151
|
Dvořák P, Kováč J, de Lorenzo V. Biotransformation of d-xylose to d-xylonate coupled to medium-chain-length polyhydroxyalkanoate production in cellobiose-grown Pseudomonas putida EM42. Microb Biotechnol 2020; 13:1273-1283. [PMID: 32363744 PMCID: PMC7264884 DOI: 10.1111/1751-7915.13574] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/05/2020] [Accepted: 03/25/2020] [Indexed: 12/23/2022] Open
Abstract
Co-production of two or more desirable compounds from low-cost substrates by a single microbial catalyst could greatly improve the economic competitiveness of many biotechnological processes. However, reports demonstrating the adoption of such co-production strategy are still scarce. In this study, the ability of genome-edited strain Pseudomonas putida EM42 to simultaneously valorize d-xylose and d-cellobiose - two important lignocellulosic carbohydrates - by converting them into the platform chemical d-xylonate and medium-chain-length polyhydroxyalkanoates, respectively, was investigated. Biotransformation experiments performed with P. putida resting cells showed that promiscuous periplasmic glucose oxidation route can efficiently generate extracellular xylonate with a high yield. Xylose oxidation was subsequently coupled to the growth of P. putida with cytoplasmic β-glucosidase BglC from Thermobifida fusca on d-cellobiose. This disaccharide turned out to be a better co-substrate for xylose-to-xylonate biotransformation than monomeric glucose. This was because unlike glucose, cellobiose did not block oxidation of the pentose by periplasmic glucose dehydrogenase Gcd, but, similarly to glucose, it was a suitable substrate for polyhydroxyalkanoate formation in P. putida. Co-production of extracellular xylose-born xylonate and intracellular cellobiose-born medium-chain-length polyhydroxyalkanoates was established in proof-of-concept experiments with P. putida grown on the disaccharide. This study highlights the potential of P. putida EM42 as a microbial platform for the production of xylonate, identifies cellobiose as a new substrate for mcl-PHA production, and proposes a fresh strategy for the simultaneous valorization of xylose and cellobiose.
Collapse
Affiliation(s)
- Pavel Dvořák
- Department of Experimental Biology (Section of Microbiology)Faculty of ScienceMasaryk UniversityKamenice 753/562500BrnoCzech Republic
| | - Jozef Kováč
- Department of Experimental Biology (Section of Microbiology)Faculty of ScienceMasaryk UniversityKamenice 753/562500BrnoCzech Republic
| | - Víctor de Lorenzo
- Systems and Synthetic Biology ProgramCentro Nacional de Biotecnología CNB‐CSICCantoblancoDarwin 328049MadridSpain
| |
Collapse
|
152
|
Cell Factories for Industrial Production Processes: Current Issues and Emerging Solutions. Processes (Basel) 2020. [DOI: 10.3390/pr8070768] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Despite all the progresses made by metabolic engineering, still only a few biotechnological processes are running at an industrial level. In order to boost the biotechnological sector, integration strategies as well as long-term views are needed. The aim of the present review is to identify the main drawbacks in biotechnological processes, and to propose possible solutions to overcome the issues in question. Novel cell factories and bioreactor design are discussed as possible solutions. In particular, the following microorganisms: Yarrowia lipolytica, Trichosporon oleaginosus, Ustilago cynodontis, Debaryomyces hansenii along with sequential bioreactor configurations are presented as possible cell factories and bioreactor design solutions, respectively.
Collapse
|
153
|
Qiang S, Wang J, Xiong XC, Qu YL, Liu L, Hu CY, Meng YH. Promoting the Synthesis of Precursor Substances by Overexpressing Hexokinase (Hxk) and Hydroxymethylglutaryl-CoA Synthase (Erg13) to Elevate β-Carotene Production in Engineered Yarrowia lipolytica. Front Microbiol 2020; 11:1346. [PMID: 32636824 PMCID: PMC7316989 DOI: 10.3389/fmicb.2020.01346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/26/2020] [Indexed: 11/23/2022] Open
Abstract
As a valuable carotenoid, β-carotene is commercially used in food, cosmetics, animal feeds, and other industries. Metabolic engineering of microorganisms has been widely explored to improve the production of β-carotene. Compared with the traditional genetic modifications mainly focused on the pathways of mevalonate (MVA) and β-carotene biosynthesis, this study aims to increase the β-carotene production through promoting the synthesis of precursor substances by overexpressing hexokinase and hydroxymethylglutaryl-CoA synthase in an engineered Yarrowia lipolytica. In this study, we investigated the effect of the unique hexokinase gene (Hxk) overexpression on β-carotene accumulation and glucose consumption. The Hxk gene was introduced into a β-carotene producing strain Y.L-1 to generate strain Y.L-2, and this increased the β-carotene content by 98%. Overexpression of the Hxk gene led to increasing in hexokinase activity (329% higher), glucose-6-phosphate content (92% higher), and improvement of the transcriptional level of Hxk (315% higher) compared to the control Y.L-1 strain. Moreover, Hxk overexpression accelerated the utilization rate of glucose. The gene erg13 encoding hydroxymethylglutaryl-CoA synthase was also overexpressed to increase the precursor supply for β-carotene biosynthesis. Recombinant Y.L-4 harboring two copies of erg13 produced 8.41 mg/g dry cell weight (DCW) of β-carotene, which was 259% higher than Y.L-1. The β-carotene content of 9.56 mg/g DCW was achieved in strain Y.L-6 by integrating erg13 into the chromosome and Hxk overexpression. The 3-Hydroxy-3-Methylglutaryl-CoA content in the cells was increased by overexpressing two copies of the erg13 gene. Finally, the titer of β-carotene reached 2.4 g/L using a 50 L bioreactor by the engineered strain, and the fermentation cycle was shortened from 144 to 120 h. Overall, overexpression of Hxk and erg13 could improve β-carotene production and successfully overcoming the bottleneck of precursor generation to support a more efficient pathway for the production of the target product. Our results revealed a novel strategy to engineer the pathway of β-carotene synthesis.
Collapse
Affiliation(s)
- Shan Qiang
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, Shaanxi Normal University, Xi'an, China.,National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, Xi'an, China.,College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China.,Xi'an Healthful Biotechnology Co., Ltd., Xi'an, China
| | - Jing Wang
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, Shaanxi Normal University, Xi'an, China.,National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, Xi'an, China.,College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Xiao Chao Xiong
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, United States
| | - Yu Ling Qu
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, Shaanxi Normal University, Xi'an, China.,National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, Xi'an, China.,College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Liang Liu
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, Shaanxi Normal University, Xi'an, China.,National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, Xi'an, China.,College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Ching Yuan Hu
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, Shaanxi Normal University, Xi'an, China.,National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, Xi'an, China.,College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China.,Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Yong Hong Meng
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, Shaanxi Normal University, Xi'an, China.,National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, Xi'an, China.,College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
154
|
Liu SC, Liu Z, Wei LJ, Hua Q. Pathway engineering and medium optimization for α-farnesene biosynthesis in oleaginous yeast Yarrowia lipolytica. J Biotechnol 2020; 319:74-81. [PMID: 32533992 DOI: 10.1016/j.jbiotec.2020.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/20/2020] [Accepted: 06/09/2020] [Indexed: 10/24/2022]
Abstract
Farnesene is a typical sesquiterpene with applications as fragrance, flavor and precursor for the synthesis of vitamin E/K1. In this study, a series of strategies were employed to facilitate α-farnesene accumulation in Yarrowia lipolytica. Among them, the promoter optimization of OptFSLERG20, Sc-tHMG1 and IDI resulted in more than 62 % increase in α-farnesene production. Together with the overexpression of Yl-HMGR and ERG19, α-farnesene content was significantly improved by more than 3.5 times. The best metabolic engineered strain obtained was therefore used for a uniform design in shake flasks to determine the optimal medium compositions. Furthermore, a maximum α-farnesene production of approximately 2.57 g/L (34 mg/g DCW) was obtained in fed-batch fermentation where glycerol was supplemented as the feeding carbon source when initial glucose was depleted. This study has laid a good foundation for the development of Y. lipolytica as a promising chassis microbial cell for heterologous biosynthesis of α-farnesene and other sesquiterpenes.
Collapse
Affiliation(s)
- Shun-Cheng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Zhijie Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Collaborative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, PR China
| | - Liu-Jing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|
155
|
Li C, Swofford CA, Sinskey AJ. Modular engineering for microbial production of carotenoids. Metab Eng Commun 2020; 10:e00118. [PMID: 31908924 PMCID: PMC6938962 DOI: 10.1016/j.mec.2019.e00118] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/02/2019] [Accepted: 12/08/2019] [Indexed: 12/12/2022] Open
Abstract
There is an increasing demand for carotenoids due to their applications in the food, flavor, pharmaceutical and feed industries, however, the extraction and synthesis of these compounds can be expensive and technically challenging. Microbial production of carotenoids provides an attractive alternative to the negative environmental impacts and cost of chemical synthesis or direct extraction from plants. Metabolic engineering and synthetic biology approaches have been widely utilized to reconstruct and optimize pathways for carotenoid overproduction in microorganisms. This review summarizes the current advances in microbial engineering for carotenoid production and divides the carotenoid biosynthesis building blocks into four distinct metabolic modules: 1) central carbon metabolism, 2) cofactor metabolism, 3) isoprene supplement metabolism and 4) carotenoid biosynthesis. These four modules focus on redirecting carbon flux and optimizing cofactor supplements for isoprene precursors needed for carotenoid synthesis. Future perspectives are also discussed to provide insights into microbial engineering principles for overproduction of carotenoids.
