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
154
|
Wan Y, Lu G, Wei WC, Huang YH, Li S, Chen JX, Cui X, Xiao YF, Li X, Liu Y, Meng XM, Wang P, Xie HY, Zhang J, Wong KT, Lee CS. Stable Organic Photosensitizer Nanoparticles with Absorption Peak beyond 800 Nanometers and High Reactive Oxygen Species Yield for Multimodality Phototheranostics. ACS NANO 2020; 14:9917-9928. [PMID: 32706236 DOI: 10.1021/acsnano.0c02767] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Effective multimodality phototheranostics under deep-penetration laser excitation is highly desired for tumor medicine, which is still at a deadlock due to lack of versatile photosensitizers with absorption located in the long-wavelength region. Herein, we demonstrate a stable organic photosensitizer nanoparticle based on molecular engineering of benzo[c]thiophene (BT)-based photoactivated molecules with strong wavelength-tunable absorption in the near-infrared region. Via molecular design, the absorption and singlet oxygen generation of BT molecules would be reliably tuned. Importantly, the nanoparticles with a red-shifted absorption peak of 843 nm not only show over 10-fold reactive oxygen species yield compared with indocyanine green but also demonstrate a notable photothermal effect and photoacoustic signal upon 808 nm excitation. The in vitro and in vivo experiments substantiate good multimodal anticancer efficacy and imaging performance of BT theranostics. This work provides an organic photosensitizer nanoparticle with long-wavelength excitation and high photoenergy conversion efficiency for multimodality phototherapy.
Collapse
Affiliation(s)
- Yingpeng Wan
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU), City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
| | - Guihong Lu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Wei-Chih Wei
- Department of Chemistry, National Taiwan University, Institute of Atomic and Molecular Science Academia Sinica, Taipei 10617, Taiwan
| | - Yi-Hsuan Huang
- Department of Chemistry, National Taiwan University, Institute of Atomic and Molecular Science Academia Sinica, Taipei 10617, Taiwan
| | - Shengliang Li
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU), City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
| | - Jia-Xiong Chen
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU), City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
| | - Xiao Cui
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU), City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
| | - Ya-Fang Xiao
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU), City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
| | - Xiaozhen Li
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU), City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
| | - Yanhong Liu
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU), City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
- Technical Institute of Physics And Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xiang-Min Meng
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU), City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
- Technical Institute of Physics And Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Pengfei Wang
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU), City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
- Technical Institute of Physics And Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Hai-Yan Xie
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Ken-Tsung Wong
- Department of Chemistry, National Taiwan University, Institute of Atomic and Molecular Science Academia Sinica, Taipei 10617, Taiwan
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU), City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
| |
Collapse
|
155
|
Liao Y, Li B, Zhao Z, Fu Y, Tan Q, Li X, Wang W, Yin J, Shan H, Tang BZ, Huang X. Targeted Theranostics for Tuberculosis: A Rifampicin-Loaded Aggregation-Induced Emission Carrier for Granulomas Tracking and Anti-Infection. ACS NANO 2020; 14:8046-8058. [PMID: 32401009 DOI: 10.1021/acsnano.0c00586] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tuberculosis (TB) causes a global burden with its high rates of infection and death, especially the irrepressible threats of latent infection and drug resistance. Therefore, it is important to construct efficient theranostics for the prevention and control of TB. Herein, we created a targeted theranostic strategy for TB with a rifampicin-loaded aggregation-induced emission (AIE) carrier and performed testing in laboratory animals. The AIE carrier was constructed to localize in the granulomas and emit fluorescent signals at the early stage of infection, enabling the early diagnosis of TB. Subsequently, reactive oxygen species (ROS) were generated to eradicate infection, and the loaded rifampicin (RIF) was released for the synergistic treatment of persistent bacteria. Furthermore, targeted TB therapy was performed with the light-controlled release of ROS and accurate delivery of RIF, which realizes an anti-infection effect, providing an especially important treatment for drug-resistant TB. Thus, targeted theranostics for TB in laboratory animals possess the potential to become granulomas-tracking and anti-infection strategies for the diagnosis and treatment of TB.
Collapse
Affiliation(s)
- Yuhui Liao
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, P.R. China
| | - Bin Li
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, P.R. China
| | - Zheng Zhao
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, P.R. China
| | - Yu Fu
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, P.R. China
| | - Qingqin Tan
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, P.R. China
| | - Xingyu Li
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, P.R. China
| | - Wei Wang
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, P.R. China
| | - Jialing Yin
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, P.R. China
| | - Hong Shan
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, P.R. China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, P.R. China
| | - Xi Huang
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, P.R. China
| |
Collapse
|
156
|
Filipe HAL, Moreno MJ, Loura LMS. The Secret Lives of Fluorescent Membrane Probes as Revealed by Molecular Dynamics Simulations. Molecules 2020; 25:E3424. [PMID: 32731549 PMCID: PMC7435664 DOI: 10.3390/molecules25153424] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/15/2022] Open
Abstract
Fluorescent probes have been employed for more than half a century to study the structure and dynamics of model and biological membranes, using spectroscopic and/or microscopic experimental approaches. While their utilization has led to tremendous progress in our knowledge of membrane biophysics and physiology, in some respects the behavior of bilayer-inserted membrane probes has long remained inscrutable. The location, orientation and interaction of fluorophores with lipid and/or water molecules are often not well known, and they are crucial for understanding what the probe is actually reporting. Moreover, because the probe is an extraneous inclusion, it may perturb the properties of the host membrane system, altering the very properties it is supposed to measure. For these reasons, the need for independent methodologies to assess the behavior of bilayer-inserted fluorescence probes has been recognized for a long time. Because of recent improvements in computational tools, molecular dynamics (MD) simulations have become a popular means of obtaining this important information. The present review addresses MD studies of all major classes of fluorescent membrane probes, focusing in the period between 2011 and 2020, during which such work has undergone a dramatic surge in both the number of studies and the variety of probes and properties accessed.
Collapse
Affiliation(s)
- Hugo A. L. Filipe
- Chemistry Department, Coimbra Chemistry Center, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal;
| | - Maria João Moreno
- Coimbra Chemistry Center and CNC—Center for Neuroscience and Cell Biology, Chemistry Department, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal;
| | - Luís M. S. Loura
- Coimbra Chemistry Center and CNC—Center for Neuroscience and Cell Biology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
157
|
Zhang Z, Nie X, Wang F, Chen G, Huang WQ, Xia L, Zhang WJ, Hao ZY, Hong CY, Wang LH, You YZ. Rhodanine-based Knoevenagel reaction and ring-opening polymerization for efficiently constructing multicyclic polymers. Nat Commun 2020; 11:3654. [PMID: 32694628 PMCID: PMC7374721 DOI: 10.1038/s41467-020-17474-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/30/2020] [Indexed: 11/09/2022] Open
Abstract
Cyclic polymers have a number of unique physical properties compared with those of their linear counterparts. However, the methods for the synthesis of cyclic polymers are very limited, and some multicyclic polymers are still not accessible now. Here, we found that the five-membered cyclic structure and electron withdrawing groups make methylene in rhodanine highly active to aldehyde via highly efficient Knoevenagel reaction. Also, rhodanine can act as an initiator for anionic ring-opening polymerization of thiirane to produce cyclic polythioethers. Therefore, rhodanine can serve as both an initiator for ring-opening polymerization and a monomer in Knoevenagel polymerization. Via rhodanine-based Knoevenagel reaction, we can easily incorporate rhodanine moieties in the backbone, side chain, branched chain, etc, and correspondingly could produce cyclic structures in the backbone, side chain, branched chain, etc, via rhodanine-based anionic ring-opening polymerization. This rhodanine chemistry would provide easy access to a wide variety of complex multicyclic polymers.
Collapse
Affiliation(s)
- Ze Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Xuan Nie
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Fei Wang
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
| | - Guang Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Wei-Qiang Huang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Lei Xia
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Wen-Jian Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Zong-Yao Hao
- The First Affiliated Hospital of Anhui Medical University and Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China.
