151
|
Janke D, Mehralivand S, Strand D, Gödtel-Armbrust U, Habermeier A, Gradhand U, Fischer C, Toliat MR, Fritz P, Zanger UM, Schwab M, Fromm MF, Nürnberg P, Wojnowski L, Closs EI, Lang T. 6-mercaptopurine and 9-(2-phosphonyl-methoxyethyl) adenine (PMEA) transport altered by two missense mutations in the drug transporter gene ABCC4. Hum Mutat 2008; 29:659-69. [PMID: 18300232 DOI: 10.1002/humu.20694] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Multiple drug resistance protein 4 (MRP4, ABCC4) belongs to the C subfamily of the ATP-binding cassette (ABC) transporter superfamily and participates in the transport of diverse antiviral and chemotherapeutic agents such as 6-mercaptopurine (6-MP) and 9-(2-phosphonyl methoxyethyl) adenine (PMEA). We have undertaken a comprehensive functional characterization of protein variants of MRP4 found in Caucasians and other ethnicities. A total of 11 MRP4 missense genetic variants (nonsynonymous SNPs), fused to green fluorescent protein (GFP), were examined in Xenopus laevis oocytes for their effect on expression, localization, and function of the transporter. Radiolabeled 6-MP and PMEA were chosen as transport substrates. All MRP4 protein variants were found to be expressed predominantly in the oocyte membrane. A total of four variants (Y556C, E757 K, V776I, and T1142 M) exhibited a 20% to 40% reduced expression level compared to the wild type. Efflux studies showed that 6-MP is transported by MRP4 in unmodified form. Compared to wild-type MRP4, the transmembrane variant V776I, revealed a significant lower activity in 6-MP transport, while the amino acid exchange Y556C in the Walker(B) motif displayed significantly higher transport of PMEA. The transport properties of the other variants were comparable to wild-type MRP4. Our study shows that Xenopus oocytes are well suited to characterize MRP4 and its protein variants. Carriers of the rare MRP4 variants Y556C and V776I may have altered disposition of MRP4 substrates.
Collapse
Affiliation(s)
- Daniel Janke
- Institute of Pharmacology, University of Mainz, Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Ziol M, Barbu V, Rosmorduc O, Frassati-Biaggi A, Barget N, Hermelin B, Scheffer GL, Bennouna S, Trinchet JC, Beaugrand M, Ganne-Carrié N. ABCB4 heterozygous gene mutations associated with fibrosing cholestatic liver disease in adults. Gastroenterology 2008; 135:131-41. [PMID: 18482588 DOI: 10.1053/j.gastro.2008.03.044] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 03/12/2008] [Accepted: 03/21/2008] [Indexed: 01/16/2023]
Abstract
BACKGROUND & AIMS Adenosine triphosphate-binding cassette subfamily B, member 4 (ABCB4) mutations have not been investigated in patients with unexplained cholestasis. We aimed to investigate ABCB4 mutations in adult patients with unexplained anicteric cholestasis and to describe liver injury associated with ABCB4 mutations. METHODS Between February 2004 and March 2007, all adults with unexplained cholestasis despite multiple investigations including liver biopsy and 124 healthy volunteers had ABCB4 sequencing. Fibrosis, bile duct lesions, inflammatory infiltrate, activation of myofibroblasts and multidrug-resistant P-glycoprotein 3 (MDR3) immunostaining were assessed on patients' liver biopsy specimens. RESULTS Thirty-two patients were included (23 females, 16-69 years of age). Eight different ABCB4 heterozygous mutations were found in 11 patients (34%). Seven of these mutations (exons 4, 6, 14, 18, 23) were never detected in the control group. One mutation (exon 15) was detected in 4 patients (12.5%) and 4 controls (3%). At the time of liver biopsy, the main clinical and biologic characteristics were similar in the 32 patients regardless of ABCB4 mutation. The histologic pattern in patients with a mutation consisted of portal fibrosis with ductular reaction and strong macrophagic infiltrate of portal tracts without significant periportal and lobular necroinflammatory lesions or cholangitis. Fibrosis score and macrophagic infiltration of portal tracts were significantly increased in patients with ABCB4 mutation (P = .01). Absence or reduced MDR3 canalicular immunostaining was demonstrated in all patients with ABCB4 mutations tested. CONCLUSIONS Heterozygous ABCB4 mutations were detected in 34% of adults with unexplained cholestasis, for the most part without biliary symptoms, and could result in significant liver fibrosis.
Collapse
Affiliation(s)
- Marianne Ziol
- Laboratoire d'anatomie et de cytologie pathologique, AP-HP Hôpital Jean Verdier, Bondy, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Abstract
Elucidation of the key mechanisms that confer interindividual differences in drug response remains an important focus of drug disposition and clinical pharmacology research. We now know both environmental and host genetic factors contribute to the apparent variability in drug efficacy or in some cases, toxicity. In addition to the widely studied and recognized genes involved in the metabolism of drugs in clinical use today, we now recognize that membrane-bound proteins, broadly referred to as transporters, may be equally as important to the disposition of a substrate drug, and that genetic variation in drug transporter genes may be a major contributor of the apparent intersubject variation in drug response, both in terms of attained plasma and tissue drug level at target sites of action. Of particular relevance to drug disposition are members of the ATP Binding Cassette (ABC) superfamily of efflux transporters. In this review a comprehensive assessment and annotation of recent findings in relation to genetic variation in the Multidrug Resistance Proteins 1-5 (ABCC1-5) and Breast Cancer Resistance Protein (ABCG2) are described, with particular emphasis on the impact of such transporter genetic variation to drug disposition or efficacy.
Collapse
Affiliation(s)
- Ulrike Gradhand
- Division of Clinical Pharmacology, Department of Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | | |
Collapse
|
154
|
Hepatocellular transport in acquired cholestasis: new insights into functional, regulatory and therapeutic aspects. Clin Sci (Lond) 2008; 114:567-88. [PMID: 18377365 DOI: 10.1042/cs20070227] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The recent overwhelming advances in molecular and cell biology have added enormously to our understanding of the physiological processes involved in bile formation and, by extension, to our comprehension of the consequences of their alteration in cholestatic hepatopathies. The present review addresses in detail this new information by summarizing a number of recent experimental findings on the structural, functional and regulatory aspects of hepatocellular transporter function in acquired cholestasis. This comprises (i) a short overview of the physiological mechanisms of bile secretion, including the nature of the transporters involved and their role in bile formation; (ii) the changes induced by nuclear receptors and hepatocyte-enriched transcription factors in the constitutive expression of hepatocellular transporters in cholestasis, either explaining the primary biliary failure or resulting from a secondary adaptive response; (iii) the post-transcriptional changes in transporter function and localization in cholestasis, including a description of the subcellular structures putatively engaged in the endocytic internalization of canalicular transporters and the involvement of signalling cascades in this effect; and (iv) a discussion on how this new information has contributed to the understanding of the mechanism by which anticholestatic agents exert their beneficial effects, or the manner in which it has helped the design of new successful therapeutic approaches to cholestatic liver diseases.