Collapse
Affiliation(s)
- Cheng Li
- Department of Biology, Massachusetts Institute of Technology, Boston, MA, 02139, USA
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, 138602, Singapore
| | - Charles A. Swofford
- Department of Biology, Massachusetts Institute of Technology, Boston, MA, 02139, USA
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, 138602, Singapore
| | - Anthony J. Sinskey
- Department of Biology, Massachusetts Institute of Technology, Boston, MA, 02139, USA
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, 138602, Singapore
| |
Collapse
|
156
|
Worland AM, Czajka JJ, Xing Y, Harper WF, Moore A, Xiao Z, Han Z, Wang Y, Su WW, Tang YJ. Analysis of Yarrowia lipolytica growth, catabolism, and terpenoid biosynthesis during utilization of lipid-derived feedstock. Metab Eng Commun 2020; 11:e00130. [PMID: 32577396 PMCID: PMC7300164 DOI: 10.1016/j.mec.2020.e00130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/29/2020] [Accepted: 05/02/2020] [Indexed: 12/26/2022] Open
Abstract
This study employs biomass growth analyses and 13C-isotope tracing to investigate lipid feedstock utilization by Yarrowia lipolytica. Compared to glucose, oil-feedstock in the minimal medium increases the yeast's biomass yields and cell sizes, but decreases its protein content (<20% of total biomass) and enzyme abundances for product synthesis. Labeling results indicate a segregated metabolic network (the glycolysis vs. the TCA cycle) during co-catabolism of sugars (glucose or glycerol) with fatty acid substrates, which facilitates resource allocations for biosynthesis without catabolite repressions. This study has also examined the performance of a β-carotene producing strain in different growth mediums. Canola oil-containing yeast-peptone (YP) has resulted in the best β-carotene titer (121 ± 13 mg/L), two-fold higher than the glucose based YP medium. These results highlight the potential of Y. lipolytica for the valorization of waste-derived lipid feedstock. 13C tracing was used to track Y. lipolytica metabolism of lipid-based feedstock. Y. lipolytica has a segregated flux network for lipid and sugar co-utilizations. Lipid feedstock and nitrogen sources affect cell morphology and optical density. Lipid feedstock benefits both Y. lipolytica growth and carotenoid biosynthesis.
Collapse
Affiliation(s)
- Alyssa M Worland
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Jeffrey J Czajka
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Yun Xing
- Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, OH, 45433, USA
| | - Willie F Harper
- Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, OH, 45433, USA
| | - Aryiana Moore
- Department of Environmental Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Zhengyang Xiao
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Zhenlin Han
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Yechun Wang
- Arch Innotek, LLC, 400 Farmington Ave, Farmington, CT, 06032, USA
| | - Wei Wen Su
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Yinjie J Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, 63130, USA
| |
Collapse
|
157
|
Microbial astaxanthin biosynthesis: recent achievements, challenges, and commercialization outlook. Appl Microbiol Biotechnol 2020; 104:5725-5737. [DOI: 10.1007/s00253-020-10648-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/15/2020] [Accepted: 04/26/2020] [Indexed: 12/15/2022]
|
158
|
Imatoukene N, Back A, Nonus M, Thomasset B, Rossignol T, Nicaud JM. Fermentation process for producing CFAs using Yarrowia lipolytica. J Ind Microbiol Biotechnol 2020; 47:403-412. [PMID: 32372295 DOI: 10.1007/s10295-020-02276-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
Abstract
Past research has sought to improve the production of cyclopropane fatty acids by the oleaginous yeast Yarrowia lipolytica by heterologously expressing the E. coli fatty acid synthase gene and improving cultivation processes. Cyclopropane fatty acids display properties that hold promise for biofuel applications. The E. coli fatty acid synthase gene was introduced into several genetic backgrounds of the yeast Y. lipolytica to optimize lipid synthesis; the mean cyclopropane fatty acid productivity was 43 mg L-1 h-1 on glucose, and the production rate reached its maximum (3.06 g L-1) after 72 h of cultivation in a bioreactor. The best strain (JMY6851) overexpressed simultaneously the E. coli cyclopropane fatty acid synthase gene under a hybrid promoter (hp8d) and Y. lipolytica LRO1 gene. In fed-batch process using crude glycerol as carbon source, JMY6851 strain displayed high lipid accumulation (78% of dry cell weight) and high biomass production (56 g L-1). After 165 h of cultivation, cyclopropane fatty acids represented 22% of the lipids produced; cyclopropane fatty acid productivity (103.3 mg L-1 h-1) was maximal at 72.5 h of cultivation.
Collapse
Affiliation(s)
- Nabila Imatoukene
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-En-Josas, France.
- Sorbonne Universités, UMR-CNRS 7025, Université de Technologie de Compiègne (UTC), CS 60319, 60203, Compiègne Cedex, France.
- Sorbonne Universités, EA 4297 TIMR, Université de Technologie de Compiègne (UTC), CS 60319, 60203, Compiègne Cedex, France.
- Centre Européen de Biotechnologie Et de Bioéconomie, Agro-Biotechnologies Industrielles, Rue des Rouges Terres, 51110, Pomacle, France.
| | - Alexandre Back
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-En-Josas, France
| | - Maurice Nonus
- Sorbonne Universités, EA 4297 TIMR, Université de Technologie de Compiègne (UTC), CS 60319, 60203, Compiègne Cedex, France
| | - Brigitte Thomasset
- Sorbonne Universités, UMR-CNRS 7025, Université de Technologie de Compiègne (UTC), CS 60319, 60203, Compiègne Cedex, France
| | - Tristan Rossignol
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-En-Josas, France
| | - Jean-Marc Nicaud
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-En-Josas, France
| |
Collapse
|
159
|
Son SH, Kim JE, Oh SS, Lee JY. Engineering Cell Wall Integrity Enables Enhanced Squalene Production in Yeast. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4922-4929. [PMID: 32266810 DOI: 10.1021/acs.jafc.0c00967] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microbial production of many lipophilic compounds is often limited by product toxicity to host cells. Engineering cell walls can help mitigate the damage caused by lipophilic compounds by increasing tolerance to those compounds. To determine if the cell wall engineering would be effective in enhancing lipophilic compound production, we used a previously constructed squalene-overproducing yeast strain (SQ) that produces over 600 mg/L of squalene, a model membrane-damaging lipophilic compound. This SQ strain had significantly decreased membrane rigidity, leading to increased cell lysis during fermentation. The SQ strain was engineered to restore membrane rigidity by activating the cell wall integrity (CWI) pathway, thereby further enhancing its squalene production efficiency. Maintenance of CWI was associated with improved squalene production, as shown by cell wall remodeling through regulation of Ecm33, a key regulator of the CWI pathway. Deletion of ECM33 in the SQ strain helped restore membrane rigidity and improve stress tolerance. Moreover, ECM33 deletion suppressed cell lysis and increased squalene production by approximately 12% compared to that by the parent SQ strain. Thus, this study shows that engineering of the yeast cell wall is a promising strategy for enhancing the physiological functions of industrial strains for production of lipophilic compounds.
Collapse
Affiliation(s)
- So-Hee Son
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu, Ulsan 44429, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jae-Eung Kim
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu, Ulsan 44429, Republic of Korea
| | - Seung Soo Oh
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Ju Young Lee
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu, Ulsan 44429, Republic of Korea
| |
Collapse
|
160
|
Qi F, Shen P, Hu R, Xue T, Jiang X, Qin L, Chen Y, Huang J. Carotenoids and lipid production from Rhodosporidium toruloides cultured in tea waste hydrolysate. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:74. [PMID: 32322304 PMCID: PMC7161300 DOI: 10.1186/s13068-020-01712-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 04/08/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND In this study, renewable tea waste hydrolysate was used as a sole carbon source for carotenoids and lipid production. A novel Rhodosporidium toruloides mutant strain, RM18, was isolated through atmospheric and room-temperature plasma mutagenesis and continuous domestication in tea waste hydrolysate from R. toruloides ACCC20341. RESULTS RM18 produced a larger biomass and more carotenoids and α-linolenic acid compared with the control strain cultured in tea waste hydrolysate. The highest yields of torularhodin (481.92 μg/g DCW) and torulene (501 μg/g DCW) from RM18 cultured in tea waste hydrolysate were 12.86- and 1.5-fold higher, respectively, than that of the control strain. In addition, α-linolenic acid production from RM18 in TWH accounted for 5.5% of total lipids, which was 1.58 times more than that of the control strain. Transcriptomic profiling indicated that enhanced central metabolism and terpene biosynthesis led to improved carotenoids production, whereas aromatic amino acid synthesis and DNA damage checkpoint and sensing were probably relevant to tea waste hydrolysate tolerance. CONCLUSION Tea waste is suitable for the hydrolysis of microbial cell culture mediums. The R. toruloides mutant RM18 showed considerable carotenoids and lipid production cultured in tea waste hydrolysate, which makes it viable for industrial applications.
Collapse
Affiliation(s)
- Feng Qi
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117 Fujian China
| | - Peijie Shen
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117 Fujian China
| | - Rongfei Hu
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117 Fujian China
| | - Ting Xue
- Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Xianzhang Jiang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117 Fujian China
| | - Lina Qin
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117 Fujian China
| | - Youqiang Chen
- Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jianzhong Huang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117 Fujian China
| |
Collapse
|
161
|
Worland AM, Czajka JJ, Li Y, Wang Y, Tang YJ, Su WW. Biosynthesis of terpene compounds using the non-model yeast Yarrowia lipolytica: grand challenges and a few perspectives. Curr Opin Biotechnol 2020; 64:134-140. [PMID: 32299032 DOI: 10.1016/j.copbio.2020.02.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/24/2020] [Accepted: 02/25/2020] [Indexed: 12/17/2022]
Abstract
Yarrowia lipolytica has emerged as an important non-model host for terpene production. However, three main challenges remain in industrial production using this yeast. First, considerable knowledge gaps exist in metabolic flux across multiple compartments, cofactor generation, and catabolism of non-sugar carbon sources. Second, many enzymatic steps in the complex-terpene synthesis pathway can pose rate-limitations, causing accumulation of toxic intermediates and increased metabolic burdens. Third, metabolic shifts, morphological changes, and genetic mutations are poorly characterized under industrial fermentation conditions. To overcome these challenges, systems metabolic analysis, protein engineering, novel pathway engineering, model-guided strain design, and fermentation optimization have been attempted with some successes. Further developments that address these challenges are needed to advance the Yarrowia lipolytica platform for industrial-scale production of high-value terpenes, including those with highly complex structures such as anticancer molecules withanolides and insecticidal limonoids.