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| | - Long-Hai Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| | - Ye-Zi You
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| |
Collapse
|
158
|
Xu Y, Li C, Xu R, Zhang N, Wang Z, Jing X, Yang Z, Dang D, Zhang P, Meng L. Tuning molecular aggregation to achieve highly bright AIE dots for NIR-II fluorescence imaging and NIR-I photoacoustic imaging. Chem Sci 2020; 11:8157-8166. [PMID: 34123087 PMCID: PMC8163436 DOI: 10.1039/d0sc03160g] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022] Open
Abstract
Currently, bright aggregation-induced emission luminogens (AIEgens) with high photoluminescence quantum yields (PLQYs) in the NIR-II region are still limited, and thus an efficient strategy to enhance NIR-II fluorescence performance through tuning molecular aggregation is proposed here. The synthesized donor-acceptor tailored AIEgen (DTPA-TBZ) not only exhibits an excellent absorptivity in the NIR-I region, but also good fluorescence signals in the NIR-II region with an emission extending to 1200 nm. Benefiting from such improved intramolecular restriction and aggregation, a significant absolute PLQY value of 8.98% was obtained in solid DTPA-TBZ. Encouragingly, the resulting AIE dots also exhibit a high relative PLQY of up to 11.1% with IR 26 as the reference (PLQY = 0.5%). Finally, the AIE dots were applied in high performance NIR-II fluorescence imaging and NIR-I photoacoustic (PA) imaging: visualization of abdominal vessels, hind limb vasculature, and cerebral vessels with high signal to background ratios was performed via NIR-II imaging; Moreover, PA imaging has also been performed to clearly observe tumors in vivo. These results demonstrate that by finely tuning molecular aggregation in DTPA-TBZ, a good NIR-I absorptivity and a highly emissive fluorescence in the NIR-II region can be achieved simultaneously, finally resulting in a promising dual-modal imaging platform for real-world applications to achieve precise cancer diagnostics.
Collapse
Affiliation(s)
- Yanzi Xu
- School of Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Chunbin Li
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P. R. China
| | - Ruohan Xu
- School of Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Ning Zhang
- School of Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Zhi Wang
- School of Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Xunan Jing
- School of Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Zhiwei Yang
- School of Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Dongfeng Dang
- School of Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P. R. China
| | - Lingjie Meng
- School of Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University Xi'an 710049 P. R. China
- Instrumental Analysis Center, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| |
Collapse
|
159
|
Zhu D, Duo Y, Suo M, Zhao Y, Xia L, Zheng Z, Li Y, Tang BZ. Tumor‐Exocytosed Exosome/Aggregation‐Induced Emission Luminogen Hybrid Nanovesicles Facilitate Efficient Tumor Penetration and Photodynamic Therapy. Angew Chem Int Ed Engl 2020; 59:13836-13843. [DOI: 10.1002/anie.202003672] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/20/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Daoming Zhu
- Department of Gastrointestinal Surgery Second Clinical Medical College of Jinan University Shenzhen People's Hospital Shenzhen 518020 China
- Department of Electronic Science and Technology School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Yanhong Duo
- Department of Microbiology, Tumor and Cell Biology Karolinska Institute 17177 Stockholm Sweden
| | - Meng Suo
- Department of Electronic Science and Technology School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine University of Macau China
| | - Ligang Xia
- Department of Gastrointestinal Surgery Second Clinical Medical College of Jinan University Shenzhen People's Hospital Shenzhen 518020 China
| | - Zheng Zheng
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Department of Chemical and Biological Engineering and Division of Life Science The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong China
| | - Yang Li
- Department of Gastrointestinal Surgery Second Clinical Medical College of Jinan University Shenzhen People's Hospital Shenzhen 518020 China
| | - Ben Zhong Tang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Department of Chemical and Biological Engineering and Division of Life Science The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong China
| |
Collapse
|
160
|
Zhu D, Duo Y, Suo M, Zhao Y, Xia L, Zheng Z, Li Y, Tang BZ. Tumor‐Exocytosed Exosome/Aggregation‐Induced Emission Luminogen Hybrid Nanovesicles Facilitate Efficient Tumor Penetration and Photodynamic Therapy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003672] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Daoming Zhu
- Department of Gastrointestinal Surgery Second Clinical Medical College of Jinan University Shenzhen People's Hospital Shenzhen 518020 China
- Department of Electronic Science and Technology School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Yanhong Duo
- Department of Microbiology, Tumor and Cell Biology Karolinska Institute 17177 Stockholm Sweden
| | - Meng Suo
- Department of Electronic Science and Technology School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine University of Macau China
| | - Ligang Xia
- Department of Gastrointestinal Surgery Second Clinical Medical College of Jinan University Shenzhen People's Hospital Shenzhen 518020 China
| | - Zheng Zheng
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Department of Chemical and Biological Engineering and Division of Life Science The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong China
| | - Yang Li
- Department of Gastrointestinal Surgery Second Clinical Medical College of Jinan University Shenzhen People's Hospital Shenzhen 518020 China
| | - Ben Zhong Tang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Department of Chemical and Biological Engineering and Division of Life Science The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong China
| |
Collapse
|
161
|
Qin W, Alifu N, Lam JWY, Cui Y, Su H, Liang G, Qian J, Tang BZ. Facile Synthesis of Efficient Luminogens with AIE Features for Three-Photon Fluorescence Imaging of the Brain through the Intact Skull. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000364. [PMID: 32350951 DOI: 10.1002/adma.202000364] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Visualization of the brain in its native environment is important for understanding common brain diseases. Herein, bright luminogens with remarkable aggregation-induced emission (AIE) characteristics and high quantum yields of up to 42.6% in the solid state are synthesized through facile reaction routes. The synthesized molecule, namely BTF, shows ultrabright far-red/near-infrared emission and can be fabricated into AIE dots by a simple nanoprecipitation procedure. Due to their high brightness, large Stokes shift, good biocompatibility, satisfactory photostability, and large three-photon absorption cross section, the AIE dots can be utilized as efficient fluorescent nanoprobes for in vivo brain vascular imaging through the intact skull by a three-photon fluorescence microscopy imaging technique. This is the first example of using AIE dots for the visualization of the cerebral stroke process through the intact skull of a mouse with high penetration depth and good image contrast. Such good results are anticipated to open up a new venue in the development of efficient emitters with strong nonlinear optical effects for noninvasive bioimaging of living brain.
Collapse
Affiliation(s)
- Wei Qin
- PCFM and GDHPPC Labs, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Nuernisha Alifu
- State Key Laboratory of Modern Optical Instrumentations, Center for Optical and Electromagnetic Research, JORCEP (Sino-Swedish Joint Research Center of photonics), Zhejiang University, Hangzhou, 310058, China
- College of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830011, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yuhan Cui
- PCFM and GDHPPC Labs, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Huifang Su
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| | - Guodong Liang
- PCFM and GDHPPC Labs, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Center for Optical and Electromagnetic Research, JORCEP (Sino-Swedish Joint Research Center of photonics), Zhejiang University, Hangzhou, 310058, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
162
|
Zhao Z, Zhang H, Lam JWY, Tang BZ. Aggregationsinduzierte Emission: Einblicke auf Aggregatebene. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916729] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Zheng Zhao
- Department of ChemistryDepartment of Chemical and Biological EngineeringInstitute for Advanced StudyHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong 999077 China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Haoke Zhang
- Department of ChemistryDepartment of Chemical and Biological EngineeringInstitute for Advanced StudyHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong 999077 China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Jacky W. Y. Lam
- Department of ChemistryDepartment of Chemical and Biological EngineeringInstitute for Advanced StudyHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong 999077 China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Ben Zhong Tang
- Department of ChemistryDepartment of Chemical and Biological EngineeringInstitute for Advanced StudyHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong 999077 China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
- Center for Aggregation-Induced EmissionState Key Laboratory of Luminescent Materials and DevicesSCUT-HKUST Joint Research InstituteSouth China University of Technology, Tianhe Qu Guangzhou 510640 China
| |
Collapse
|
163
|
Zhao Z, Zhang H, Lam JWY, Tang BZ. Aggregation-Induced Emission: New Vistas at the Aggregate Level. Angew Chem Int Ed Engl 2020; 59:9888-9907. [PMID: 32048428 DOI: 10.1002/anie.201916729] [Citation(s) in RCA: 611] [Impact Index Per Article: 122.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Indexed: 12/13/2022]
Abstract
Aggregation-induced emission (AIE) describes a photophysical phenomenon in which molecular aggregates exhibit stronger emission than the single molecules. Over the course of the last 20 years, AIE research has made great strides in material development, mechanistic study and high-tech applications. The achievements of AIE research demonstrate that molecular aggregates show many properties and functions that are absent in molecular species. In this review, we summarize the advances in the field of AIE and its related areas. We specifically focus on the new properties of materials attained by molecular aggregates beyond the microscopic molecular level. We hope this review will inspire more research into molecular ensembles at and beyond the meso level and lead to the significant progress in material and biological science.