Collapse
|
155
|
Matsushima S, Maeda K, Hayashi H, Debori Y, Schinkel AH, Schuetz JD, Kusuhara H, Sugiyama Y. Involvement of multiple efflux transporters in hepatic disposition of fexofenadine. Mol Pharmacol 2008; 73:1474-83. [PMID: 18245269 DOI: 10.1124/mol.107.041459] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Fexofenadine (FEX) is mainly eliminated from the liver into bile in unchanged form. We demonstrated previously that organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 are involved in the hepatic uptake of FEX. However, little is known about the mechanisms controlling the hepatic efflux of FEX from the liver to bile and blood. In the present study, the involvement of hepatic efflux transporters in the pharmacokinetics of FEX was investigated in both in vitro and in vivo studies. Vectorial transport of FEX was observed in OATP1B3/human bile salt export pump (hBSEP) double transfectants but not in OATP1B3/human breast cancer resistance protein double transfectants, which indicates the possible contribution of hBSEP to the biliary excretion of FEX in humans. In multidrug resistance-associated protein 2 (Mrp2)(-/-) mice, the biliary excretion clearance based on the plasma concentration and the liver-to-plasma concentration ratio significantly decreased, whereas the biliary excretion clearance based on the liver concentration decreased only with 20%, suggesting the minimum contribution of Mrp2 to its biliary excretion. ATP-dependent transport of FEX was observed in hMRP3-enriched membrane vesicles but not hMRP4. In Mrp3(-/-) mice, the biliary excretion clearance based on both the plasma and liver concentration and the liver-to-plasma concentration ratio increased, suggesting the significant contribution of Mrp3 to its sinusoidal efflux and the up-regulation of its biliary excretion in Mrp3(-/-) mice. On the other hand, pharmacokinetics of FEX remained unchanged in Mrp4(-/-) mice. This information provides a novel insight into the transporters important for FEX disposition.
Collapse
Affiliation(s)
- Soichiro Matsushima
- Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Abstract
Three distinct forms of familial intrahepatic cholestasis are the result of mutations in the ATP8B1, ABCB11, and ABCB4 genes. The pathophysiologies of the latter 2 of these diseases are well characterized and are the result of abnormalities in canalicular excretion of bile acids and phospholipids, respectively. The molecular pathophysiology of the systemic disease associated with mutations in ATP8B1 remains unclear. In all of these diseases, wide variations in clinical phenotypes have been observed. The variability can be ascribed at least in part to predicted genotype:phenotype correlations. Disease- and genotype-specific prognoses and therapeutic approaches may exist, although much more information needs to be ascertained before clinicians can confidently make decisions based on genetic information.
Collapse
|
157
|
Abstract
In most cholestatic liver diseases the cause of the disease is not known and therapy can only be directed toward suppression of the pathogenetic processes and amelioration of the consequences of cholestasis. The recognition of adaptive-compensatory responses to cholestasis has become of major importance. They tend to minimize retention of bile acids and other potentially toxic solutes in the hepatocyte by limiting hepatocellular uptake, reducing bile acid synthesis, stimulating detoxification, and up-regulating alternative pathways for excretion. Some of the drugs used for the treatment of cholestatic liver diseases in an empiric way turned out to be modulators of nuclear receptors, which regulate these adaptive-compensatory responses. New drugs are being designed and tested along these lines and may be regarded as treatment opportunities of the future.
Collapse
Affiliation(s)
- Gustav Paumgartner
- Department of Medicine II, Klinikum Grosshadern, University of Munich, Marchioninistrasse 15, 81377 Munich, Germany.
| | | |
Collapse
|
158
|
Abstract
This article gives an overview of the molecular and cellular mechanisms of cholestasis. Topics reviewed include the pathomechanisms of hereditary cholestasis syndromes, such as progressive familial intrahepatic cholestasis, and hepatocellular transporter defects encountered in various acquired cholestatic disorders, such as intrahepatic cholestasis of pregnancy, drug-induced cholestasis, inflammatory cholestasis, primary sclerosing cholangitis, and primary biliary cirrhosis. In addition, current concepts regarding adaptive hepatocellular mechanisms counteracting cholestatic liver damage are discussed.
Collapse
Affiliation(s)
- Gernot Zollner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Laboratory of Experimental and Molecular Hepatology, Medical University of Graz, Auenbruggerplatz 15, A-8036 Graz, Austria
| | | |
Collapse
|
159
|
Volz DC, Kullman SW, Howarth DL, Hardman RC, Hinton DE. Protective Response of the Ah Receptor to ANIT-Induced Biliary Epithelial Cell Toxicity in See-Through Medaka. Toxicol Sci 2008; 102:262-77. [DOI: 10.1093/toxsci/kfm308] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
160
|
Kagawa T, Watanabe N, Mochizuki K, Numari A, Ikeno Y, Itoh J, Tanaka H, Arias IM, Mine T. Phenotypic differences in PFIC2 and BRIC2 correlate with protein stability of mutant Bsep and impaired taurocholate secretion in MDCK II cells. Am J Physiol Gastrointest Liver Physiol 2008; 294:G58-G67. [PMID: 17947449 DOI: 10.1152/ajpgi.00367.2007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Progressive familial cholestasis (PFIC) 2 and benign recurrent intrahepatic cholestasis (BRIC) 2 are caused by mutations in the bile salt export pump (BSEP, ABCB11) gene; however, their prognosis differs. PFIC2 progresses to cirrhosis and requires liver transplantation, whereas BRIC2 is clinically benign. To identify the molecular mechanism(s) responsible for the phenotypic differences, eight PFIC2 and two BRIC2 mutations were introduced in rat Bsep, which was transfected in MDCK II cells. Taurocholate transport activity, protein expression, and subcellular distribution of these mutant proteins were studied in a polarized MDCK II monolayer. The taurocholate transport activity was approximately half of the wild-type (WT) in BRIC2 mutants (A570T and R1050C), was substantially less in two PFIC2 mutants (D482G and E297G), and was almost abolished in six other PFIC2 mutants (K461E, G982R, R1153C, R1268Q, 3767-3768insC, and R1057X). Bsep protein expression levels correlated closely with transport activity, except for R1057X. The half-life of the D482G mutant was shorter than that of the WT (1.35 h vs. 3.49 h in the mature form). BRIC2 mutants and three PFIC mutants (D482G, E297G, and R1057X) were predominantly distributed in the apical membrane. The other PFIC2 mutants remained intracellular. The R1057X mutant protein was stably expressed and trafficked to the apical membrane, suggesting that the COOH-terminal tail is required for transport activity but not for correct targeting. In conclusion, taurocholate transport function was impaired in proportion to rapid degradation of Bsep protein in the mutants, which were aligned in the following order: A570T and R1050C > D482G > E297G > K461E, G982R, R1153C, R1268Q, 3767-3768insC, and R1057X. These results may explain the phenotypic difference between BRIC2 and PFIC2.
Collapse
Affiliation(s)
- Tatehiro Kagawa
- Department of Gastroenterology, Tokai Univ. School of Medicine, Bohseidai, Isehara, Kanagawa 259-1193, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Englert C, Grabhorn E, Richter A, Rogiers X, Burdelski M, Ganschow R. Liver transplantation in children with progressive familial intrahepatic cholestasis. Transplantation 2007; 84:1361-3. [PMID: 18049123 DOI: 10.1097/01.tp.0000282869.94152.4f] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Progressive familial intrahepatic cholestasis (PFIC) is caused by mutations of the bile salt export pump or the multidrug resistance P-glycoprotein, resulting in chronic hepatic failure. Partial external diversion of bile or ileal bypass is effective in some cases and, in others, liver transplantation (OLT) is necessary. Forty-two children were included in this study. Twenty-six children suffered from PFIC type 2 and 16 from PFIC type 3. Symptoms included pruritus, cholestasis, liver cirrhosis, and growth retardation. Seventeen patients received external biliary diversion. Ten had to undergo OLT in the following course. As of this report, three of the remaining patients were on the wait list for OLT. Twenty-three children received a liver graft primarily with excellent outcome. Our data show that OLT is the option of choice in symptomatic PFIC and whenever liver cirrhosis is present. We suggest a very restrictive recommendation of external biliary diversion. However, gene therapy may be a future option for children with PFIC.