Collapse
Affiliation(s)
- Alyssa M Worland
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO 63130, United States
| | - Jeffrey J Czajka
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO 63130, United States
| | - Yanran Li
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, United States
| | - Yechun Wang
- Arch Innotek, LLC, 4320 Forest Park Ave, St. Louis, MO 63108, United States
| | - Yinjie J Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO 63130, United States
| | - Wei Wen Su
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, United States.
| |
Collapse
|
162
|
Bacteria as an alternate biofactory for carotenoid production: A review of its applications, opportunities and challenges. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103867] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
163
|
Zhang K, Huang B, Yuan K, Ji X, Song P, Ding Q, Wang Y. Comparative Transcriptomics Analysis of the Responses of the Filamentous Fungus Glarea lozoyensis to Different Carbon Sources. Front Microbiol 2020; 11:190. [PMID: 32132986 PMCID: PMC7040073 DOI: 10.3389/fmicb.2020.00190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/27/2020] [Indexed: 11/25/2022] Open
Abstract
The natural product pneumocandin B0 is the precursor of the antifungal drug caspofungin. We found that replacing glucose in the initial fermentation medium with 20 g/L fructose is more conducive to pneumocandin B0 production and biomass accumulation. In order to explore the mechanism of the different metabolic responses to fructose and glucose, we used each as the sole carbon source, and the results showed that fructose increased the total pneumocandin B0 yield and biomass by 54.76 and 13.71%, respectively. Furthermore, we analyzed the differences of gene expression and metabolic pathways between the two different carbon sources by transcriptomic analysis. When fructose was used as the carbon source, genes related to the pentose phosphate pathway (PPP), glycolysis and branched-chain amino acid metabolism were significantly upregulated, resulting in increased intracellular pools of NADPH and acetyl-CoA in Glarea lozoyensis for cell growth and pneumocandin B0 product synthesis. Interestingly, the pneumocandin B0 biosynthetic gene cluster and the genes of the TCA cycle were significantly downregulated, while the FAS genes were significantly upregulated, indicating that more acetyl-CoA was used for fatty acid synthesis. In particular, we found that excessive synthesis of fatty acids caused lipid accumulation, and lipid droplets can sequester lipophilic secondary metabolites such as pneumocandin B0 to reduce cell damage, which may also be an important reason for the observed increase of pneumocandin B0 yield. These results provide new insights into the relationship between pneumocandin B0 biosynthesis and carbon sources in G. lozoyensis. At the same time, this study provides important genomic information for improving pneumocandin B0 production through metabolic engineering strategies in the future.
Collapse
Affiliation(s)
- Ke Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Department of Geriatric Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Baoqi Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Kai Yuan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Xiaojun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Ping Song
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Qingqing Ding
- Department of Geriatric Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuwen Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
164
|
Lu Y, Yang Q, Lin Z, Yang X. A modular pathway engineering strategy for the high-level production of β-ionone in Yarrowia lipolytica. Microb Cell Fact 2020; 19:49. [PMID: 32103761 PMCID: PMC7045511 DOI: 10.1186/s12934-020-01309-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/17/2020] [Indexed: 12/21/2022] Open
Abstract
Background The GRAS and oleaginous yeast Yarrowia lipolytica (Y. lipolytica) is an attractive cell factory for the production of chemicals and biofuels. The production of many natural products of commercial interest have been investigated in this cell factory by introducing heterologous biosynthetic pathways and by modifying the endogenous pathways. However, since natural products anabolism involves long pathways and complex regulation, re-channelling carbon into the product of target compounds is still a cumbersome work, and often resulting in low production performance. Results In this work, the carotenogenic genes contained carB and bi-functional carRP from Mucor circinelloides and carotenoid cleavage dioxygenase 1 (CCD1) from Petunia hybrida were introduced to Y. lipolytica and led to the low production of β-ionone of 3.5 mg/L. To further improve the β-ionone synthesis, we implemented a modular engineering strategy for the construction and optimization of a biosynthetic pathway for the overproduction of β-ionone in Y. lipolytica. The strategy involved the enhancement of the cytosolic acetyl-CoA supply and the increase of MVA pathway flux, yielding a β-ionone titer of 358 mg/L in shake-flask fermentation and approximately 1 g/L (~ 280-fold higher than the baseline strain) in fed-batch fermentation. Conclusions An efficient β-ionone producing GRAS Y. lipolytica platform was constructed by combining integrated overexpressed of heterologous and native genes. A modular engineering strategy involved the optimization pathway and fermentation condition was investigated in the engineered strain and the highest β-ionone titer reported to date by a cell factory was achieved. This effective strategy can be adapted to enhance the biosynthesis of other terpenoids in Y. lipolytica.
Collapse
Affiliation(s)
- Yanping Lu
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, China
| | - Qingyu Yang
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, China
| | - Zhanglin Lin
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, China.
| | - Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, China.
| |
Collapse
|
165
|
Metabolic engineering of β-carotene biosynthesis in Yarrowia lipolytica. Biotechnol Lett 2020; 42:945-956. [DOI: 10.1007/s10529-020-02844-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/19/2020] [Indexed: 12/20/2022]
|
166
|
Liu R, Liu L, Li X, Liu D, Yuan Y. Engineering yeast artificial core promoter with designated base motifs. Microb Cell Fact 2020; 19:38. [PMID: 32070349 PMCID: PMC7026997 DOI: 10.1186/s12934-020-01305-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/09/2020] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Synthetic biology requires toolbox of promoters to finely tune gene expression levels for building up efficient cell factories. Yeast promoters owned variable core promoter regions between the TATA-box and transcriptional starting site (TSS) at the length mostly around 20-80 bases. This region allowed flexible design of artificial promoter but potentially demand special base motifs to maintain or enhance the promoter's strength. RESULTS Here, we designed and screened the base motifs and tested the activities of yeast artificial core promoters. Different 30 bases of artificial sequences led to variable expression levels of CrtY enzyme which determined the lycopene-carotene compositions, represented in the colony-color spectrum of red-orange-yellow. The upstream sequences of two strong promoter PEXP1 and PGPD and two starting strains with distinguishable lycopene production levels were utilized to characterize the promoter sequences. Different partition designs of T-rich or G/C-rich base motifs led to distinguishable colony-color distributions. Finally, we screened a champion promoter with a highest 5.5-fold enhancement of lycopene-carotene transformation. Another selected promoter generated a highest beta-carotene production as 7.4 mg/g DCW. CONCLUSIONS This work offered an approach to redesign promoter with artificial sequences. We concluded that the core promoter region could be designated as 30 bases and different base motifs would enhance or weaken the promoter's strength. Generally, more T-rich elements, higher %T and lower G/C percentage were beneficial to enhance the strength of artificial core promoter.
Collapse
Affiliation(s)
- Rui Liu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Lanqing Liu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Xia Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Duo Liu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China.
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| |
Collapse
|
167
|
Jacobsen IH, Ledesma-Amaro R, Martinez JL. Recombinant β-Carotene Production by Yarrowia lipolytica - Assessing the Potential of Micro-Scale Fermentation Analysis in Cell Factory Design and Bioreaction Optimization. Front Bioeng Biotechnol 2020; 8:29. [PMID: 32117917 PMCID: PMC7031159 DOI: 10.3389/fbioe.2020.00029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/14/2020] [Indexed: 11/17/2022] Open
Abstract
The production of β-carotene has become increasingly interesting within the biotechnological industry due to a rising demand for safer and more natural colorants, nutritional supplements, and antioxidants. A recent study has described the potential of Yarrowia lipolytica as a β-carotene-producing cell factory, reporting the highest titer of recombinant β-carotene produced to date. Finding the best conditions to maximize production and scaling up the process to full scale, a costly and time-consuming process, it is often a bottleneck in biotechnology. In this work, we explored the benefits of using micro-fermentation equipment to significantly reduce the time spent on design and optimization of bioreaction conditions, especially in the early stages of process development. In this proof-of-concept study, a β-carotene producing Y. lipolytica strain was tested in micro-fermentations partly to assess the robustness of the cell factory design and partly to perform media optimization. The medium optimization led us to an improvement of up to 50% in the yield of β-carotene production in the best of the conditions. Overall, the micro-fermentation system had a high degree of reliability in all tests.
Collapse
Affiliation(s)
- Irene Hjorth Jacobsen
- Department of Biotechnology and Biomedicine, Section for Synthetic Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - José Luis Martinez
- Department of Biotechnology and Biomedicine, Section for Synthetic Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
168
|
Theron CW, Vandermies M, Telek S, Steels S, Fickers P. Comprehensive comparison of Yarrowia lipolytica and Pichia pastoris for production of Candida antarctica lipase B. Sci Rep 2020; 10:1741. [PMID: 32015397 PMCID: PMC6997362 DOI: 10.1038/s41598-020-58683-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/24/2019] [Indexed: 02/05/2023] Open
Abstract
The large-scale production of recombinant proteins (rProt) is becoming increasingly economically important. Among the different hosts used for rProt production, yeasts are gaining popularity. The so-called non-conventional yeasts, such as the methylotrophic Pichia pastoris and the dimorphic Yarrowia lipolytica, are popular choices due to their favorable characteristics and well-established expression systems. Nevertheless, a direct comparison of the two systems for rProt production and secretion was lacking. This study therefore aimed to directly compare Y. lipolytica and P. pastoris for the production and secretion of lipase CalB in bioreactor. Y. lipolytica produced more than double the biomass and more than 5-fold higher extracellular lipase than P. pastoris. Furthermore, maximal CalB production levels were reached by Y. lipolytica in half the cultivation time required for maximal production by P. pastoris. Conversely, P. pastoris was found to express 7-fold higher levels of CalB mRNA. Secreted enhanced green fluorescent protein -in isolation and fused to CalB- and protease inhibitor MG-132 were used in P. pastoris to further investigate the reasons behind such discrepancy. The most likely explanation was ultimately found to be protein degradation by endoplasmic reticulum-associated protein degradation preceding successful secretion. This study highlighted the multifaceted nature of rProt production, prompting a global outlook for selection of rProt production systems.