Collapse
Affiliation(s)
- Zheng Zhao
- Department of Chemistry, Department of Chemical and Biological Engineering, Institute for Advanced Study, Hong Kong Branch of Chinese National Engineering Research Center, for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.,HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Haoke Zhang
- Department of Chemistry, Department of Chemical and Biological Engineering, Institute for Advanced Study, Hong Kong Branch of Chinese National Engineering Research Center, for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.,HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Jacky W Y Lam
- Department of Chemistry, Department of Chemical and Biological Engineering, Institute for Advanced Study, Hong Kong Branch of Chinese National Engineering Research Center, for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.,HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Ben Zhong Tang
- Department of Chemistry, Department of Chemical and Biological Engineering, Institute for Advanced Study, Hong Kong Branch of Chinese National Engineering Research Center, for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.,HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China.,Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, South China University of Technology, Tianhe Qu, Guangzhou, 510640, China
| |
Collapse
|
164
|
Zhuang J, Yang H, Li Y, Wang B, Li N, Zhao N. Efficient photosensitizers with aggregation-induced emission characteristics for lysosome- and Gram-positive bacteria-targeted photodynamic therapy. Chem Commun (Camb) 2020; 56:2630-2633. [PMID: 32016259 DOI: 10.1039/d0cc00394h] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Two efficient photosensitizers (PSs) with aggregation-induced emission characteristics were designed and synthesized for specific lysosome-targeted photodynamic therapy (PDT). Both PSs efficiently discriminated Gram-positive bacteria from Gram-negative bacteria and killed Gram-positive bacteria through the PDT effect.
Collapse
Affiliation(s)
- Jiabao Zhuang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, 710119 Xi'an, China.
| | - Hanxiao Yang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, 710119 Xi'an, China.
| | - Yue Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, 710119 Xi'an, China.
| | - Bing Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, 710119 Xi'an, China.
| | - Nan Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, 710119 Xi'an, China.
| | - Na Zhao
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, 710119 Xi'an, China.
| |
Collapse
|
165
|
Zhao J, Zhang X, Fang L, Gao C, Xu C, Gou S. Iridium(III) Complex-Derived Polymeric Micelles with Low Dark Toxicity and Strong NIR Excitation for Phototherapy and Chemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000363. [PMID: 32174002 DOI: 10.1002/smll.202000363] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Iridium(III) complexes are potent candidates for photodynamic therapy. However, their clinical usage is impeded by their poor water solubility, high dark toxicity, and negligible absorption in near-infrared region (NIR region). Here, it is proposed to solve these challenges by developing an iridium(III) complexe-based polymeric micelle system. This system is self-assembled using an iridium(III) complex-containing amphiphilic block polymer. The upconversion nanoparticles are included in the polymeric micelles to permit NIR excitation. Compared with the nonformulated iridium(III) complexes, under NIR stimulation, this polymeric micelle system exhibits higher 1 O2 generation efficiency, negligible dark toxicity, excellent tumor-targeting ability, and synergistic phototherapy-chemotherapy effect both in vitro and in vivo.
Collapse
Affiliation(s)
- Jian Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xinzhong Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Lei Fang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Chuanzhu Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Chenjie Xu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| |
Collapse
|
166
|
Nguyen V, Yim Y, Kim S, Ryu B, Swamy KMK, Kim G, Kwon N, Kim C, Park S, Yoon J. Molecular Design of Highly Efficient Heavy‐Atom‐Free Triplet BODIPY Derivatives for Photodynamic Therapy and Bioimaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002843] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Van‐Nghia Nguyen
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Republic of Korea
| | - Yubin Yim
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Republic of Korea
| | - Sangin Kim
- Department of Chemistry Korea University Seoul 02841 Republic of Korea
| | - Bokyeong Ryu
- Department of Laboratory Animal Medicine College of Veterinary Medicine Seoul National University Seoul 08826 Republic of Korea
| | - K. M. K. Swamy
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Republic of Korea
- Department of Pharmaceutical Chemistry V.L. College of Pharmacy Raichur 584103 India
| | - Gyoungmi Kim
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Republic of Korea
| | - Nahyun Kwon
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Republic of Korea
| | - C‐Yoon Kim
- Department of Stem Cell Biology School of Medicine Konkuk University Seoul 05029 Republic of Korea
| | - Sungnam Park
- Department of Chemistry Korea University Seoul 02841 Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Republic of Korea
| |
Collapse
|
167
|
Nguyen VN, Yim Y, Kim S, Ryu B, Swamy KMK, Kim G, Kwon N, Kim CY, Park S, Yoon J. Molecular Design of Highly Efficient Heavy-Atom-Free Triplet BODIPY Derivatives for Photodynamic Therapy and Bioimaging. Angew Chem Int Ed Engl 2020; 59:8957-8962. [PMID: 32125064 DOI: 10.1002/anie.202002843] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Indexed: 12/16/2022]
Abstract
Novel BODIPY photosensitizers were developed for imaging-guided photodynamic therapy. The introduction of a strong electron donor to the BODIPY core through a phenyl linker combined with the twisted arrangement between the donor and the BODIPY acceptor is essential for reducing the energy gap between the lowest singlet excited state and the lowest triplet state (ΔEST ), leading to a significant enhancement in the intersystem crossing (ISC) of the BODIPYs. Remarkably, the BDP-5 with the smallest ΔEST (ca. 0.44 eV) exhibited excellent singlet oxygen generation capabilities in both organic and aqueous solutions. BDP-5 also displayed bright emission in the far-red/near-infrared region in the condensed states. More importantly, both in vitro and in vivo studies demonstrated that BDP-5 NPs displayed a high potential for photodynamic cancer therapy and bioimaging.
Collapse
Affiliation(s)
- Van-Nghia Nguyen
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Yubin Yim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sangin Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Bokyeong Ryu
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - K M K Swamy
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea.,Department of Pharmaceutical Chemistry, V.L. College of Pharmacy, Raichur, 584103, India
| | - Gyoungmi Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Nahyun Kwon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - C-Yoon Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sungnam Park
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| |
Collapse
|
168
|
Guo Z, Yan C, Zhu WH. High-Performance Quinoline-Malononitrile Core as a Building Block for the Diversity-Oriented Synthesis of AIEgens. Angew Chem Int Ed Engl 2020; 59:9812-9825. [PMID: 31725932 DOI: 10.1002/anie.201913249] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Indexed: 12/20/2022]
Abstract
In vivo fluorescent monitoring of physiological processes with high-fidelity is essential in disease diagnosis and biological research, but faces extreme challenges due to aggregation-caused quenching (ACQ) and short-wavelength fluorescence. The development of high-performance and long-wavelength aggregation-induced emission (AIE) fluorophores is in high demand for precise optical bioimaging. The chromophore quinoline-malononitrile (QM) has recently emerged as a new class of AIE building block that possesses several notable features, such as red to near-infrared (NIR) emission, high brightness, marked photostability, and good biocompatibility. In this minireview, we summarize some recent advances of our established AIE building block of QM, focusing on the AIE mechanism, regulation of emission wavelength and morphology, the facile scale-up and fast preparation for AIE nanoparticles, as well as potential biomedical imaging applications.
Collapse
Affiliation(s)
- Zhiqian Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chenxu Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
169
|
Guo Z, Yan C, Zhu W. High‐Performance Quinoline‐Malononitrile Core as a Building Block for the Diversity‐Oriented Synthesis of AIEgens. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zhiqian Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterShanghai Key Laboratory of Functional Materials ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Chenxu Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterShanghai Key Laboratory of Functional Materials ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Wei‐Hong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterShanghai Key Laboratory of Functional Materials ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
170
|
A mitochondria-targeting nitroreductase fluorescent probe with large Stokes shift and long-wavelength emission for imaging hypoxic status in tumor cells. Anal Chim Acta 2020; 1103:202-211. [DOI: 10.1016/j.aca.2019.12.063] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/12/2019] [Accepted: 12/20/2019] [Indexed: 12/31/2022]
|
171
|
Li J, Wang J, Li H, Song N, Wang D, Tang BZ. Supramolecular materials based on AIE luminogens (AIEgens): construction and applications. Chem Soc Rev 2020; 49:1144-1172. [PMID: 31971181 DOI: 10.1039/c9cs00495e] [Citation(s) in RCA: 369] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The emergence of aggregation-induced emission luminogens (AIEgens) has significantly stimulated the development of luminescent supramolecular materials because their strong emissions in the aggregated state have resolved the notorious obstacle of the aggregation-caused quenching (ACQ) effect, thereby enabling AIEgen-based supramolecular materials to have a promising prospect in the fields of luminescent materials, sensors, bioimaging, drug delivery, and theranostics. Moreover, in contrast to conventional fluorescent molecules, the configuration of AIEgens is highly twisted in space. Investigating AIEgens and the corresponding supramolecular materials provides fundamental insights into the self-assembly of nonplanar molecules, drastically expands the building blocks of supramolecular materials, and pushes forward the frontiers of supramolecular chemistry. In this review, we will summarize the basic concepts, seminal studies, recent trends, and perspectives in the construction and applications of AIEgen-based supramolecular materials with the hope to inspire more interest and additional ideas from researchers and further advance the development of supramolecular chemistry.