Collapse
Affiliation(s)
- Cornelia Englert
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Germany
| | | | | | | | | | | |
Collapse
|
162
|
Pellicoro A, Faber KN. Review article: The function and regulation of proteins involved in bile salt biosynthesis and transport. Aliment Pharmacol Ther 2007; 26 Suppl 2:149-60. [PMID: 18081658 DOI: 10.1111/j.1365-2036.2007.03522.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Bile salts are produced and secreted by the liver and are required for intestinal absorption of fatty food components and excretion of endobiotics and xenobiotics. They are reabsorbed in the terminal ileum and transported back to the liver via the portal tract. Dedicated bile salt transporters in hepatocytes and enterocytes are responsible for the unidirectional transport of bile salts in the enterohepatic cycle. AIM To give an overview of the function and regulations of proteins involved in bile salt synthesis and transport. METHODS Data presented are obtained from PubMed-accessible literature combined with our own recent research. RESULT Hepatocytes and enterocytes contain unique bile salt importers (sodium-taurocholate cotransporting polypeptide and apical sodium-dependent bile acid transporter, respectively) and exporters (bile salt export pump and organic solute transporter alpha-beta, respectively). Enzymes involved in bile salt biosynthesis reside in different subcellular locations, including the endoplasmic reticulum, mitochondria, cytosol and peroxisomes. Defective expression or function of the transporters or enzymes may lead to cholastasis. The bile salt-activated transcription factor Farnesoid X receptor controls expression of genes involved in bile salt biosynthesis and transport. CONCLUSIONS Detailed knowledge is available about the enzymes and transporters involved in bile salt homeostasis and how their defective function is associated with cholestasis. In contrast, the process of intracellular bile salt transport is largely unexplored.
Collapse
Affiliation(s)
- A Pellicoro
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | |
Collapse
|
163
|
Gradual improvement of liver function after administration of ursodeoxycholic acid in an infant with a novel ABCB11 gene mutation with phenotypic continuum between BRIC2 and PFIC2. Eur J Gastroenterol Hepatol 2007; 19:942-6. [PMID: 18049162 DOI: 10.1097/meg.0b013e3282ef4795] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECT The authors report the case of a boy with PFIC type 2 or BRIC type 2 who suffered from liver dysfunction at 2 months after birth. METHODS AND RESULTS A liver biopsy specimen revealed mild liver cirrhosis, and the findings resembled those observed in Byler disease. Genetic examination revealed a normal familial intrahepatic cholestasis-1 gene, but a heterozygous mutation for the ABCB11, C1620A (F540L), was observed. Therefore, the patient was initially diagnosed with PFIC type 2. For 3 years after the diagnosis, he had severe pruritus, an increased serum bile acid, and normal serum values of gamma-glutamyl transaminase. At the age of 2, treatment with administration of ursodeoxycholic acid was started; subsequently, a gradual improvement in his liver function was observed. At the age of 3, he suffered from massive intestinal and pulmonary hemorrhage, which improved immediately after the administration of vitamin K. He was then admitted to our hospital for liver transplantation. At 1 month after the admission, his liver dysfunction showed further improvement, except for a mild increase in the serum bile acid level. This condition did not show any change during the 5-year follow-up period. In addition, the patient showed severe growth failure and was diagnosed with growth hormone deficiency. Hence, he receives growth hormone administration. CONCLUSION The patient could be genetically diagnosed with bile salt export pump disease of PFIC type 2 or BRIC type 2. Various clinical features are observed in PFIC or BRIC patients with ABCB11 mutation.
Collapse
|
164
|
Zollner G, Wagner M, Fickert P, Silbert D, Gumhold J, Zatloukal K, Denk H, Trauner M. Expression of bile acid synthesis and detoxification enzymes and the alternative bile acid efflux pump MRP4 in patients with primary biliary cirrhosis. Liver Int 2007; 27:920-9. [PMID: 17696930 DOI: 10.1111/j.1478-3231.2007.01506.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Bile acid synthesis, transport and metabolism are markedly altered in experimental cholestasis. Whether such coordinated regulation exists in human cholestatic diseases is unclear. We therefore investigated expression of genes for bile acid synthesis, detoxification and alternative basolateral export and regulatory nuclear factors in primary biliary cirrhosis (PBC). MATERIAL/METHODS Hepatic CYP7A1, CYP27A1, CYP8B1 (bile acid synthesis), CYP3A4 (hydroxylation), SULT2A1 (sulphation), UGT2B4/2B7 (glucuronidation), MRP4 (basolateral export), farnesoid X receptor (FXR), retinoid X receptor (RXR), short heterodimer partner (SHP), hepatocyte nuclear factor 1alpha (HNF1alpha) and HNF4alpha expression was determined in 11 patients with late-stage PBC and this was compared with non-cholestatic controls. RESULTS CYP7A1 mRNA was repressed in PBC to 10-20% of controls, while CYP27 and CYP8B1 mRNA remained unchanged. SULT2A1, UGT2B4/2B7 and CYP3A4 mRNA levels were unaltered or only mildly reduced in PBC. MRP4 protein levels were induced three-fold in PBC, whereas mRNA levels remained unchanged. Expression levels of FXR, RXR, SHP, PXR, CAR, HNF1alpha and HNF4alpha were moderately reduced in PBC without reaching statistical significance. SUMMARY/CONCLUSIONS Repression of bile acid synthesis and induction of basolateral bile acid export may represent adaptive mechanisms to limit bile acid burden in chronic cholestasis. As these changes do not sufficiently counteract cholestatic liver damage, future therapeutic strategies should aim at stimulation of bile acid detoxification pathways.
Collapse
Affiliation(s)
- Gernot Zollner
- Laboratory of Experimental and Molecular Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Treiber A, Schneiter R, Häusler S, Stieger B. Bosentan is a substrate of human OATP1B1 and OATP1B3: inhibition of hepatic uptake as the common mechanism of its interactions with cyclosporin A, rifampicin, and sildenafil. Drug Metab Dispos 2007; 35:1400-7. [PMID: 17496208 DOI: 10.1124/dmd.106.013615] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The elimination process of the endothelin receptor antagonist bosentan (Tracleer) in humans is entirely dependent on metabolism mediated by two cytochrome P450 (P450) enzymes, i.e., CYP3A4 and CYP2C9. Most interactions with concomitantly administered drugs can be rationalized in terms of inhibition of these P450 enzymes. The increased bosentan concentrations observed in the presence of cyclosporin A, rifampicin, or sildenafil, however, are incompatible with this paradigm and prompted the search for alternative mechanisms governing these interactions. In the present article, we identify bosentan and its active plasma metabolite, Ro 48-5033 (4-(2-hydroxy-1,1-dimethyl-ethyl)-N-[6-(2-hydroxy-ethoxy)-5-(2-methoxy-phenoxy)-[2,2']bipyrimidinyl-4-yl]-benzenesulfonamide), as substrates of the human organic anion transporting polypeptides (OATP) OATP1B1 and OATP1B3. Bosentan uptake into Chinese hamster ovary cells expressing these OATP transporters was efficiently inhibited by cyclosporin A and rifampicin with IC(50) values significantly below their effective plasma concentrations in humans. The phosphodiesterase-5 inhibitor sildenafil was also shown to interfere with OATP-mediated transport, however, at concentrations above those achieved in therapeutic use. Therefore, inhibition of bosentan hepatic uptake may represent an alternative/complementary mechanism to rationalize some of the pharmacokinetic interactions seen in therapeutic use. A similar picture has been drawn for drugs like pitavastatin and fexofenadine, drugs that are mainly excreted in unchanged form. Bosentan elimination, in contrast, is entirely dependent on metabolism. Therefore, the described interactions with rifampicin, cyclosporin A, and, to a lesser extent, sildenafil represent evidence that inhibition of hepatic uptake may become the rate-limiting step in the overall elimination process even for drugs whose elimination is entirely dependent on metabolism.