Collapse
Affiliation(s)
- Chrispian W Theron
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, University of Liège - Gembloux AgroBio Tech, Avenue de la Faculté, 2. B-, 5030, Gembloux, Belgium
| | - Marie Vandermies
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, University of Liège - Gembloux AgroBio Tech, Avenue de la Faculté, 2. B-, 5030, Gembloux, Belgium
| | - Samuel Telek
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, University of Liège - Gembloux AgroBio Tech, Avenue de la Faculté, 2. B-, 5030, Gembloux, Belgium
| | - Sebastien Steels
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, University of Liège - Gembloux AgroBio Tech, Avenue de la Faculté, 2. B-, 5030, Gembloux, Belgium
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, University of Liège - Gembloux AgroBio Tech, Avenue de la Faculté, 2. B-, 5030, Gembloux, Belgium.
| |
Collapse
|
169
|
Usmani Z, Sharma M, Sudheer S, Gupta VK, Bhat R. Engineered Microbes for Pigment Production Using Waste Biomass. Curr Genomics 2020; 21:80-95. [PMID: 32655303 PMCID: PMC7324876 DOI: 10.2174/1389202921999200330152007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 12/17/2022] Open
Abstract
Agri-food waste biomass is the most abundant organic waste and has high valorisation potential for sustainable bioproducts development. These wastes are not only recyclable in nature but are also rich sources of bioactive carbohydrates, peptides, pigments, polyphenols, vitamins, natural antioxidants, etc. Bioconversion of agri-food waste to value-added products is very important towards zero waste and circular economy concepts. To reduce the environmental burden, food researchers are seeking strategies to utilize this waste for microbial pigments production and further biotechnological exploitation in functional foods or value-added products. Microbes are valuable sources for a range of bioactive molecules, including microbial pigments production through fermentation and/or utilisation of waste. Here, we have reviewed some of the recent advancements made in important bioengineering technologies to develop engineered microbial systems for enhanced pigments production using agri-food wastes biomass/by-products as substrates in a sustainable way.
Collapse
Affiliation(s)
| | - Minaxi Sharma
- Address correspondence to these authors at the ERA Chair for Food (By-) Products Valorization Technologies- VALORTECH, Estonian University of Life Sciences, Kreutzwaldi 56/5, 51006, Tartu, Estonia; Tel/Fax: +372 7313927; E-mails: ;, ;
| | | | | | - Rajeev Bhat
- Address correspondence to these authors at the ERA Chair for Food (By-) Products Valorization Technologies- VALORTECH, Estonian University of Life Sciences, Kreutzwaldi 56/5, 51006, Tartu, Estonia; Tel/Fax: +372 7313927; E-mails: ;, ;
| |
Collapse
|
170
|
Cataldo VF, Arenas N, Salgado V, Camilo C, Ibáñez F, Agosin E. Heterologous production of the epoxycarotenoid violaxanthin in Saccharomyces cerevisiae. Metab Eng 2020; 59:53-63. [PMID: 32001334 DOI: 10.1016/j.ymben.2020.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/16/2019] [Accepted: 01/18/2020] [Indexed: 12/28/2022]
Abstract
Microbial production of carotenoids has mainly focused towards a few products, such as β-carotene, lycopene and astaxanthin. However, other less explored carotenoids, like violaxanthin, have also shown unique properties and promissory applications. Violaxanthin is a plant-derived epoxidated carotenoid with strong antioxidant activity and a key precursor of valuable compounds, such as fucoxanthin and β-damascenone. In this study, we report for the first time the heterologous production of epoxycarotenoids in yeast. We engineered the yeast Saccharomyces cerevisiae following multi-level strategies for the efficient accumulation of violaxanthin. Starting from a β-carotenogenic yeast strain, we first evaluated the performance of several β-carotene hydroxylases (CrtZ), and zeaxanthin epoxidases (ZEP) from different species, together with their respective N-terminal truncated variants. The combined expression of CrtZ from Pantoea ananatis and truncated ZEP of Haematococcus lacustris showed the best performance and led to a yield of 1.6 mg/gDCW of violaxanthin. Further improvement of the epoxidase activity was achieved by promoting the transfer of reducing equivalents to ZEP by expressing several redox partner systems. The co-expression of the plant truncated ferredoxin-3, and truncated root ferredoxin oxidoreductase-1 resulted in a 2.2-fold increase in violaxanthin yield (3.2 mg/gDCW). Finally, increasing gene copy number of carotenogenic genes enabled reaching a final production of 7.3 mg/gDCW in shake flask cultures and batch bioreactors, which is the highest yield of microbially produced violaxanthin reported to date.
Collapse
Affiliation(s)
- Vicente F Cataldo
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile, Postal Address: Av. Vicuña Mackenna 4860, 7820436, Santiago, Chile
| | - Natalia Arenas
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile, Postal Address: Av. Vicuña Mackenna 4860, 7820436, Santiago, Chile
| | - Valeria Salgado
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile, Postal Address: Av. Vicuña Mackenna 4860, 7820436, Santiago, Chile
| | - Conrado Camilo
- Centro de Aromas y Sabores, DICTUC S.A., Santiago, Chile, Postal Address: Av. Vicuña Mackenna 4860, 7820436, Santiago, Chile
| | - Francisco Ibáñez
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile, Postal Address: Av. Vicuña Mackenna 4860, 7820436, Santiago, Chile
| | - Eduardo Agosin
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile, Postal Address: Av. Vicuña Mackenna 4860, 7820436, Santiago, Chile; Centro de Aromas y Sabores, DICTUC S.A., Santiago, Chile, Postal Address: Av. Vicuña Mackenna 4860, 7820436, Santiago, Chile.
| |
Collapse
|
171
|
Czajka JJ, Kambhampati S, Tang YJ, Wang Y, Allen DK. Application of Stable Isotope Tracing to Elucidate Metabolic Dynamics During Yarrowia lipolytica α-Ionone Fermentation. iScience 2020; 23:100854. [PMID: 32058965 PMCID: PMC7005465 DOI: 10.1016/j.isci.2020.100854] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/19/2019] [Accepted: 01/15/2020] [Indexed: 11/15/2022] Open
Abstract
Targeted metabolite analysis in combination with 13C-tracing is a convenient strategy to determine pathway activity in biological systems; however, metabolite analysis is limited by challenges in separating and detecting pathway intermediates with current chromatographic methods. Here, a hydrophilic interaction chromatography tandem mass spectrometry approach was developed for improved metabolite separation, isotopologue analysis, and quantification. The physiological responses of a Yarrowia lipolytica strain engineered to produce ∼400 mg/L α-ionone and temporal changes in metabolism were quantified (e.g., mevalonate secretion, then uptake) indicating bottleneck shifts in the engineered pathway over the course of fermentation. Dynamic labeling results indicated limited tricarboxylic acid cycle label incorporation and, combined with a measurable ATP shortage during the high ionone production phase, suggested that electron transport and oxidative phosphorylation may limit energy supply and strain performance. The results provide insights into terpenoid pathway metabolic dynamics of non-model yeasts and offer guidelines for sensor development and modular engineering. A HILIC method is demonstrated for efficient separation of 57 cellular metabolites Production of α-ionone was ∼400 mg/L in bench-top bioreactors Engineered Y. lipolytica secreted then consumed mevalonate during fermentation Oxidative phosphorylation may limit performance in high-cell-density fermentations
Collapse
Affiliation(s)
- Jeffrey J Czajka
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, USA
| | | | - Yinjie J Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, USA.
| | - Yechun Wang
- Arch Innotek, LLC, 4320 Forest Park Avenue, St Louis, MO, USA.
| | - Doug K Allen
- Donald Danforth Plant Science Center, St. Louis, MO, USA; United States Department of Agriculture, Agricultural Research Service, St. Louis, MO, USA.
| |
Collapse
|
172
|
Zhang JL, Bai QY, Peng YZ, Fan J, Jin CC, Cao YX, Yuan YJ. High production of triterpenoids in Yarrowia lipolytica through manipulation of lipid components. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:133. [PMID: 32760447 PMCID: PMC7392732 DOI: 10.1186/s13068-020-01773-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/20/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Lupeol exhibits novel physiological and pharmacological activities, such as anticancer and immunity-enhancing activities. However, cytotoxicity remains a challenge for triterpenoid overproduction in microbial cell factories. As lipophilic and relatively small molecular compounds, triterpenes are generally secreted into the extracellular space. The effect of increasing triterpene efflux on the synthesis capacity remains unknown. RESULTS In this study, we developed a strategy to enhance triterpene efflux through manipulation of lipid components in Y. lipolytica by overexpressing the enzyme Δ9-fatty acid desaturase (OLE1) and disturbing phosphatidic acid phosphatase (PAH1) and diacylglycerol kinase (DGK1). By this strategy combined with two-phase fermentation, the highest lupeol production reported to date was achieved, where the titer in the organic phase reached 381.67 mg/L and the total production was 411.72 mg/L in shake flasks, exhibiting a 33.20-fold improvement over the initial strain. Lipid manipulation led to a twofold increase in the unsaturated fatty acid (UFA) content, up to 61-73%, and an exceptionally elongated cell morphology, which might have been caused by enhanced membrane phospholipid biosynthesis flux. Both phenotypes accelerated the export of toxic products to the extracellular space and ultimately stimulated the capacity for triterpenoid synthesis, which was proven by the 5.11-fold higher ratio of extra/intracellular lupeol concentrations, 2.79-fold higher biomass accumulation and 2.56-fold higher lupeol productivity per unit OD in the modified strains. This strategy was also highly efficient for the biosynthesis of other triterpenes and sesquiterpenes, including α-amyrin, β-amyrin, longifolene, longipinene and longicyclene. CONCLUSIONS In conclusion, we successfully created a high-yield lupeol-producing strain via lipid manipulation. We demonstrated that the enhancement of lupeol efflux and synthesis capacity was induced by the increased UFA content and elongated cell morphology. Our study provides a novel strategy to promote the biosynthesis of valuable but toxic products in microbial cell factories.