Collapse
Affiliation(s)
- Jie Li
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China. and College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianxing Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China. and College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haoxuan Li
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China. and College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Nan Song
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China. and College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China. and College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
172
|
Dai J, Wu X, Ding S, Lou X, Xia F, Wang S, Hong Y. Aggregation-Induced Emission Photosensitizers: From Molecular Design to Photodynamic Therapy. J Med Chem 2020; 63:1996-2012. [PMID: 32039596 DOI: 10.1021/acs.jmedchem.9b02014] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photodynamic therapy (PDT) has emerged as a promising noninvasive treatment option for cancers and other diseases. The key factor that determines the effectiveness of PDT is the photosensitizers (PSs). Upon light irradiation, the PSs would be activated, produce reactive oxygen species (ROS), and induce cell death. One of the challenges is that traditional PSs adopt a large flat disc-like structure, which tend to interact with the adjacent molecules through strong π-π stacking that reduces their ROS generation ability. Aggregation-induced emission (AIE) molecules with a twisted configuration to suppress strong intermolecular interactions represent a new class of PSs for image-guided PDT. In this Miniperspective, we summarize the recent progress on the design rationale of AIE-PSs and the strategies to achieve desirable theranostic applications in cancers. Subsequently, approaches of combining AIE-PS with other imaging and treatment modalities, challenges, and future directions are addressed.
Collapse
Affiliation(s)
- Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xia Wu
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Siyang Ding
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuning Hong
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
173
|
Li Y, Wu Q, Kang M, Song N, Wang D, Tang BZ. Boosting the photodynamic therapy efficiency by using stimuli-responsive and AIE-featured nanoparticles. Biomaterials 2020; 232:119749. [DOI: 10.1016/j.biomaterials.2019.119749] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/21/2019] [Accepted: 12/28/2019] [Indexed: 12/14/2022]
|
174
|
|
175
|
Zhang L, Che W, Yang Z, Liu X, Liu S, Xie Z, Zhu D, Su Z, Tang BZ, Bryce MR. Bright red aggregation-induced emission nanoparticles for multifunctional applications in cancer therapy. Chem Sci 2020; 11:2369-2374. [PMID: 34084398 PMCID: PMC8157307 DOI: 10.1039/c9sc06310b] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
Developing multifunctional photosensitizers (PSs) is needed to effectively simplify cancer treatment, but it remains a big challenge. Here, two red-emitting AIE-active, donor-acceptor (D-A) PSs with small ΔE ST and their AIE nanoparticles, are rationally designed and synthesized. The PS1 NPs exhibit bright red-emission with high quantum yield, appropriate 1O2 generation ability and good biocompatibility. More importantly, PS1 NPs can strongly light up the cytoplasm by gently shaking the cells for only 5 s at room temperature, indicating ultrafast staining and mild incubation conditions. In vitro and in vivo cell tracing demonstrate that PS1 NPs can track cells over 14 days, and effectively inhibit tumor growth upon irradiation. To the best of our knowledge, this work is the first example of a PS that integrates image-guided PDT, ultrafast staining and long-term tracing functions, demonstrating the "all-in-one" concept which offers great advantages for potential clinical applications.
Collapse
Affiliation(s)
- Liping Zhang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University 5268 Renmin Street Changchun Jilin Province 130024 P. R. China
| | - Weilong Che
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University 5268 Renmin Street Changchun Jilin Province 130024 P. R. China
| | - Zhiyu Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Xingman Liu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University 5268 Renmin Street Changchun Jilin Province 130024 P. R. China
| | - Shi Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Dongxia Zhu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University 5268 Renmin Street Changchun Jilin Province 130024 P. R. China
| | - Zhongmin Su
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University 5268 Renmin Street Changchun Jilin Province 130024 P. R. China
| | - Ben Zhong Tang
- State Key Laboratory of Molecular Neuroscience Institute for Advanced Study Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Martin R Bryce
- Department of Chemistry, Durham University Durham DH1 3LE UK
| |
Collapse
|
176
|
Min X, Fang T, Li L, Li C, Zhang ZP, Zhang XE, Li F. AIE nanodots scaffolded by mini-ferritin protein for cellular imaging and photodynamic therapy. NANOSCALE 2020; 12:2340-2344. [PMID: 31934693 DOI: 10.1039/c9nr09788k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photodynamic therapy (PDT) is one of the most elegant cancer treatment strategies that can be controlled by a beam of light with non-invasion, precise control, and high spatiotemporal accuracy. An ideal photosensitizer (PS) is the key to ensure the efficacy of PDT. Due to their hydrophobic and rigid planar structures, most traditional PSs are prone to aggregate under physiological conditions, which causes fluorescence quenching and significantly reduces reactive oxygen species (ROS) generation. Fortunately, the emergence of aggregation-induced emission (AIE) dyes offers a potential opportunity to overcome these limitations. When AIE PS molecules are in the aggregation state, the fluorescence intensity and ROS production can be increased. We herein use red AIE PS molecules to prepare stable AIE nanodots for cell imaging and PDT via a simple method with a highly negatively charged mini-ferritin protein as the scaffold. The as-prepared protein-AIE nanodots show strong fluorescence emission and efficient singlet oxygen generation, with good stability, relatively long wavelengths of absorption and emission, and negligible dark toxicity. The mini-ferritin-AIE system may be useful in developing novel functional probes for tumour nanotheranostics.
Collapse
Affiliation(s)
- Xuehong Min
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, PR China.
| | - Ti Fang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, PR China.
| | - Lingling Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, PR China.
| | - Chaoqun Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, PR China.
| | - Zhi-Ping Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, PR China.
| | - Xian-En Zhang
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, PR China.
| |
Collapse
|
177
|
Zheng Z, Liu H, Zhai S, Zhang H, Shan G, Kwok RTK, Ma C, Sung HHY, Williams ID, Lam JWY, Wong KS, Hu X, Tang BZ. Highly efficient singlet oxygen generation, two-photon photodynamic therapy and melanoma ablation by rationally designed mitochondria-specific near-infrared AIEgens. Chem Sci 2020; 11:2494-2503. [PMID: 34084415 PMCID: PMC8157451 DOI: 10.1039/c9sc06441a] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Photosensitizers (PSs) with multiple characteristics, including efficient singlet oxygen (1O2) generation, cancer cell-selective accumulation and subsequent mitochondrial localization as well as near-infrared (NIR) excitation and bright NIR emission, are promising candidates for imaging-guided photodynamic therapy (PDT) but rarely concerned. Herein, a simple rational strategy, namely modulation of donor-acceptor (D-A) strength, for molecular engineering of mitochondria-targeting aggregation-induced emission (AIE) PSs with desirable characteristics including highly improved 1O2 generation efficiency, NIR emission (736 nm), high specificity to mitochondria, good biocompatibility, high brightness and superior photostability is demonstrated. Impressively, upon light irradiation, the optimal NIR AIE PS (DCQu) can generate 1O2 with efficiency much higher than those of commercially available PSs. The excellent two-photon absorption properties of DCQu allow two-photon fluorescence imaging of mitochondria and subsequent two-photon excited PDT. DCQu can selectively differentiate cancer cells from normal cells without the aid of extra targeting ligands. Upon ultralow-power light irradiation at 4.2 mW cm-2, in situ mitochondrial photodynamic activation to specifically damage cancer cells and efficient in vivo melanoma ablation are demonstrated, suggesting superior potency of the AIE PS in imaging-guided PDT with minimal side effects, which is promising for future precision medicine.