Collapse
Affiliation(s)
- Alexander Treiber
- Department of Preclinical Pharmacokinetics and Metabolism, Actelion Pharmaceuticals Ltd, Allschwil, Switzerland.
| | | | | | | |
Collapse
|
166
|
Gradhand U, Lang T, Schaeffeler E, Glaeser H, Tegude H, Klein K, Fritz P, Jedlitschky G, Kroemer HK, Bachmakov I, Anwald B, Kerb R, Zanger UM, Eichelbaum M, Schwab M, Fromm MF. Variability in human hepatic MRP4 expression: influence of cholestasis and genotype. THE PHARMACOGENOMICS JOURNAL 2007; 8:42-52. [PMID: 17404579 DOI: 10.1038/sj.tpj.6500451] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The multidrug resistance protein 4 (MRP4) is an efflux transporter involved in the transport of endogenous substrates and xenobiotics. We measured MRP4 mRNA and protein expression in human livers and found a 38- and 45-fold variability, respectively. We sequenced 2 kb of the 5'-flanking region, all exons and intron/exon boundaries of the MRP4 gene in 95 patients and identified 74 genetic variants including 10 non-synonymous variations, seven of them being located in highly conserved regions. None of the detected polymorphisms was significantly associated with changes in the MRP4 mRNA or protein expression. Immunofluorescence microscopy indicated that none of the non-synonymous variations affected the cellular localization of MRP4. However, in cholestatic patients the MRP4 mRNA and protein expression both were significantly upregulated compared to non-cholestatic livers (protein: 299+/-138 vs 100+/-60a.u., P<0.001). Taken together, human hepatic MRP4 expression is highly variable. Genetic variations were not sufficient to explain this variability. In contrast, cholestasis is one major determinant of human hepatic MRP4 expression.
Collapse
Affiliation(s)
- U Gradhand
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Erlangen-Nuremberg, Fahrstrasse 17, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Affiliation(s)
- James L Boyer
- Liver Center, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208019, New Haven, CT 06520-8019, USA.
| |
Collapse
|
168
|
Keitel V, Reinehr R, Gatsios P, Rupprecht C, Görg B, Selbach O, Häussinger D, Kubitz R. The G-protein coupled bile salt receptor TGR5 is expressed in liver sinusoidal endothelial cells. Hepatology 2007; 45:695-704. [PMID: 17326144 DOI: 10.1002/hep.21458] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
UNLABELLED Sinusoidal endothelial cells (SEC) constitute a permeable barrier between hepatocytes and blood. SEC are exposed to high concentrations of bile salts from the enterohepatic circulation. Whether SEC are responsive to bile salts is unknown. TGR5, a G-protein-coupled bile acid receptor, which triggers cAMP formation, has been discovered recently in macrophages. In this study, rat TGR5 was cloned and antibodies directed against the C-terminus of rat TGR5 were developed, which detected TGR5 as a glycoprotein in transfected HepG2-cells. Apart from Kupffer cells, TGR5 was detected in SEC of rat liver. SEC expressed TGR5 over the entire acinus, whereas endothelial cells of the portal or central veins were not immunoreactive toward TGR5 antibodies. In isolated SEC, TGR5 mRNA and protein were detected by reverse transcription (RT) PCR, immunofluorescence microscopy, and Western blot analysis. Bile salts increased cAMP in isolated SEC and induced mRNA expression of endothelial NO synthase (eNOS), a known cAMP-dependent gene. In addition, bile acids activated eNOS by phosphorylation of eNOS at amino acid position 1177. In line with eNOS activation, bile acids induced NO production in liver slices. This is the first report on the expression of TGR5 in SEC. CONCLUSION The data suggest that SEC are directly responsive toward specific bile salts. Regulation of eNOS in SEC by TGR5 connects bile salts with hepatic hemodynamics. This is of particular importance in cholestatic livers when bile salt concentrations are increased.
Collapse
Affiliation(s)
- Verena Keitel
- Department of Gastroenterology, Hepatology and Infectiology, Heinrich-Heine University, Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Jung D, Elferink MGL, Stellaard F, Groothuis GMM. Analysis of bile acid-induced regulation of FXR target genes in human liver slices. Liver Int 2007; 27:137-44. [PMID: 17241392 DOI: 10.1111/j.1478-3231.2006.01393.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Information about the role of nuclear receptors has rapidly increased over the last decade. However, details about their role in human are lacking. Owing to species differences, a powerful human in vitro system is needed. This study uses for the first time precision-cut human liver slices in the nuclear receptor field. The farnesoid X receptor (FXR) was chosen as a model. We were able to demonstrate that human liver slices efficiently take up bile acids and show a stable expression of a wide variety of genes relevant for bile acid metabolism, including bile acid transporters, cytochrome P450 enzymes and transcription factors. Treatment with chenodeoxycholate induced small heterodimer partner, bile salt export pump and p-glycoprotein, ABCB4 and repressed cholesterol 7alpha hydroxylase, hepatocyte nuclear factor (HNF)1, HNF4 and organic anion transporting peptide (OATP)1B1. OATP1B3, FXR, HNF3beta and cytochrome P450 enzyme remained relatively constant. In contrast to what has been observed in mice and rat studies, SHP induction did not result in repression of sodium-dependent bile acid cotransporter expression. Further, regulation of genes seemed to be dependent on concentration and time. Taken together, the study shows that the use of liver slices is a powerful technique that enables to study nuclear receptors in the human liver.
Collapse
Affiliation(s)
- Diana Jung
- Division of Pharmacology and Neurology, Biozentrum, University of Basel, Basel, Switzerland.
| | | | | | | |
Collapse
|
170
|
Sarkadi B, Homolya L, Szakács G, Váradi A. Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system. Physiol Rev 2006; 86:1179-236. [PMID: 17015488 DOI: 10.1152/physrev.00037.2005] [Citation(s) in RCA: 555] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this review we give an overview of the physiological functions of a group of ATP binding cassette (ABC) transporter proteins, which were discovered, and still referred to, as multidrug resistance (MDR) transporters. Although they indeed play an important role in cancer drug resistance, their major physiological function is to provide general protection against hydrophobic xenobiotics. With a highly conserved structure, membrane topology, and mechanism of action, these essential transporters are preserved throughout all living systems, from bacteria to human. We describe the general structural and mechanistic features of the human MDR-ABC transporters and introduce some of the basic methods that can be applied for the analysis of their expression, function, regulation, and modulation. We treat in detail the biochemistry, cell biology, and physiology of the ABCB1 (MDR1/P-glycoprotein) and the ABCG2 (MXR/BCRP) proteins and describe emerging information related to additional ABCB- and ABCG-type transporters with a potential role in drug and xenobiotic resistance. Throughout this review we demonstrate and emphasize the general network characteristics of the MDR-ABC transporters, functioning at the cellular and physiological tissue barriers. In addition, we suggest that multidrug transporters are essential parts of an innate defense system, the "chemoimmunity" network, which has a number of features reminiscent of classical immunology.