Collapse
Affiliation(s)
- Jin-Lai Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 China
| | - Qiu-Yan Bai
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 China
| | - Yang-Zi Peng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 China
| | - Jie Fan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 China
| | - Cong-Cong Jin
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 China
| | - Ying-Xiu Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 China
| | - Ying-Jin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 China
| |
Collapse
|
173
|
Liu GS, Li T, Zhou W, Jiang M, Tao XY, Liu M, Zhao M, Ren YH, Gao B, Wang FQ, Wei DZ. The yeast peroxisome: A dynamic storage depot and subcellular factory for squalene overproduction. Metab Eng 2020; 57:151-161. [DOI: 10.1016/j.ymben.2019.11.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/19/2019] [Accepted: 11/05/2019] [Indexed: 02/06/2023]
|
174
|
Metabolic engineering for the production of fat-soluble vitamins: advances and perspectives. Appl Microbiol Biotechnol 2019; 104:935-951. [DOI: 10.1007/s00253-019-10157-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 01/02/2023]
|
175
|
Kim JE, Jang IS, Son SH, Ko YJ, Cho BK, Kim SC, Lee JY. Tailoring the Saccharomyces cerevisiae endoplasmic reticulum for functional assembly of terpene synthesis pathway. Metab Eng 2019; 56:50-59. [DOI: 10.1016/j.ymben.2019.08.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/17/2019] [Accepted: 08/17/2019] [Indexed: 10/26/2022]
|
176
|
Ganesan V, Spagnuolo M, Agrawal A, Smith S, Gao D, Blenner M. Advances and opportunities in gene editing and gene regulation technology for Yarrowia lipolytica. Microb Cell Fact 2019; 18:208. [PMID: 31783869 PMCID: PMC6884833 DOI: 10.1186/s12934-019-1259-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022] Open
Abstract
Yarrowia lipolytica has emerged as a biomanufacturing platform for a variety of industrial applications. It has been demonstrated to be a robust cell factory for the production of renewable chemicals and enzymes for fuel, feed, oleochemical, nutraceutical and pharmaceutical applications. Metabolic engineering of this non-conventional yeast started through conventional molecular genetic engineering tools; however, recent advances in gene/genome editing systems, such as CRISPR-Cas9, transposons, and TALENs, has greatly expanded the applications of synthetic biology, metabolic engineering and functional genomics of Y. lipolytica. In this review we summarize the work to develop these tools and their demonstrated uses in engineering Y. lipolytica, discuss important subtleties and challenges to using these tools, and give our perspective on important gaps in gene/genome editing tools in Y. lipolytica.
Collapse
Affiliation(s)
- Vijaydev Ganesan
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd., Clemson, SC 29634 USA
| | - Michael Spagnuolo
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd., Clemson, SC 29634 USA
| | - Ayushi Agrawal
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd., Clemson, SC 29634 USA
| | - Spencer Smith
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd., Clemson, SC 29634 USA
| | - Difeng Gao
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd., Clemson, SC 29634 USA
| | - Mark Blenner
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd., Clemson, SC 29634 USA
| |
Collapse
|
177
|
CRISPR-Cas12a/Cpf1-assisted precise, efficient and multiplexed genome-editing in Yarrowia lipolytica. Metab Eng Commun 2019; 10:e00112. [PMID: 31867213 PMCID: PMC6906711 DOI: 10.1016/j.mec.2019.e00112] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/03/2019] [Accepted: 11/14/2019] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas9 has been widely adopted as the basic toolkit for precise genome-editing and engineering in various organisms. Alternative to Cas9, Cas12 or Cpf1 uses a simple crRNA as a guide and expands the protospacer adjacent motif (PAM) sequence to TTTN. This unique PAM sequence of Cpf1 may significantly increase the on-target editing efficiency due to lower chance of Cpf1 misreading the PAMs on a high GC genome. To demonstrate the utility of CRISPR-Cpf1, we have optimized the CRISPR-Cpf1 system and achieved high-editing efficiency for two counter-selectable markers in the industrially-relevant oleaginous yeast Yarrowia lipolytica: arginine permease (93% for CAN1) and orotidine 5′-phosphate decarboxylase (~96% for URA3). Both mutations were validated by indel mutation sequencing. For the first time, we further expanded this toolkit to edit three sulfur house-keeping genetic markers (40%–75% for MET2, MET6 and MET25), which confers yeast distinct colony color changes due to the formation of PbS (lead sulfide) precipitates. Different from Cas9, we demonstrated that the crRNA transcribed from a standard type II RNA promoter was sufficient to guide Cpf1 endonuclease activity. Furthermore, modification of the crRNA with 3′ polyUs facilitates the faster maturation and folding of crRNA and improve the genome editing efficiency. We also achieved multiplexed genome editing, and the editing efficiency reached 75%–83% for duplex genomic targets (CAN1-URA3 and CAN1-MET25) and 41.7% for triplex genomic targets (CAN1-URA3-MET25). Taken together, this work expands the genome-editing toolbox for oleaginous yeast species and may accelerate our ability to engineer oleaginous yeast for both biotechnological and biomedical applications. Cpf1 expands the PAM to TTTN and increases the on-target editing efficiency. CRISPR-Cpf1 is optimized to edit genetic markers CAN1, URA3, MET2, MET6 and MET25. A type II RNA promoter was sufficient to guide Cpf1 endonuclease activity. CrRNA modified with 3′ polyUs improves the on-target genome editing efficiency. Duplex genome-editing reaches 75%–83% and triplex editing reaches 42% in Y. lipolytica.
Collapse
|
178
|
Lv Y, Marsafari M, Koffas M, Zhou J, Xu P. Optimizing Oleaginous Yeast Cell Factories for Flavonoids and Hydroxylated Flavonoids Biosynthesis. ACS Synth Biol 2019; 8:2514-2523. [PMID: 31622552 DOI: 10.1021/acssynbio.9b00193] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plants possess myriads of secondary metabolites with a broad spectrum of health-promoting benefits. To date, plant extraction is still the primary route to produce high-value natural products which inherently suffers from economics and scalability issues. Heterologous expression of plant biosynthetic gene clusters in microbial host is considered as a feasible approach to overcoming these limitations. Oleaginous yeast produces a large amount of lipid bodies, the abundant membrane structure and the lipophilic environment provide the ideal environment for the regioselectivity and stereoselectivity of many plant-derived P450 enzymes. In this work, we used modular method to construct, characterize, and optimize the flavonoid pathways in Yarrowia lipolytica. We also evaluated various precursor biosynthetic routes and unleashed the metabolic potential of Y. lipolytica to produce flavonoids and hydroxylated flavonoids. Specifically, we have identified that chalcone synthase (CHS) and cytochrome P450 reductases (CPR) were the bottlenecks of hydroxylated flavonoid production. We determined the optimal gene copy number of CHS and CPR to be 5 and 2, respectively. We further removed precursor pathway limitations by expressing genes associated with chorismate and malonyl-CoA supply. With pH and carbon-nitrogen ratio (C/N) optimization, our engineered strain produced 252.4 mg/L naringenin, 134.2 mg/L eriodictyol, and 110.5 mg/L taxifolin from glucose in shake flasks. Flavonoid and its hydroxylated derivatives are most prominently known as antioxidant and antiaging agents. These findings demonstrate our ability to harness the oleaginous yeast as the microbial workhorse to expand nature's biosynthetic potential, enabling us to bridge the gap between drug discovery and natural product manufacturing.
Collapse
Affiliation(s)
- Yongkun Lv
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Monireh Marsafari
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Peng Xu
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
179
|
Bae S, Park BG, Kim B, Hahn J. Multiplex Gene Disruption by Targeted Base Editing ofYarrowia lipolyticaGenome Using Cytidine Deaminase Combined with the CRISPR/Cas9 System. Biotechnol J 2019; 15:e1900238. [DOI: 10.1002/biot.201900238] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/18/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Sang‐Jeong Bae
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University 1 Gwanak‐ro Gwanak‐gu Seoul 08826 Republic of Korea
| | - Beom Gi Park
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University 1 Gwanak‐ro Gwanak‐gu Seoul 08826 Republic of Korea
| | - Byung‐Gee Kim
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University 1 Gwanak‐ro Gwanak‐gu Seoul 08826 Republic of Korea
| | - Ji‐Sook Hahn
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University 1 Gwanak‐ro Gwanak‐gu Seoul 08826 Republic of Korea
| |
Collapse
|
180
|
Yarrowia lipolytica: more than an oleaginous workhorse. Appl Microbiol Biotechnol 2019; 103:9251-9262. [DOI: 10.1007/s00253-019-10200-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
|
181
|
Bruder S, Melcher FA, Zoll T, Hackenschmidt S, Kabisch J. Evaluation of a
Yarrowia lipolytica
Strain Collection for Its Lipid and Carotenoid Production Capabilities. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201900172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Stefan Bruder
- Computer‐Aided Synthetic Biology TU Darmstadt Schnittspahnstr. 12 64287 Darmstadt Germany
| | - Felix Arthur Melcher
- Computer‐Aided Synthetic Biology TU Darmstadt Schnittspahnstr. 12 64287 Darmstadt Germany
| | - Thomas Zoll
- Computer‐Aided Synthetic Biology TU Darmstadt Schnittspahnstr. 12 64287 Darmstadt Germany
| | - Silke Hackenschmidt
- Computer‐Aided Synthetic Biology TU Darmstadt Schnittspahnstr. 12 64287 Darmstadt Germany
| | - Johannes Kabisch
- Computer‐Aided Synthetic Biology TU Darmstadt Schnittspahnstr. 12 64287 Darmstadt Germany
| |
Collapse
|
182
|
Enhancement of Astaxanthin Biosynthesis in Oleaginous Yeast Yarrowia lipolytica via Microalgal Pathway. Microorganisms 2019; 7:microorganisms7100472. [PMID: 31635020 PMCID: PMC6843682 DOI: 10.3390/microorganisms7100472] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 12/05/2022] Open
Abstract
Astaxanthin is a high-value red pigment and antioxidant used by pharmaceutical, cosmetics, and food industries. The astaxanthin produced chemically is costly and is not approved for human consumption due to the presence of by-products. The astaxanthin production by natural microalgae requires large open areas and specialized equipment, the process takes a long time, and results in low titers. Recombinant microbial cell factories can be engineered to produce astaxanthin by fermentation in standard equipment. In this work, an oleaginous yeast Yarrowia lipolytica was engineered to produce astaxanthin at high titers in submerged fermentation. First, a platform strain was created with an optimised pathway towards β-carotene. The platform strain produced 331 ± 66 mg/L of β-carotene in small-scale cultivation, with the cellular content of 2.25% of dry cell weight. Next, the genes encoding β-ketolase and β-hydroxylase of bacterial (Paracoccus sp. and Pantoea ananatis) and algal (Haematococcus pluvialis) origins were introduced into the platform strain in different copy numbers. The resulting strains were screened for astaxanthin production, and the best strain, containing algal β-ketolase and β-hydroxylase, resulted in astaxanthin titer of 44 ± 1 mg/L. The same strain was cultivated in controlled bioreactors, and a titer of 285 ± 19 mg/L of astaxanthin was obtained after seven days of fermentation on complex medium with glucose. Our study shows the potential of Y. lipolytica as the cell factory for astaxanthin production.