Collapse
Affiliation(s)
- Zheng Zheng
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong China
| | - Haixiang Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong China
| | - Shaodong Zhai
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University 55 Zhongshan Avenue West Guangzhou 510631 China
| | - Haoke Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong China
| | - Guogang Shan
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong China
| | - Chao Ma
- Department of Physics, HKUST Clear Water Bay Kowloon Hong Kong China
| | - Herman H Y Sung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong China
| | - Ian D Williams
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong China
| | - Kam Sing Wong
- Department of Physics, HKUST Clear Water Bay Kowloon Hong Kong China
| | - Xianglong Hu
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University 55 Zhongshan Avenue West Guangzhou 510631 China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong China .,HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China.,Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China
| |
Collapse
|
178
|
Yang Z, Yin W, Zhang S, Shah I, Zhang B, Zhang S, Li Z, Lei Z, Ma H. Synthesis of AIE-Active Materials with Their Applications for Antibacterial Activity, Specific Imaging of Mitochondrion and Image-Guided Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2020; 3:1187-1196. [DOI: 10.1021/acsabm.9b01094] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zengming Yang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Weidong Yin
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Shaoxiong Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Imran Shah
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Bo Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Shengjun Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Zhao Li
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ziqiang Lei
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Hengchang Ma
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
179
|
Dai J, Xu M, Wang Q, Yang J, Zhang J, Cui P, Wang W, Lou X, Xia F, Wang S. Cooperation therapy between anti-growth by photodynamic-AIEgens and anti-metastasis by small molecule inhibitors in ovarian cancer. Am J Cancer Res 2020; 10:2385-2398. [PMID: 32104509 PMCID: PMC7019153 DOI: 10.7150/thno.41708] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/15/2019] [Indexed: 12/11/2022] Open
Abstract
Metastasis is one of the main causes of death and treatment failure in ovarian cancer. Some small molecule inhibitors can effectively inhibit the metastasis of primary tumors. However, they do not kill the primary tumor cells, which may lead to continuous proliferation. Herein, we have prepared a multifunctional nanoparticles named TPD@TB/KBU2046, which consisted of three functional moieties: (1) KBU2046 (small molecule inhibitor) that can inhibit the metastasis of the primary tumors, (2) TB (photodynamic-AIEgens) that may suppress the growth of the primary tumors, and (3) TPD, which contains TMTP1 (a targeting peptide, which specifically binds to highly metastatic tumor cells) that can enhance the TB/KBU2046 dosage in the tumor site. Methods: The TPD@TB/KBU2046 was prepared by nano-precipitation method. We linked the targeting peptide (TMTP1) to the nanoparticles via amidation reaction. TPD@TB/KBU2046 nanoparticles were characterized for encapsulation efficiency, particle size, absorption spectra, emission spectra and ROS production. The combinational efficacy in image-guided anti-metastasis and photodynamic therapy of TPD@TB/KBU2046 was explored both in vitro and in vivo. Results: The TPD@TB/KBU2046 showed an average hydrodynamic size of approximately 50 nm with good stability. In vitro, TPD@TB/KBU2046 not only inhibited the metastasis of the tumors, but also suppressed the growth of the tumors under AIEgens-mediated photodynamic therapy. In vivo, we confirmed that TPD@TB/KBU2046 has the therapeutic effects of anti-tumor growth and anti-metastasis through subcutaneous and orthotopic ovarian tumor models. Conclusion: Our findings provided an effective strategy to compensate for the congenital defects of some small molecule inhibitors and thus enhanced the therapeutic efficacy of ovarian cancer.
Collapse
|
180
|
Xu Y, Yang W, Yao D, Bian K, Zeng W, Liu K, Wang D, Zhang B. An aggregation-induced emission dye-powered afterglow luminogen for tumor imaging. Chem Sci 2020; 11:419-428. [PMID: 32190262 PMCID: PMC7067237 DOI: 10.1039/c9sc04901k] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
Semiconducting polymer (SP)-based afterglow luminogens are showing increasing potential for in vivo imaging because of their long-life luminescence and the associated benefits (e.g., zero-autofluorescence background and high signal-to-noise ratio). However, such organic afterglow luminescence agents are still rare and their application is usually limited by their relatively low afterglow intensity and short afterglow duration. Herein, we report an aggregation-induced emission (AIE) dye-powered SP afterglow luminogen by leveraging on the unique characteristics of an AIE dye to circumvent the concentration-quenching effect, enhance afterglow intensity and prolong afterglow duration. The underlying working mechanism is investigated by a series of experiments and it is found that the AIE dye provides sufficient 1O2 to excite SPs and form massive amounts of high-energy intermediates, and then the SP intermediates emit photons that can activate the AIE dye to generate 1O2 and simultaneously trigger the energy transfer process between the SPs and AIE dye, resulting in a deep-red emission. It is this closed-loop of "photon-1O2-SP intermediates-photon" that provides the afterglow emission even after the cessation of the excitation light. The as-prepared luminogen shows good performance in in vivo tumour imaging. This study demonstrates the advantages of AIE-facilitated afterglow luminescence and discloses its mechanism, and hopefully it could inspire the development of other innovative designs for cancer theranostics.
Collapse
Affiliation(s)
- Yan Xu
- Department of Medical Ultrasound , Shanghai Tenth People's Hospital , Tongji University Cancer Center , Tongji University School of Medicine , Shanghai 200072 , China .
| | - Weitao Yang
- Department of Medical Ultrasound , Shanghai Tenth People's Hospital , Tongji University Cancer Center , Tongji University School of Medicine , Shanghai 200072 , China .
| | - Defan Yao
- Department of Radiology , Xinhua Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200092 , China
| | - Kexin Bian
- Department of Medical Ultrasound , Shanghai Tenth People's Hospital , Tongji University Cancer Center , Tongji University School of Medicine , Shanghai 200072 , China .
| | - Weiwei Zeng
- Department of Medical Ultrasound , Shanghai Tenth People's Hospital , Tongji University Cancer Center , Tongji University School of Medicine , Shanghai 200072 , China .
| | - Kai Liu
- Department of Medical Ultrasound , Shanghai Tenth People's Hospital , Tongji University Cancer Center , Tongji University School of Medicine , Shanghai 200072 , China .
| | - Dengbin Wang
- Department of Radiology , Xinhua Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200092 , China
| | - Bingbo Zhang
- Department of Medical Ultrasound , Shanghai Tenth People's Hospital , Tongji University Cancer Center , Tongji University School of Medicine , Shanghai 200072 , China .
| |
Collapse
|
181
|
Dong Y, Chen Z, Hou M, Qi L, Yan C, Lu X, Liu R, Xu Y. Mitochondria-targeted aggregation-induced emission active near infrared fluorescent probe for real-time imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117456. [PMID: 31419747 DOI: 10.1016/j.saa.2019.117456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
Mitochondria are essential organelles in eukaryotic cells and act as the energy powerhouse and biosynthetic compartment. Fluorescent dyes are widely used powerful molecular tools for analytical sensing and optical imaging. Low photostability, short excitation and emission wavelengths, and aggregation-induced quenching effects restrict the application of traditional commercial mitochondrial fluorescent probes for bioimaging. In this study, using rhodamine as the acceptor and phenothiazine as the donor, we synthesized a novel mitochondrial-targeted near infrared (NIR) fluorescent probe, MIT-PZR. Due to low cytotoxicity, great photostability and high specificity for mitochondria targeting, MIT-PZR has enormous potential for cell imaging. Furthermore, with a sizeable Stokes shift (emission peak at 705 nm), MIT-PZR penetrated tissues providing stable red fluorescence for imaging in vivo. The histological assessment of various tissues after treatment with MIT-PZR indicated that it has good biocompatibility. Thus, MIT-PZR is a promising mitochondrial NIR fluorescent probe for future application in clinical diagnosis and modern biological research.
Collapse
Affiliation(s)
- Yanjing Dong
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Zikang Chen
- Biomaterial Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Meirong Hou
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Li Qi
- Biomaterial Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Chenggong Yan
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Xiaodan Lu
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Ruiyuan Liu
- Biomaterial Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China.
| | - Yikai Xu
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
182
|
Mo D, Lin L, Chao P, Lai H, Zhang Q, Tian L, He F. Chlorination vs. fluorination: a study of halogenated benzo[c][1,2,5]thiadiazole-based organic semiconducting dots for near-infrared cellular imaging. NEW J CHEM 2020. [DOI: 10.1039/d0nj00700e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The chlorinated dots based on chlorinated benzo[c][1,2,5]thiadiazole unit possess higher fluorescence quantum yields, larger Stokes shifts, and better photostability than the fluorinated dots.