Collapse
Affiliation(s)
- Balázs Sarkadi
- National Medical Center, Institute of Hematology and Immunology, Membrane Research Group, Budapest, Hungary.
| | | | | | | |
Collapse
|
171
|
Stieger B, Meier Y, Meier PJ. The bile salt export pump. Pflugers Arch 2006; 453:611-20. [PMID: 17051391 DOI: 10.1007/s00424-006-0152-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 08/08/2006] [Indexed: 12/20/2022]
Abstract
Canalicular secretion of bile salts mediated by the bile salt export pump Bsep constitutes the major driving force for the generation of bile flow. Bsep is a member of the B-family of the super family of ATP-binding cassette transporters and is classified as ABCB11. Bsep has a narrow substrate specificity, which is largely restricted to bile salts. Bsep is extensively regulated at the transcriptional and posttranscriptional level, which directly modulates canalicular bile formation. Pathophysiological alterations of Bsep by either inherited mutations or acquired processes such as inhibition by drugs or disease-related down regulation may lead to a wide spectrum of mild to severe forms of liver disease. Furthermore, many genetic variants of Bsep are known, some of which potentially render individuals susceptible to acquired forms of liver disease.
Collapse
Affiliation(s)
- Bruno Stieger
- Department of Medicine, Institute of Clinical Pharmacology and Toxicology, University Hospital, Zürich, Switzerland.
| | | | | |
Collapse
|
172
|
Zollner G, Marschall HU, Wagner M, Trauner M. Role of nuclear receptors in the adaptive response to bile acids and cholestasis: pathogenetic and therapeutic considerations. Mol Pharm 2006; 3:231-51. [PMID: 16749856 DOI: 10.1021/mp060010s] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cholestasis results in intrahepatic accumulation of cytotoxic bile acids which cause liver injury ultimately leading to biliary fibrosis and cirrhosis. Cholestatic liver damage is counteracted by a variety of intrinsic hepatoprotective mechanisms. Such defense mechanisms include repression of hepatic bile acid uptake and de novo bile acid synthesis. Furthermore, phase I and II bile acid detoxification is induced rendering bile acids more hydrophilic. In addition to "orthograde" export via canalicular export systems, these compounds are also excreted via basolateral "alternative" export systems into the systemic circulation followed by renal elimination. Passive glomerular filtration of hydrophilic bile acids, active renal tubular secretion, and repression of tubular bile acid reabsorption facilitate renal bile acid elimination during cholestasis. The underlying molecular mechanisms are mediated mainly at a transcriptional level via a complex network involving nuclear receptors and other transcription factors. So far, the farnesoid X receptor FXR, pregnane X receptor PXR, and vitamin D receptor VDR have been identified as nuclear receptors for bile acids. However, the intrinsic adaptive response to bile acids cannot fully prevent liver injury in cholestasis. Therefore, additional therapeutic strategies such as targeted activation of nuclear receptors are needed to enhance the hepatic defense against toxic bile acids.
Collapse
Affiliation(s)
- Gernot Zollner
- Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University Graz, Austria, and Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | | |
Collapse
|
173
|
Keitel V, Vogt C, Häussinger D, Kubitz R. Combined mutations of canalicular transporter proteins cause severe intrahepatic cholestasis of pregnancy. Gastroenterology 2006; 131:624-9. [PMID: 16890614 DOI: 10.1053/j.gastro.2006.05.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Accepted: 04/20/2006] [Indexed: 12/27/2022]
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is a cholestatic disorder that usually develops in the third trimester of pregnancy and persists until delivery. The cause of ICP remains elusive, but there is evidence that mutations in the canalicular ABC transporter phospholipid flippase (MDR3) and in the bile salt export pump (BSEP) can predispose for the development of ICP. MDR3 and BSEP were investigated by gene sequencing and immunofluorescence microscopy in a patient with severe ICP of early onset. ICP was diagnosed in a patient in the first trimester of pregnancy with severe pruritus, elevated levels of bile salts, and 48-fold elevation of transaminase levels. A liver biopsy specimen showed diminished canalicular expression of the bile salt export pump BSEP, while the expression and localization of the phospholipid flippase MDR3 was normal. Gene sequencing revealed a homozygous MDR3 gene mutation (S320F). The patient was also homozygous for the common BSEP polymorphism V444A. Treatment with ursodeoxycholate normalized transaminase levels but could not prevent further elevation of bile salt levels and preterm delivery. The combined homozygous alterations of the canalicular transporters may explain the early onset and severity of ICP in this patient. The common BSEP polymorphism V444A accounts for the reduced canalicular BSEP expression. Reduced bile salt secretion through BSEP may explain the persistence of elevated bile salt levels and incomplete efficacy of ursodeoxycholate treatment.
Collapse
Affiliation(s)
- Verena Keitel
- Department of Gastroenterology, Hepatology and Infectiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | | | | | |
Collapse
|
174
|
Briz O, Romero MR, Martinez-Becerra P, Macias RIR, Perez MJ, Jimenez F, San Martin FG, Marin JJG. OATP8/1B3-mediated cotransport of bile acids and glutathione: an export pathway for organic anions from hepatocytes? J Biol Chem 2006; 281:30326-35. [PMID: 16877380 DOI: 10.1074/jbc.m602048200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In cholestasis, the accumulation of organic anions in hepatocytes is reduced by transporters (multidrug resistance-associated proteins and OSTalpha-OSTbeta) able to extrude them across the basolateral membrane. Here we investigated whether organic anion-transporting polypeptides (OATPs) may contribute to this function. Xenopus laevis oocytes expressing human carboxylesterase-1 efficiently loaded cholic acid (CA) methyl ester, which was cleaved to CA and exported. Expression of OATP8/1B3 enhanced CA efflux, which was trans-activated by taurocholate but trans-inhibited by reduced (GSH) and oxidized (GSSG) glutathione. Moreover, taurocholate and estradiol 17beta-D-glucuronide, but not bicarbonate and glutamate, cis-inhibited OATP8/1B3-mediated bile acid transport, whereas glutathione cis-stimulated this process, which involved the transport of glutathione itself with a stoichiometry of 2:1 (GSH/bile acid). No cis-activation by glutathione of OATP-C/1B1 was found. Using real time quantitative reverse transcription-PCR, the absolute abundance of OATP-A/1A2, OATP-C/1B1, and OATP8/1B3 mRNA in human liver biopsies was measured. In healthy liver, expression levels of OATP-C/1B1 were approximately 5-fold those of OATP8/1B3 and >100-fold those of OATP-A/1A2. This situation was not substantially modified in several cholestatic liver diseases studied here. In conclusion, although both OATP-C/1B1 and OATP8/1B3 are highly expressed, and able to transport bile acids, their mechanisms of action are different. OATP-C/1B1 may be involved in uptake processes, whereas OATP8/1B3 may mediate the extrusion of organic anions by symporting with glutathione as a normal route of exporting metabolites produced by hepatocytes or preventing their intracellular accumulation when their vectorial traffic toward the bile is impaired.