Collapse
|
183
|
Shiferaw Terefe N, Augustin MA. Fermentation for tailoring the technological and health related functionality of food products. Crit Rev Food Sci Nutr 2019; 60:2887-2913. [PMID: 31583891 DOI: 10.1080/10408398.2019.1666250] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fermented foods are experiencing a resurgence due to the consumers' growing interest in foods that are natural and health promoting. Microbial fermentation is a biotechnological process which transforms food raw materials into palatable, nutritious and healthy food products. Fermentation imparts unique aroma, flavor and texture to food, improves digestibility, degrades anti-nutritional factors, toxins and allergens, converts phytochemicals such as polyphenols into more bioactive and bioavailable forms, and enriches the nutritional quality of food. Fermentation also modifies the physical functional properties of food materials, rendering them differentiated ingredients for use in formulated foods. The science of fermentation and the technological and health functionality of fermented foods is reviewed considering the growing interest worldwide in fermented foods and beverages and the huge potential of the technology for reducing food loss and improving nutritional food security.
Collapse
|
184
|
López J, Cataldo VF, Peña M, Saa PA, Saitua F, Ibaceta M, Agosin E. Build Your Bioprocess on a Solid Strain-β-Carotene Production in Recombinant Saccharomyces cerevisiae. Front Bioeng Biotechnol 2019; 7:171. [PMID: 31380362 PMCID: PMC6656860 DOI: 10.3389/fbioe.2019.00171] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/03/2019] [Indexed: 11/19/2022] Open
Abstract
Robust fermentation performance of microbial cell factories is critical for successful scaling of a biotechnological process. From shake flask cultivations to industrial-scale bioreactors, consistent strain behavior is fundamental to achieve the production targets. To assert the importance of this feature, we evaluated the impact of the yeast strain design and construction method on process scalability -from shake flasks to bench-scale fed-batch fermentations- using two recombinant Saccharomyces cerevisiae strains capable of producing β-carotene; SM14 and βcar1.2 strains. SM14 strain, obtained previously from adaptive evolution experiments, was capable to accumulate up to 21 mg/gDCW of β-carotene in 72 h shake flask cultures; while the βcar1.2, constructed by overexpression of carotenogenic genes, only accumulated 5.8 mg/gDCW of carotene. Surprisingly, fed-batch cultivation of these strains in 1L bioreactors resulted in opposite performances. βcar1.2 strain reached much higher biomass and β-carotene productivities (1.57 g/L/h and 10.9 mg/L/h, respectively) than SM14 strain (0.48 g/L/h and 3.1 mg/L/h, respectively). Final β-carotene titers were 210 and 750 mg/L after 80 h cultivation for SM14 and βcar1.2 strains, respectively. Our results indicate that these substantial differences in fermentation parameters are mainly a consequence of the exacerbated Crabtree effect of the SM14 strain. We also found that the strategy used to integrate the carotenogenic genes into the chromosomes affected the genetic stability of strains, although the impact was significantly minor. Overall, our results indicate that shake flasks fermentation parameters are poor predictors of the fermentation performance under industrial-like conditions, and that appropriate construction designs and performance tests must be conducted to properly assess the scalability of the strain and the bioprocess.
Collapse
Affiliation(s)
- Javiera López
- Centro de Aromas and Sabores, DICTUC S.A., Santiago, Chile.,Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Vicente F Cataldo
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Manuel Peña
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pedro A Saa
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Maximiliano Ibaceta
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo Agosin
- Centro de Aromas and Sabores, DICTUC S.A., Santiago, Chile.,Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
185
|
Moser S, Pichler H. Identifying and engineering the ideal microbial terpenoid production host. Appl Microbiol Biotechnol 2019; 103:5501-5516. [PMID: 31129740 PMCID: PMC6597603 DOI: 10.1007/s00253-019-09892-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
More than 70,000 different terpenoid structures are known so far; many of them offer highly interesting applications as pharmaceuticals, flavors and fragrances, or biofuels. Extraction of these compounds from their natural sources or chemical synthesis is-in many cases-technically challenging with low or moderate yields while wasting valuable resources. Microbial production of terpenoids offers a sustainable and environment-friendly alternative starting from simple carbon sources and, frequently, safeguards high product specificity. Here, we provide an overview on employing recombinant bacteria and yeasts for heterologous de novo production of terpenoids. Currently, Escherichia coli and Saccharomyces cerevisiae are the two best-established production hosts for terpenoids. An increasing number of studies have been successful in engineering alternative microorganisms for terpenoid biosynthesis, which we intend to highlight in this review. Moreover, we discuss the specific engineering challenges as well as recent advances for microbial production of different classes of terpenoids. Rationalizing the current stages of development for different terpenoid production hosts as well as future prospects shall provide a valuable decision basis for the selection and engineering of the cell factory(ies) for industrial production of terpenoid target molecules.
Collapse
Affiliation(s)
- Sandra Moser
- Austrian Centre of Industrial Biotechnology (acib GmbH), Petersgasse 14, 8010, Graz, Austria
- Institute of Molecular Biotechnology, NAWI Graz, BioTechMed Graz, Graz University of Technology, Petersgasse 14/2, 8010, Graz, Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology (acib GmbH), Petersgasse 14, 8010, Graz, Austria.
- Institute of Molecular Biotechnology, NAWI Graz, BioTechMed Graz, Graz University of Technology, Petersgasse 14/2, 8010, Graz, Austria.
| |
Collapse
|
186
|
Yu T, Dabirian Y, Liu Q, Siewers V, Nielsen J. Strategies and challenges for metabolic rewiring. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coisb.2019.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
187
|
Ma YR, Wang KF, Wang WJ, Ding Y, Shi TQ, Huang H, Ji XJ. Advances in the metabolic engineering of Yarrowia lipolytica for the production of terpenoids. BIORESOURCE TECHNOLOGY 2019; 281:449-456. [PMID: 30846235 DOI: 10.1016/j.biortech.2019.02.116] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 05/02/2023]
Abstract
Terpenoids are a large class of natural compounds based on the C5 isoprene unit, with many biological effects such activity against cancer and allergies, while some also have an agreeable aroma. Consequently, they have received extensive attention in the food, pharmaceutical and cosmetic fields. With the identification and analysis of the underlying natural product synthesis pathways, current microbial-based metabolic engineering approaches have yielded new strategies for the production of highly valuable terpenoids. Yarrowia lipolytica is a non-conventional oleaginous yeast that is rapidly emerging as a valuable host for the production of terpenoids due to its own endogenous mevalonate pathway and high oil production capacity. This review aims to summarize the status and strategies of metabolic engineering for the heterologous synthesis of terpenoids in Y. lipolytica in recent years and proposes new methods aiming towards further improvement of terpenoid production.
Collapse
Affiliation(s)
- Yi-Rong Ma
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Kai-Feng Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Wei-Jian Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Ying Ding
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Tian-Qiong Shi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - He Huang
- College of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China.
| |
Collapse
|
188
|
Larroude M, Park YK, Soudier P, Kubiak M, Nicaud JM, Rossignol T. A modular Golden Gate toolkit for Yarrowia lipolytica synthetic biology. Microb Biotechnol 2019; 12:1249-1259. [PMID: 31148366 PMCID: PMC6801146 DOI: 10.1111/1751-7915.13427] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 01/17/2023] Open
Abstract
The oleaginous yeast Yarrowia lipolytica is an established host for the bio-based production of valuable compounds and an organism for which many genetic tools have been developed. However, to properly engineer Y. lipolytica and take full advantage of its potential, we need efficient, versatile, standardized and modular cloning tools. Here, we present a new modular Golden Gate toolkit for the one-step assembly of three transcription units that includes a selective marker and sequences for genome integration. Perfectly suited to a combinatorial approach, it contains nine different validated promoters, including inducible promoters, which allows expression to be fine-tuned. Moreover, this toolbox incorporates six different markers (three auxotrophic markers, two antibiotic-resistance markers and one metabolic marker), which allows the fast sequential construction and transformation of multiple elements. In total, the toolbox contains 64 bricks, and it has been validated and characterized using three different fluorescent reporter proteins. Additionally, it was successfully used to assemble and integrate a three-gene pathway allowing xylose utilization by Y. lipolytica. This toolbox provides a powerful new tool for rapidly engineering Y. lipolytica strains and is available to the community through Addgene.