Collapse
Affiliation(s)
- Daize Mo
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis
| | - Li Lin
- Department of Materials Science and Engineering
- South University of Science and Technology
- Shenzhen
- China
| | - Pengjie Chao
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis
- Southern University of Science and Technology
- Shenzhen
- China
| | - Hanjian Lai
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis
- Southern University of Science and Technology
- Shenzhen
- China
| | - Qingwen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
| | - Leilei Tian
- Department of Materials Science and Engineering
- South University of Science and Technology
- Shenzhen
- China
| | - Feng He
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis
- Southern University of Science and Technology
- Shenzhen
- China
| |
Collapse
|
183
|
Zhou T, Zhu J, Shang D, Chai C, Li Y, Sun H, Li Y, Gao M, Li M. Mitochondria-anchoring and AIE-active photosensitizer for self-monitored cholangiocarcinoma therapy. MATERIALS CHEMISTRY FRONTIERS 2020; 4:3201-3208. [DOI: 10.1039/d0qm00503g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
An AIE-active photosensitizer, TTVPHE, can fast penetrate into cancer cells and efficiently trigger mitochondria-dependent apoptotic pathway with self-monitoring ability.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Otorhinolaryngology
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Jianfang Zhu
- Central Laboratory
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Dan Shang
- Department of Vascular Surgery
- Union Hospital
- Tongji Medical College, Huazhong University of Science and Technology
- Wuhan 430022
- China
| | - Chuxing Chai
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Wuhan 430022
- China
| | - Youzhen Li
- National Engineering Research Center for Tissue Restoration and Reconstruction
- Key Laboratory of Biomedical Engineering of Guangdong Province
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education
- Innovation Center for Tissue Restoration and Reconstruction
- South China University of Technology
| | - Haiying Sun
- Department of Otorhinolaryngology
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Yongqin Li
- Department of Otorhinolaryngology
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Meng Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction
- Key Laboratory of Biomedical Engineering of Guangdong Province
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education
- Innovation Center for Tissue Restoration and Reconstruction
- South China University of Technology
| | - Min Li
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Wuhan 430022
- China
| |
Collapse
|
184
|
Li L, Zhang L, Tong X, Li Y, Yang Z, Zhu D, Su Z, Xie Z. Near-infrared-emitting AIE multinuclear cationic Ir(iii) complex-assembled nanoparticles for photodynamic therapy. Dalton Trans 2020; 49:15332-15338. [DOI: 10.1039/d0dt02962a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The first pure NIR-emitting AIE multinuclear Ir(iii) complex NPs obtained by self-assembly exhibit excellent cell imaging and PDT performance.
Collapse
Affiliation(s)
- Lijuan Li
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Liping Zhang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Xiaofan Tong
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Yite Li
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Zhiyu Yang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Dongxia Zhu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Zhongmin Su
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
185
|
Qian W, Zuo M, Sun G, Chen Y, Han T, Hu XY, Wang R, Wang L. The construction of an AIE-based controllable singlet oxygen generation system directed by a supramolecular strategy. Chem Commun (Camb) 2020; 56:7301-7304. [DOI: 10.1039/d0cc02962a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An aggregation-induced emission based controllable singlet oxygen generation system has been successfully fabricated in an aqueous phase based on supramolecular host–guest assembly.
Collapse
Affiliation(s)
- Weirui Qian
- Key Laboratory of Mesoscopic Chemistry of MOE
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Minzan Zuo
- Key Laboratory of Mesoscopic Chemistry of MOE
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Guangping Sun
- Key Laboratory of Mesoscopic Chemistry of MOE
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Yuan Chen
- Key Laboratory of Mesoscopic Chemistry of MOE
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Tingting Han
- Key Laboratory of Mesoscopic Chemistry of MOE
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Xiao-Yu Hu
- Applied Chemistry Department
- School of Material Science and Engineering
- Nanjing University of Aeronautics and Astronautics
- Nanjing
- China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- Macau
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| |
Collapse
|
186
|
Xiong W, Wang L, Chen X, Tang H, Cao D, Zhang G, Chen W. Pyridinium-substituted tetraphenylethylene salt-based photosensitizers by varying counter anions: a highly efficient photodynamic therapy for cancer cell ablation and bacterial inactivation. J Mater Chem B 2020; 8:5234-5244. [DOI: 10.1039/d0tb00888e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A highly efficient photodynamic therapy of cancer cell ablation and bacterial inactivation by two AIEgens was reported.
Collapse
Affiliation(s)
- Wei Xiong
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| | - Lingyun Wang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| | - Xiaoli Chen
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| | - Hao Tang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| | - Derong Cao
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| | - Guozhen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials
- CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Wei Chen
- Department of Physics
- The University of Texas at Arlington
- Arlington
- USA
| |
Collapse
|
187
|
Kong Q, Ma B, Yu T, Hu C, Li G, Jiang Q, Wang Y. A two-photon AIE fluorophore as a photosensitizer for highly efficient mitochondria-targeted photodynamic therapy. NEW J CHEM 2020. [DOI: 10.1039/d0nj00822b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nowadays, photodynamic therapy (PDT) has become an effective method for cancer therapy.
Collapse
Affiliation(s)
- Qunshou Kong
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Boxuan Ma
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Tao Yu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Qing Jiang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
188
|
Zhao J, Sun S, Li X, Zhang W, Gou S. Enhancing Photodynamic Therapy Efficacy of Upconversion-Based Nanoparticles Conjugated with a Long-Lived Triplet Excited State Iridium(III)-Naphthalimide Complex: Toward Highly Enhanced Hypoxia-Inducible Factor-1. ACS APPLIED BIO MATERIALS 2019; 3:252-262. [DOI: 10.1021/acsabm.9b00774] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jian Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Shuchen Sun
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xiaoyan Li
- The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjing Zhang
- The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
189
|
Yin X, Low JZ, Fallon KJ, Paley DW, Campos LM. The butterfly effect in bisfluorenylidene-based dihydroacenes: aggregation induced emission and spin switching. Chem Sci 2019; 10:10733-10739. [PMID: 32153748 PMCID: PMC7020927 DOI: 10.1039/c9sc04096j] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/04/2019] [Indexed: 11/30/2022] Open
Abstract
Linear acenes are a well-studied class of polycyclic aromatic hydrocarbons and their established physical properties have led to their widespread application across the field of organic electronics. However, their quinoidal forms - dihydroacenes - are much less explored and exhibit vastly different photophysical and electronic properties due to their non-planar, cross-conjugated nature. In this work, we present a series of difluorenylidene dihydroacenes which exhibit a butterfly-like structure with a quinoidal skeleton, resulting in comparatively higher optical gaps and lower redox activities than those of their planar analogs. We found that these compounds exhibit aggregation induced emission (AIE), activated through restriction of the "flapping" vibrational mode of the molecules in the solid state. Furthermore, anthracene-containing dihydroacenes exhibit thermally activated ground-state spin switching as evidenced by planarization of the acene core and diradical activity recorded by EPR. These two characteristics in this relatively unexplored class of materials provide new insights for the design of multifunctional materials.
Collapse
Affiliation(s)
- Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials , School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 102488 , P. R. China
- Department of Chemistry , Columbia University , New York , New York 10027 , USA .
| | - Jonathan Z Low
- Department of Chemistry , Columbia University , New York , New York 10027 , USA .
| | - Kealan J Fallon
- Department of Chemistry , Columbia University , New York , New York 10027 , USA .
| | - Daniel W Paley
- Department of Chemistry , Columbia University , New York , New York 10027 , USA .
| | - Luis M Campos
- Department of Chemistry , Columbia University , New York , New York 10027 , USA .