Collapse
Affiliation(s)
- Oscar Briz
- Research Unit, University Hospital, Salamanca, Spain
| | | | | | | | | | | | | | | |
Collapse
|
175
|
Abstract
Bile secretion is dependent on the coordinated functions of a number of hepatobiliary transport systems. Cholestasis may be caused by an impairment of bile secretion, an obstruction of bile flow or a combination of the two. The common consequence of all forms of cholestasis is retention of bile acids and other potentially toxic compounds in the hepatocytes leading to apoptosis or necrosis of hepatocytes and eventually to chronic cholestatic liver disease. In certain cholestatic disorders there is also leakage of bile acids into the peribiliary space causing portal inflammation and fibrosis. The following pharmacological targets for treatment of intrahepatic cholestasis can be identified: stimulation of orthograde biliary secretion and retrograde secretion of bile acids and other toxic cholephils into the systemic circulation for excretion via the kidneys to reduce their retention in the hepatocytes; stimulation of the metabolism of hydrophobic bile acids and other toxic compounds to more hydrophilic, less toxic metabolites; protection of injured cholangiocytes against toxic effects of bile; inhibition of apoptosis caused by elevated levels of cytotoxic bile acids; inhibition of fibrosis caused by leakage of bile acids into the peribiliary space. The clinical results of ursodeoxcholic acid therapy of primary biliary cirrhosis may be regarded as the first success of this strategy.
Collapse
|
176
|
Abstract
Bile acids are the major determinant and driving force for the generation of bile flow. Bile acid transport across the canalicular membrane is primarily an ATP-dependent process. The predominant transporter is the bile salt excretory pump (BSEP, ABCB11), a member of the adenosine triphosphate-binding cassette (ABC) family of transporters. Regulatory mechanisms that can coordinate the genes encoding bile acid transport proteins are critically important to avoid hepatocyte damage from intracellar accumulation of bile acids. Bile salts are natural ligands for several nuclear hormone receptors expressed in liver and intestine. Nuclear receptors are transcription factors that bind specific ligands such as bile acids and regulate gene expression according to the metabolic requirements of the cell. In cloning of the BSEP gene, we found a binding site in the promoter for the farnesoid X receptor (FXR), a nuclear receptor for bile acids. FXR activity requires heterodimerization with the 9-cis retinoid receptor (RXR alpha), and when bound by bile acids and retinoic acid, the complex effectively activates the transcription of BSEP. There is a growing body of evidence for the activation of nuclear hormone receptors through the remodeling of chromatin by histone modification involving acetylation, in concert with methylation of H3 and H4 histones. We have recently demonstrated a role for the coactivator-associated arginine methyltransferase 1 (CARM1), as a coactivator of the FXR/RXR receptor and regulator of FXR responsive genes such as BSEP. Chromatin immunoprecipitation showed that the bile acid-dependent activation of the human BSEP is associated with a simultaneous increase of FXR and CARM1 occupation of the BSEP promoter. The increased occupation of the BSEP locus by CARM1 also corresponds with the increased deposition of Arg-17 methylation and Lys-9 acetylation of histone H3 within the FXR DNA-binding element of BSEP. Our work on the role of nuclear receptors in regulation of bile acid homeostasis has led to an increased understanding of the pathogenesis of the disorder, progressive familial intrahepatic cholestasis, type 1 (PFIC1) or Byler disease. The gene mutated in PFIC1 is called FIC1 and codes for a type IV P-type ATPase whose function is unknown. Increased ileal apical sodium-dependent bile acid transporter messenger RNA (mRNA) expression was detected in 3 patients with PFIC1. Ileal FXR and short heterodimer partner (an inhibitory nuclear receptor) messenger RNA levels were reduced in the same 3 patients. In studies of cells after antisense-mediated knock-down of endogenous FIC1, the activity of the ileal apical bile acid transporter promoter was enhanced, whereas the activities of the human FXR and BSEP promoters were reduced. Nuclear but not cytoplasmic localization of FXR is markedly decreased in FIC1-negative cells, indicating that FIC1 is necessary for posttranslational modifications necessary for the nuclear translocation of FXR. This defect leads to enhanced ileal bile salt uptake and impaired canalicular bile salt secretion by BSEP. In PFIC1, an increased load of bile acids is retained in the liver leading to cholestasis and progressive liver injury.
Collapse
Affiliation(s)
- Frederick J Suchy
- Laboratory of Molecular and Developmental Hepatology, Department of Pediatrics, Mount Sinai School of Medicine, New York, NY, USA
| | | |
Collapse
|
177
|
Serrano MA, Macias RIR, Briz O, Monte MJ, Blazquez AG, Williamson C, Kubitz R, Marin JJG. Expression in human trophoblast and choriocarcinoma cell lines, BeWo, Jeg-3 and JAr of genes involved in the hepatobiliary-like excretory function of the placenta. Placenta 2006; 28:107-17. [PMID: 16712928 DOI: 10.1016/j.placenta.2006.03.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 03/15/2006] [Accepted: 03/15/2006] [Indexed: 11/18/2022]
Abstract
Using cytokeratin-7-positive trophoblast cells (hTr) isolated from human term placentas and the choriocarcinoma cell lines (hCC) BeWo, Jeg-3 and JAr, the expression of genes involved in the hepatobiliary excretion of cholephilic compounds was investigated by RT-PCR/sequencing followed by measurement of the absolute abundance of mRNA by real-time RT-PCR. Although mRNA of BSEP was detectable and its expression confirmed by Western blotting, its very low expression (higher in hTr than in whole placenta and hCC) did not permit its detection by immunohistochemistry. In hTr, the expression was high for OATP-B/2B1, OATP-8/1B3, MRP1, MRP3, BCRP, FIC1, RARalpha, FXR and SHP, low for OSTalpha, MRP2, MRP4, MRP8, MDR1, CAR and SXR, very low for OATP-A/1A2 and MDR3, and not detectable for OATP-C/1B1, HNF1alpha and HNF4. Expression patterns in hCC mimicked those in hTr, although some important cell line-specific differences were found. The functionality of transporters expressed in hCC was confirmed by their ability to take up and export estradiol 17beta-d-glucuronide in a self-inhibitable and temperature-sensitive manner. In conclusion, several transporters, export pumps, and nuclear receptors involved in the liver excretory function may play a similar role in the placenta, whose specific aspects can be studied by selectively using BeWo, Jeg-3 or JAr cells.