Collapse
Affiliation(s)
- Macarena Larroude
- Micalis Institute, AgroParisTech, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Young-Kyoung Park
- Micalis Institute, AgroParisTech, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Paul Soudier
- Micalis Institute, AgroParisTech, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Monika Kubiak
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, ul. Wojska Polskiego 48, 60-627, Poznan, Poland
| | - Jean-Marc Nicaud
- Micalis Institute, AgroParisTech, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Tristan Rossignol
- Micalis Institute, AgroParisTech, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| |
Collapse
|
189
|
Jin CC, Zhang JL, Song H, Cao YX. Boosting the biosynthesis of betulinic acid and related triterpenoids in Yarrowia lipolytica via multimodular metabolic engineering. Microb Cell Fact 2019; 18:77. [PMID: 31053076 PMCID: PMC6498500 DOI: 10.1186/s12934-019-1127-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/24/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Betulinic acid is a pentacyclic lupane-type triterpenoid and a potential antiviral and antitumor drug, but the amount of betulinic acid in plants is low and cannot meet the demand for this compound. Yarrowia lipolytica, as an oleaginous yeast, is a promising microbial cell factory for the production of highly hydrophobic compounds due to the ability of this organism to accumulate large amounts of lipids that can store hydrophobic products and supply sufficient precursors for terpene synthesis. However, engineering for the heterologous production of betulinic acid and related triterpenoids has not developed as systematically as that for the production of other terpenoids, thus the production of betulinic acid in microbes remains unsatisfactory. RESULTS In this study, we applied a multimodular strategy to systematically improve the biosynthesis of betulinic acid and related triterpenoids in Y. lipolytica by engineering four functional modules, namely, the heterogenous CYP/CPR, MVA, acetyl-CoA generation, and redox cofactor supply modules. First, by screening 25 combinations of cytochrome P450 monooxygenases (CYPs) and NADPH-cytochrome P450 reductases (CPRs), each of which originated from 5 different sources, we selected two optimal betulinic acid-producing strains. Then, ERG1, ERG9, and HMG1 in the MVA module were overexpressed in the two strains, which dramatically increased betulinic acid production and resulted in a strain (YLJCC56) that exhibited the highest betulinic acid yield of 51.87 ± 2.77 mg/L. Then, we engineered the redox cofactor supply module by introducing NADPH- or NADH-generating enzymes and the acetyl-CoA generation module by directly overexpressing acetyl-CoA synthases or reinforcing the β-oxidation pathway, which further increased the total triterpenoid yield (the sum of the betulin, betulinic acid, betulinic aldehyde yields). Finally, we engineered these modules in combination, and the total triterpenoid yield reached 204.89 ± 11.56 mg/L (composed of 65.44% betulin, 23.71% betulinic acid and 10.85% betulinic aldehyde) in shake flask cultures. CONCLUSIONS Here, we systematically engineered Y. lipolytica and achieved, to the best of our knowledge, the highest betulinic acid and total triterpenoid yields reported in microbes. Our study provides a suitable reference for studies on heterologous exploitation of P450 enzymes and manipulation of triterpenoid production in Y. lipolytica.
Collapse
Affiliation(s)
- Cong-Cong Jin
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
| | - Jin-Lai Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
| | - Ying-Xiu Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
| |
Collapse
|
190
|
Liu D, Liu H, Qi H, Guo XJ, Jia B, Zhang JL, Yuan YJ. Constructing Yeast Chimeric Pathways To Boost Lipophilic Terpene Synthesis. ACS Synth Biol 2019; 8:724-733. [PMID: 30779549 DOI: 10.1021/acssynbio.8b00360] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Synthetic chimeric biological system offers opportunities to illuminate principles of designing life, and a primary step is constructing synthetic chimeric pathways. Here, we constructed yeast chimeric pathways by transferring the genes from Saccharomyces cerevisiae pathways into another budding yeast Yarrowia lipolytica for in vivo assembly. We efficiently diversified gene option, combination, localization order, and copy number as expected. Convergence of two yeast pathways, especially mevalonic acid (MVA) pathways, remarkably enhanced synthesis of a lipophilic terpene, lycopene. In the selected champion strain with 50-fold of enhanced lycopene production, the chimeric MVA pathway gathered three S. cerevisiae genes with particular copies and locations. Amazingly, therein we discovered distinct transcriptional up-regulation of three significant pathways correlated with acetyl-CoA supply and tuning of cellular lipid amounts and composition. Modulating these pathways further improved lycopene production to 150-fold, a final 259 mg/L (approximately 80 mg/g DCW). We primarily showed the capacity of boosting the synthesis of lipophilic products with yeast chimeric pathways.
Collapse
Affiliation(s)
- Duo Liu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| | - Hong Liu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| | - Hao Qi
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| | - Xue-Jiao Guo
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| | - Bin Jia
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| | - Jin-Lai Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| | - Ying-Jin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| |
Collapse
|
191
|
Wang C, Zhao S, Shao X, Park JB, Jeong SH, Park HJ, Kwak WJ, Wei G, Kim SW. Challenges and tackles in metabolic engineering for microbial production of carotenoids. Microb Cell Fact 2019; 18:55. [PMID: 30885243 PMCID: PMC6421696 DOI: 10.1186/s12934-019-1105-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/08/2019] [Indexed: 02/07/2023] Open
Abstract
Naturally occurring carotenoids have been isolated and used as colorants, antioxidants, nutrients, etc. in many fields. There is an ever-growing demand for carotenoids production. To comfort this, microbial production of carotenoids is an attractive alternative to current extraction from natural sources. This review summarizes the biosynthetic pathway of carotenoids and progresses in metabolic engineering of various microorganisms for carotenoid production. The advances in synthetic pathway and systems biology lead to many versatile engineering tools available to manipulate microorganisms. In this context, challenges and possible directions are also discussed to provide an insight of microbial engineering for improved production of carotenoids in the future.
Collapse
Affiliation(s)
- Chonglong Wang
- School of Biology and Basic Medical Sciences, Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China.
| | - Shuli Zhao
- School of Biology and Basic Medical Sciences, Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Xixi Shao
- School of Biology and Basic Medical Sciences, Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Ji-Bin Park
- Division of Applied Life Science (BK21 Plus), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Seong-Hee Jeong
- Division of Applied Life Science (BK21 Plus), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Hyo-Jin Park
- Division of Applied Life Science (BK21 Plus), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Won-Ju Kwak
- Division of Applied Life Science (BK21 Plus), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Gongyuan Wei
- School of Biology and Basic Medical Sciences, Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Plus), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
192
|
Yuan SF, Alper HS. Metabolic engineering of microbial cell factories for production of nutraceuticals. Microb Cell Fact 2019; 18:46. [PMID: 30857533 PMCID: PMC6410520 DOI: 10.1186/s12934-019-1096-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/27/2019] [Indexed: 11/18/2022] Open
Abstract
Metabolic engineering allows for the rewiring of basic metabolism to overproduce both native and non-native metabolites. Among these biomolecules, nutraceuticals have received considerable interest due to their health-promoting or disease-preventing properties. Likewise, microbial engineering efforts to produce these value-added nutraceuticals overcome traditional limitations of low yield from extractions and complex chemical syntheses. This review covers current strategies of metabolic engineering employed for the production of a few key nutraceuticals with selecting polyunsaturated fatty acids, polyphenolic compounds, carotenoids and non-proteinogenic amino acids as exemplary molecules. We focus on the use of both mono-culture and co-culture strategies to produce these molecules of interest. In each of these cases, metabolic engineering efforts are enabling rapid production of these molecules.
Collapse
Affiliation(s)
- Shuo-Fu Yuan
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Hal S Alper
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA.
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA.
| |
Collapse
|
193
|
Sun J, Zhang C, Nan W, Li D, Ke D, Lu W. Glycerol improves heterologous biosynthesis of betulinic acid in engineered Yarrowia lipolytica. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2018.10.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
194
|
Soong YHV, Liu N, Yoon S, Lawton C, Xie D. Cellular and metabolic engineering of oleaginous yeast Yarrowia lipolytica for bioconversion of hydrophobic substrates into high-value products. Eng Life Sci 2019; 19:423-443. [PMID: 32625020 DOI: 10.1002/elsc.201800147] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/12/2018] [Accepted: 02/07/2019] [Indexed: 12/17/2022] Open
Abstract
The non-conventional oleaginous yeast Yarrowia lipolytica is able to utilize both hydrophilic and hydrophobic carbon sources as substrates and convert them into value-added bioproducts such as organic acids, extracellular proteins, wax esters, long-chain diacids, fatty acid ethyl esters, carotenoids and omega-3 fatty acids. Metabolic pathway analysis and previous research results show that hydrophobic substrates are potentially more preferred by Y. lipolytica than hydrophilic substrates to make high-value products at higher productivity, titer, rate, and yield. Hence, Y. lipolytica is becoming an efficient and promising biomanufacturing platform due to its capabilities in biosynthesis of extracellular lipases and directly converting the extracellular triacylglycerol oils and fats into high-value products. It is believed that the cell size and morphology of the Y. lipolytica is related to the cell growth, nutrient uptake, and product formation. Dimorphic Y. lipolytica demonstrates the yeast-to-hypha transition in response to the extracellular environments and genetic background. Yeast-to-hyphal transition regulating genes, such as YlBEM1, YlMHY1 and YlZNC1 and so forth, have been identified to involve as major transcriptional factors that control morphology transition in Y. lipolytica. The connection of the cell polarization including cell cycle and the dimorphic transition with the cell size and morphology in Y. lipolytica adapting to new growth are reviewed and discussed. This review also summarizes the general and advanced genetic tools that are used to build a Y. lipolytica biomanufacturing platform.