| |
Collapse
|
190
|
Xiao YF, Chen JX, Li S, Tao WW, Tian S, Wang K, Cui X, Huang Z, Zhang XH, Lee CS. Manipulating exciton dynamics of thermally activated delayed fluorescence materials for tuning two-photon nanotheranostics. Chem Sci 2019; 11:888-895. [PMID: 34123067 PMCID: PMC8145712 DOI: 10.1039/c9sc05817f] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Rational manipulation of energy utilization from excited-state radiation of theranostic agents with a donor–acceptor structure is relatively unexplored. Herein, we present an effective strategy to tune the exciton dynamics of radiative excited state decay for augmenting two-photon nanotheranostics. As a proof of concept, two thermally activated delayed fluorescence (TADF) molecules with different electron-donating segments are engineered, which possess donor–acceptor structures and strong emissions in the deep-red region with aggregation-induced emission characteristics. Molecular simulations demonstrate that change of the electron-donating sections could effectively regulate the singlet–triplet energy gap and oscillator strength, which promises efficient energy flow. A two-photon laser with great permeability is used to excite TADF NPs to perform as theranostic agents with singlet oxygen generation and fluorescence imaging. These unique performances enable the proposed TADF emitters to exhibit tailored balances between two-photon singlet oxygen generation and fluorescence emission. This result demonstrates that TADF emitters can be rationally designed as superior candidates for nanotheranostic agents by the custom controlling exciton dynamics. Exciton dynamics can be manipulated rationally in the design of TADF materials for nanotheranostics. Regulating the ΔEST and f promises efficient energy flow for tailoring balances between singlet oxygen generation and fluorescence emission.![]()
Collapse
Affiliation(s)
- Ya-Fang Xiao
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong Hong Kong SAR P. R. China
| | - Jia-Xiong Chen
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong Hong Kong SAR P. R. China .,Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| | - Shengliang Li
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong Hong Kong SAR P. R. China
| | - Wen-Wen Tao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| | - Shuang Tian
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong Hong Kong SAR P. R. China
| | - Kai Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| | - Xiao Cui
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong Hong Kong SAR P. R. China
| | - Zhongming Huang
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong Hong Kong SAR P. R. China
| | - Xiao-Hong Zhang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong Hong Kong SAR P. R. China
| |
Collapse
|
191
|
Zhang J, Fang F, Liu B, Tan JH, Chen WC, Zhu Z, Yuan Y, Wan Y, Cui X, Li S, Tong QX, Zhao J, Meng XM, Lee CS. Intrinsically Cancer-Mitochondria-Targeted Thermally Activated Delayed Fluorescence Nanoparticles for Two-Photon-Activated Fluorescence Imaging and Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41051-41061. [PMID: 31602976 DOI: 10.1021/acsami.9b14552] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A recent breakthrough in the discovery of thermally activated delayed fluorescence (TADF) emitters characterized by small single-triplet energy offsets (ΔEST) offers a wealth of new opportunities to exploit high-performance metal-free photosensitizers. In this report, two intrinsically cancer-mitochondria-targeted TADF emitters-based nanoparticles (TADF NPs) have been developed for two-photon-activated photodynamic therapy (PDT) and fluorescence imaging. The as-prepared TADF NPs integrate the merits of (1) high 1O2 quantum yield of 52%, (2) sufficient near-infrared light penetration depth due to two-photon activation, and (3) excellent structure-inherent mitochondria-targeting capabilities without extra chemical or physical modifications, inducing remarkable endogenous mitochondria-specific reactive oxygen species production and excellent cancer-cell-killing ability at an ultralow light irradiance. We believe that the development of such intrinsically multifunctional TADF NPs stemming from a single molecule will provide new insights into exploration of novel PDT agents with strong photosensitizing ability for various biomedical applications.
Collapse
Affiliation(s)
- Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences , Beijing Institute of Technology , Beijing 100811 , P. R. China
| | - Fang Fang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences , Beijing Institute of Technology , Beijing 100811 , P. R. China
| | - Bin Liu
- School of Science, Westlake Institute for Advanced Study , Westlake University , 18 Shilongshan Road , Hangzhou 310024 , P. R. China
- Department of Physics , Fudan University , Shanghai 200438 , P. R. China
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province , Shantou University , 243 University Road , Shantou , Guangdong 515063 , P. R. China
| | - Ji-Hua Tan
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong SAR , P. R. China
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU) , City University of Hong Kong , Kowloon , Hong Kong SAR , P. R. China
| | - Wen-Cheng Chen
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong SAR , P. R. China
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU) , City University of Hong Kong , Kowloon , Hong Kong SAR , P. R. China
| | - Zelin Zhu
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong SAR , P. R. China
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU) , City University of Hong Kong , Kowloon , Hong Kong SAR , P. R. China
| | - Yi Yuan
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong SAR , P. R. China
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU) , City University of Hong Kong , Kowloon , Hong Kong SAR , P. R. China
| | - Yingpeng Wan
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong SAR , P. R. China
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU) , City University of Hong Kong , Kowloon , Hong Kong SAR , P. R. China
| | - Xiao Cui
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong SAR , P. R. China
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU) , City University of Hong Kong , Kowloon , Hong Kong SAR , P. R. China
| | - Shengliang Li
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong SAR , P. R. China
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU) , City University of Hong Kong , Kowloon , Hong Kong SAR , P. R. China
| | - Qing-Xiao Tong
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province , Shantou University , 243 University Road , Shantou , Guangdong 515063 , P. R. China
| | - Junfang Zhao
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU) , City University of Hong Kong , Kowloon , Hong Kong SAR , P. R. China
- Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Xiang-Min Meng
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU) , City University of Hong Kong , Kowloon , Hong Kong SAR , P. R. China
- Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong SAR , P. R. China
- Joint Laboratory of Nano-organic Functional Materials and Devices (TIPC and CityU) , City University of Hong Kong , Kowloon , Hong Kong SAR , P. R. China
| |
Collapse
|
192
|
Kang M, Zhou C, Wu S, Yu B, Zhang Z, Song N, Lee MMS, Xu W, Xu FJ, Wang D, Wang L, Tang BZ. Evaluation of Structure-Function Relationships of Aggregation-Induced Emission Luminogens for Simultaneous Dual Applications of Specific Discrimination and Efficient Photodynamic Killing of Gram-Positive Bacteria. J Am Chem Soc 2019; 141:16781-16789. [PMID: 31553608 DOI: 10.1021/jacs.9b07162] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bacterial infectious diseases, especially those caused by Gram-positive bacteria, have been seriously threatening human health. Preparation of a multifunctional system bearing both rapid bacterial differentiation and effective antibacterial effects is highly in demand, but remains a severe challenge. Herein, we rationally designed and successfully developed a sequence of aggregation-induced emission luminogens (AIEgens) with orderly enhanced D-A strength. Evaluation of structure-function relationships reveals that AIEgens having intrinsic positive charge and proper ClogP value are able to stain Gram-positive bacteria. Meanwhile, one of the presented AIEgens (TTPy) can generate reactive oxygen species (ROS) in extraordinarily high efficiency under white light irradiation due to the smaller singlet-triplet energy gap. Thanks to the NIR emission, excellent specificity to Gram-positive bacteria, and effective ROS generation efficiency, TTPy has been proved to perform well in selective photodynamic killing of Gram-positive bacteria in vitro, such as S. aureus and S. epidermidis, even in S. aureus-infected rat wounds.
Collapse
Affiliation(s)
- Miaomiao Kang
- Center for AIE Research, College of Materials Science and Engineering , Shenzhen University , Shenzhen 518060 , China.,Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Chengcheng Zhou
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Shuangmei Wu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Bingran Yu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Zhijun Zhang
- Center for AIE Research, College of Materials Science and Engineering , Shenzhen University , Shenzhen 518060 , China.,Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Nan Song
- Center for AIE Research, College of Materials Science and Engineering , Shenzhen University , Shenzhen 518060 , China.,Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Michelle Mei Suet Lee
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Wenhan Xu
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Fu-Jian Xu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Lei Wang
- Center for AIE Research, College of Materials Science and Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Ben Zhong Tang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| |
Collapse
|
193
|
Zhuang W, Ma B, Hu J, Jiang J, Li G, Yang L, Wang Y. Two-photon AIE luminogen labeled multifunctional polymeric micelles for theranostics. Theranostics 2019; 9:6618-6630. [PMID: 31588239 PMCID: PMC6771243 DOI: 10.7150/thno.33901] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/07/2019] [Indexed: 01/01/2023] Open
Abstract
Intelligent polymeric micelles with fluorescence imaging feature have been emerged as promising tools for theranostics. However, conventional fluorescent dyes are limited by short wavelength excitation, interference of tissue autofluorescence, limited imaging depth and quenched emission in aggregation state. Methods: We synthesized a novel mPEG-SS-Poly (AEMA-co-TBIS) (mPEATss) copolymer to develop multifunctional polymeric micelles with great AIE feature for cancer therapy and AIE active two-photon bioimaging. The stimuli-responsive behavior and AIE active two-photon cell and tissue imaging as well as in vitro and in vivo antitumor ability of DOX-loaded mPEATss were studied. Results: mPEATss micelles showed excellent AIE active two-photon cell imaging ability and deep tissue imaging ability. Antitumor drug DOX could be encapsulated to form a drug-loaded micellar system with a small diameter of 65 nm. The disassembly and charge-conversion of mPEATss micelles could be triggered by acidic environment, resulting in accelerated drug release and great antitumor efficacy. In vivo, ex vivo imaging and in vivo pharmacokinetic study demonstrated that mPEATss micelles could efficiently accumulate in tumor sites, which ensured ideal anticancer effect. Conclusions: This pH and redox dual responsive and AIE active two-photon imaging polymeric micelles would be a promising candidate for theranostics.