Collapse
Affiliation(s)
- M A Serrano
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca, Spain
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Geier A, Wagner M, Dietrich CG, Trauner M. Principles of hepatic organic anion transporter regulation during cholestasis, inflammation and liver regeneration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:283-308. [PMID: 17291602 DOI: 10.1016/j.bbamcr.2006.04.014] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 04/21/2006] [Accepted: 04/24/2006] [Indexed: 12/16/2022]
Abstract
Hepatic uptake and biliary excretion of organic anions (e.g., bile acids and bilirubin) is mediated by hepatobiliary transport systems. Defects in transporter expression and function can cause or maintain cholestasis and jaundice. Recruitment of alternative export transporters in coordination with phase I and II detoxifying pathways provides alternative pathways to counteract accumulation of potentially toxic biliary constituents in cholestasis. The genes encoding for organic anion uptake (NTCP, OATPs), canalicular export (BSEP, MRP2) and alternative basolateral export (MRP3, MRP4) in liver are regulated by a complex interacting network of hepatocyte nuclear factors (HNF1, 3, 4) and nuclear (orphan) receptors (e.g., FXR, PXR, CAR, RAR, LRH-1, SHP, GR). Bile acids, proinflammatory cytokines, hormones and drugs mediate causative and adaptive transporter changes at a transcriptional level by interacting with these nuclear factors and receptors. Unraveling the underlying regulatory mechanisms may therefore not only allow a better understanding of the molecular pathophysiology of cholestatic liver diseases but should also identify potential pharmacological strategies targeting these regulatory networks. This review is focused on general principles of transcriptional basolateral and canalicular transporter regulation in inflammation-induced cholestasis, ethinylestradiol- and pregnancy-associated cholestasis, obstructive cholestasis and liver regeneration. Moreover, the potential therapeutic role of nuclear receptor agonists for the management of liver diseases is highlighted.
Collapse
Affiliation(s)
- Andreas Geier
- Department of Internal Medicine III, Aachen University (RWTH), Aachen, Germany.
| | | | | | | |
Collapse
|
179
|
Abstract
The nuclear farnesoid X receptor (FXR) plays a pivotal role in maintaining bile acid homeostasis by regulating key genes involved in bile acid synthesis, metabolism and transport, including CYP7A1, UGT2B4, BSEP, MDR3, MRP2, ASBT, I-BABP, NTCP and OSTalpha-OSTbeta in humans. Altered expression or malfunction of these genes has been described in patients with cholestatic liver diseases. This review examines the rationale for the use of FXR ligand therapy in various cholestatic liver disorders and includes potential concerns.
Collapse
Affiliation(s)
- Shi-Ying Cai
- Liver Center, Department of Medicine, Yale University School of Medicine, P.O. Box 208019, New Haven, CT 06520-8019, USA
| | | |
Collapse
|
180
|
Mennone A, Soroka CJ, Cai SY, Harry K, Adachi M, Hagey L, Schuetz JD, Boyer JL. Mrp4-/- mice have an impaired cytoprotective response in obstructive cholestasis. Hepatology 2006; 43:1013-21. [PMID: 16628672 DOI: 10.1002/hep.21158] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mrp4 is a member of the multidrug resistance-associated gene family that is expressed on the basolateral membrane of hepatocytes and undergoes adaptive upregulation in response to cholestatic injury or bile acid feeding. However, the relative importance of Mrp4 in a protective adaptive response to cholestatic injury is not known. To address this issue, common bile duct ligation (CBDL) was performed in wild-type and Mrp4-/- mice and animals followed for 7 days. Histological analysis and serum aminotransferase levels revealed more severe liver injury in the absence of Mrp4 expression. Western analyses revealed that Mrp4, but not Mrp3, was significantly increased after CBDL in wild-type mice. Serum bile acid levels were significantly lower in Mrp4-/- mice than in wild-type CBDL mice, whereas serum bilirubin levels were the same, suggesting that Mrp4 was required to effectively extrude bile acids from the cholestatic liver. Mrp3 and Ostalpha-Ostbeta were upregulated in Mrp4-/- mice but were unable to compensate for the loss of Mrp4. High-performance liquid chromatography analysis on liver extracts revealed that taurine tetrahydroxy bile acid/beta-muricholic acid ratios were increased twofold in Mrp4-/- mice. In conclusion, hepatic Mrp4 plays a unique and essential protective role in the adaptive response to obstructive cholestatic liver injury.
Collapse
Affiliation(s)
- Albert Mennone
- Liver Center and Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | | | | |
Collapse
|
181
|
Abstract
PURPOSE OF REVIEW This review highlights recent advances in understanding the regulation of bile acid transport in cholestasis and in the pathogenesis, outcomes, epidemiology, and treatment of a variety of cholestatic liver diseases and their associated complications. RECENT FINDINGS Highlights include additional understanding of the role of the nuclear receptors farsenoid X receptor, pregnane X receptor, and constitutive androstane receptor in bile acid homeostasis, new understanding of the pathogenesis of primary biliary cirrhosis, familial intrahepatic cholestasis, biliary atresia, and primary sclerosing cholangitis, and clinical trials of therapies for intrahepatic cholestasis of pregnancy, primary biliary cirrhosis, and primary sclerosing cholangitis. SUMMARY Our understanding of the molecular mechanisms, epidemiology and pathogenesis of cholestasis continues to advance. These advances will hopefully lead to more effective therapies for specific cholestatic conditions.
Collapse
Affiliation(s)
- Anna E Rutherford
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, 02114, USA
| | | |
Collapse
|
182
|
Rius M, Hummel-Eisenbeiss J, Hofmann AF, Keppler D. Substrate specificity of human ABCC4 (MRP4)-mediated cotransport of bile acids and reduced glutathione. Am J Physiol Gastrointest Liver Physiol 2006; 290:G640-9. [PMID: 16282361 DOI: 10.1152/ajpgi.00354.2005] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The multidrug resistance protein ABCC4 (MRP4), a member of the ATP-binding cassette superfamily, mediates ATP-dependent unidirectional efflux of organic anions out of cells. Previous studies showed that human ABCC4 is localized to the sinusoidal membrane of hepatocytes and mediates, among other substrates, the cotransport of reduced glutathione (GSH) with bile acids. In the present study, using inside-out membrane vesicles, we demonstrated that human ABCC4 in the presence of physiological concentrations of GSH has a high affinity for the taurine and glycine conjugates of the common natural bile acids as well as the unconjugated bile acid cholate. Chenodeoxycholyltaurine and chenodeoxycholylglycine were the GSH cosubstrates with the highest affinities for ABCC4, with K(m) values of 3.6 and 5.9 microM, respectively. Ursodeoxycholyltaurine and ursodeoxycholylglycine were cotransported together with GSH by ABCC4 with K(m) values of 7.8 and 12.5 microM, respectively, but no transport of ursodeoxycholate and deoxycholate was observed. The simultaneous transport of labeled GSH and cholyltaurine or cholylglycine was demonstrated in double-labeled cotransport experiments with a bile acid-to-GSH ratio of approximately 1:22. K(m) values of the bile acids for ABCC4 were in a range similar to those reported for the canalicular bile salt export pump ABCB11. Under physiological conditions, the sinusoidal ABCC4 may compete with canalicular ABCB11 for bile acids and thereby play a key role in determining the hepatocyte concentration of bile acids. In cholestatic conditions, ABCC4 may become a key pathway for efflux of bile acids from hepatocytes into blood.