Collapse
Affiliation(s)
- Ya-Hue Valerie Soong
- Massachusetts Biomanufacturing Center Department of Chemical Engineering University of Massachusetts Lowell Lowell MA USA
| | - Na Liu
- Massachusetts Biomanufacturing Center Department of Chemical Engineering University of Massachusetts Lowell Lowell MA USA
| | - Seongkyu Yoon
- Massachusetts Biomanufacturing Center Department of Chemical Engineering University of Massachusetts Lowell Lowell MA USA
| | - Carl Lawton
- Massachusetts Biomanufacturing Center Department of Chemical Engineering University of Massachusetts Lowell Lowell MA USA
| | - Dongming Xie
- Massachusetts Biomanufacturing Center Department of Chemical Engineering University of Massachusetts Lowell Lowell MA USA
| |
Collapse
|
195
|
Rakicka M, Wolniak J, Lazar Z, Rymowicz W. Production of high titer of citric acid from inulin. BMC Biotechnol 2019; 19:11. [PMID: 30744615 PMCID: PMC6371587 DOI: 10.1186/s12896-019-0503-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/31/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Citric acid is considered as the most economically feasible product of microbiological production, therefore studies on cheap and renewable raw materials for its production are highly desirable. In this study citric acid was synthesized by genetically engineered strains of Yarrowia lipolytica from widely available, renewable polysaccharide - inulin. Hydrolysis of inulin by the Y. lipolytica strains was established by expressing the inulinase gene (INU1 gene; GenBank: X57202.1) with its native secretion signal sequence was amplified from genomic DNA from Kluyveromyces marxianus CBS6432. To ensure the maximum citric acid titer, the optimal cultivation strategy-repeated-batch culture was applied. RESULTS The strain Y. lipolytica AWG7 INU 8 secreted more than 200 g dm- 3 of citric acid during repeated-batch culture on inulin, with a productivity of 0.51 g dm- 3 h- 1 and a yield of 0.85 g g- 1. CONCLUSIONS The citric acid titer obtained in the proposed process is the highest value reported in the literature for Yarrowia yeast. The obtained results suggest that citric acid production from inulin by engineered Y. lipolytica may be a very promising technology for industrial citric acid production.
Collapse
Affiliation(s)
- Magdalena Rakicka
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, 37 Chełmońskiego St, 51-630 Wroclaw, Poland
| | - Jakub Wolniak
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, 37 Chełmońskiego St, 51-630 Wroclaw, Poland
| | - Zbigniew Lazar
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, 37 Chełmońskiego St, 51-630 Wroclaw, Poland
| | - Waldemar Rymowicz
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, 37 Chełmońskiego St, 51-630 Wroclaw, Poland
| |
Collapse
|
196
|
Zhou P, Li M, Shen B, Yao Z, Bian Q, Ye L, Yu H. Directed Coevolution of β-Carotene Ketolase and Hydroxylase and Its Application in Temperature-Regulated Biosynthesis of Astaxanthin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1072-1080. [PMID: 30606005 DOI: 10.1021/acs.jafc.8b05003] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Because it is an outstanding antioxidant with wide applications, biotechnological production of astaxanthin has attracted increasing research interest. However, the astaxanthin titer achieved to date is still rather low, attributed to the poor efficiency of β-carotene ketolation and hydroxylation, as well as the adverse effect of astaxanthin accumulation on cell growth. To address these problems, we constructed an efficient astaxanthin-producing Saccharomyces cerevisiae strain by combining protein engineering and dynamic metabolic regulation. First, superior mutants of β-carotene ketolase and β-carotene hydroxylase were obtained by directed coevolution to accelerate the conversion of β-carotene to astaxanthin. Subsequently, the Gal4M9-based temperature-responsive regulation system was introduced to separate astaxanthin production from cell growth. Finally, 235 mg/L of (3 S,3' S)-astaxanthin was produced by two-stage, high-density fermentation. This study demonstrates the power of combining directed coevolution and temperature-responsive regulation in astaxanthin biosynthesis and may provide methodological reference for biotechnological production of other value-added chemicals.
Collapse
Affiliation(s)
- Pingping Zhou
- Institute of Bioengineering, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety/Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Education of China , Yangzhou University , Yangzhou 225009 , P.R. China
| | - Min Li
- Institute of Bioengineering, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , P.R. China
| | - Bin Shen
- Institute of Bioengineering, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , P.R. China
| | - Zhen Yao
- Institute of Bioengineering, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , P.R. China
| | - Qi Bian
- Institute of Bioengineering, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , P.R. China
| | - Lidan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , P.R. China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education , Zhejiang University , Hangzhou 310027 , P.R. China
| | - Hongwei Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , P.R. China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education , Zhejiang University , Hangzhou 310027 , P.R. China
| |
Collapse
|
197
|
Larroude M, Rossignol T, Nicaud JM, Ledesma-Amaro R. Synthetic biology tools for engineering Yarrowia lipolytica. Biotechnol Adv 2018; 36:2150-2164. [PMID: 30315870 PMCID: PMC6261845 DOI: 10.1016/j.biotechadv.2018.10.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/11/2018] [Accepted: 10/07/2018] [Indexed: 12/15/2022]
Abstract
The non-conventional oleaginous yeast Yarrowia lipolytica shows great industrial promise. It naturally produces certain compounds of interest but can also artificially generate non-native metabolites, thanks to an engineering process made possible by the significant expansion of a dedicated genetic toolbox. In this review, we present recently developed synthetic biology tools that facilitate the manipulation of Y. lipolytica, including 1) DNA assembly techniques, 2) DNA parts for constructing expression cassettes, 3) genome-editing techniques, and 4) computational tools.
Collapse
Affiliation(s)
- M Larroude
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - T Rossignol
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - J-M Nicaud
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - R Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom.
| |
Collapse
|
198
|
Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Metab Eng 2018; 52:134-142. [PMID: 30471360 DOI: 10.1016/j.ymben.2018.11.009] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/18/2022]
Abstract
Saccharomyces cerevisiae is an efficient host for natural-compound production and preferentially employed in academic studies and bioindustries. However, S. cerevisiae exhibits limited production capacity for lipophilic natural products, especially compounds that accumulate intracellularly, such as polyketides and carotenoids, with some engineered compounds displaying cytotoxicity. In this study, we used a nature-inspired strategy to establish an effective platform to improve lipid oil-triacylglycerol (TAG) metabolism and enable increased lycopene accumulation. Through systematic traditional engineering methods, we achieved relatively high-level production at 56.2 mg lycopene/g cell dry weight (cdw). To focus on TAG metabolism in order to increase lycopene accumulation, we overexpressed key genes associated with fatty acid synthesis and TAG production, followed by modulation of TAG fatty acyl composition by overexpressing a fatty acid desaturase (OLE1) and deletion of Seipin (FLD1), which regulates lipid-droplet size. Results showed that the engineered strain produced 70.5 mg lycopene/g cdw, a 25% increase relative to the original high-yield strain, with lycopene production reaching 2.37 g/L and 73.3 mg/g cdw in fed-batch fermentation and representing the highest lycopene yield in S. cerevisiae reported to date. These findings offer an effective strategy for extended systematic metabolic engineering through lipid engineering.
Collapse
|
199
|
Celińska E, Nicaud JM. Filamentous fungi-like secretory pathway strayed in a yeast system: peculiarities of Yarrowia lipolytica secretory pathway underlying its extraordinary performance. Appl Microbiol Biotechnol 2018; 103:39-52. [PMID: 30353423 PMCID: PMC6311201 DOI: 10.1007/s00253-018-9450-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/22/2022]
Abstract
Microbial production of secretory proteins constitutes one of the key branches of current industrial biotechnology, earning billion dollar (USD) revenues each year. That industrial branch strongly relies on fluent operation of the secretory machinery within a microbial cell. The secretory machinery, directing the nascent polypeptide to its final destination, constitutes a highly complex system located across the eukaryotic cell. Numerous molecular identities of diverse structure and function not only build the advanced network assisting folding, maturation and secretion of polypeptides but also serve as sensors and effectors of quality control points. All these events must be harmoniously orchestrated to enable fluent processing of the protein traffic. Availability of these elements is considered to be the limiting factor determining capacity of protein traffic, which is of crucial importance upon biotechnological production of secretory proteins. The main purpose of this work is to review and discuss findings concerning secretory machinery operating in a non-conventional yeast species, Yarrowia lipolytica, and to highlight peculiarities of this system prompting its use as the production host. The reviewed literature supports the thesis that secretory machinery in Y. lipolytica is characterized by significantly higher complexity than a canonical yeast protein secretion pathway, making it more similar to filamentous fungi-like systems in this regard.
Collapse
Affiliation(s)
- Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, ul. Wojska Polskiego 48, 60-627, Poznań, Poland.
| | - Jean-Marc Nicaud
- INRA-AgroParisTech, UMR1319, Team BIMLip: Integrative Metabolism of Microbial Lipids, Micalis Institute, Domaine de Vilvert, 78352, Jouy-en-Josas, France
| |
Collapse
|
200
|
Wang C, Liwei M, Park JB, Jeong SH, Wei G, Wang Y, Kim SW. Microbial Platform for Terpenoid Production: Escherichia coli and Yeast. Front Microbiol 2018; 9:2460. [PMID: 30369922 PMCID: PMC6194902 DOI: 10.3389/fmicb.2018.02460] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/25/2018] [Indexed: 11/13/2022] Open
Abstract
Terpenoids, also called isoprenoids, are a large and highly diverse family of natural products with important medical and industrial properties. However, a limited production of terpenoids from natural resources constrains their use of either bulk commodity products or high valuable products. Microbial production of terpenoids from Escherichia coli and yeasts provides a promising alternative owing to available genetic tools in pathway engineering and genome editing, and a comprehensive understanding of their metabolisms. This review summarizes recent progresses in engineering of industrial model strains, E. coli and yeasts, for terpenoids production. With advances of synthetic biology and systems biology, both strains are expected to present the great potential as a platform of terpenoid synthesis.
Collapse
Affiliation(s)
- Chonglong Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Mudanguli Liwei
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Ji-Bin Park
- Division of Applied Life Science (BK21 Plus), PMBBRC, Gyeongsang National University, Jinju, South Korea
| | - Seong-Hee Jeong
- Division of Applied Life Science (BK21 Plus), PMBBRC, Gyeongsang National University, Jinju, South Korea
| | - Gongyuan Wei
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Yujun Wang
- Department of Marine Science, Qinzhou University, Qinzhou, China
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Plus), PMBBRC, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|