Collapse
|
194
|
Chen J, Tao W, Chen W, Xiao Y, Wang K, Cao C, Yu J, Li S, Geng F, Adachi C, Lee C, Zhang X. Red/Near‐Infrared Thermally Activated Delayed Fluorescence OLEDs with Near 100 % Internal Quantum Efficiency. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906575] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jia‐Xiong Chen
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF) Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Wen‐Wen Tao
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Wen‐Cheng Chen
- Center of Super-Diamond and Advanced Films (COSDAF) Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
| | - Ya‐Fang Xiao
- Center of Super-Diamond and Advanced Films (COSDAF) Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Chen Cao
- Center of Super-Diamond and Advanced Films (COSDAF) Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Shengliang Li
- Center of Super-Diamond and Advanced Films (COSDAF) Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
| | - Feng‐Xia Geng
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Chihaya Adachi
- Department of Applied Chemistry Center for Organic Photonics and Electronics Research (OPERA) Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| | - Chun‐Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
| | - Xiao‐Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| |
Collapse
|
195
|
Chen JX, Tao WW, Chen WC, Xiao YF, Wang K, Cao C, Yu J, Li S, Geng FX, Adachi C, Lee CS, Zhang XH. Red/Near-Infrared Thermally Activated Delayed Fluorescence OLEDs with Near 100 % Internal Quantum Efficiency. Angew Chem Int Ed Engl 2019; 58:14660-14665. [PMID: 31313424 DOI: 10.1002/anie.201906575] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Indexed: 12/17/2022]
Abstract
Developing red thermally activated delayed fluorescence (TADF) emitters, attainable for both high-efficient red organic light-emitting diodes (OLEDs) and non-doped deep red/near-infrared (NIR) OLEDs, is challenging. Now, two red emitters, BPPZ-PXZ and mDPBPZ-PXZ, with twisted donor-acceptor structures were designed and synthesized to study molecular design strategies of high-efficiency red TADF emitters. BPPZ-PXZ employs the strictest molecular restrictions to suppress energy loss and realizes red emission with a photoluminescence quantum yield (ΦPL ) of 100±0.8 % and external quantum efficiency (EQE) of 25.2 % in a doped OLED. Its non-doped OLED has an EQE of 2.5 % owing to unavoidable intermolecular π-π interactions. mDPBPZ-PXZ releases two pyridine substituents from its fused acceptor moiety. Although mDPBPZ-PXZ realizes a lower EQE of 21.7 % in the doped OLED, its non-doped device shows a superior EQE of 5.2 % with a deep red/NIR emission at peak of 680 nm.
Collapse
Affiliation(s)
- Jia-Xiong Chen
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.,Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China.,College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Wen-Wen Tao
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Wen-Cheng Chen
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Ya-Fang Xiao
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Chen Cao
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Shengliang Li
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Feng-Xia Geng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Chihaya Adachi
- Department of Applied Chemistry, Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
196
|
Yin F, Gu B, Li J, Panwar N, Liu Y, Li Z, Yong KT, Tang BZ. In vitro anticancer activity of AIEgens. Biomater Sci 2019; 7:3855-3865. [PMID: 31305807 DOI: 10.1039/c9bm00881k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fluorogens with aggregation-induced emission (AIE) characteristics (AIEgens) possess unique optical properties, design flexibility, and multi-functional capabilities and have established their niche as smart materials since their discovery in 2001. In recent years, AIEgens have found varied applications in sensing, imaging, and therapy in biomedical research. In this work, we systematically and comprehensively investigate the in vitro anticancer activity of AIEgens. We report the high cytotoxicity of AIEgens against cancer cells, especially against cancer stem cells (CSCs) which show high resistance to existing therapeutic drug regimens. Furthermore, we explore the role of AIEgens as novel image-guided chemotherapy agents that offer a new avenue for efficient cancer treatment.
Collapse
Affiliation(s)
- Feng Yin
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Bobo Gu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Jingxu Li
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Nishtha Panwar
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Yong Liu
- Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Ben Zhong Tang
- Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
197
|
|
198
|
Liu X, Li M, Han T, Cao B, Qiu Z, Li Y, Li Q, Hu Y, Liu Z, Lam JWY, Hu X, Tang BZ. In Situ Generation of Azonia-Containing Polyelectrolytes for Luminescent Photopatterning and Superbug Killing. J Am Chem Soc 2019; 141:11259-11268. [DOI: 10.1021/jacs.9b04757] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaolin Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Road, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Mengge Li
- Ministry of Education Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Ting Han
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Road, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Bing Cao
- Ministry of Education Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Zijie Qiu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Road, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Yuanyuan Li
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Road, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Qiyao Li
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Road, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Yubing Hu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Road, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Zhiyang Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Road, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Jacky W. Y. Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Road, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Xianglong Hu
- Ministry of Education Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Road, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
199
|
Zhuang W, Yang L, Ma B, Kong Q, Li G, Wang Y, Tang BZ. Multifunctional Two-Photon AIE Luminogens for Highly Mitochondria-Specific Bioimaging and Efficient Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20715-20724. [PMID: 31144501 DOI: 10.1021/acsami.9b04813] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In recent years, photodynamic therapy (PDT) has drawn much attention as a noninvasive and safe cancer therapy method due to its fine controllability, good selectivity, low systemic toxicity, and minimal drug resistance in contrast to the conventional methods (for example, chemotherapy, radiotherapy, and surgery). However, some drawbacks still remain for the current organic photosensitizers such as low singlet oxygen (1O2) quantum yield, poor photostability, inability of absorption in the near-infrared (NIR) region, short excitation wavelength, and limited action radius of singlet oxygen, which will strongly limit the PDT treatment efficiency. As a consequence, the development of efficient photosensitizers with high singlet oxygen quantum yield, strong fluorescent emission in the aggregated state, excellent photostability, NIR excitation wavelength ranging in the biological transparency window, and highly specific targeting to mitochondria is still in great demand for the enhancement of PDT treatment efficiency. In this study, two new two-photon AIEgens TPPM and TTPM based on a rigid D-π-A skeleton have been designed and synthesized. Both AIEgens TPPM and TTPM show strong aggregation-induced emission (AIE) with the emission enhancement up to 290-folds, large two-photon absorption with the two-photon absorption cross section up to 477 MG, and highly specific targeting to mitochondria in living cells with good biocompatibility. They can serve as two-photon bioprobes for the cell and deep tissue bioimaging with a penetration depth up to 150 μm. Furthermore, high 1O2 generation efficiency with high 1O2 quantum yield under white light irradiation has been found for both TPPM and TTPM and high PDT efficiency to HeLa cells under white light irradiation has also been proven. To the best of our knowledge, AIEgens in this work constitute one of the strongest emission enhancements and one of the highest 1O2 generation efficiencies in the reported organic AIEgens so far. The great AIE feature, large two-photon absorption, high specificity to mitochondria in living cells, and high PDT efficiency to living cells as well as excellent photostability and biocompatibility of these novel AIEgens TPPM and TTPM reveal great potential in clinical applications of two-photon cell and tissue bioimaging and image-guided and mitochondria-targeted photodynamic cancer therapy.
Collapse
Affiliation(s)
- Weihua Zhuang
- National Engineering Research Center for Biomaterials , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
| | - Li Yang
- National Engineering Research Center for Biomaterials , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
| | - Boxuan Ma
- National Engineering Research Center for Biomaterials , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
| | - Qunshou Kong
- National Engineering Research Center for Biomaterials , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science , The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay , Kowloon , Hong Kong , China
| |
Collapse
|
200
|
Dai Y, Xue T, Zhang X, Misal S, Ji H, Qi Z. A novel probe for colorimetric and near-infrared fluorescence detection of cysteine in aqueous solution, cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 216:365-374. [PMID: 30921659 DOI: 10.1016/j.saa.2019.03.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/05/2019] [Accepted: 03/17/2019] [Indexed: 06/09/2023]
Abstract
Cysteine(Cys) is tightly related to physiological and pathological of human, and the imbalance of concentration of cysteine in the intracellular are associated with many diseases. Here, a novel NIR fluorescent probe TCF-Cys was designed and synthesized, and both the optimal excitation and emission wavelength of them were between 650 and 900 nm, that within the "optical window" of biological tissues. In aqueous solution, TCF-Cys, which with an acrylate extremity as a recognizing unit, exhibited excellent "turn-on" fluorescence response for Cys superior to other amino acids and thiols with a limit of detection of 0.1323 μM. Moreover, as an excellent naked-eye colorimetric indicator, TCF-Cys could effectively distinguishing the Cys, Hcy and GSH in aqueous solution through color change. Then, the response mechanism of TCF-Cys for Cys was revealed by TLC, 1H NMR, HPLC, HRMS and DFT calculation. Finally, TCF-Cys was successfully employed to fluorescence specifically map of exogenous and endogenous Cys in living cells and zebrafish with low toxicity.
Collapse
Affiliation(s)
- Yanpeng Dai
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, College of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Tianzi Xue
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, College of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Xiuxuan Zhang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, College of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Saima Misal
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, College of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Hefang Ji
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, College of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Zhengjian Qi
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, College of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China.
| |
Collapse
|