Collapse
Affiliation(s)
- Maria Rius
- Division of Tumor Biochemistry, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | |
Collapse
|
183
|
Qin P, Tang X, Elloso MM, Harnish DC. Bile acids induce adhesion molecule expression in endothelial cells through activation of reactive oxygen species, NF-kappaB, and p38. Am J Physiol Heart Circ Physiol 2006; 291:H741-7. [PMID: 16582018 DOI: 10.1152/ajpheart.01182.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bile acids are synthesized in the liver, stored in gallbladder, and secreted into the intestine to aid in the absorption of lipid-soluble nutrients. In addition, bile acids also actively participate in regulation of gene expression through their ability to act as ligands for the nuclear receptor farnesoid X receptor or by activating kinase signaling pathways. Under cholestatic conditions, elevated levels of bile acids in the liver induce hepatic inflammation, and because bile acid levels are also elevated in the circulation, they might also induce vascular inflammation. To test this hypothesis, primary human umbilical vein endothelial cells (HUVEC) and human aortic endothelial cells were treated with bile acids, and the expression of ICAM-1, VCAM-1, and E-selectin were monitored. The three major bile acids found in the circulation, chenodeoxycholic acid, deoxycholic acid, and lithocholic acid, all strongly induced both the mRNA and protein expression of ICAM-1 and VCAM-1. To delineate the mechanism, the experiments were conducted in the presence of various kinase inhibitors. The results demonstrate that the bile acid-mediated induction of adhesion molecule expression occurs by stimulation of NF-kappaB and p38 MAPK signaling pathways through the elevation in reactive oxygen species. The bile acid-induced cell surface expression of ICAM-1 and VCAM-1 was sufficient to result in the increased adhesion of THP-1 monocytes to the HUVEC, suggesting that elevated levels of bile acids in the circulation may cause endothelium dysfunction and contribute to the initiation of early events associated with vascular lesion formation.
Collapse
Affiliation(s)
- Pu Qin
- Wyeth Research, Cardiovascular & Metabolic Disease Research, N2236, 500 Arcola Rd., Collegeville, PA 19426, USA
| | | | | | | |
Collapse
|
184
|
Görg B, Bidmon HJ, Keitel V, Foster N, Goerlich R, Schliess F, Häussinger D. Inflammatory cytokines induce protein tyrosine nitration in rat astrocytes. Arch Biochem Biophys 2006; 449:104-14. [PMID: 16579953 DOI: 10.1016/j.abb.2006.02.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 02/01/2006] [Accepted: 02/03/2006] [Indexed: 12/21/2022]
Abstract
Protein tyrosine nitration may be relevant for the pathogenesis of hepatic encephalopathy (HE). Infections, sepsis, and trauma precipitate HE episodes. Recently, serum levels of tumor necrosis factor (TNF)-alpha were shown to correlate with severity of HE in chronic liver failure. Here the effects of inflammatory cytokines on protein tyrosine nitration in cultured rat astrocytes and rat brain in vivo were studied. In cultured rat astrocytes TNF-alpha (50 pg/ml-10 ng/ml) within 6h increased protein tyrosine nitration. TNF-alpha-induced tyrosine nitration was related to an increased formation of reactive oxygen and nitrogen intermediates, which was downstream from a NMDA-receptor-dependent increase of intracellular [Ca(2+)](i) and nNOS-catalyzed NO production. Astroglial tyrosine nitration was also elevated in brains of rats receiving a non-lethal injection of lipopolysaccharide, as indicated by colocalization of nitrotyrosine immunoreactivity with glial fibrillary acidic protein and glutamine synthetase, and by identification of the glutamine synthetase among the tyrosine-nitrated proteins. It is concluded that reactive oxygen and nitrogen intermediates as well as protein tyrosine nitration by inflammatory cytokines may alter astrocyte function in an NMDA-receptor-, Ca(2+)-, and NOS-dependent fashion. This may be relevant for the pathogenesis of HE and other conditions involving cytokine exposure the brain.
Collapse
Affiliation(s)
- Boris Görg
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
185
|
Kubitz R, Keitel V, Scheuring S, Köhrer K, Häussinger D. Benign recurrent intrahepatic cholestasis associated with mutations of the bile salt export pump. J Clin Gastroenterol 2006; 40:171-5. [PMID: 16394881 DOI: 10.1097/01.mcg.0000196406.15110.60] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A young patient with recurrent attacks of intrahepatic cholestasis is described. On the basis of clinical presentation, laboratory findings and genetic analysis, the diagnosis of benign recurrent intrahepatic cholestasis type 2 (BRIC-2) was established. By the use of BSEP-specific antibodies, almost complete absence of BSEP from the canalicular membrane of liver cells was detected in the patient. Two different BSEP mutations were found. One mutation (E186G) had been described in one BRIC-2 case; the second mutation (V444A) is more frequent and has been linked to intrahepatic cholestasis of pregnancy. It is concluded that this form of compound heterozygosity of the BSEP gene reduces the amount of BSEP protein due to protein instability or mis-targeting, which is the underlying reason for reduced bile salt excretion and cholemia.
Collapse
Affiliation(s)
- Ralf Kubitz
- Department of Gastroenterology, Hepatology and Infectiology, Heinrich-Heine University, Düsseldorf, Germany.
| | | | | | | | | |
Collapse
|
186
|
|
187
|
Abstract
Cholestatic syndromes are inborn or acquired disorders of bile formation. In recent years, several inherited cholestatic syndromes were characterized at the molecular level: progressive familial intrahepatic cholestasis (PFIC) and benign recurrent intrahepatic cholestasis (BRIC). Both PFIC and BRIC were divided phenotypically in distinct subtypes; however, at the genotype level, these clinical entities overlap. PFIC starts in early childhood and progresses toward liver cirrhosis, which often requires liver transplantation within the first decade of life. The diagnosis of PFIC is usually made on the basis of clinical and laboratory findings but needs to be confirmed by genetic and histological analysis. Only recently was it recognized that BRIC, which was estimated as a milder form of PFIC-1, may be caused by more than one gene.
Collapse
Affiliation(s)
- Ralf Kubitz
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich-Heine University Düsseldorf, Germany
| | | | | |
Collapse
|
188
|
Kühlkamp T, Keitel V, Helmer A, Häussinger D, Kubitz R. Degradation of the sodium taurocholate cotransporting polypeptide (NTCP) by the ubiquitin-proteasome system. Biol Chem 2005; 386:1065-74. [PMID: 16218878 DOI: 10.1515/bc.2005.122] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The sodium taurocholate cotransporting polypeptide (Ntcp, Slc10a1) is the major uptake system for bile acids into liver cells. This study investigated the degradation of rat Ntcp and human NTCP by the ubiquitin-proteasome system (UPS). In stably transfected HepG2 cells, rat Ntcp was complex-glycosylated and localized at the plasma membrane. Inhibition of proteasomes by MG-132 or lactacystin led to the accumulation of intracellular Ntcp, a process dependent on de novo protein synthesis. Intracellular Ntcp was core-glycosylated, indicating an endoplasmic reticulum (ER) origin. Core-glycosylated Ntcp was found in cytosolic, detergent-insoluble deposits with characteristics of aggresomes: they co-localized with ubiquitin at the microtubule organization center and Ntcp from these deposits was polyubiquitinated. Transient transfections of Ntcp/NTCP induced intracellular deposits that co-localized with ubiquitin, even in the absence of proteasome inhibitors. Similarly, in livers of patients with progressive familial intrahepatic cholestasis, NTCP could be detected co-localized with ubiquitin in hepatocytes. We conclude that maturing Ntcp/NTCP is degraded by the ubiquitin-proteasome system at the level of ER-associated degradation (ERAD). An imbalance in the synthesis and degradation of NTCP at the level of the ER or alterations in the ERAD machinery might be the cause of intracellular NTCP deposits in transient transfections and in cholestatic livers.
Collapse
Affiliation(s)
- Thomas Kühlkamp
- Department of Gastroenterology, Hepatology and Infectiology, Heinrich-Heine University, D-40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|